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Abstract

In this dissertation several results of the new notion fuzzy Heyting algebras are

introduced based on the crisp theory.The new result of the concept of congruence

relations on Heyting algebra using implicatively as well as multiplicatively closed

subsets of H is introduced.Using the definition of homomorphism of Heyting alge-

bras, we characterized and studied some important properties of quotient Heyting

algebra by the congruence classes of it.

As a result of the new notion fuzzy Heyting Algebra (FHA), we further stud-

ied some important properties of fuzzy Heyting algebra using fuzzy relation and

fuzzy poset defined by Chon.We also characterized fuzzy Heyting algebra using the

directed above fuzzy poset and proved that any distributive fuzzy lattice is fuzzy

Heyting algebra iff there exists a largest element c of H(Heyting Algebra) such that

A(a ∧ c, b) > 0, for all a,b ∈ H.

This dissertation aims to introduce fuzzy congruence relations over Heyting al-

gebras (HA) and give constructions of quotient Heyting algebras induced by fuzzy

congruence relations on HA. The fuzzy first,fuzzy second and fuzzy third isomor-

phism theorems of HA are established.Moreover, we investigate the relationships

between fuzzy ideals and fuzzy congruence relations on HA.

The effect of a homomorphism on the join,product,and intersection of two fuzzy

ideals of HA are discussed.The results obtained here will be useful in studying the al-

gebraic nature of fuzzy prime ( fuzzy maximal,fuzzy semiprime,fuzzy primary,fuzzy

semiprimary) ideals under homomorphism.

The fuzzy prime ideals,fuzzy maximal ideals,fuzzy semi primary ideals of a Heyt-

ing algebra are also characterized with their level sets.We give a brief discussion on

fuzzy prime ideals and fuzzy maximal ideals,fuzzy semiprime ideals and fuzzy pri-

mary ideals of of a Heyting algebra, cross product of fuzzy prime ideals and some

characterizations. We concentrate on fuzzy prime ideals of Heyting algebra in such

away that if µ is a fuzzy ideal of H and µ∗ is a maximal ideal of H, then µ is a fuzzy
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maximal ideal of H.We also proved fuzzy ideal µ × θ of H ×H is said to be fuzzy

semiprime iff the level ideals (µ× θ)t, t ∈ im(µ× θ) is semiprime ideal of H ×H.

We propose the notions of α−ideals and α−filters of a fuzzy Heyting algebra and

characterize them by using its support and its level set.We characterize a fuzzy ideal

on product between fuzzy Heyting algebras L and M and define fuzzy α−ideals of

fuzzy Heyting algebra.Here, we characterize a fuzzy α−ideals of product between

fuzzy Heyting algebras L and M.

This dissertation also has played great role on the study of Heyting almost dis-

tributive fuzzy lattices(HADFLs) based on FHA.After we define a Heyting Almost

Distributive Fuzzy Lattices(HADFLs) as an extension of a fuzzy Heyting algebra,

we give many equivalent conditions for FHAs to become an HADFL.From the def-

initions and results of the above concepts, many basic properties of HADFLs has

been proved. We also introduce the concept of an implicative fuzzy filters in an

HADL as a fuzzy filter of the same HADL and study the properties of implicative

fuzzy filters of an HADL.Lastely,we define some particular implicative fuzzy filters

of an HADL and prove that some of their properties are preserved under homomor-

phisms of HADLs.
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Introduction

In this dissertation several results of the new notion fuzzy Heyting algebras are

introduced based on the crisp theory.We introduced the new result of the concept

of congruence relations on Heyting algebra using implicatively as well as multiplica-

tively closed subsets [32] of H as it is important to characterize fuzzy congruence

relation on H.Using the definition of homomorphism of Heyting algebras, we char-

acterized and studied some important properties of quotient Heyting algebra [27]

by the congruence classes of it.

We also give the definitions of ideal (prime ideal) and filters (prime filters) of

Heyting algebra. Based on the concept of implicatively closed subset S of a Heyt-

ing algebra H, special congruence relation ψS which seems similar to [32] but quite

different from [32] was introduced on a Heyting algebra H. Some properties of

ψS,analogous to that for a distributive lattice proved in [32] are furnished.Further,we

proved for any prime ideal P and a filter F of a Heyting algebra H, there exists an

order preserving onto map between the set of all prime ideals of H/ψS and the set

of all prime ideals of H disjoint with S.

The concept of fuzzy set was first introduced by Zadeh [12].This concept was

adapted by Chon [8] to define and study fuzzy relations.G.Birkhoff [14] introduced

the concept of Brouwerian lattice as a distributive lattice or Heyting algebra as a

bounded distributive lattice in which for any two elements a,b there exists a largest
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element a → b such that a ∧ (a → b) ≤ b. Heyting algebra is a relatively pseudo

complemented distributive lattice.It arises from non classical logic and was first

investigated by Skolem T[6].It is named as Heyting algebra after the Dutch math-

ematician Arend Heyting [5].

As a result of the new notion fuzzy Heyting algebra (FHA), we further studied

some important properties of fuzzy Heyting algebra using fuzzy relation and fuzzy

poset defined by Chon [8].We also characterized fuzzy Heyting algebra using the

directed above fuzzy poset and proved that any distributive fuzzy lattice is fuzzy

Heyting algebra iff there exists a largest element c of H(Heyting Algebra) such that

A(a ∧ c, b) > 0, for all a,b ∈ H.

This dissertation aims to introduce fuzzy congruence relations over Heyting alge-

bras(HA) and give constructions of quotient Heyting algebras induced by fuzzy con-

gruence relations on HA. The fuzzy first,fuzzy second and fuzzy third isomorphism

theorems of HA are established.In this regrad,we also investigate the relationships

between fuzzy ideals and fuzzy congruence relations on HA.

Fuzzy set theory, proposed by L.A. Zadeh [12], has been extensively applied to

many scientific fields. In fact, the field grew enormously, and applications were

found in areas by many authors see[ [38],[39],[40],[41],[42],[43].] as medical diagno-

sis,decision making and other applications. Following the discovery of fuzzy sets,

much attention has been paid to generalize the basic concepts of classical algebra

in a fuzzy framework, and thus developed a theory of fuzzy algebras.

In recent years, much interest is shown to generalize algebraic structures of

groups, rings, modules, etc.The notion of fuzzy ideals of a ring R was put for-

ward and the operations on fuzzy ideals was discussed by several researchers (see,

e.g., [44], [45],[46],[47]). Fuzzy congruence relations and fuzzy normal subgroups on

groups was shown by N. Kuroki [44]. Later on, L. Filep and I. Maurer[45] and by V.

Murali[47] further studied fuzzy congruence relations on universal algebras. Fuzzy

isomorphism theorems of soft rings were shown by X.P. Liu [46],[47]. General alge-
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braic structure, such as group and ring of congruence relations and ideals to depict

the algebraic structure has played a very important role. The various constructions

of quotient groups and quotient rings by fuzzy ideals was introduced by Y.L. Liu

[47]. Moreover, N. Kuroki has been shown that there exists a one-to-one mapping

from all fuzzy normal subgroups and all fuzzy congruence relations of groups. Nat-

urally, the study of the definition and properties about fuzzy congruence relations

on rings was a meaningful work.

From the properties of fuzzy set theory, we know that a fuzzy set defined on a set

as follows: let H be a non-empty set, then µ : H → [0, 1] is called a fuzzy set of H.

In this dissertation ,H is always a Heyting algebra (HA) unless and otherwise spec-

ified. We also introduce the concept of ideals and filters of fuzzy Heyting algebra

(FHA) and study some important properties of fuzzy Heyting algebra using fuzzy

relation and fuzzy poset defined by Chon [8].We also characterize fuzzy Heyting

algebra using the suport set and its level set.

With an idea of bringing common abstraction to most of the existing ring the-

oretic and lattice theoretic generalization of Boolean algebra, the concept of an

Almost Distributive Lattice (ADL) was introduced by Swamy U.M. and Rao G.C.

in [2].An Almost Distributive Lattice is an algebra (H,∧,∨) of the type (2, 2) which

satisfies almost all the properties of a distributive lattice except possibly the com-

mutativity of ∨, the commutativity of ∧ and the right distributivity of ∨ over ∧.

It was also observed that any one of these three properties converts an ADL into

a distributive lattice. The study of congruences is important both from theoret-

ical stand point and for its applications in the field of logic based approaches to

uncertainty. The concept of a filter congruence relation was introduced in an ADL

analogous to that in a distributive lattice in [35]. Many existing properties of filter

congruence relation in distributive lattices are extended to the class of ADLs.Some

properties of filter congruence relations defined on an ADL are stated in [35].Based

on the concept of multiplicatively and implicativelly closed subset S of an ADL
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special congruence relations ψS and φS, were introduced on an ADL.Now in this

dissertation, we introduce one more congruence relation on HADL .That means we

extend the concept of a congruence relation in Almost distributive lattice intro-

duced by [32], to that for an HADL.

This dissertation is broadly divided into six chapters. Chapter one is devoted

to collect all the necessary preliminaries which will be useful in our discussions in

the main text of the dissertation. Even though these preliminaries are well known

for those working in lattice theory, it will be convenient for others to have all these

elementary notions and results in the beginning of the dissertation for the sake of

ready reference. The proofs of most of the results presented in chapter 1 are either

straight forward verifications or well known and hence we simply state the results

and skip the proofs.Morover,we have introduced a new notion of congruence relation

on Heyting algebra and we give characterizations of ideals and congruences.

Chapter two is divided into five sections namely: Fuzzy relations on Heyting alge-

bra,ideals and filters of FHA,quotient Heyting algebra via fuzzy congruence rela-

tions,fuzzy congruence relation on Heyting algebra, ideal and homomorphism the-

orems on FHA . In section 2.1, we define the concept of a fuzzy relation on HA

and prove a number of properties of fuzzy relations of HA on H. We introduce the

concept of fuzzy Heyting algebra (FHA) as an extension of Heyting algebra. We

also characterize fuzzy Heyting algebra using the properties of Heyting algebra(HA)

and distributive fuzzy lattices.We state and prove some results on fuzzy Heyting

algebra.

Most of the results in section 2.1 was included in the paper entitled ”fuzzy Heyt-

ing algebra.” and had got published in ”Springer International Publishing AG 2018”

J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017.
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We also introduce the concept of ideals and filters of a FHA and give several

characterizations.Most of the concepts of section 2.3 is included under the title

”Quotient Heyting algebras Via Fuzzy Congruence Relations” had got published in

the International Journal of Mathematics And its Applications Volume 5, Issue 2C

(2017), 371- 378.

Chapter 3 is on fuzzy ideals and fuzzy filters of a Heyting algebra . Section 3.1

reflects the effect of a homomorphism on the implication, join ,product ,and intersec-

tion of two fuzzy ideals.The results obtained here is useful in studying the algebraic

nature of fuzzy prime ( fuzzy maximal,fuzzy semiprime,fuzzy primary,fuzzy semipri-

mary) ideals under homomorphism.

Chapter four is devoted to a brief discussion on fuzzy prime ideals and fuzzy

maximal ideals,fuzzy semiprime ideals and fuzzy primary ideals of a Heyting alge-

bra, cross product of fuzzy prime ideals and some characterizations. This concept

of fuzzy ideal of a lattice was first introduced by Malik and Mordeson [48], [49]

when the truth values are taken from the interval [ 0,1] .Here we extend these re-

sults to the case Heyting algebra when the truth values are taken from [0,1] and

obtain certain comprehensive results on these.We concentrate on fuzzy prime ideals

of Heyting algebra in such away that if µ is a fuzzy ideal of H and µ∗ is a maximal

ideal of H, then µ is a fuzzy maximal ideal of H.We also proved fuzzy ideal µ × θ

of H ×H is said to be fuzzy semiprime iff the level ideals (µ× θ)t, t ∈ im(µ× θ) is

semiprime ideal of H ×H.

