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Abstract 
In this project we discuss the concept of Almost Distributive Lattice and Almost Boolean 

Ring and the concept of fuzzy set and fuzzy partial order relations, fuzzy lattices.In this 

project we also study the class of Relatively Complemented Almost Distributive Fuzzy 

Lattice in detail. We study the concept of an Almost Boolean Fuzzy Rings as a 

generalization of a Boolean Fuzzy Rings. We also study a one to one correspondence 

between Relatively Complemented Almost Distributive Fuzzy Lattice and Almost 

Boolean Fuzzy Rings. 
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Chapter One 

Introduction and Preliminaries 

    1.1. Introduction 
The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy, 

U.M. and Rao, G.C. [9] as a common abstraction of almost all the existing ring 

generalizations of a Boolean Algebra. Again the concept of relatively complemented 

ADLs and an Almost Boolean Rings are introduced by Rao, G.C. [7]. A relatively 

complemented ADL is an ADL in which every interval is a complemented lattice. An 

Almost Boolean Ring is a triple ( R ,+, . ,0 ) satisfying  all the properties of a Boolean 

Ring except possibly the associativity of +. On the other hand the concept of a fuzzy 

set was first introduced by Zadeh, L.A. [10] and this concept was adapted by Goguen, 

J.A. [6] and Sanchez ,E. [8] to define a fuzzy lattice and study fuzzy relations. In 

1994, Ajmal, N. and Thomas, K.V. [1] defined a fuzzy lattice as a fuzzy algebra and 

characterized fuzzy sub lattices. In 2009, Chon, I. [5] considering the notion of fuzzy 

order of Zadeh, L.A. [10] introduced a new notion fuzzy lattice and studied the level 

set of fuzzy lattice. In this project we study a new mathematical notion relatively 

complemented Almost Distributive Fuzzy Lattice and an Almost Boolean Fuzzy Ring 

and characterized some properties of them using the fuzzy partial order relations and 

fuzzy lattice defined by Chon, I. and establish the process of obtaining an Almost 

Boolean Fuzzy Rings from a given relatively complemented Almost Distributive 

Fuzzy Lattice and the process of obtaining a relatively complemented Almost 

Distributive Fuzzy Lattice from a given Almost Boolean Fuzzy Ring. 
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1.2. Preliminaries 
This section is consisting of some definitions and results that will be used in the next 

chapter. We simply list these in the form of lemma and theorems and no proofs are 

included. 

1.2.1. Possets, Lattice, and Distributive Lattices 
The definitions and results mentioned in this section are taken from Birkhoff , G. and 

Gratzer,G. [ 4 ]. 

Definition 1.2.1.1 Let P be a non-empty set. Then a binary relation ≤ on P is called a 

partial order on P if it satisfies the following properties; 

   ( 1) Reflexive: a ≤ a 

    (2) Antisymmetric: a ≤ b and b ≤ a imply that a = b. 

    (3) Transitive: a ≤ b and b ≤ c imply that a ≤ c for all a , b , c ∈ P. 

 In this case (P, ≤ ) is called a partially order set or simply a poset.  

In a poset (P, ≤ ), if a ≤ b and a ≠ b , then we write a < b.  

Definition 1.2.1.2 Let ( P , ≤ ) be a poset and a , b ∈ P.Then we say that a and b are 

comparable if either a ≤ b or b ≤ a. Otherwise we say that a and b are incomparable. 

Definition 1.2.1.3 An algebra ( R , ∨ , ∧ ) of type ( 2 , 2 ) is called a lattice if it satisfies 

the following identities: 

(1) Idempotency:  a ∧ a = a  and  a ∨ a = a. 

(2) Commutativity:  a ∧ b = b ∧ a  and  a ∨ b = b ∨ a. 

(3) Absorption:  a ∧ ( a ∨ b ) = a  and  a ∨ ( a ∧ b ) = a. 

(4) Associativity: ( a ∧ b ) ∧ c = a ∧ ( b ∧ c ) and ( a ∨ b ) ∨ c = a ∨ ( b ∨ c ). 
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 In any lattice ( R , ∨ , ∧ ), the following identities are equivalent: 

⦁ a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) 

⦁ ( a ∨ b ) ∧ c = ( a ∧ c ) ∨ ( b ∧ c ) 

⦁ a ∨ ( b ∧ c) = ( a ∨ b ) ∧ ( a ∨ c ) 

⦁ ( a ∧ b ) ∨ c = ( a ∨ c ) ∧ ( b ∨ c ). 

Definition1.2.1.4 A lattice ( R , ∨ , ∧ ) satisfying any one of the above four identities is 

called a Distributive Lattice. 

If ( R , ∨ , ∧ ) is a lattice ,then an element a of  R is called zero element or least element 

of R if a ∧ x = a ,∀ x ∊ R, then it is unique and it is denoted by 0.Similarly an element a 

of R is called one element or greatest element of  R if  a ∧ x = x ,∀ x ∊ R. If R has a 

greatest element , then it is unique and it is denoted by 1. 

1.2. 2.Almost Distributive Lattice 
In this section we recall the definition of an Almost Distributive Lattice ( ADL ) and an 

Almost Boolean Ring ( ABR ) taken from Swamy ,U.M. and Rao, G.C.[9] and 

Rao,G.C.[7]. 

Definition1.2.2.1 An algebra ( R , ∨ , ∧ , 0 ) of type ( 2 , 2 , 0 ) is called Almost 

Distributive Lattice if it satisfies the following axioms: 

     (L1) a ∨ 0 = a     

     (L2)  0 ∧ a = 0 

     (L3) ( a ∨ b ) ∧ c = ( a ∧ c ) ∨ ( b ∧ c ) 

     (L4)  a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) 

     (L5) a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) 

     (L6) ( a ∨ b ) ∧ b = b ∀ a , b , c ∊ R. 
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It can be seen directly that every distributive lattice is an ADL. 