Fuzzy congruence on a product of lattices was defined by [24]. Quotient Heyting

algebra via fuzzy congruences was characterized by the author [27]. The concepts

of fuzzy congruence on the product L × K of Heyting algebras L and K, using

fuzzy congruence on HAs(Heyting algebras) are discussed. It is proved that every

fuzzy congruence A on the product L × K of HAs L and K is of the form A × B

where A and B are fuzzy congruences on L and K respectively.The quotient HA

corresponding to a fuzzy congruence on the product is isomorphic to the product of

5



the quotient HAs of the component HAs is also obtained.Furthermore;we state the

necessary and sufficient condition for direct product FHAs(fuzzy Heyting algebras)

to be a HA and we obtain that for any homomorphic mapping on product FHA and

image of FHA, there is a one to one correspondence beteween the set of all FHA on

X ×X and set of all FHAs on Y × Y .Where X, Y are HAs. After that several re-

searchers have applied the notion of fuzzy sets to the concept of congruence relation

on general sets.[24] In particular Das [25] and Yijia [26] have introduced the concept

of fuzzy congruences in the background of semigroups.Using a different definition

for a fuzzy congruence on a HA [27], we consider the background of product L×K

of HAs L and K. We define in this paper a fuzzy congruence relation A × B on

L×K using fuzzy congruences A on L and B on K. As a converse, it is also proved

that for every congruence relation A on L×K of HAs L and K, the congruences AL

and AK can be defined on L and K respectively such that A = AL × AK . Finally

we show that the product of quotient HA L/A×K/B is isomorphic to the quotient

HA (L×K)/(A×B).

Chapter five dicusses about the results of the papers Mezzomo et al. [2013a]

and Mezzomo et al. [2013d] where they use the fuzzy partial order relation notion

defined by Zadeh [1971], and fuzzy lattices defined by Chon [2009]. Using the re-

sults Mezzomo et al. [2013a], we propose the notions of α−ideals and α−filters of a

fuzzy Heyting algebra and characterize them by using its support and its level set.

Observe that some definitions can be generalized in order to embrace the notions

of ideals/filters with degree of possibility greater than or equal to α ; it is enough

to generalize the first and third requirements to:”If x ∈ X, y ∈ Y and A(y, x) > α ,

then x ∈ Y , for α ∈ (0, 1].” We characterize a fuzzy ideal on product between fuzzy

Heyting algebra L and M and define fuzzy α−ideals of fuzzy Heyting algebra.Here,

we characterize a fuzzy α−ideal on product between fuzzy Heyting algebras L and

M.
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Chapter six is devoted to the study of Heyting Almost Distributive fuzzy

Lattices(HADFLs). In section 6.1, we define a Heyting Almost Distributive Fuzzy

Lattices(HADFLs) as an extension of a fuzzy Heyting algebra. section 6.2 is about

the characterization of HADFL.We give many equivalent conditions for FHAs to

become an HADFL. In section 6.3, from the definitions and results of the above con-

cepts, many basic properties of HADFLs has been proved.In section 6.4,congruence

relation on HADL are presented using the ordinary theory,where as in section 6.5

and section 6.7 ordered fuzzy filter and implicative fuzzy filter are characterized.In

section 6.6, QHADLs induced by FCR(H) is introduced. Finally,we introduce the

concept of an implicative fuzzy filters in an HADL as a fuzzy filter of the same HADL

and study the properties of implicative fuzzy filters of an HADL.Furthermore, we

define some particular implicative fuzzy filters of an HADL and prove that some of

their properties are preserved under homomorphisms of HADLs.Most of the contents

of this chapter are included in the paper entitled ”Heyting Almost Distributive fuzzy

Lattices”[50].and had got published in International Journal of Computing Science

and Applied Mathematics, Vol. 4, No. 1, February 2018. Almost all contents

of section two and section three of this chapter are included in the paper entitled

”implicative fuzzy filters of Heyting Almost Distributive Lattices” [51].
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Chapter 1

Preliminaries

1.1 Heyting Algebra

The following important preliminary concepts are collected from [1],[2],[8],[18],[28],[29],[32]

Definition 1.1.1. An algebra (H,∨,∧ →, 0, 1) is called a Heyting algebra if it

satisfies the following

1. (H,∨,∧, 0, 1) is a bounded distributive lattice

2. a→ a = 1

3. b ≤ a→ b

4. a ∧ (a→ b) = a ∧ b

5. a→ (b ∧ c) = (a→ b) ∧ (a→ c)

6. (a ∨ b)→ c = (a→ c) ∧ (b→ c) ,for all a, b, c ∈ H

Theorem 1.1.2. A bounded distributive lattice (H,∨,∧, 0, 1) is said to be a Heyting

Algebra if there exist a binary operation ”→” on H such that,for any x, y, z ∈

H,x ∧ z ≤ y ⇔ z ≤ x→ y

9



Let H be a Heyting algebra,then we have the following properties: For x 6=

0, x → 0 = 0.We use x
′

to denote x → 0 . Every Heyting algebra is a distributive

lattice. The lattice of all open sets of a topological space is a Heyting algebra. We

state without proof some elementary properties of Heyting algebras.

Theorem 1.1.3. If a, b, and c are any elements of a Heyting algebra, then the

following hold:

(1) 1→ a = a.

(2) a→ b ≥ b.

(3) a→ (b→ c) = (a ∧ b)→ c.

(4) If a ≤ c and a→ b = b, then c→ b = b.

(5) a ≤ (a→ b)→ b.

(6) ((a→ b)→ b)→ b = a→ b.

(7) ((a→ b)→ b)→ (a→ b) = a→ b.

(8) (a→ b)→ ((a→ b)→ b)) = (a→ b)→ b

(9) If a ≤ b,then a ∧ (b→ c) = a ∧ c.

Theorem 1.1.4. Let H be a Heyting algebra, then for any a,b,c ∈ H,the following

hold:

(i) a ∧ c ≤ b⇔ c ≤ a→ b

(ii) a ≤ b⇔ a→ b = 1

(iv) a→ (b→ c) ≤ (a→ b)→ (a→ c)

(v) a→ c ≤ (b→ c)→ ((a ∨ b)→ c))

Lemma 1.1.5. In any Heyting algebra H, the following hold:

(a) a ≤ b⇒ x→ a ≤ x→ b

(b) a ≤ b⇒ b→ x ≤ a→ x,for all a, b, c, x ∈ H

10



Theorem 1.1.6. If (H,∨,∧,→, 0, 1) is a Heyting Algebra and a,b ∈ H,then a→ b

is the largest element c of H such that a ∧ c ≤ b

Theorem 1.1.7. The following are equivalent:

1. H is Heyting algebra

2. For any a,b, c ∈ H, a ∧ c ≤ b⇔ c ≤ a→ b

3. b ≤ a→ b, for all a, b ∈ H

Definition 1.1.8. An Almost Distributive Lattice (ADL) is an algebra (H,∨,∧, 0)

of type (2, 2, 0) satisfying the following axioms:

1. a ∨ 0 = a,

2. 0 ∧ a = 0,

3. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),

4. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

5. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

6. (a ∨ b) ∧ b = b, for all a, b, c ∈ H.

Definition 1.1.9. Let (H,∨,∧, 0,m) be an ADL with 0 and a maximal element

m. Suppose → is a binary operation on H satisfying the following conditions: for

all a, b, c ∈ H,

(1) a→ a = m

(2) (a→ b) ∧ b = b

(3) a ∧ (a→ b) = a ∧ b ∧m

(4) a→ (b ∧ c) = (a→ b) ∧ (a→ c)

(5) (a ∨ b)→ c = (a→ c) ∧ (b→ c).

Then (H,∨,∧,→, 0,m) is called a Heyting Almost Distributive Lattice (HADL).

11



Example 1.1.10. Every Heyting algebra (H,∨,∧,→, 0, 1) is an HADL

Every non-empty set X can be regarded as an HADL with any arbitrarily preas-

signed element as its zero. This follows by the following example.

Example 1.1.11. Let H be a discrete ADL with 0 and with at least two elements.

Fix x0 and define, for any x, y ∈ H,

x→ y =

 0 if x 6= 0, y = 0;

x0 otherwise ;

Then (H,∨,∧,→, 0, x0) is an HADL which is called a discrete HADL.

Definition 1.1.12. For any a, b ∈ H,where H is an HADL. define a ≤ b if and only

if a = a ∧ b or, equivalently, a ∨ b = b, then ≤ is a partial ordering on H.

Definition 1.1.13. Let H be an ADL and m ∈ H. Then the following are equiva-

lent:

1) m is the maximal with respect to ≤

2) m ∨ a = m, for all a ∈ H,

3) m ∧ a = a, for all a ∈ H.

Definition 1.1.14. Let H be a nonempty set. Then a binary relation ≤ on H

satisfying the following properties is called a partial order on H:

(1) Reflexivity: a ≤ a

(2) Antisymmetric: a ≤ b and b ≤ a imply that a = b

(3) Transitivity: a ≤ b and b ≤ c imply that a ≤ c for all a, b, c ∈ H:

In this case (H,≤) is called a partial ordered set or simply a poset.

Definition 1.1.15. A poset (H,≤) with bottom element 0 and top element 1 is

called a bounded poset

Definition 1.1.16. A subset S of H is said to be multiplicatively closed subset of

H if S 6= ∅ and for any a, b ∈ S ⇒ a ∧ b ∈ S.
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Definition 1.1.17. If P is a proper ideal of H, then we say that P is prime ideal

if for any a, b ∈ H, a ∧ b ∈ P ⇒ a ∈ P or b ∈ P.

Let I be an ideal and S be a multiplicatively closed subset of H such that I ∩ S

= ∅.Then there is a prime ideal M of H such that I ⊆M and M ∩ S = ∅

1.2 Fuzzy Lattices

Definition 1.2.1. Let X be a set. A function A:X ×X → [0, 1] is called a fuzzy

relation in X.The fuzzy relation A in X is reflexive iff A(x, x) = 1,for all x ∈ X.The

fuzzy relation A in X is anti symmetric iff A(x, y) > 0 and A(y, x) > 0⇒ x = y.The

fuzzy relation A in X is transitive iff A(x, z) ≥ Supy∈X(min(A(x, y), A(y, z))).A

fuzzy relation A is fuzzy partial order relation if A is reflexive,symmetric and tran-

sitive. A fuzzy partial order relation A is fuzzy total order relation iff A(x, y) > 0

or A(y, x) > 0,for all x, y ∈ X. If A is a fuzzy partial order relation on a set X,then

(X,A) is called a fuzzy partially ordered set or a fuzzy poset.If A is a fuzzy total

order relation in a set X,then (X,A) is called a fuzzy totally ordered set or a fuzzy

chain.

Definition 1.2.2. Let (X,A) be a fuzzy poset and B ⊆ X.An element u ∈ X is said

to be an upper bound for a subset B iff A(b, u) > 0,∀b ∈ B. An upper bound u0 for

a subset B is least upper bound of B iff A(u0, u) > 0 for every upper bound u of

B.An element v ∈ X is said to be an lower bound for a subset B iff A(v, b) > 0,∀b ∈

B. A lower bound v0 for a subset B is the greatest lower bound of B iff A(v, v0) > 0

for every lower bound v for B. We denote the lub of the set {x, y} = x ∨ y and glb

of the set {x, y} = x ∧ y

Definition 1.2.3. Let (X,A) be a fuzzy poset.(X,A) is a fuzzy lattice iff x ∨ y and

x ∧ y exists for all x, y ∈ X.

Proposition 1.2.4. Let (X,A) be a fuzzy lattice and x, y, z ∈ X.Then
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(i) A(x, x ∨ y) > 0, A(y, x ∨ y) > 0, A(x ∧ y, x) > 0, A(x ∧ y, y) > 0

(ii) A(x, z) > 0 and A(y, z) > 0 ⇒ A(x ∨ y, z) > 0

(iii) A(z, x) > 0 and A(z, y) > 0⇒ A(z, x ∧ y) > 0

(iv) A(x, y) > 0 iff x ∨ y = y

(v) A(x, y) > 0 iff x ∧ y = x

(vi) If A(y, z) > 0,then A(x ∧ y, x ∧ z) > 0 and A(x ∨ y, x ∨ z) > 0

Proposition 1.2.5. Let (X,A) be a fuzzy lattice and x, y, z ∈ X.Then

1. x ∨ x = x, x ∧ x = x

2. x ∨ y = y ∨ x, y ∧ x = x ∧ y

3. (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z)

4. (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x

Definition 1.2.6. Let (H,A) be a fuzzy lattice.(H,A) is distributive iff x∧ (y∨z) =

(x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z),for all x, y, z ∈ H.

From distributive inequalities (H,A) is distributive iff A(x ∧ (y ∨ z), (x ∧ y) ∨

(x ∧ z)) > 0 and A((x ∨ y) ∧ (x ∨ z), x ∨ (y ∨ z)) > 0.

Definition 1.2.7. Let (H,A) be a fuzzy lattice.Then (H,A) is said to be a bounded

fuzzy lattice iff A(0, x) > 0 and A(x, 1) > 0, for all x ∈ H

Definition 1.2.8. A fuzzy relation A on H is called a fuzzy equivalence relation if

it satisfies the following conditions:

1. A(x, x) = 1 for all x of H (fuzzy relexive),

2. A(x, y) = A(y, x) for all x, y of H (fuzzy symmetric),
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3. A(x, y) ≥ Supz∈H (min[A(x, z), A(z, y)]) for all x, y of H (fuzzy transitive).

Theorem 1.2.9. Let H be a non empty set and A be fuzzy equivalence relation on

H,then for x, y ∈ H,Ax = Ay if and only if A(x, y) = 1,where Ax = {y ∈ H :

A(x, y) = 1}

Definition 1.2.10. Let f be a mapping from a set S to a set T;µ be FS(S) ; and

σ be any FS (T).The image of µ under f,denoted by f(µ),is a fuzzy subset of T

defined by f(µ)(y) =

Supx∈f
−1(y)µ(x) if f−1(y) 6= ∅

0 otherwise

where y ∈ T

The preimage of σ under f ,symbolized by f−1(σ),is a fuzzy subset of S defined by

(f−1(σ))(x) = σ(f(x)), for all x ∈ S.

Definition 1.2.11. Let f be any function from a set S to a set T and let µ be any

FS(S).Then µ is called f-invariant if f(x) = f(y)⇒ µ(x) = µ(y),where x, y ∈ S.

Definition 1.2.12. Let X and Y be sets and let f : X×X → Y ×Y be a function.

Let B be a fuzzy relation in Y . Then f−1(B) is a fuzzy relation in X defined by

f−1(B)(x, y) = B(f(x, y)). Let A be a fuzzy relation in X. Then f(A) is a fuzzy

relation in Y defined by

f(A)(x, y) =

 Sup{A(a, b) : (a, b) ∈ X ×X, f(a, b) = (x, y)} if f−1(x, y) 6= 0;

0, otherwise.
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Chapter 2

Fuzzy Heyting Algebra

2.1 Congruence Relation on Heyting algebra

In this section we introduce the concept of congruence relations on Heyting algebra

using implicatively as well as multiplicatively closed subsets [32] of H.Using the

definition of homomorphism of Heyting algebras, we characterized and studied some

important properties of quotient Heyting algebra [27] by the congruence classes of

it.We also give the definitions of ideal (prime ideal) and filters (prime filters) of

Heyting algebra.

Based on the concept of implicatively closed subset S of a Heyting algebra H, special

congruence relation ψS which seems similar to [32] but quite different from [32] was

introduced on a Heyting algebra H. Some properties of ψS,analogous to that for

a distributive lattice proved in [32] are furnished.Further,we proved for any prime

ideal P and a filter F of a Heyting algebra H, there exists an order preserving onto

map between the set of all prime ideals of H/ψS and the set of all prime ideals of

H disjoint with S.

Definition 2.1.1. Let H be a Heyting algebra and I be a non empty subset of

H.Then I is said to be an ideal of H if it satisfies the following conditions.

1. a, b ∈ I ⇒ a ∨ b ∈ I
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2. a ∈ I, x ∈ H ⇒ a ∧ x,∈ I

3. a ∈ I, x ∈ H for all x→ a 6= 1⇒ x→ a ∈ I

Clearly, we can see that 0 ∈ I

Example 2.1.2. Let H = {0, a, b, c, 1} and I = {0, a, b, c} defined by the figure

depicted below.Clearly (H,∨,∧,→, 0, 1) is Heyting algebra,where ∧, ∨, and →

operators are defined by the following tables.
1

a

cc

b

0

∧ 0 a b c 1

0 0 0 0 0 1

a 0 a 0 a a

b 0 0 b b b

c 0 a b c 1

1 0 a b c 1

∨ 0 a b c 1

0 0 a b c 1

a a a c c 1

b b c b c 1

c c c c c 1

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a 0 1 b 1 1

b 0 a 1 1 1

c 0 a b 1 1

1 0 a b c 1

Then I is an ideal of H.

Proof.

∧ 0 a b c

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

c 0 a b c

∨ 0 a b c

0 0 a b c

a a a c c

b b c b c

c c c c c
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Difine the binary operation ′ →′ on I as follows a → 0 = 0, b → 0, c → 0 =

0, a→ b = b, b→ a = a, c→ a = a, a→ c = c, b→ c = c, c→ b = b, and

→ 0 a b c

1 0 a b c

So all the criterias of the definition are satisfied.Then I is an ideal of H.

Definition 2.1.3. Let H be HA and F ⊆ H and we call, F is a filter on H if it

satisfies the following properties

1. a ∈ F, x ∈ H ⇒ a ∨ x,∈ F

2. x, y ∈ F and x ∧ y 6= 0 ⇒ x ∧ y ∈ F

3. a ∈ F, x ∈ H|{0} ⇒ a→ x ∈ F

Clearly,we can see that 1 ∈ F

Example 2.1.4. From example 2.1.2 above, letH = {0, a, b, c, 1} and F = {a, b, c, 1}.Then

F is a filter of H

Definition 2.1.5. Let H and H
′
be any two HAs. A mapping f : H → H

′
is called

a homomorphism if it satisfies the following:

1. f(a ∨ b) = f(a) ∨ f(b);

2. f(a ∧ b) = f(a) ∧ f(b);

3. f(a→ b) = f(a)→ f(b);for all a, b ∈ H.

4.f(0) = 0
′

Remark 2.1.6. f(1) = 1
′

Definition 2.1.7. An equivalence relation A on H is called a congruence relation

if for all a, b, c, d ∈ H, a ≡ b(A), c ≡ d(A)⇒ a ∧ c ≡ b ∧ d(A), a ∨ c ≡ b ∨ d(A) and

a→ c ≡ b→ d(A)

19



For any congruence relation A on H, we denote the congruence class containing

x ∈ H by [x]A and the set of all congruence classes of H is denoted by H/A. The

set H/A is a HA, under the binary operations ∧,∨ and → defined by [x]A ∨ [y]A =

[x ∨ y]A, [x]A ∧ [y]A = [x ∧ y]A,[x]A → [y]A = [x→ y]A for all [x]A and [y]A ∈ H/A

Definition 2.1.8. A subset S of H is said to be implicatively closed subset of H

if S 6= ∅ and for any a, b ∈ S ⇒ a→ b ∈ S.

Define a relation on H by a ≡ b(ψS)⇔ a→ t = b→ t, for some t∈ S, a, b ∈ H

Note:a→ b→ c = (a ∧ b)→ c

(a ∧ b) ∧ (a→ b→ c) = b ∧ a ∧ (a→ b→ c) [∧ ia commmutative]

= b ∧ a ∧ (b→ c)=a ∧ b ∧ (b→ c)=a ∧ b ∧ c.

Similarly,(a ∧ b) ∧ ((a ∧ b)→ c) gives the same result.

Theorem 2.1.9. ψS is a congruence relation

Proof. Clearly, ψS is reflexive and symmetric.To show transitive property, we use

Theorem 1.1.3 (3).Let a ≡ b(ψS) and b ≡ c(ψS).Then a→ s = b→ s and b→ t =

c → t s, t ∈ S.As a → b → c = (a ∧ b) → c, let we consider,a → s → t = b → s →

t = (b ∧ s) → t = (s ∧ b) → t = s → (b → t) = s → (c → t) = (s ∧ c) → t = c →

(s→ t). Since S is implicatively closed subset of H,we have a ≡ c(ψS).Therefore, S

is transitive.

To show ψS is a congruence relation,we will show that the three operations hold

for the given relation.Suppose a ≡ b(ψS) and c ≡ d(ψS).Then a → s = b → s and

c → t = d → t,t, s ∈ S. Consider a → c → s → t = (a ∧ c) → s → t = (c ∧ a) →

s → t = c → a → s → t = c → s → b → t = b → s → d → t=b → d → s → t.

Hence,a→ c ≡ b→ d(ψS).

From this result it follows that (a ∧ c)→ s→ t = (b ∧ d)→ s→ t,s, t ∈ S

Hence a ∧ c ≡ b ∧ d(ψS).Finally,(a ∨ c) → s → t = (a → s → t) ∧ (c → s → t)=

(b → s → t) ∧ (s → c → t) = (b → s → t) ∧ (s → d → t) = (b → s → t) ∧ (d →
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s→ t) = (b ∨ d)→ s→ t. Hence,a ∨ c ≡ b ∨ d(ψS).

Therefore, ψS is a congruence relation on H.

Theorem 2.1.10. H/ψS is a Heyting algebra and the operation ”→ ” is commu-

tative

Proof. Let x, y ∈ H. Since S 6= ∅, we can choose a ∈ S. But then x → y → a =

y → x→ a implies x→ y ≡ y → x(ψS). Hence [x]ψ
S → [y]ψ

S
= [x→ y]ψ

S
= [y →

x]ψ
S

= [y]ψ
S → [x]ψ

S
. Thus the operation ”→ ”is commutative on H/ψS.

Theorem 2.1.11. Let S and T be any multiplicatively and implicatively closed

subsets of H1 and H2 resp.Then for any homomorphism φ:H1 → H2 such that φ(S)

⊆ T , there exists a homomorphism f : H1/ψ
S → H2/ψ

T such that f◦h = k◦φ where

h : H1 → H1/ψ
S and k : H2 → H2/ψ

T denote the canonical epimorphisms.Further

if φ is a monomorphism and if φ(S) = T ,then f is a monomorphism.

If φ is an epimorphism,then f is an epimorphism :

Proof. Define f : H1/ψ
S → H2/ψ

T by f([x]ψ
S
) = [φ(x)]ψ

T
.

Let [x]ψ
S

= [y]ψ
S
, x, y ∈ H1.

Then x ≡ y(ψS)

⇒ x→ s = y → s, s ∈ S

⇒ φ(x→ s) = φ(y → s)

⇒ φ(x)→ φ(s) = φ(y)→ φ(s)

⇒ φ(x) ≡ φ(y)ψ
T
,as φ(s) ∈ T

[φ(x)]ψ
T

= [φ(y)]ψ
T
.

⇒ f([x]ψ
S
) = f([y]ψ

S
).

Hence,f is well defined.

Let x, y,∈ S.f([x]ψ
S
) → [y]ψ

S
) = f([x → y]ψ

S
) = [φ(x → y)]ψ

T
= [φ(x) →

φ(y)]ψ
T

= [φ(x)]ψ
T → [φ(y)]ψ

T
= f([x]ψ

S
)→ f([y]ψ

S
).

Similarly, we can prove the congruence relations with respect to ∨ and ∧ that is,

f([x]ψ
S
) ∨ [y]ψS) = f([x]ψ

S
) ∨ f([y]ψ

S
) and f([x]ψ

S
) ∧ [y]ψS) = f([x]ψ

S
) ∧ f([y]ψ

S
)
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for all x, y ∈ H1. Hence f is a homomorphism.

Now f ◦ h : H1 → H2/ψ
T and for any x ∈ H, we have [f ◦ h](x) = f(h(x)) =

f([x]ψ
S
) = [φ(x)]ψ

T
.

Again k ◦ φ : H1 → H2/ψ
T and for any x ∈ H1, we have [k ◦ φ](x) = k(φ(x)) =

[φ(x)]ψ
T
.Hence [f ◦ h](x) = [k ◦ φ](x),∀x ∈ H1. This shows that f ◦ h = k ◦ φ.

i) Let φ be a monomorphism and let φ(S) = T. Let f([x]ψ
S
) = f([y]ψ

S
) for some

x, y ∈ H1.Then [φ(x)]ψ
T

= [φ(y)]ψ
T ⇒ φ(x) ≡ φ(y)(ψT ) ⇒ φ(x) → t = φ(y) → t,

for some t ∈ T.