Theorem1.2.2.2 For any a , b , c , d ∊ R ,we have  

(1) a ∧ 0 = 0 and 0 ∨ a = a 

(2) a ∧ a = a = a ∨ a 

(3) ( a ∧ b ) ∨ b = b , a ∨ ( b ∧ a ) = a and a ∧ ( a ∨ b ) = a  

(4) a ∧ b = a ⟺ a ∨ b = b and a ∧ b = b ⟺ a ∨ b = a 

(5) a ∧ b = b ∧ a and a ∨ b = b ∨ a whenever a ≤ b 

(6) a ∧ b ≤ b and a ≤ a ∨ b 

(7) ∧  is associative in R 

(8) a ∧ b ∧ c = b ∧ a ∧ c 

(9) ( a ∨ b ) ∧ c = ( b ∨ a ) ∧ c 

(10) a ∨ ( b ∨ a ) = a ∨ b 

(11) (a ∨ b) ∨ a = a ∨ b 

(12) a ∨ ( b ∨ a ) = ( a ∨ b ) ∨ a 

(13) { a ∨ ( b ∨ c ) } ∧ d = { ( a ∨ b ) ∨ c } ∧ d 

Definition1.2.2.3 An ADL ( R , ∨ , ∧ ) is said to be a relatively complemented ADL if for 

any a , b ∊ R with a < b ,the interval [ a , b ] is a complemented lattice. 

Lemma1.2.2.4 An ADL ( R , ∨ , ∧ , 0 ) is relatively complemented if and only if, given a 

, b ∊ R there exists, x ∊ R such that  a ∨ b = a ∨ x and a ∧ x = 0 and in this case, x is 

unique which we denote by 𝑎𝑏 . 

Lemma 1.2.2.5 If R is relatively complemented and a , b ∊ R, then 𝑎𝑏 ≤ 𝑏. 
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Lemma1.2.2.6 If R is a relatively complemented ADL, then  for any a , b , c ∈ R , we 

havethe following: 

 (1)  𝑎𝑎  = 0 = 𝑎0 and 0𝑎= a 

(2) 𝑏𝑎∧ a = 𝑏𝑎 

(3)𝑎𝑏∧ a = 0 

 (4) 𝑎 𝑐 = ( 𝑎 ∧ 𝑐 )𝑐 

 (5) ( 𝑎 ∨ 𝑏 )𝑐 = 𝑎𝑐∧ 𝑏𝑐 

 (6) ( 𝑎 ∧ 𝑏 )𝑐= 𝑎𝑐 ∨ 𝑏𝑐 

 (7) ( 𝑎 ∧ 𝑐 )(𝑏  ∧ 𝑐) = 𝑎𝑏∧c 

 (8)  ( 𝑐 ∧ 𝑎 )(𝑐  ∧ 𝑏) = c ∧𝑎𝑏 

 (9) a ≤ b ⟺ 𝑏𝑎 = 0 

 (10) a ∧ b = 0 ⟹ 𝑎𝑏 = b and 𝑏𝑎 = a 

(11) 𝑎𝑏  ∨ 𝑏𝑎 = 𝑏𝑎 ∨ 𝑎𝑏 

(12)  𝑎𝑏 ∧ 𝑏𝑎 = 𝑏𝑎 ∧ 𝑎𝑏 

Next we introduce the concept of Almost Boolean Rings as a generalization of that of 

Boolean Rings.                                                                                                           

Definition 1.2.2.7 An algebra ( R, +, . , 0 ) of type ( 2 , 2 , 0 ) is called a Boolean ring if it 

satisfies the following axioms: 

( R1 ) ( x + y ) + z = x + ( y + z ) 

( R2 ) x + 0 = x 

( R3 ) x + x = 0 



 

6 

 

 

 

 

( R4 ) ( x y ) z = x ( y z ) 

( R5) 𝑥2 = 𝑥 

( R6) x ( y + z ) = x y + x z 

(R7) ( x + y ) z = x z + y z , ∀ x , y , z ∈ R. 

Lemma 1.2.2.8 If  R is a Boolean Ring, then 

i. x + x = 0 

ii. x . y = y . x for all x , y ∈ R. 

Definition 1.2.2.9 An algebra ( R , + , . , 0 ) of type ( 2 , 2 , 0 ) is called an Almost 

Boolean Ring if it satisfies the following axioms: 

(R1) x + 0 = x 

(R2) x + x = 0 

(R3) 𝑥2 = 𝑥 

(R4) ( x y ) z = x ( y z ) 

(R5) x ( y + z ) = x y + x z 

(R6) ( x + y ) z = x z +y z 

(R7) { ( x + y ) + z } t = { x + ( y + z ) } t ,∀ x , y ,z , t ∊ R.                                     

Remark: An Almost Boolean Ring is a triple ( R , + , . , 0 ) satisfying all the properties of 

a Boolean Ring except possibly the associativity of +. 

In the rest of this section by R we mean an ABR ( R , + , . , 0 ). 

1.2.3 Fuzzy Partial Order Relations and Fuzzy Lattices 
Here we give some properties and definitions of Fuzzy Partial Order Relations, Fuzzy 

Lattices and Distributive Fuzzy Lattices from Chon , I.[5] and [3]. 
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Definition 1.2.3.1 Let X be  a non empty set.                                                                 

(1)A function A : X x X → [ 0 , 1 ] is  

called a fuzzy relation in X. 

(2) The fuzzy  relation A in X is: 

⦁ Reflexive if and only if  A ( x , x ) = 1 ∀ x ∊ X 

⦁ Antisymmetry if and only if A ( x , y ) > 0 and A ( y , x ) > 0 implies x = y. 

⦁Transitive if and only if A ( x , z ) ≥ 𝑠𝑢𝑝𝑦∈𝑋 min ( A ( x , y ) , A ( y, z ) ) and                                  

(3) A fuzzy relation A is fuzzy partial order relation if A is reflexive, antisymmetry  and 

transitive. 

(4) A fuzzy partial order relation is a fuzzy total order relation if and only if A ( x , y ) > 

0 or   A ( y , x ) > 0 , ∀ x , y ∊ R. 

(5) If A is a fuzzy partial order relation in a set X , then ( X , A ) is called a fuzzy 

partially ordered set or a fuzzy poset. 

(6) If B is a fuzzy total order relation in a set X, then ( X , B ) is called a fuzzy totally 

ordered set or a fuzzy chain. 

Definition 1.2.3.2 Let ( X , A ) be a fuzzy poset. ( X , A  ) is a fuzzy lattice if and only if 

x ∨ y and x ∧ y exists for all x , y ∈ X. 