⇒ φ(x)→ φ(s) = φ(y)→ φ(s), for some s ∈ S (since φ(S) = T.)

⇒ φ(x→ s) = φ(y → s) (since φ is a homomorphism).

⇒ x→ s = y → s. ⇒ x ≡ y(ψS)⇒ [x]ψS = [y]ψ
S
.

This shows that f is one-one.

ii) Let φ be an epimorphism. Let [y]ψ
T ∈ H2/ψ

T .As φ : H1 → H2 is onto and

y ∈ H2, φ(x) = y for some x ∈ H1. Thus [x]ψ
S ∈ H1/ ψS and f([x]ψ

S
) = [φ(x)]ψ

T

= [y]ψ
T
. This shows that f is an epimorphism. For any two congruence relation ψS

and ψT induced by two implicativelly closed subsets S and T of H with S ⊆ T ,we

have the following theorem.

Theorem 2.1.12. Let H be HA and let S, T be any two implicatively closed subsets

of H with S ⊆ T . Then following are equivalent:

i) The mapping f : H/ψS → H/ψT defined by f([x]ψ
S
) = [x]ψ

T
for each x ∈ H,ψT

is an isomorphism.

ii) For each t ∈ T , there exists s ∈ S such that t→ s ∈ S.

iii) For any prime ideal P of H, P ∩ T 6= ∅ ⇒ P ∩ S 6= ∅.

Proof. i)⇒ ii) Obviously f is a well defined map. Let x, y ∈ H. Then f([x]ψ
S
) =

f([y]ψ
S
)⇒ [x]ψ

S
= [y]ψ

S
(since f is one-one).

⇒ x ≡ y(ψS). Again f([x]ψ
S
) = f([y]ψ

S
)⇒ [x]ψ

T
= [y]ψ

T
.

⇒ x ≡ y(ψT ).Therefore, x ≡ y(ψT )⇒ x ≡ y(ψS)⇒ ψT ⊆ ψS.As S ⊆ T, ψS ⊆ ψT .

Hence ψS = ψT .Hence any t ∈ T must be congruent to some s1 ∈ S. i.e. t ≡ s1(ψS).
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Therefore t→ s = s1 → s for some s ∈ S. As s1 → s ∈ S, we get t→ s ∈ S.

ii)⇒ iii) Let P be a prime ideal in H such that P ∩ T 6= ∅. Select any t ∈ P ∩ T.

As t ∈ T there exists s ∈ S such that t → s ∈ S. As P is prime ideal t ∈ P and

s ∈ S ⇒ t∧ s ∈ P which implies t→ (t∧ s) ∈ P .As t→ t 6= 1,this gives t→ s ∈ P .

Thus t→ s ∈ P ∩ S. This shows that P ∩ S 6= ∅.

iii)⇒ i)

Claim : ψS = ψT . As S ⊆ T ⇒ ψS ⊆ ψT .To prove that ψT ⊆ ψS. Let a ≡ b(ψT ).

Hence, a → t = b → t for any t ∈ T .Suppose S ∩ (t] = ∅.Then there is a prime

ideal P such that (t] ⊆ P and P ∩ S = ∅, ( by Definition 1.1.17) which contradicts

the assumption. (iii) as t ∈ P ∩ T ⇒ P ∩ S 6= ∅. Hence S ∩ (t] 6= ∅. Therefore

∃s ∈ S ∩ (t]. Hence s = x→ t for some x ∈ H. Now a→ s = a→ (x→ t) = (a→

x) → t = (b → x) → xt = b → (x → t) = b → s. But this shows that a ≡ b(ψS).

Thus ψT ⊆ ψS. Combining both the inclusions we get ψT = ψS and the implication

follows.

Theorem 2.1.13. Let H be a HA with maximal elements and F be implicatively

closed subset of H and let h : H → H/ψF be the canonical epimorphism. Then we

have

(I) If P
′

is a prime ideal in H/ψS , then h−1(P
′
) is a prime ideal in H disjoint with

F.

(II) Let θ : P (H/ψF ) → {Q ∈ P (H)|Q ∩ F = ∅} be defined by θ(P
′
) = h−1(P

′
).

Then θ is an order preserving onto map, where P (H) and P (H/ψF ) denote the set

of all prime ideals of H and H/ψF respectively.

Proof. (I) As h : H → H/ψF is an epimorphism, we get h−1(P
′
) is a prime ideal

in H.Only to prove that h−1(P
′
) ∩ F = ∅. Let s ∈ h−1(P

′
) ∩ F. If m is a maximal

element, then m, s ∈ F and hence m ≡ s(ψF ).Therefore h(m) = h(s) ∈ P .A

contradiction since h(m) is a maximal element in H/ψF .Hence, h−1(P
′
) ∩ F = ∅.

Thus, h−1(P
′
) ∈ {Q ∈ P (H)|Q∩F = ∅}.Let P

′
, Q
′ ∈ P [H/ψF ] such that P ⊆ Q

′
.

Let θ(P
′
) = P and θ(Q

′
) = Q. If P

′ ⊆ Q
′

then h−1(P
′
) ⊆ h−1(Q

′
) and hence
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θ(P
′
) ⊆ θ(Q

′
).Then θ is order preserving. Let P ∈ P (H) be such that P ∩ F = ∅.

P ⊆ h−1(h(P )) always. To prove that h−1(h(P )) ⊆ P .Let x ∈ h−1(h(P )). Then

as h(x) ∈ h(P ), [x]ψ
F

= [p]ψ
F

for some p ∈ P . This means x ≡ p(ψF ). Therefore

x→ s = p→ s for some s ∈ F . As P ∩ F = ∅, s /∈ P . Again p→ s ∈ P , but then

x → s ∈ P implies x ∈ P as s /∈ P . This shows that h−1(h(P )) ⊆ P . Combining

both the inclusions we get h−1(h(P )) = P . Hence θ is onto. Now we prove the

following theorem.

Theorem 2.1.14. Let S denote an implicatively closed subset of a HA H with

maximal elements. Let P
′

be a prime ideal in H/ψS. Define h−1(P
′
) = P , where

h : H → H/ψS is the canonical epimorphism. Then the mapping α : H/ψT →

H/ψS/ψT defined by α([x]ψ
T
) = [[x]ψ

S
]ψ
T
′

is an isomorphism, where T = H\P and

T
′
= [H/ψS]\P ′ are the filters in the HAs H and H/ψS respectively.

Proof. Let [x]ψ
T

= [y]ψT . Then x → t = y → t for some t ∈ T as x ≡ y(ψT ).

But t /∈ P implies h(t) = [t]ψ
S ∈ P ′ and hence [t]ψ

S ∈ [H/ψS]\P ′ = T
′
. Further;

[x]ψ
S → [t]ψ

S
= [y]ψ

S → [t]ψ
S

implies [x]ψ
S ≡ [y]ψ

S
(ψT ).

Therefore, [[x]ψ
S
]ψ
T
′

= [[y]ψ
S
]ψ
T
′

.Hence α([x]ψ
T
) = α([y]ψ

T
).

This shows that α is well defined.

To prove that α is one-one.

Claim : P ∩ S = ∅.

As P
′

is a prime ideal in H/ψS.P
′

is a proper ideal in H/ψS.Hence [m]ψ
S * P

′
for

any maximal element in H.But [m]ψ
S

= S for all maximal elements m in H.Hence

S * P
′
.Let s1 ∈ P ∩ S.Then s1 ∈ P ⇒ s1 ∈ h−1(P

′
).

⇒ h(s1) ∈ P ′ ⇒ [s1]ψ
S
.⇒ [s1]ψ

S ⊆ P
′ ⇒ S ⊆ P

′
, a contradiction.Hence P ∩S = ∅.

Let α([x]ψ
T
) = ([y]ψ

T
).Then [[x]ψ

S
]ψ
T

= [[y]ψ
S
]ψ
T
′

implies [x]ψ
S ≡ [y]ψ

S
(ψT

′
).

Hence [x]ψ
S → [t]ψ

S
= [y]ψ

S → [t]ψ
S

for some [t]ψ
S ∈ T ′ = [H/ψS]\P ′ .

Hence [x→ t]ψ
S

= [y → t]ψ
S

for some [t]ψ
S ∈ T ′ = [H/ψS]\P ′ .

Therefore, (x→ t→ s) = (y → t→ s) for some s ∈ S.

As P
′

is prime ideal in H/ψS,by claim P ∩ S = ∅.Hence t ∈ T and s ∈ T imply
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t → s ∈ T. But then x → (t → s) = y → (t → s) for t → s ∈ T ⇒ x ≡ y(ψT ) ⇒

[x]ψ
T

= [y]ψ
T
.But this shows that α is one-one .

Now to prove that α is a homomorphism. For any x, y ∈ H, we have α([x]ψ
T →

[y]ψ
T
) = [[x→ y]ψ

S
]ψ
T
′

= [[x]ψ
S → [y]ψ

S
]ψ
T ′

= [[x]ψ
S
]ψ
T
′

→ [[y]ψ
S
]ψT = α([x]ψ

T
)→

α([y]ψ
T
).Similarly, we can prove that α([x]ψ

T ∧ [y]ψ
T
)=α([x]ψ

T
) ∧ α([y]ψ

T
) and

α([x]ψ
T ∨ [y]ψ

T
)=α([x]ψ

T
) ∨ α([y]ψ

T
). Obviously α being an onto map, we get α

is an isomorphism and hence the result.

From now onwards by H, we mean Heyting algebra unless otherwise specified.

In this section, we introduced the concept of fuzzy Heyting algebra (FHA) and

studied some important properties.

Definition 2.1.15. A bounded distributive fuzzy lattice (H,A) is said to be a

fuzzy Heyting algebra if there exists a binary operation ′ →′ such that ,for any

x, y, z ∈ H,A(x ∧ z, y) > 0⇔ A(z, x→ y) > 0

Theorem 2.1.16. Let (H,A) be a bounded distributive fuzzy lattice,then (H,A) is

called a fuzzy Heyting algebra if it satisfies the following axioms:

1. A(1, a→ a) > 0

2. A(b, a→ b) > 0

3. A(a ∧ (a→ b), a ∧ b) = A(a ∧ b, a ∧ (a→ b)) = 1

4. A(a→ (b ∧ c), (a→ b) ∧ (a→ c)) = A((a→ b) ∧ (a→ c), a→ (b ∧ c)) = 1

5. A((a ∨ b) → c), (a → c) ∧ (b → c)) = A((a → c) ∧ (b → c), (a ∨ b) → c)) = 1

for all a,b,c∈ H

Example 2.1.17. Let (B,∨,∧,′ , 0, 1) be a Boolean algebra and a,b ∈ B and A:B ×

B → [0,1] is a fuzzy relation.define a → b = a
′ ∨ b.Then (B,A) is a fuzzy Heyting

algebra
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Proof. Clearly, (B,∨,∧,→, 0, 1) is a Heyting algebra and (B,A) is a bounded dis-

tributive fuzzy lattice.

1. A(a→ a, a
′ ∨ a) = A(a

′ ∨ a, a→ a) = 1

2. A((a→ b) ∧ b, (a′ ∨ b) ∧ b) = A((a
′ ∨ b) ∧ b, (a→ b) ∧ b)) = 1

3. A(a ∧ (a→ b), a ∧ b) = A(a ∧ b, a ∧ (a→ b)) = 1

4. A(a→ (b ∧ c), a′ ∨ (b ∧ c)) = A(a→ b) ∧ (a→ c), a→ (b ∧ c)) = 1

5. A((a ∨ b)→ c, (a→ c) ∧ (b→ c)) = A((a→ c) ∧ (b→ c), (a ∨ b)→ c),for all

a, b, c ∈ B. Thus,(B,A) is a fuzzy Heyting algebra

Lemma 2.1.18. Let (H,A) be a bounded distributive fuzzy lattice.Then (H,∨,∧,→

, 0, 1) is a Heyting Algebra iff (H,A) is a fuzzy Heyting algebra.

From the definition of Heyting algebra and fuzzy lattice property,we have the

following lemma.

Lemma 2.1.19. A(b, a→ b) > 0 iff b ∧ (a→ b) = b or equivalently b ∨ (a→ b) =

a→ b,∀a, b ∈ H

Lemma 2.1.20. In any fuzzy Heyting algebra the following holds:

(i) A(a→ (b ∧ a), a→ b) = 1

(ii) A(a, b) > 0⇒ A(x→ a, x→ b) > 0

(iii) A(a, b) > 0⇒ A(b→ x, a→ x) > 0

Proof. (i) A(a → (b ∧ a), a → b)= A((a → b) ∧ (a → a), a → b)=A((a →

b) ∧ 1, a→ b)=A(a→ b, a→ b)=1
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(ii) A(a, b) > 0 iff a ∧ b = a or a ∨ b = b [ By proposition 1.2.4]

A(x→ a, x→ b) = A(x→ (a ∧ b), x→ b)−−−−−−− [Since a ∧ b = a]

=A((x→ a) ∧ (x→ b), x→ b) > 0 [Since (x→ a) ∧ (x→ b) ≤ x→ b]

(iii) A(a, b) > 0 iff a ∨ b = b [Proposition 1.2.4].

Now,A(b→ x, a→ x) = A((a ∨ b)→ x, a→ x) = A((a→ x) ∧ (b→ x), a→

x) > 0.

Hence ,A(b→ x, a→ x) > 0.

Theorem 2.1.21. If (H,A) is a FHA and a, b ∈ H,then a → b is the largest

element of the set S={c ∈ H : A(a ∧ c, b) > 0}

Proof. Let H be a FHA. We shall show that a→ b ∈ S.Let a, b ∈ H.Then A(a∧(a→

b), a ∧ b) > 0.Clearly, A(a ∧ b, b) > 0.

This implies, A(a∧(a→ b), b) ≥ supa∧b∈H(minA(a∧(a→ b), a∧b), A(a∧b, b)) > 0.

⇒ A(a ∧ (a→ b), b) > 0.

⇒ a→ b ∈ S. Let d be such that a ∧ d ≤ b.Then A(a ∧ d, b) > 0.

⇒ A(a→ (a ∧ d), a→ b) > 0

⇒ A(a→ d, a→ b) > 0.

⇒ (d, a→ b) > 0

⇒ A(d, a→ b) ≥ Supa→d∈H(min(A(d, a→ d), A(a→ d, a→ b))) > 0

⇒ A(d, a→ b) > 0

⇒ a→ b is an upper bound of d.

Thus, a→ b is the largest element of S.

Lemma 2.1.22. Let (H,A) be a fuzzy Heyting algebra,then for any a,b,c ∈ H,we

have A(a, b) > 0⇔ a→ b = 1

Proof. A(a, b) > 0.Then A(a→ a, a→ b) > 0.

⇒ A(1, a→ b) > 0.But a→ b ≤ 1,as 1 is the largest element.
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⇒ A(a→ b, 1) > 0 ⇒ a→ b = 1.

Hence the result.

Conversely,assume A(a→ b, 1) = A(1, a→ b).Then,a ∧ (a→ b) = a ∧ 1

⇒ a ∧ (a→ b) = a

⇒ a ∧ b = a

⇒ a ≤ b.Hence,A(a, b) > 0.

Theorem 2.1.23. Let (H,A) be a fuzzy Heyting algebra,then the following are equiv-

alent.

1. A(a ∧ c, b) > 0

2. A(a→ c, a→ b) > 0

3. A(c, a→ b) > 0,for a, b, c ∈ H

Proof. straightforward

Theorem 2.1.24. Every fuzzy Heyting algebra is a distributive fuzzy lattice

Proof. Since A(x, x ∨ y) > 0,we have A(y ∧ x, (y ∧ x) ∨ (z ∧ x)) > 0.

Hence A(y, x→ (y ∧ x) ∨ (z ∧ x)) > 0.Similarly,A(z, x→ (y ∧ x) ∨ (z ∧ x)) > 0.

This implies A(y ∨ z, x→ (y ∧ x) ∨ (z ∧ x)) > 0.

⇒ A(x ∧ (y ∨ z), x ∧ (x→ (y ∧ x) ∨ (z ∧ x))) > 0.

⇒ A(x ∧ (y ∨ z), x ∧ (y ∧ x) ∨ (z ∧ x)) > 0.

⇒ A(x ∧ (y ∨ z), (y ∧ x) ∨ (z ∧ x)) > 0. *

From A(y, y ∨ z) > 0 and A(y ∧ x, y) > 0 and A(y ∧ x, x) > 0, We have

A(y ∧ x, (y ∨ z) ∧ x) > 0. Similarly,A(z ∧ x, (y ∨ z) ∧ x) > 0.

Thus,A((y ∧ x) ∨ (z ∧ x), (y ∨ z) ∧ x) > 0. **

From * and ** we have the result.Hence the theorem follows.

Definition 2.1.25. The fuzzy poset (H,A) is said to be directed above if ∀a, b, c ∈

H,A(a, c) > 0 and A(b, c) > 0,then ∃x ∈ H such that A(x, c) > 0.
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Theorem 2.1.26. Let (H,A) be a fuzzy lattice.Then the following statements are

equivalent:

1. (H,A) is a fuzzy Heyting algebra

2. The fuzzy poset (H,A) is directed above

3. (H,A) is a distributive fuzzy lattice

Proof. (1) ⇒ (2). Let a, b ∈ H.Then ∃c ∈ H such that A(a, c) > 0 and A(b, c) > 0

⇒ A(a ∨ b, c) > 0.Take x = a ∨ b ∈ H.Hence A(x, c) > 0

(2)⇒ (3). Suppose (2) holds.

Then,A(a ∨ b, c) > 0.

⇒ A(c ∧ (a ∨ b), c ∧ c) > 0

We claim to show A(a∧(b∨c), (a∧b)∨(a∧c)) > 0 and A(a∨(b∧c), (a∨b)∧(a∨c)) > 0.

We know that A(a ∨ b, c) > 0, A(a, c) > 0, A(b, c) > 0, A(c, c) > 0.

⇒ A(b ∨ c, c) > 0.

⇒ A(a ∧ (b ∨ c), a ∧ c) > 0.

It is clear that A((a ∨ b) ∧ (a ∨ c), a ∨ c) > 0 and A((a ∧ b), (a ∧ b) ∨ (a ∧ c)) > 0.

Also A((a ∧ c), (a ∧ b) ∨ (a ∧ c)) > 0.

Thus, we have A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∨ c)) ≥ Supa∧c∈H(min(A(a ∧ (b ∨ c), a ∧

c), A((a ∧ c), (a ∧ c) ∨ (a ∧ b))) > 0.Hence, A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∨ c)) > 0.

Similarly A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) > 0.

Therefore,(H,A) is a distributive fuzzy lattice

(3)⇒ (1). Suppose (H,A) is a distributive fuzzy lattice such that A(a ∧ c, b) > 0

We need to show A(c, a→ b) > 0. Clearly,A(a ∧ c, a ∧ b) > 0

⇒ A(a→ (a ∧ c), a→ (a ∧ b)) > 0

⇒ A(a→ c, a→ b) > 0,but A(c, a→ c) > 0

⇒ A(c, a→ b) ≥ supa→c∈H(min(A(c, a→ c), A(a→ c, a→ b))) > 0

Hence,(H,A)is a fuzzy Heyting Algebra
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Lemma 2.1.27. Let (H,A) be fuzzy Heyting algebra and if A(a, c) > 0 and A(b, c) >

0,for a, b and c ∈ H,then we have the following.

1. A(a ∧ b, b ∧ a) > 0

2. A(a ∨ b, b ∨ a) > 0

3. A((a→ c) ∧ (b→ c, 1) > 0

4. A((c→ a) ∧ (c→ b), 1) > 0

5. A(((a→ c) ∧ (b→ c)) ∨ ((c→ a) ∧ (c→ b)), 1) > 0

Proof. Straightforward

Theorem 2.1.28. Let (H,A) be a distributive fuzzy lattice.Then (H,A) is a fuzzy

Heyting algebra iff for any a, b ∈ H,there exists a largest element c ∈ H such that

A(a ∧ c, b) > 0.

Proof. (⇒).Clearly, A(a ∧ (a→ b), a ∧ b) > 0 and A(a ∧ b, b) > 0.

This implies A(a ∧ c, b) > 0. Let d ∈ H such that A(a ∧ d, b) > 0.

We shall prove that A(d, c) > 0.A(a ∧ d, b) > 0.

⇒ A(a→ d, a→ b) > 0,but A(d, a→ d) > 0

⇒ A(d, a→ b) > 0.Taking c = a→ b,we have A(d, c) > 0.

Therefore,there is a largest element c ∈ H such that A(a ∧ c, b) > 0.

Conversely,suppose the given conditions hold.Define a binary operation → on H

such that a→ b is the largest element of the set{c ∈ H : A(a ∧ c, b) > 0}.

we prove that (H,A) is a fuzzy Heyting algebra

1. Clearly A(b, a→ b) > 0.For b ∈H,since A(a ∧ b, a) > 0, we have

A(a→ (a ∧ b), a→ a) > 0

⇒ A(b, a→ a) > 0

⇒ a→ a is an upper bound of b.
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But a→ a = 1

⇒ A(a→ a, 1) = A(1, a→ a) = 1

2. Since A(a ∧ b, b) > 0.Then A(a→ b, a→ b) > 0

⇒ A(b, a→ b) > 0

3. Since A(a ∧ (a→ b), b) > 0,we have A(a ∧ (a ∧ (a→ b)), a ∧ b) > 0

⇒ A(a ∧ (a→ b), a ∧ b) > 0 , on the other hand,A(a ∧ b, b) > 0.

⇒ A(b, a→ b) > 0

⇒ A(a ∧ b, a ∧ (a→ b)) > 0 from anti symmetry we have a ∧ (a→ b) = a ∧ b

Thus,we have A(a ∧ (a→ b), a ∧ b)=A(a ∧ b, a ∧ (a→ b) = 1

4. From Heyting algebra,we have a ∧ (a→ (b ∧ c)) = a ∧ a ∧ (b ∧ c) ≤ b,we have

A(a ∧ (a→ (b ∧ c), b) > 0

⇒ A(a ∧ (b ∧ c), b) > 0

⇒ A(a→ (b ∧ c), a→ b) > 0. Similarly,A(a→ (b ∧ c), a→ c) > 0

⇒ a→ (b ∧ c) is a lower bound of {a→ b, a→ c}

⇒ A(a→ (b ∧ c), (a→ b) ∧ (a→ c)) > 0.

On the other hand A(a ∧ (a→ b) ∧ (a→ c), a ∧ b ∧ (a→ c)) > 0

⇒ A(a ∧ (a→ b) ∧ (a→ c), b ∧ a ∧ (a→ c)) > 0

⇒ A(a ∧ b ∧ c, b ∧ a ∧ c) > 0

⇒ A((a→ b) ∧ (a→ c), (a→ b) ∧ (a→ c)) > 0

⇒ A((a→ b) ∧ (a→ c), a→ (b ∧ c)) > 0

Therefore,A((a→ b) ∧ (a→ c), a→ (b ∧ c)) = A(a→ (b ∧ c), (a→ b) ∧ (a→

c)) = 1

5. Consider A((a ∨ b) ∧ (a → c) ∧ (b → c), (a ∧ (a → c) ∧ (b → c)) ∨ (b ∧ (a →

c) ∧ (b→ c)) > 0

⇒ A((a ∨ b) ∧ (a→ c) ∧ (b→ c), (a ∧ c) ∨ (b ∧ c)) > 0

⇒ A((a ∨ b) ∧ (a→ c) ∧ (b→ c), (a ∨ b) ∧ c) > 0 but A((a ∨ b) ∧ c, c) > 0

⇒ A((a ∨ b) ∧ (a→ c) ∧ (b→ c), c) > 0.
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By Theorem 1.1.7, we have A((a→ c) ∧ (b→ c), (a ∨ b)→ c) > 0.

On the other hand A(a, a ∨ b) > 0 ⇒ A((a ∨ b)→ c, a→ c) > 0.