Proposition 1.2.3.4 Let ( X , A ) be a fuzzy lattice and let x , y , z ∈ X .Then , 

( 1 ) x ∨ x = x , x ∧ x = x 

( 2 ) x ∨ y = y ∨ x , x ∧ y = y ∧ x 

( 3 ) ( x ∨ y ) ∨ z = x ∨ ( y ∨ z ) , ( x ∧ y ) ∧ z = x ∧ ( y ∧ z ) 

( 4 ) ( x ∨ y ) ∧ x = x , ( x ∧ y ) ∨ x  = x. 
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Definition 1.2.3.5 Let ( X , A ) be a fuzzy lattice. ( X , A ) is distributive fuzzy lattice if 

and only if  x ∧ ( y ∨ z ) = ( x ∧ y ) ∨ ( x ∧ z ) and ( x ∨ y ) ∧ ( x ∨ 𝑧 ) = x ∨ ( y ∧ z ). 

Definition 1.2.3.6 Let ( R , ∨ , ∧ , 0 ) be an algebra of type ( 2 , 2 , 0 ) and ( R , A ) be a 

fuzzy poset. Then we call ( R , A ) is an Almost Distributive Fuzzy Lattice ( ADFL) if the         

following axioms are satisfied: 

(1 ) A ( a , a ∨ 0 ) = A ( a ∨ 0 , a ) = 1 

(2 ) A ( 0 , 0 ∧ a ) = A ( 0 ∧ a , 0 ) = 1 

(3 ) A ( a ∨ b ) ∧ c , ( a ∧ c ) ∨ ( b ∧ c ) = A ( ( a ∧ c ) ∨ ( b ∧ c ) , ( a ∨ b ) ∧ c ) = 1 

(4) A ( a ∧ ( b ∨ c ) , ( a ∧ b ) ∨ ( a ∧ c ) = A ( ( a ∧ b ) ∨ ( a ∧ c ), a ∧ ( b ∨ c ) ) = 1 

(5) A ( a ∨ ( b ∧ c ) , ( a ∨ b ) ∧ ( a ∨ c ) = A ( ( a ∨ b ) ∧ ( a ∨ c ) , a ∨ ( b ∧ c ) ) = 1 

(6) A ( ( a ∨ b ) ∧ b , b ) = A ( b , ( a ∨ b ) ∧ b ) = 1 ∀ a , b , c ∊ R. 

Definition 1.2.3.7 Let ( R , A ) be an ADFL. Then for any a , b ∈ R , a ≤ b if and only if  

A ( a , b ) > 0. 
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Chapter Two 

Almost Boolean Fuzzy Rings (ABFRs) 

 In the first section we have seen the concept of relatively complemented Almost 

Distributive Fuzzy Lattices and in the next section we study the concept of an Almost 

Boolean Fuzzy Rings ( ABFR) as a generalization of Boolean Fuzzy Rings(BFR) and 

give an example of ABFR which is not BFR. We establish the process of obtaining an 

ABFR from the given relatively complemented Almost Distributive Fuzzy Lattice and 

the process of obtaining a relatively complemented ADFL from a given ABFR. 

2.1 Relatively Complemented ADFL 

In this section we introduce a new mathematical notion relatively complemented ADFLs 

and we investigate and prove some results. 

Definition2.1.1 An ADFL ( R , A ) is said to be relatively complemented if every interval 

in R is a Boolean Algebra. 

Definition 2.1.2 Let ( R , A ) be an ADFL. For a , b ∈ R with A ( a , b ) > 0, and x ∈ [ a . 

b ] , then y is the complement of x in [ a , b ] if and only if A ( x ∧ y , a ) > 0 and A ( b , x 

∨ y ) > 0 where a is the least element and b is the greatest element. 

Lemma 2.1.3 An ADFL ( R , A ) is said to be relatively complemented if and only if for 

any a , b ∈ R , there exists x ∈ R , such that A ( a ∨ x , a ∨ b ) = A ( a ∨ b , a ∨ x ) = 1 and 

A ( a ∧ x , 0 ) > 0,  in this case , x is unique which we denote by 𝑎𝑏. 

Proof 

( ⟹ ) Suppose an ADFL is relatively complemented . 

Claim: For any a , b ∊ R, there exists a unique x ∊ R, such that   A ( a ∨ x , a ∨ b ) = A ( a 

∨ b , a ∨ x ) = 1 and A ( a ∧ x , 0 ) > 0. 
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Now, an ADFL ( R , A ) is relatively complemented if every interval in R is a Boolean 

algebra. 

Hence [ 0 , a ] is a Boolean algebra. 

Which implies [ 0 , a ] is complemented lattice. 

Let a , b ∊ R, such that A ( a , b ) > 0. Then the interval [ 0 , a ∨ b ] is complemented and 

a ∊ [ 0 , a ∨ b ]. 

If x is the complement of a in [ 0 , a ∨ b ] , then A ( a ∨ b , a ∨ x ) > 0 and A ( a ∧ x , 0 

) > 0 , as  a ∨ x ≤ a ∨ b, A ( a ∨ x , a ∨ b ) > 0…………………………………….( i ) 

To show uniqueness , for y ∊ R, let y ∊ [ 0 , a ∨ b ] satisfying  

A ( a ∨ b , a ∨ y ) > 0 and  A ( a ∧ y , 0 ) > 0 , as a ∨ y ≤ a ∨ b , A ( a ∨ y , a ∨ b ) > 

0….…………………………………………………………………………………..( ii ) 

Claim: A ( x , y ) = A ( y , x ) =1. 

A ( x , y ∧ x ) = A ( ( a ∨ x ) ∧ x , y ∧ x )  

                      = A ( ( a ∨ y ) ∧ x , y ∧ x )……[ from ( i ) and ( ii ) , a ∨ x = a ∨ y = a ∨ b ] 

                      = A ( ( a ∧ x ) ∨ ( y ∧ x ) , y ∧ x ) 

                      = A ( 0 ∨ ( y ∧ x ) , y ∧ x )………[ A ( a ∧ x , 0 ) > 0 , A ( 0 , a ∧ x ) > 0 ] 

                      = A ( y ∧ x , y ∧ x ) 

                      = 1. 

A ( x ∧ y , y ) = A ( x ∧ y ) , ( a ∨ y ) ∧ y ) 

                       = A ( x ∧ y , ( a ∨ x ) ∧ y )………………[from (i) and (ii) above ] 

                       = A ( x ∧ y , ( a ∧ y ) ∨ ( x ∧ y ) ) 
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                       = A ( x ∧ y , 0 ∨ ( x ∧ y ) )………[ A ( a ∧ y, 0 ) > 0 , A ( 0, a ∧ y ) > 0 ] 

                       = A ( x ∧ y , x ∧ y ) 

                       = 1 

Since both  x , y ∊ [ 0 , a ∨ b ] and [ 0 , a ∨ b ] is a Boolean algebra, then x ∧ y = y ∧ x 

⟹ A ( y ∧ x , y ) = 1. 