Similarly,A((a ∨ b)→ c, b→ c) > 0

⇒ A((a ∨ b)→ c, (a→ c) ∧ (b→ c)) > 0

Hence,A((a ∨ b)→ c, (a→ c) ∧ (b→ c)) = A((a→ c) ∧ (b→ c), (a ∨ b)→ c)

Therefore (H,A) is a fuzzy Heyting Algebra

Definition 2.1.29. Let (H,A) be a distributive fuzzy lattice.Then the fuzzy Heyting

algebra (H,A) satisfies the infinite meet distributive fuzzy law ifA(a∧(∨i∈Isi),∨i∈I(a∧

si))) = A(∨i∈I(a ∧ si), a ∧ (∨i∈Isi)) = 1 where

{si : i ∈ I} ⊆ H

Theorem 2.1.30. Let (H,A) be a distributive fuzzy lattice.Then (H,A)is a fuzzy

Heyting algebra iff it satisfies the infinite meet distributive fuzzy law.That is for any

family

{si : i ∈ I} ⊆ H

if ∨i∈Isi exists,then ∨i∈I(a ∧ si) exists for any a ∈ H and it is equal to

a ∧ (∨i∈Isi).

Proof. Let (H,A) be a distributive fuzzy lattice and a, b ∈ H.

Define a → b = ∨s∈Sabs,where Sab = {s ∈ H : A(a ∧ s, b) > 0}. Now,let a, b, c ∈

H.Then

1. Saa = {s ∈ H : A(a ∧ s, a) > 0} = (H,A)

⇒ a→ a = ∨H = 1

Thus,A(a→ a, 1) = A(1, a→ a) = 1

2. Since A(a ∧ b, b) > 0,we have b ∈ Sab.This implies A(b, a → b) > 0.Thus,

A((a→ b) ∧ b, b) = A(b, (a→ b) ∧ b) = 1
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3. A(a ∧ (a→ b), a) > 0 and A(a ∧ (a→ b), a ∧ (∨s∈Sabs)) > 0

⇒ A(∨s∈Sab(a ∧ s), b) > 0

⇒ A(a ∧ (a→ b),∨s∈Sab(a ∧ s)) > 0

⇒ A(a ∧ (a→ b), b) > 0.

Hence a ∧ (a→ b) is a lower bound of {a, b}

⇒ A(a ∧ (a→ b), a ∧ b) > 0.On the other hand,we have

A(a ∧ (a ∧ b), b) > 0.

⇒ a ∧ b ∈ Sab
⇒ A(a ∧ b, a→ b) > 0

⇒ A(a ∧ (a ∧ b), a ∧ (a→ b)) > 0

⇒ A(a ∧ b, a ∧ (a→ b)) > 0.

Thus,A(a ∧ b, a ∧ (a→ b)) = A(a ∧ (a→ b), a ∧ b) = 1

4. Since A(a ∧ (a→ (b ∧ c)), b) > 0.

⇒ A(a→ (b ∧ c), a→ b) > 0

Similarly, A(a→ (b ∧ c), a→ c) > 0.

⇒ a→ (b ∧ c) is a lower bound of {a→ b, a→ c}

⇒ A(a → (b ∧ c), (a → b) ∧ (a → c)) > 0. On the other hand,A(a ∧ (a →

b) ∧ (a→ c), a ∧ b ∧ (a→ c)) > 0

⇒ A(a ∧ (a→ b) ∧ (a→ c), a ∧ b ∧ c) > 0

⇒ A(a ∧ (a→ b) ∧ (a→ c), b ∧ c) > 0

⇒ A((a → b) ∧ (a → c), a → (b ∧ c)) > 0. Hence, A((a → b) ∧ (a → c), a →

(b ∧ c)) = A(a→ (b ∧ c), (a→ b) ∧ (a→ c)) = 1

5. Consider,A((a ∨ b) ∧ (a → c) ∧ (b → c), (a ∧ (a → c) ∧ (b ∧ c)) ∨ (b ∧ (a →

c)∧)(b ∧ c)) > 0

⇒ A((a →) ∧ (b → c), (a ∨ b) → c) > 0. Since A(a, a ∨ b) > 0, A(b, a ∨ b) >

0.This implies A((a ∨ b)→ c, a→ c) > 0 and A((a ∨ b)→ c, b→ c) > 0

(a ∨ b)→ c is a lower bound of {a→ c, b→ c}.
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⇒ A((a∨ b)→ c, (a→ c)∧ (b→ c)) > 0. Hence,A((a∨ b)→ c, (a→ c)∧ (b→

c)) = A((a→) ∧ (b→ c), (a ∨ b)→ c) = 1.

Therefore,(H,A) is fuzzy Heyting algebra.

Conversely,suppose (H,A) be a fuzzy Heyting algebra.Let a ∈ H, {si : i ∈

I} ⊆H.Then a ∧ si ∈ H.Since A(si,∨si) > 0, we have A(∨i∈I(a ∧ si), a ∧

(∨i∈Isi)) > 0.On the other hand A(a ∧ si,∨i∈I(a ∧ si)) > 0.

⇒ A(si, a→ ∨i∈I(a ∧ si)) > 0,∀i ∈ I

⇒ A(∨i∈Isi, a→ ∨i∈I(a ∧ si)) > 0

⇒ A(a ∧ (∨i∈Isi), a ∧ (a→ ∨i∈I(a ∧ si))) > 0

but,A(a ∧ ∨i∈I(a ∧ si),∨i∈I(a ∧ si)) > 0

⇒ A(a ∧ (∨i∈Isi),∨i∈I(a ∧ si))) > 0

A(a ∧ (∨i∈Isi),∨i∈I(a ∧ si))) = A(∨i∈I(a ∧ si), a ∧ (∨i∈Isi)) = 1

2.2 Fuzzy Relations on Heyting Algebra

Definition 2.2.1. Let A and B be any two fuzzy relations of a Heyting algebra

H.Then A is said to be contained in B,denoted by A ⊆ B, if A(x, y) ≤ B(x, y) for

all (x, y) ∈ H ×H.

Definition 2.2.2. The union of two fuzzy relations A and B of the HA H,denoted by

A∪B is a fuzzy relation of H defined by (A∪B)(x, y) = max(A(x, y), B(x, y)).The

intersection of A and B,symbolized by A ∩ B is a fuzzy relation on H,defined by

(A∩B)(x, y) = min(A(x, y), B(x, y)), for all x, y ∈ H. More generally,the union and

intersection of any family {Ai : i ∈ I} of fuzzy relations of a set H,are defined by

(∪i∈IAi)(x, y) = Supi∈IAi(x, y) and (∩i∈IAi)(x, y) = infi∈IAi(x, y) for all x, y ∈ H

Definition 2.2.3. A fuzzy relation A of a set S is said to have sup property if there

exist (a0, b0) ∈ S × S such that A(a0, b0) = Sup(a,b)∈S×SA(a, b).
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Definition 2.2.4. Let A be a fuzzy relation on a Heyting algebra H and let t ∈

[0, 1].The fuzzy relation At={(x, y) ∈ H × H : A(x, y) ≥ t} is called the level

relation of A. Clearly, Aα ⊆ Aβ whenever α > β

Theorem 2.2.5. Two level relations At and As with (s < t) of a fuzzy relation A of

a Heyting algebra H are equal iff, there is no (x, y) ∈ H×H such that s ≤ A(x, y) ≤ t

Proof. Suppose As = At with s < t.We calim to show that no (x, y) ∈ H ×H such

that s ≤ A(x, y) ≤ t. Suppose there is (x, y) ∈ H × H such that s ≤ A(x, y) ≤

t.Then s ≤ A(x, y) which implies (x, y) ∈ As = At.This implies that (x, y) ∈ At

which is a contradiction.Hence the forward part follows.

Conversely,suppose there is no (x, y) ∈ H ×H such that s ≤ A(x, y) ≤ t.

We claim to show that As = At.Let (x, y) ∈ At.Then A(x, y) ≥ t > s.

⇒ A(x, y) ≥ s ⇒ (x, y) ∈ At ⊆ As.For the other inclusion, let (x, y) ∈ As.Then

A(x, y) ≥ s.Since there is no (x, y) ∈ H × H such that s ≤ A(x, y) < t.Then

A(x, y) ≥ t which gives (x, y) ∈ At.Hence As ⊆ At.Therefore, the theorem follows.

Theorem 2.2.6. A fuzzy relation A of a Heyting algebra H is a FHA iff the level

relations At, t ∈ im(A) is Heyting algebra(In particular (H,χH) is FHA H iff H is

a Heyting algebra)

Remark 2.2.7. The family FA of level relations of A is precisely {At|t ∈ imA},where

(H,A) is any fuzzy Heyting algebra. Moreover,if imA = {t0, t1, ..., tn} with t0 >

t1 > ... > tn,then the level relations of A form the following chain: At0 ⊂ At1 ⊂

At2 ⊂ ... ⊂ Atn = H

Theorem 2.2.8. Two FHAs (H,A) and (H,B) such that cardImA < ∞ and

cardImB <∞ of a HA H are equal iff ImA = ImB and FA = FB
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Proof. Let A and B be any two fuzzy HAs of H.Let cardImA <∞ ,cardImB <∞

and A = B.

We need to show

a) ImA = ImB

b) FA = FB. That is ImA = {t0, t1, ..., tn} such that t0 > t1 > t2 > ... > tn and

ImB = {lo, l1, l2, ..., ln} such that l0 > l1 > l2 > ... > lm. By the above remark,we

have Ato ⊂ At1 ⊂ At2 ⊂ ... ⊂ Atn = H, Blo ⊂ Bl1 ⊂ ... ⊂ Blm = H

Hence FA = {At0 , At1 , ..., Atn} and

FB = {Bl0 , Bl1 , ..., Blm}

a) Suppose A = B ⇒ A(x, y) = B(x, y),for all x, y ∈ H

Hence, ImA = ImB ⇒ n = m

b) To prove FA = FB

Consider FA={Ati |ti ∈ ImA}

={(x, y) ∈ H ×H ∈ H|A(x, y) ≥ ti, ti ∈ ImA}

={(x, y) ∈ H ×H|B(x, y) ≥ li, li ∈ ImB}

={Bli |li ∈ ImB}

=FB

Hence FA = FB

Conversely ,Suppose ,ImA = ImB andFA = FB

Claim: A = B that is A(x, y) = B(x, y),for all x, y ∈ H)

(a) Let x, y ∈ H and let A(x, y) = l∈ ImA = ImB

⇒ (x, y) ∈ Al = Bl,FA = FB

⇒ (x, y) ∈ Bl ⇒ B(x, y) ≥ l

Hence A(x, y) ≤ B(x, y) (1)

Let (x, y) ∈ At⇒ A(x, y) ≥ t

Hence B(x, y) ≤ A(x, y) (2)

Thus A(x, y) = B(x, y),for all x, y ∈ H

⇒ A = B by (1) and (2).
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Theorem 2.2.9. A homomorphic image or preimage of a fuzzy Heyting algebra is

fuzzy Heyting algebra,provided that the sup property holds in the former case.

Proof. Let H and H
′

be HAs and f : H → H
′

epimorphism.

Let A be a fuzzy Heyting algebra on H.

we shall show that f(A) is a fuzzy Heyting algebra of H
′
.

a) (i) Let t ∈ imf(A) .Then for some (y, z) ∈ H ′ ×H ′ ,

f(A)(y, z) = sup(a,b)∈f−1(y,z)A(a, b) = t ≤ 1

Since A(u, v) ≤ 1,∀(u, v) ∈ H × H,we have if t = 0,then (f(A))t = H
′ × H ′ . Let

t > 0 and ε > 0 be any real numbers. We will show that (f(A))t = f(Aα), α = t−ε.