Now, A ( x , y ) ≥ 𝑠𝑢𝑝𝑐 ∈𝑅 min ( A ( x , c ), A ( c , y ) ) 

                             ≥ min ( A ( x , y ∧ x ) , A ( y ∧ x , y ) ) 

                         = min ( 1 , 1 ) 

                         = 1 

Hence , A ( x , y ) = 1. Similarly A ( y , x ) = 1. 

Therefore A ( x , y ) = A ( y , x ) = 1. Hence the complement is unique 

Conversely suppose for any a , b ∊ R , there exists a unique x in R such that  

A ( a ∨ x , a ∨ b ) = A ( a ∨ b , a ∨ x ) = 1 and A ( a ∧ x , 0 ) > 0. 

Claim : An ADFL ( R , A ) is relatively complemented. 

WTS: The interval [ a , b ] in R is a Boolean algebra. 

Since every interval in an ADL is bounded distributive lattice , it suffices to show the 

interval is complemented lattice. 

Now, let a , b ∊ R such that A ( a , b ) > 0 and x ∊ [ a , b ]. 

Then by hypothesis there exists a unique  y ∊ R , such that   

A ( x ∨ y , b ) = A ( b , x ∨ y ) = 1 and A ( x ∧ y , 0 ) > 0. 
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Since x ≤ b , then x ∨ y = x ∨ b = b………………………………………[iii] 

Now , from ADL we have  y ∧ ( y ∨ x ) = y. Then  

y ≤ y ∨ x 

   = x ∨ y 

   = b……………………..............................................................................................[ iv ] 

Hence, A ( y , b ) > 0………………….. [Since by Definition1.2.3.7. i. e , a ≤ b  if and 

only if  A ( a , b ) > 0 for each a and b in R]……………………………………….[ v ] 

Now, we prove the element a ∨ y ∊ [ a , b ] and it is the complement of x in [ a , b ]. 

From A ( y , b ) > 0………………………………………………..[Since from (v) above ]  

⟹ A ( a ∨ y , a ∨ b ) > 0 

Hence , A ( a ∨ y , b ) > 0 as A ( a , b ) > 0 ,we have a ∨ b = b .Then a ≤ a ∨ y ≤ b. 

Therefore a ∨ y ∊ [ a , b ]. 

Now , A ( x ∧ ( a ∨ y ) , a ) = A ( ( x ∧ a ) ∨ ( x ∧ y ) , a ) 

                                            = A ( a ∨ 0 , a )………………………………[ A ( a , x ) > 0 

and A ( x ∧ y , 0 ) > 0 ,   A ( 0 , x ∧ y ) > 0 ] 

                                            = A ( a , a ) 

                                            = 1                                                                                                        

Hence , A ( x ∧ ( a ∨ y ) , a ) > 0 and  

A ( b , x ∨ ( a ∨ y ) ) = A ( b , ( x ∨ ( a ∨ y )) ∧ b )………………………….[ a ∨ y ≤ b⟹ 

x ∨ ( a ∨ y ) ≤ x ∨ b ≤ b ( x ≤ b ) ]  
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                              = A ( b , ( x ∨ ( a ∨ y ) ) ∧ ( x ∨ y ) )......[ Since from ( iii) above , i .e, 

x ∨ y = b] 

                             = A ( b , x ∨ ( ( a ∨ y ) ∧ y ) ) 

                             = A ( b , x ∨ y )  

                             = A ( b , b ) > 0 

On the other hand as x ∨ ( a ∨ y) ≤ b, we have  A ( x ∨ ( a ∨ y ) , b ) > 0.Therefore, A ( x 

∨ ( a ∨ y ) , b ) = A ( b , x ∨ ( a ∨ y ) ) = 1. 

Hence , a ∨ y is complement of x. Therefore, the interval [ a , b ] in R is a Boolean 

algebra. 

Lemma 2.1.4 If an ADFL ( R , A ) is relatively complemented and a , b ∊ R , then                      

A ( 𝑎 𝑏∨ 𝑏𝑎 , 𝑏𝑎 ∨ 𝑎𝑏 ) = 1. 

Proof :Suppose ( R , A ) is an ADFL and a , b ∊ R. 

A ( 𝑎𝑏∧ 𝑏𝑎 , 0 ) = A ( 𝑎𝑏∧ 𝑏𝑎∧ a , 0 )…………………[Since 𝑏𝑎∧ a = 𝑏𝑎 ] 

                           = A ( 𝑏𝑎∧ 𝑎𝑏∧ a , 0 ) 

                           = A ( 𝑏𝑎∧ 0 , 0 ) 

                           = A ( 0 , 0 ) 

                           = 1. 

Similarly , A ( 0 , 𝑎𝑏∧ 𝑏𝑎 ) = 1. Hence , we have ( 𝑎𝑏∧ 𝑏𝑎 ) = 0. 

Therefore,  A ( 𝑎𝑏∨ 𝑏𝑎 , 𝑏𝑎∨ 𝑎𝑏 ) =1. 

Lemma 2.1.5 If an ADFL ( R , A ) is relatively complemented and a , b ∊ R , then A ( 𝑎𝑏 

, b )  > 0. 

Proof: Suppose an ADFL ( R , A ) is relatively complemented and a , b ∊ R. 



 

14 

 

 

 

 

Now , A ( 𝑎𝑏∧ b , 𝑎𝑏 ) = A ( 0 ∨ ( 𝑎𝑏∧ b ) , 𝑎𝑏 )  

                                    = A ( ( 𝑎𝑏∧ a ) ∨ ( 𝑎𝑏∧ b ) , 𝑎𝑏 )………..[Since 𝑎𝑏∧ a = 0 ] 

                                    = A ( 𝑎𝑏∧ ( a ∨ b ) , 𝑎𝑏 ) 

                                    = A ( 𝑎𝑏∧ ( 𝑎𝑏∨ a ) , 𝑎𝑏 )………………[ Since 𝑎𝑏∨ a = a ∨ b ] 

                                    = A ( 𝑎𝑏 , 𝑎𝑏 )  

                                    =1  

Similarly , A ( 𝑎𝑏 , 𝑎𝑏∧  b ) = 1. 