Let (y, z) ∈ (f(A))t.Then t ≤ f(A)(y, z) = sup(a,b)∈f−1(y,z)A(a, b)

⇒ α + ε ≤ sup(a,b)∈f−1(y,z)A(a, b)

V α < A(a, b) for some (a, b) ∈ f−1(y, z)

⇒ (a, b) ∈ Aα for some f(a, b) = (y, z)

⇒ f(a, b) ∈ f(Aα) and (y, z) ∈ f(Aα)

Hence,(f(A))t ⊆ f(Aα)

On the other hand, (y, z) = f(a, b) for some (a, b) such that α ≤ A(a, b)

α ≤ (f(A))(y, z) since (a, b) ∈ f−1(y, z)

⇒ t ≤ f(A)(y, z),since ε > 0 is arbitrary

⇒ (y, z) ∈ (f(A))t.Since α ≤ 1, Aα is a HA on H by Definition 2.2.4 f(Aα) and so

(f(A))t is Heyting algebra. Hence (H
′
, f(A)) is a fuzzy Heyting algebra, for the pre

-image is easy to prove by theorem 2.2.6

2.3 Ideals and Filters of Fuzzy Heyting Algebra

In this section ,we introduce the concept of ideals and filters of fuzzy Heyting algebra

(FHA).We also characterize ideals and filters of fuzzy Heyting algebra using the

support and level sets of fuzzy Heyting algebra (FHA) .We,finally, state and prove

some results on ideals and filters of fuzzy Heyting algebra.
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Remark 2.3.1. ([0, 1],∨,∧,→) is a Heyting algebra

Definition 2.3.2. Let H be a Heyting algebra. A function A:H × H → [0, 1] is

called a fuzzy relation on H. The fuzzy relation A in H is reflexive iff x→ x = 1,for

all x ∈ H.The fuzzy relation A in H is anti symmetric iff x→ y = 1 and y → x = 1

⇒ x = y.The fuzzy relation A in H is transitive iff Supy∈H(min(A(x, y), A(y, z)))→

A(x, z) = 1.

A fuzzy relation A is fuzzy partial order relation if A is reflexive,symmetric and

transitive. A fuzzy partial order relation A is fuzzy total order relation iff x→ y = 1

or y → x = 1,for all x, y ∈ H. If A is a fuzzy partial order relation on a set H,then

(H,A) is called a fuzzy partially ordered set or a fuzzy poset.If A is a fuzzy total

order relation in a set H,then (H,A) is called a fuzzy totally ordered set or a fuzzy

chain.

Definition 2.3.3. Let (H,A) be a fuzzy poset and B ⊆ H.An element u ∈H is said

to be an upper bound for a subset B iff b→ u = 1,∀b ∈ B. An upper bound u0 for

a subset B is least upper bound of B iff u0 → u = 1 for every upper bound u for

B.An element v ∈ H is said to be a lower bound for a subset B iff v → b = 1,∀b ∈

B. A lower bound v0 for a subset B is the greatest lower bound of B iff v → v0 = 1

for every lower bound v for B. We denote the lub of the set {x, y} = x ∨ y and glb

of the set {x, y} = x ∧ y

Remark 2.3.4. Since A is anti symmetric,then the LUB and GLB is unique.

Proof. Suppose u0and u1 are LUBs in a subset Y ⊆ H.Then u0 → u1 = 1 and

u1 → u0 = 1.Then u0 = u1

Definition 2.3.5. Let (H,A) be a fuzzy poset.(H,A) is a fuzzy lattice iff x ∨ y and

x ∧ y exists for all x, y ∈ H.

Proposition 2.3.6. Let (H,A) be a fuzzy Heyting algebra and x,y,z ∈ H.Then

(i) x→ (x ∨ y) = 1, y → (x ∨ y) = 1, (x ∧ y)→ x = 1, (x ∧ y)→ y = 1
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(ii) x→ z = 1 and y → z = 1 ⇒ x ∨ y → z = 1

(iii) z → x = 1 and z → y = 1⇒ z → (x ∧ y) = 1

(iv) x→ y = 1 iff x ∨ y = y

(v) x→ y = 1 iff (x ∧ y) = x

(vi) If y → z = 1,then x ∧ y → x ∧ z = 1 and x ∨ y → x ∨ z = 1

(vii) x→ y = 1 and x→ z = 1, then x→ (y ∧ z) = 1and x→ (y ∨ z) = 1

(Viii) x→ z = 1, y → z = 1⇒ (x ∨ y)→ z = 1

Lemma 2.3.7. Let (H,A) be a FHA ,if x→ y = 1 and y → z = 1,then x→ z = 1

Lemma 2.3.8. Let (H,A) be a FHA ,if (a ∧ c)→ b = 1⇔ c→ (a→ b) = 1

From now onwards by H, we mean Heyting algebra unless otherwise specified.

Definition 2.3.9. Let (H,A) be a fuzzy lattice.Then (H,A) is said to be a bounded

fuzzy lattice if x→ 1 = 1,for all x ∈ H

From the definition of Heyting Algebra and fuzzy lattice property,we have the

following lemma.

Lemma 2.3.10. Let Y ⊆ H and (H,A) be a FHA,then if A(x, a) > 0,then either

x→ a = 1 or x→ a ∈ Y

Proof. Suppose x → a 6= 1 and x → a.This implies x � a.This gives x > a.Which

is a contradiction.Also if x→ a /∈ Y.

Then from the properties of Heyting algebra,a ≤ x→ a /∈ Y. Thus, a /∈ Y

Lemma 2.3.11. Let (H,A) be a fuzzy Heyting algebra,then for any a,b,c ∈ H,we

have A(a, b) > 0⇔ a→ b = 1
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Proof. Suppose A(a, b) > 0.Then A(a→ a, a→ b) > 0.

⇒ A(1, a→ b) > 0.But a→ b ≤ 1,as 1 is the largest element.

⇒ (a→ b, 1) > 0 ⇒ a→ b = 1.Hence the result.

Conversely,assume A(a→ b, 1) = A(1, a→ b).Then,a ∧ (a→ b) = a ∧ 1

⇒ a ∧ (a→ b) = a

⇒ a ∧ b = a

⇒ a ≤ b.Hence,A(a, b) > 0.

Definition 2.3.12. Because a fuzzy relation is a fuzzy set,then the p -level sets

and support of fuzzy relations is defined in fuzzy sets ,then the p- level set of a

fuzzy relationA : H ×H → [0, 1] is defined as ,for all x ∈ H,y ∈ H. Ap = {(x, y) :

A(x, y) ≥ p}.In the same way ,we define the support of a fuzzy relation S(A) as

S(A)={(x, y) ∈ H ×H : A(x, y) > 0}

Proposition 2.3.13. Let A : H × H → [0, 1] be a fuzzy relation.Then,A is fuzzy

partial order relation on H iff for each p ∈ (0, 1],the p-level set Ap is a partial order

relation in H.

Proof:Let A be a fuzzy partial order relation on a Heyting algebra H.we shall show

that Ap is a partial order relation on H,p ∈ (0, 1].since by hypothesis x → x =

1.Then (x, x) ∈ Ap, p ∈ (0, 1].Thus p→ A(x, x) = 1.Therefore AP is reflexive.Next,

suppose (x, y) ∈ Ap and (y, x) ∈ Ap.We shall show that x=y.from the hypothesis

we have p → A(x, y) = 1 and p → A(y, x) = 1.From the properties of the HA,

1 ∧ 1 =(p → A(x, y)) ∧ (p → A(y, x)) =p → (A(x, y)) ∧ A(y, x)).Since (H,A )

is a fuzzy poset (A(x, y)) ∧ A(y, x)) = A(x, x) = 1.This implies both A(x, y) and

A(y, x) > 0.Thus x = y.Finally,suppose (x, y) ∈ Ap and (y, z) ∈ Ap. We shall show

that (x, z) ∈ Ap. From hypothesis p → A(x, y) = 1 and p → A(y, z) = 1.Clearly,

1 ∧ 1 =(p → A(x, y)) ∧ (p → A(y, z)).Thus 1 =p → A(x, z).Therefore ,The result

follows.
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Lemma 2.3.14. Let A : H × H → [0, 1] be a fuzzy relation.Then,if A is fuzzy

partial order relation on H,then S(A) is a partial order relation on H.

Proof. Since A(x, x) = 1 > 0.then x → x = 1.Thus (x, x) ∈ S(A).Suppose (x, y) ∈

S(A) and (y, x) ∈ S(A).Then x → y = 1 and y → x = 1.Thus x = y.Suppose

(x, y) ∈ S(A) and (y, z) ∈ S(A).We need to show that(x, z) ∈ S(A).This implies

x → y = 1 and y → z = 1.Thus x → z = 1.Therefore ,S(A) is a partial order

relation on a Heyting algebra H.

Definition 2.3.15. Let L = (H,A) be FHA and Y ⊆ H.Y is an ideal of L if

(i) x ∈ H,y ∈ Y,A(x, y) > 0⇒ x ∈ Y

(ii) x, y ∈ Y ⇒ x ∨ y ∈ Y

(iii) x→ a 6= 1,a ∈ Y, x ∈ H ⇒ x→ a ∈ Y

Definition 2.3.16. Let L = (H,A) be FHA and Y ⊆ H.Y is a filter of L if

(i) x ∈ H,y ∈ Y,A(y, x) > 0⇒ x ∈ Y

(ii) x, y ∈ Y, x ∧ y 6= 0⇒ x ∧ y ∈ Y

(iii) a ∈ F, x ∈ H|{0} ⇒ a→ x ∈ Y

Lemma 2.3.17. Let Y be an ideal of L = (H,A),then there exists an element t

such that y ∧ (t → x) = y ∧ x,for every x, y ∈ Y or x ∧ (t → y) = x ∧ y,for every

x, y ∈ Y

Proof. Since Y is an ideal of L,then Y 6= ∅. Now,take x, y ∈ Y such that x ∨ y ∈

Y .Let x ∨ y = t,for some t ∈ Y .Since Y ⊆ H and H is a Heyting algebra,then

(x ∨ y)→ x = t→ x

y → x = t→ x

y ∧ (y → x) = y ∧ (t→ x)
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y ∧ x = y ∧ (t→ x)

interchanging the roles of x into y,we have x ∧ (t→ y) = x ∧ y.

Proposition 2.3.18. 1. Let Y be an ideal of L = (H,A),then x ∧ (t → y) =

y ∧ (t→ x),t, x, y ∈ Y

2. Let Y be an ideal of (H,A) such that a ∈ Y and x ∈ H if A(x, a) > 0,then

x→ a ∈ Y

Proof. 1. Straightforward from the above lemma.

2. Suppose A(x, a) > 0⇒ x ∈ Y

⇒ x→ a ∈ Y. Since Y is an ideal x→ a 6= 1.

Lemma 2.3.19. Let Y be filter of (H,A),then the following holds.

1.x→ t = x→ y,for some t ∈ Y ,for all x, y ∈ Y

2.x ∧ t = x ∧ y

3.y ∧ t = y ∧ x

Proposition 2.3.20. Let (H,A) be a fuzzy poset (or chain) and Y ⊆ H. If B =

A|Y × Y , that is, B is a fuzzy relation on Y such that for all x, y ∈ Y,B(x, y) =

A(x, y), then (Y, B) is a fuzzy poset (or chain).

In previous sections, we have defined an ideal of a FHA (H,A). We have also

defined the support set S(A) of a fuzzy relation A in a set H as well as p-level set Ap

of a fuzzy relation A in a set H and characterize a relation on H. Then, we can think

of a set of ideals from a p-cut, that is, the set of ideals with degree greater than or

equal to p or, the set of elements x ∈ H and y ∈ Y such that p→ A(x, y) = 1 with

p ∈ (0, 1].

Proposition 2.3.21. (Y,B) is a ideal (filter) of FHA H iff Y is an ideal (filter) of

(H,S(A)).
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Proof.(⇒) Let (Y, B) be an ideal of L and let y ∈ Y . Then,

(i) If (x, y) ∈ S(A), then A(x, y) > 0. So, by Definition 2.3.15 item (i) x ∈ Y.

(ii) If x ∈ Y and y ∈ Y , then by Definition 2.3.15 item (ii), x ∨ y ∈ Y.

Also item (iii) B(x, a) > 0 by Proposition 2.3.18 (ii) x→ a ∈ Y .

(⇐)(i) Let x ∈ Hand y ∈ Y and suppose that A(x, y) > 0, then (x, y) ∈ S(A) and

x ∈ Y .