Hence , A ( 𝑎𝑏∧ b , 𝑎𝑏 ) = A ( 𝑎𝑏, 𝑎𝑏∧  b ) = 1. 

Then we have 𝑎𝑏 ≤ b. 

Therefore, A ( 𝑎𝑏 , b ) > 0. 

2.2 Almost Boolean Fuzzy Rings 

In this section we study the concept of Almost Boolean Fuzzy Rings as a generalization 

of Boolean Fuzzy Rings and we also observe an example of Almost Boolean Fuzzy Ring 

which is not Boolean Fuzzy Ring. 

Definition 2.2.1 Let ( R , + , . , 0 ) be an algebra of type ( 2 , 2 ,0 ) and ( R , A ) be a 

fuzzy poset. Then ( R , A ) is a Fuzzy Ring if it satisfies the following axioms : 

( 1 ) A ( ( a + b ) + c , a + ( b + c ) = A ( a + ( b + c ) , ( a + b ) + c ) = 1 

( 2 ) A ( a + 0 , a ) = A ( a , a + 0 ) = 1 

( 3 ) A ( a + ( -a ) , 0 ) = A ( 0 , a + ( -a ) ) = 1 

( 4 ) A ( a + b , b + a ) = A ( b + a , a + b ) = 1 

( 5 ) A ( ( a b ) c , a ( b c ) ) = A ( a ( b c ) , ( a b ) c ) = 1 
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( 6 ) A ( a ( b + c ) , a b + a c ) = A ( a b + a c , a ( b + c ) ) = 1 

( 7 ) A ( ( b + c ) a , b a + c a ) = A ( b a + c a , ( b + c ) a ) = 1 ∀ a , b , c , -a ∊ R. 

Definition 2.2.2 Let ( R , A ) be a fuzzy ring. Then ( R , A ) is a Boolean Fuzzy Ring ( 

BFR ) if and only if A ( 𝑎2 , 𝑎 ) = A (𝑎 , 𝑎2 ) = 1 ∀ a ∊ R. 

Definition 2.2.3 Let ( R , + , . , 0 ) be an algebra of type ( 2 , 2 , 0 ) and ( R , A ) be a 

fuzzy poset.Then we call ( R , A ) is an Almost Boolean Fuzzy Rings ( ABFRs ) if the 

following axioms are satisfied: 

( RF1 ) A ( a + 0 , a ) = A ( a , a + 0 ) = 1 

( RF2 ) A ( a + a , 0 ) = A ( 0 , a + a ) = 1 

( RF3 ) A ( ( a b ) c , a ( b c ) ) = A ( a ( b c ) , ( a b ) c ) = 1 

( RF4 ) A ( 𝑎2 , a ) = A ( a , 𝑎2 ) =1 

( RF5 ) A ( a ( b + c ) , a b + a c ) = A ( a b + a c , a ( b + c ) ) = 1 

( RF6 ) A ( ( a + b ) c , a c + b c ) = A ( a c + b c , ( a + b ) c ) = 1 

( RF7 ) A ({ a + ( b + c ) } d , { ( a + b ) + c } d ) = A ({ ( a + b ) + c } d ,  { a + ( b + c ) } 

d  ) = 1 ∀ a , b , c , d ∊ R. 

Remark: Almost Boolean Fuzzy Ring is a generalization of Boolean Fuzzy Ring that 

satisfies all the properties of a Boolean Fuzzy Rings except possibly the associativity of “ 

+ ’’. 
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Example 2.2.4Let R = {0, a , b, c , d } and define two binary operations + and . in R as 

follows. 

+ 0 a b c d                     And . 0 a b c d 

0 0      a b c d 0 0 0 0 0 0 

a a 0 0 0 0 a 0 a b c d 

b b 0 0 0 0 b 0 a b c d 

c c 0 0 0 0 c 0 a b c d 

d d 0 0 0 0 d 0 a b c d 

 

Define a fuzzy relation : 

A : R × R → [ 0 , 1 ] as follows; 

A ( 0 , 0 ) = A ( a , a ) = A ( b , b ) = A ( c , c ) =1, 

A ( a , 0 ) = A ( b , 0 ) = A ( c , 0 ) = A ( b , a ) = A ( b , c ) = A ( c , a ) = 0 , 

A ( 0 , a ) = 0.4 , A ( 0 , b ) = 0.5 , A ( 0 , c ) = 0.7 , A ( a , b ) = 0.9 , A ( a , c ) = 0.1 and 

A ( c , b ) = 0.3. 

Since ( R , A ) is a fuzzy poset , 

 (RF1 ) A ( a + 0 , a ) = A ( a , a ) = 1 , and A ( a , a + 0 ) = A ( a , a ) = 1, 

Hence, A ( a + 0 , a ) = A ( a , a + 0 ) = 1. 

(RF2 ) A ( a + a , 0 ) = A ( 0 , 0 ) = 1 , and A ( 0 , a + a ) = ( 0 , 0 ) = 1 , 

Hence , A ( a + a , 0 ) = A ( 0 , a + a ) = 1. 

(RF3) A ( ( a b ) c , a ( b c ) ) = A ( b c , a c ) = A ( c , c ) = 1 , and  

 A ( a ( b c ) , ( a b ) c ) = A ( a c , b c ) = A ( c , c ) = 1; 
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Hence , A ( ( a b ) c , a ( b c ) = A ( a ( b c ) , ( a b ) c ) = 1. 

(RF4) A ( 𝑎2 , a ) = A ( a , a ) = 1 , and  

A ( a , 𝑎2 ) = A ( a , a ) = 1 , 

Hence , A ( 𝑎2 , a ) = A ( a , 𝑎2 ) = 1. 

(RF5) A ( a ( b + c ) , a b + a c ) = A ( a 0 , b + c ) = A ( 0 , 0 ) = 1 , and  

 A ( a b + a c , a ( b + c ) = A ( b + c , a 0 ) = A ( 0 , 0 ) = 1,  

Hence , A ( a ( b + c ) , a b + a c ) = A ( a b + a c , a ( b+ c ) = 1. 

(RF6) A ( ( a + b ) c , a c + b c ) = A ( 0 c , c + c ) = A ( 0 , 0 ) = 1 , and  

 A ( a c + b c , ( a + b ) c ) = A ( c + c , 0 c ) = A ( 0 , 0 ) = 1 , 

Hence , A ( ( a + b ) c , a c + b c ) = A ( a c + b c ) , ( a + b ) c ) = 1 . 

(RF7) A ( { a + ( b + c ) } d , { ( a + b ) + c } d ) = A ( { a + 0 } d , { 0 + c } d )  

                                                                             = A ( a d , c d ) 

                                                                             = A ( d , d ) 

                                                                             = 1 , and 

 A ( { ( a + b ) + c } d , { a + ( b + c ) } d ) = A ( { 0 + c } d , { a + 0 } d ) 

                                                                     = A ( c d , a d ) 

                                                                     = A ( d , d ) 

                                                                     = 1 , 

Hence , A ( { a + ( b + c ) } d , { ( a + b ) + c } d ) = A ( { ( a + b ) + c } d , { a + ( b + c ) 

} d ) = 1. 



 

18 

 

 

 

 

Therefore ,( R , A ) is an ABFR, but ( R , A ) is not BFR , [ since A ( a + ( b + c ) , ( a + b 

) + c ) = A ( a + 0 , 0 + c ) = A ( a , c ) = 0.1 and A ( ( a + b ) + c , a + ( b + c ) ) = A ( 0 + 

c , a + 0 ) = A ( c , a ) = 0 , Hence , A ( a + ( b + c ) , ( a + b ) + c ) ≠ A ( ( a + b ) + c , a + 

( b + c ) ) ≠ 1.]   

Therefore ABFR is a generalized BFR except possibly the associativity of “ + ’’. 

Lemma 2.2.5 Let ( R , A ) be an ABFR. For any a , b , c ∊ R, we have 

(1) A ( a 0 , 0 ) = 1 

(2) A ( 0 , 0 a ) = 1 

(3) A ( a 0 , 0 a ) = 1. 

Proof: Suppose  ( R , A ) is an ABFR and a , b , c ∊ R. 

( 1 ) A ( a 0 , 0 ) = A ( a ( a + a ) , 0 )---------------------[ Since a + a = 0 in ABR] 

                           = A ( 𝑎2 + 𝑎2  , 0 ) 

                           = A ( a + a , 0 )----------------------------[Since 𝑎2 = a in ABR ] 

                           = A ( 0 , 0 ) 

                           = 1 

Hence , A ( a 0 , 0 ) = 1. 

( 2 ) A ( 0 , 0 a ) = A ( 0 , ( a + a ) a ) 

                            = A ( 0 , 𝑎2 + 𝑎2 ) 

                            = A ( 0 , a + a ) 

                            = A ( 0 , 0 ) 

                            = 1 

Hence, A ( 0 , 0 a ) = 1. 

Therefore A ( 0 , 0 a ) = 1. 
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( 3 ) A ( a 0 , 0 a ) ≥ 𝑆𝑢𝑝𝑐 ∈𝑅 min ( A ( a 0 , c ) , A ( c , 0 a ) 

                                  ≥  min ( A ( a 0 , 0 ) , A ( 0 , 0 a ) 

                                  ≥ min ( A ( 0 , 0 ) , A ( 0 , 0 ) ) 

                              = min ( 1 , 1 ) 

                              = 1  

Hence  , A ( a 0 , 0 a ) = 1. 

Theorem 2.2.6 Let ( R , A ) be a relatively complemented ADFL. Define a binary 

operations + on R by a + b = 𝑎𝑏 ∨ 𝑏𝑎 . Then ( R , A ) is an ABFR. 

Proof: Suppose ( R , A ) is relatively complemented ADFL. 

Claim: ( R , A ) is ABFR , where  a + b = 𝑎𝑏 ∨ 𝑏𝑎. 

( 1 ) A ( a + 0 , a ) = A ( 𝑎 0∨ 0𝑎 , a ) 

                               = A ( 0 ∨ a , a ) 

                               = A ( a , a ) 

                               = 1, similarly A ( a , a + 0 ) = 1. 

Therefore, A ( a + 0 , a ) = A ( a , a + 0 ) = 1. 

( 2 ) A ( a + a , 0 ) = A ( 𝑎𝑎∨ 𝑎𝑎 , 0 ) 

                               = A ( 0 ∨ 0 , 0 )------[ since 𝑎𝑎 = 0 in relatively complemented ADFL] 

                               = A ( 0 , 0 ) 

                               =1 similarly A ( 0 , a + a ) = 1, 

Therefore , A ( a + a , 0 ) = A ( 0 , a + a ) = 1. 
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( 3 ) A ( ( a ∧ b ) ∧ c , a ∧ ( b ∧ c ) ) =  A ( a ∧ ( b ∧ c ) , a ∧ ( b ∧ c ) ) = 1 

Similarly , A ( a ∧ ( b ∧ c ) , ( a ∧ b ) ∧ c ) = 1. 

Therefore, A ( ( a ∧ b ) ∧ c , a ∧ ( b ∧ c ) ) = A ( a ∧ ( b ∧ c ) , ( a ∧ b ) ∧ c ) = 1. 

( 4 ) A ( a ∧ a , a ) = A ( a , a ) = 1 = A ( a , a ∧ a ). 

( 5 ) A ( a ∧ ( b + c ) , ( a ∧ b ) + ( a ∧ c ) ) = A ( a ∧ ( 𝑏𝑐∨ 𝑐𝑏 ) , ( a ∧ b ) + ( a ∧ c ) ) 

                                                                  = A ( ( a ∧ 𝑏 𝑐 ) ∨ ( a ∧ 𝑐𝑏 ) , ( a ∧ b ) + ( a ∧ c )) 

                                                         = A ( (𝑎 ∧ 𝑏 ) 𝑎 ∧ 𝑐∨ ( 𝑎 ∧ 𝑐 )𝑎 ∧ 𝑏, ( a ∧ b ) + ( a ∧ c )) 

[ Since ,( 𝑎 ∧ 𝑏 )𝑎 ∧ 𝑐 = a ∧ 𝑏𝑐 and ( 𝑎 ∧ 𝑐 )𝑎 ∧ 𝑏 = a ∧ 𝑐𝑏 by lemma 1.2.2.6. ] 

                                                          = A ( ( a ∧ b ) + ( a ∧ c ) , ( a ∧ b ) + ( a ∧ c ) 

                                                           = 1. 

Similarly , A ( ( a ∧ b ) + ( a ∧ c ) , a ∧ ( b + c ) ) = 1. 

Therefore, A ( a ∧ ( b + c ) , ( a ∧ b ) + ( a ∧ c ) ) = A ( ( a ∧ b ) + ( a ∧ c ) , a ∧ ( b + c ) ) 

= 1. 

( 6 ) A ( ( a + b ) ∧ c , ( a ∧ c ) + ( b ∧ c ) ) = A ( ( 𝑎𝑏 ∨𝑏𝑎) ∧ c , ( a ∧ c ) + ( b ∧ c )) 

                                                                    = A ( ( 𝑎𝑏∧ c ) ∨ ( 𝑏𝑎∧  c) , ( a ∧ c ) + ( b ∧ c )) 

                                                        = A ( ( 𝑎 ∧ 𝑐 )𝑏 ∧ 𝑐∨ ( 𝑏 ∧ 𝑐 )𝑎 ∧ 𝑐, ( a ∧ c ) + ( b ∧ c )) 

                                                        = A ( ( a ∧ c ) + ( b ∧ c ) , ( a ∧ c ) + ( b ∧ c ))  

                                                        = 1                   

Similarly , A ( ( a ∧ c ) + ( b ∧ c ) , ( a + b ) ∧ c ) = 1. 

Therefore , A ( ( a + b ) ∧ c , ( a ∧ c ) + ( b ∧ c ) ) = A ( ( a ∧ c ) + ( b ∧ c ) , ( a + b ) ∧ c ) 

= 1. 
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( 7 ) A ( { a + ( b + c ) } ∧ d , { ( a + b ) + c } ∧ d ) = A ({ a + (𝑏𝑐∨ 𝑐𝑏)} ∧ d , {( a + b ) + 

c } d)  = A ( {𝑎𝑏𝑐 ∨ 𝑐𝑏
∨ ( 𝑏𝑐  ∨ 𝑐𝑏)𝑎 } ∧ d , { ( a + b ) + c } ∧ d) 

          = A ( { 𝑎𝑏𝑐 ∨ 𝑐𝑏
∧ d } ∨ { ( 𝑏𝑐 ∨ 𝑐𝑏)𝑎 } ∧ d , { ( a + b ) + c }  ∧ d) 

          = A ( ( a ∧ d ) +  { (𝑏𝑐  ∨  𝑐𝑏) ∧ 𝑑 } , { ( a + b ) + c } ∧ d ) 

          =A ( ( 𝑎 ∧ 𝑑 ){  (𝑏𝑐 ∨ 𝑐𝑏) ∧  𝑑}∨{(𝑏𝑐 ∨  𝑐𝑏) ∧ 𝑑 }( 𝑎 ∧ 𝑑 ) , { ( a + b ) + c } ∧ d ) 

          = A ( ( a ∧ d ) + { ( 𝑏𝑐∧ d ) ∨ ( 𝑐𝑏∧ d ) } , { ( a + b ) + c } ∧ d ) 

         = A ( ( a ∧ d ) + [ ( 𝑏 ∧ 𝑑 )𝑐  ∧  𝑑 ∨ ( 𝑐 ∧ 𝑑 )𝑏  ∧  𝑑 ] , { ( a + b ) + c } ∧ d ) 

         = A ( ( a ∧ d ) + [ ( b ∧ d ) + ( c ∧ d ) ] , { ( a + b ) + c } ∧ d ) 

         = A ( [ ( a ∧ d ) + ( b ∧ d ) ] + ( c ∧ d ) , { ( a + b ) + c } ∧ d ) 

         = A ( [ ( 𝑎 ∧ 𝑑 )𝑏  ∧  𝑑∨ (𝑏 ∧ 𝑑 )𝑎  ∧  𝑑 ] + ( c ∧ d ) , { ( a + b ) + c } ∧ d ) 

         = A ( { ( 𝑎𝑏∧ d ) ∨ ( 𝑏𝑎∧ d )} + ( c ∧ d ) , { ( a + b ) + c } ∧ d ) 

         = A ( ( { 𝑎𝑏 ∨ 𝑏𝑎} ∧ d ) + ( c ∧ d ) , { ( a + b ) + c } ∧ d ) 

         = A{ ( 𝑎𝑏  ∨  𝑏𝑎  ∧ 𝑑 }𝑐  ∧  𝑑∨ ( 𝑐 ∧ 𝑑 ){ (𝑎𝑏 ∨  𝑏𝑎) ∧ 𝑑 },  { ( a + b ) + c}  ∧ d ) 

         = A ( [ ( ( 𝑎𝑏  ∨  𝑏𝑎 )𝑐 ∧ d ] ∨ [ 𝑐𝑎𝑏 ∨ 𝑏𝑎
∧ d ] , { ( a + b ) + c } ∧ d ) 

         = A ( [ ( 𝑎𝑏  ∨  𝑏𝑎 ) 𝑐 ∨( 𝑐𝑎𝑏 ∨  𝑏𝑎
) ] ∧ d , { ( a + b ) + c } ∧ d ) 

         = A ( [ ( 𝑎 + 𝑏 )𝑐 ∨ 𝑐𝑎 + 𝑏 ] ∧ d , { ( a + b ) + c } ∧ d ) 

         = A ( { ( a + b ) + c } ∧ d , { ( a + b ) + c } ∧ d ) 

         = 1. 

Similarly , A ( { ( a + b ) + c } ∧ d , { a + ( b + c ) } d ) = 1.                                                               
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∴ A ({ a + ( b + c )} ∧ d , { ( a + b ) + c } ∧ d ) = A ({ ( a + b ) + c } ∧ d , { a + ( b + c ) } 

∧ d ) = 1.Hence , ( R , A ) is an ABFR. 

Theorem 2.2.7 Let ( R , A ) be an ABFR. Define the operation  ∨ on R by a ∨ b = a + ( b 

+ a b),then ( R , A ) is relatively complemented ADFL. 

Proof: Let ( R , A ) be an ABFR and a ∨ b = a + ( b + a b ). 

Claim: ( R , A ) is relatively complemented ADFL. 

First we need to show ( R , A ) is ADFL. 

( 1 ) A ( a ∨ 0 , a ) = A ( a + ( 0 + a 0 ) , a )……….[ since a ∨ 0 = a + ( 0 + a 0 ) ] 

                               = A ( a +  0 + 0  , a ) 

                               = A ( a +  0  , a ) 

                               = A ( a , a ) 

                               = 1. 

Similarly , A ( a , a ∨ 0 ) = 1. 

Therefore , A ( a ∨ 0 , a ) = A ( a , a ∨ 0 ) = 1 

( 2 ) A ( 0 a , 0 ) = A ( 0 , 0 ) =1 

Similarly , A ( 0 , 0 a ) = 1. 

Therefore , A ( 0 a , 0 ) = A ( 0 , 0 a ) = 1. 

( 3 ) A ( ( a ∨ b ) c , a c ∨ b c ) = A ( ( a + ( b + a b ) ) c , a c ∨ b c )  

                                                  = A ( a c + ( b + a b ) c , a c ∨ b c ) 

                                                 = A ( a c + ( b c + a b c ) , a c ∨ b c ) 
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                                                = A ( a c + ( b c + a b 𝑐2 ) , a c ∨ b c ) 

                                                = A ( a c + ( b c +  a c b c ) , a c ∨ b c ) 

                                                = A ( a c ∨ b c , a c ∨ b c ) 

                                                = 1. 

Similarly , A ( a c ∨ b c , ( a ∨ b ) c ) = 1. 

Therefore , A ( ( a ∨ b ) c , a c ∨ b c ) = A ( a c ∨ b c , ( a ∨ b ) c ) = 1. 

( 4 ) A ( a ( b ∨ c ) , a b ∨ a c) = A ( a ( b + ( c + b c ) ) , a b ∨ a c ) 

                                                 = A ( a b + a ( c + b c ) , a b ∨ a c )  

                                                 = A ( a b + ( a c + a b c ) , a b ∨ a c ) 

                                                 = A ( a b + ( a c + 𝑎2 b c ) , a b ∨ a c )     

                                                 = A ( a b + ( a c + a b a c ) , a b ∨ a c ) 

                                                 = A ( a b ∨ a c , a b ∨ a c ) = 1. 

Similarly , A ( a b ∨ a c , a ( b ∨ c ) ) = 1. 

Therefore , A ( a ( b ∨ c ) , a b ∨ a c ) = A ( a b ∨ a c , a ( b ∨ c ) ) = 1. 

( 5 ) A ( a ∨ ( b c ) , ( a ∨ b ) ( a ∨ c ) ) = A ( a ∨ ( b c ) , ( a + b + a b ) ( a + c + a c ) ) 

                    = A ( a ∨ ( b c ) , a ( a + c + a c ) + b ( a + c + a c ) + a b ( a + c + a c ) ) 

                    =  A ( a ∨ ( b c ) , 𝑎2 + a c + 𝑎2 c + b a + b c + b a c + a b a + a b c + a b a c ) 

                    = A ( a ∨ ( b c ) , a + a c + a c + b a + b c + a b c + 𝑎2 b + a b c + 𝑎2b c ) 

                    = A ( a ∨ ( b c ) , a + a c + a c + b a + b c + a b c + a b + a b c + a b c ) 

                     = A ( a ∨ ( b c ) , a + 0 + b a + a b + b c + a b c + a b c + a b c ) 
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                    = A ( a ∨ ( b c ) , a + a b + a b + b c  + 0 + a b c ) 

                    = A ( a ∨ ( b c ) , a + 0 + b c + a b c ) 

                    = A ( a ∨ ( b c ) , a + b c + a b c ) 

                    = A ( a ∨ ( b c ) , a ∨ ( b c ) )………….[ since , a ∨ b = a + b + a b c ] 

                   =1.                                                                                                        

Similarly, A ( ( a ∨ b ) ( a ∨ c ) , a ∨ ( b c ) ) = 1. 

Therefore , A ( a ∨ ( b c ) , ( a ∨ b ) ( a ∨ c ) ) = A ( ( a ∨ b ) ( a ∨ c ) , a ∨ ( b c ) ) = 1. 

( 6 ) A ( ( a ∨ b ) b , b ) = A ( ( a + b + a b ) b , b )……..[ Since a ∨ b = a + b + a b ] 

                                       = A ( a b + 𝑏2 + a 𝑏2 , b ) 

                                       = A ( a b + b + a b , b ) 

                                       = A ( a b + a b + b , b ) 

                                       = A ( 0 + b , b ) 

                                       = A ( b , b ) 

                                       = 1. 

Similarly , A ( b , ( a ∨ b ) b ) = 1. 

Therefore , A ( ( a ∨ b ) b , b ) = A ( b , ( a ∨ b ) b ) = 1. 

Hence , ( R , A ) is an ADFL. 

To show ( R , A ) is relatively complemented ADFL. 

Let a , b ∊ R , then A ( a ( b + a b ) , 0 ) = A ( a b + 𝑎2 b , 0 ) 

                                                              = A ( a b + a b , 0 ) 
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                                                              = A ( 0 , 0 ) 

                                                              = 1 > 0 , and  

A ( a ∨ ( b + a b ) , a ∨ b ) = A ( a + ( ( b + a b ) + a ( b+ a b ) ) , a ∨ b ) 

                                          = A ( a + b + a b + 𝑎2 , a ∨ b ) 

                                          = A ( a + b + 0 + a b , a ∨ b ) 

                                          = A ( a + b + a b , a ∨ b) 

                                          = A ( a ∨ b , a ∨ b )  

                                               = 1. 

Similarly , A ( a ∨ b , a ∨ ( b + a b ) ) = 1. Hence , A ( a ∨ ( b + a b ) , a ∨ b ) = A ( a ∨ b , 

a ∨ ( b + a b ) ) = 1,therefore , by lemma 2.1.3…………[ An ADFL ( R , A ) is relatively 

complemented  if and only if for any a , b ∊ R ,there exist x ∊ R , such that A ( a ∨ x , a ∨ 

b ) = A ( a ∨ b , a ∨ x ) = 1 and A ( a ∧ x , 0 ) > 0 ] , (R , A ) is relatively complemented 

ADFL in which for any a , b ∊ R , 𝑎𝑏 = b + a b . 
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Conclusion 
 

In this project by using properties of Almost Boolean Ring we characterize Almost 

Boolean Fuzzy Ring as  a Boolean Fuzzy Ring that is an Almost Boolean Fuzzy Ring is 

an algebra ( R , + , . , 0 ) of type ( 2 , 2 , 0 ) satisfying all the properties of a Boolean 

Fuzzy Rings except possibly the associativity of “ + ’’. Again I have seen the difference 

and similarity between a relatively complemented Almost Distributive Fuzzy Lattice and 

an Almost Boolean Fuzzy Ring . 
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