(ii) Suppose B(x, y) > 0.Then (x, y) ∈ S(B).Then x, y ∈ Y which implies x∨y ∈ Y

(iii) x → a 6= 1, x → a ∈ Y. Similarly, we can proof that (Y, B) is a fuzzy filter of

L iff Y is a filter of (H , S(A)).

Theorem 2.3.22. (Y,B) is a ideal ( filter) of FHA iff for each p ∈ (0, 1], Bp is an

ideal (filter) of (Y,Ap).

Proof. (⇒) Let (Y , B) be an ideal of L and let y ∈ Y . Then, (i) If (x, y) ∈ Bp,

then p → A(x, y) = 1. So, by Definition 2.3.15 item (i) x ∈ Y . (ii) If x ∈ Y and

y ∈ Y , then by Definition 2.3.15 item (ii), x ∨ y ∈ Y.

(⇒) (i) Let x ∈ H and y ∈ Y and suppose that A(x, y) > 0 then (x, y) ∈ Bp and

x ∈ Y .

(ii) Trivially.Similarly, we can proof that (Y , B) is a fuzzy filter of L. iff Y is a filter

of (X,Ap).

Definition 2.3.23. A fuzzy poset (H,A) is called fuzzy sup-HA if each pair of

element has supremum on Y. Dually, a fuzzy poset (Y,A) is called fuzzy inf- HA if

each pair of element has infimum on Y.

Notice that a structure is a complete fuzzy Heyting Algebra iff it is simultane-

ously fuzzy sup-HA and fuzzy inf-HA. We define supremum and infimum of a fuzzy

set I on H as follows.

Definition 2.3.24. Let (H,A) be a fuzzy poset and I be a fuzzy set on H. sup I

is an element of H such that if x ∈ H and µI(x) > 0, then A(x, supI) > 0 and if
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u ∈ H is such that A(x, u) > 0 when µI(x) > 0, then A(supI, u) > 0. Similarly, inf

I is an element of H such that if x ∈ H and µI(x) > 0, then A(infI, x) > 0 and if

v ∈ H is such that A(v, x) > 0 when µI(x) > 0, then A(v, infI) > 0.

Proposition 2.3.25. Let (H,A) be a sup-complete (inf-complete) FHA and I be a

fuzzy set on H. Then, sup I (inf I) exists and it is unique.

Proposition 2.3.26. If (H,A) is a complete FHA, then (H,S(A)) is a complete

crisp HA.

Proof. Let (H,A) be a complete FHA and Y ⊆ H. Since, for each x, y ∈ Y , if

A(x, y) > 0 then we have that (x, y) ∈ S(A). So, by Proposition 1.2.4 (iv) and (v),

all Y ⊆ H has supremum and infimum. Therefore, (H,S(A)) is a complete HA.

Proposition 2.3.27. Let (H,A) be a fuzzy Heyting algebra, then (H, A) be a fuzzy

sup-HA and Y ⊆ H. The set ↓ Y= {x ∈ H : A(x, y) > 0 for some y ∈ Y } is an

ideal of (H,A).

Proof. (i) Let z ∈↓ Y and w ∈ H such that A(w, z) > 0. If z ∈ Y , then exists

x ∈ Y such that A(z, x) > 0, and by transitivity, A(w, x) > 0. Therefore, w ∈↓ Y .

(ii) Suppose x, y ∈↓ Y , then exist z1, z2 ∈ Y such that A(x, z1) > 0 and A(y, z2) >

0. So, A(x, z1 ∨ z2) > 0 and A(y, z1 ∨ z2) > 0.

By hypothesis (Y, A) is a fuzzy sup-HA, then z1 ∨ z2 ∈ Y and A(x ∨ y, z1 ∨ z2) >

0.Also,Therefore, x ∨ y ∈↓ Y.

(iii) Let a ∈↓ Y and x ∈ H such that x → a 6= 1.Then there exist z ∈ H such

that A(a, z) > 0.ButA(x → a, x → z) > 0.Since x, z ∈ H ,Then x → z ∈ H

Thus,x→ a ∈↓ Y

Proposition 2.3.28. Let (H,A) be a FHA (Y,A) be a fuzzy inf-HA and Y ⊆ H.

The set ↑ Y = {x ∈ H : A(y, x) > 0 for any y ∈ Y } is a filter of (H,A).

Proof. Analogously the proposition 2.2.28
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Proposition 2.3.29. Let (H,A) be a FHA and Y ⊆ H, then ↓ Y satisfies the

following properties: (i) Y ⊆↓ Y (ii) Y ⊆ W ⇒↓ Y ⊆↓ W (iii) ↓↓ Y =↓ Y

Proof. (i) If y ∈Y and how A(y, y) > 0, then y ∈↓ Y .

(ii) Suppose Y ⊆ W and y ∈↓ Y , then by definition, exists z ∈ Y such that

A(z, y) > 0. If Y ⊆ W , then z ∈ W and A(z, y) > 0. So y ∈↓ W .

(iii)(⇒) ↓↓ Y ⊆↓ Y . Suppose y ∈↓↓ Y , then exists x ∈↓ Y . Then there exists

z ∈ Y such that A(x, z) > 0. So, A(y, z) > 0. Therefore, y ∈↓ Y .

(⇐)Straightforward from (i). Similarly, we prove the same properties for ↑ Y

Proposition 2.3.30. Let (H,A) be a FHA and Y ⊆ H, then ↑ Y satisfies the

following properties: (i) Y ⊆↓Y (ii) Y ⊆ W ⊆↑ Y ⊆↑ W (iii) ↑↑ Y =↑ Y

Proof. Analogous to the above proposition

Corollary 2.3.31. ↓ Y (↑ Y ) is the lowest ideal (filter) containing Y .

An important kind of ideal is called principal ideal generated by x ∈ H and

defined by:

Definition 2.3.32. Let (H,A) be a FHA and x ∈ H. Then, the set defined by

↓ x = {y ∈ H : A(y, x) > 0} is called principal ideal of (H,A) generated by x.

And, dually, we define principal filter by:

Definition 2.3.33. Let (H,A) be a FHA and x ∈ H. Then, the set defined by

↑ x = {y ∈ H : A(x, y) > 0} is called principal filter of (H,A) generated by x

Remark 2.3.34. Obviously, ↓ x =↓ {x}and ↑ x =↑ {x}.

The family of all ideals of a FHA (H,A) will be denoted by I(H). Duality, will be

denoted by F(H) the family of all filters of a FHA (H,A). This families are subsets

of parts of (H,A), denoted by P(H), that is, I(H) ⊆ P(H) and F(H) ⊆ P(H).
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Proposition 2.3.35. Let Z be a subset of I(H) and W be a nonempty set of I(H),

then(i) H ∈ I(H); (ii) ∩Z ∈ I(H); (iii) ∪W ∈ I(H).

Proof. (i) Straightforward. (ii) Let Z ⊆ I(H). Suppose x ∈ ∩Z and A(y, x) > 0 ,

then x ∈ Zj for all Zj ∈ Z. If A(y, x) > 0, then y ∈ Zj for each Zj ∈ Z. So y

∈ Z and therefore, ∩Z ∈ I(H). Notice that if Z is an empty set then ∩Z = H.

(iii) Let W ⊆ I(H). Suppose x ∈ ∪W and A(y, x) > 0, then exists Wj ∈ W

such that x ∈ Wj, and if Wj ∈ I(H), then y ∈ Wj. So y ∈ ∪W and therefore,

∪W ∈ I(H).

Proposition 2.3.36. Let Z be a subset of F(H) and W be a nonempty set of F(H),

then (i) H ∈ F (H) (ii) ∩Z ∈ F (H) (iii) ∪W ∈ F (H).

Proof. Analogous to the proposition 2.3.36. The following proposition prove the

relation between the ideal ↓ Y and the principal ideal ↓ y.

Proposition 2.3.37. For all Y ∈ P (H), ↓ Y = ∪y∈Y ↓ y

Proof. Let Y ∈ P (H). Then, x ∈↓ Y iff exists y ∈ Y such that A(x, y) > 0 iff exists

y ∈ Y such that x ∈↓ y iff x ∈ ∪y∈Y ↓ y.By duality ↑ Y = ∪y∈Y ↑ y

Proposition 2.3.38. If (Y,B) is a complete FHA, then ↓ Y ⊆↓ supY.

Proof. In fact, suppose x ∈↓ Y , then exists y ∈ Y such that A(x, y) > 0. Therefore,

because A(Y, supY ) > 0, then x ∈↓ supY .

Remark 2.3.39. ↓ supY ⊆↓ Y only if supY ∈ Y . Similarly, we prove that ↓ Y ⊆↓

infY .

An ideal Y of (H,A) such that Y 6= H is called proper ideal of (H,A). Duality, a

filter Y of (H,A) such that Y 6= H is called proper filter of (H,A). Before to define

prime ideal and prime filter of FHA we will prove important results involving proper

ideals and proper filters. Consider IP (H) the family of all proper ideals of a FHA

and Fp(H) the family of all proper filters of a FHA.
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Proposition 2.3.40. Let Z ⊆ Ip(H). Then,∪Z 6= H.

Proof. If all proper ideals not containing the top, then ∪Z 6= H

Corollary 2.3.41. The union of proper ideals is a proper ideal.

Proof. Straightforward from the above Proposition

Corollary 2.3.42. Let Z ⊆ Ip(H). Then, ∩Z 6= H.

Proof. Suppose x ∈ ∩Z, then x ∈ Zj for all Zj ∈ Z. By definition exists y ∈ H

such that y /∈ Zj for some Zj ∈ Z. So, y /∈ ∩Zp. Therefore, ∩Z 6= H. The proof of

Propositions 2.3.35,2.3.36,2.3.37,2.3.38 and 2.3.40 are analogously for filters.

Now, we define a prime ideal of a FHA as follow:

Definition 2.3.43. Let Y be a proper ideal of (H,A). We say that Y is a prime

ideal of (H,A) if A((x∧ y), z) > 0, then either x ∈ Y or y ∈ Y , for all x, y ∈ H and

z ∈ Y .

Definition 2.3.44. Let Y be a proper filter of (H,A). We say that Y is a prime

filter of (H,A) if A(z, x ∨ y) > 0 , then either x ∈ Y or y ∈ Y , for all x, y ∈ H and

z ∈ Y.

We will denote by Ipr(H) the family of all prime ideals of a FHA and Fpr(H)

the family of all prime filters of a FHA.

Proposition 2.3.45. Let Y ⊆ Ipr(H). Then, ∩Y is a prime ideal.

Proof. By Corollary above we know ∩Y is a proper ideal. So, we can only prove

the primality of ∩Y . Suppose x, y ∈ Xand z ∈ ∩Y such that A(x ∧ y, z) > 0 . If

z ∈ ∩Y , then z ∈ Yj for all Yj ∈ Y . If A(x ∧ y, z) > 0, then x ∧ y ∈ Yj for each

Yj ∈ Y . By hypothesis, Yj is a prime ideal of (H,A), then either x ∈ Yj or y ∈ Yj
for each Yj ∈ Y . Therefore, x ∈ ∩Y or y ∈ ∩Y .
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Proposition 2.3.46. Let F ⊆ Fpr(H). Then, ∩F is a prime filter

Proof. Analogous to the above proposition

another kind of ideals (filters) of a FHA is the maximal ideal (maximal filter),

defined by:

Definition 2.3.47. Let Y and Z be an ideals of (H,A). We say that a proper ideal

Y is a maximal ideal(filter) of (H,A) if Y ⊆ Z ⊆ H, then either Y = Z or Z = H.

2.4 Quotionet Heyting Algebra Via Fuzzy

Congruence Relations

Definition 2.4.1. A relation A on the set H is called left compatible if (a, b) ∈ A

implies (x ∨ a, x ∨ b) ∈ A, (x ∧ a, x ∧ b) ∈ A and (x → a, x → b) ∈ A , for all

a, b, x of H, and is called right compatible if (a, b) ∈ A implies (a ∨ x, b ∨ x) ∈ A ,

(a ∧ x, b ∧ x) ∈ A, and (a→ x, b→ x) ∈ A for all a, b, x of H. A relation A on the

set H is called compatible if it is both right and left compatible.

Remark 2.4.2. A compatible equivalence relation on H is called a congruence relation

on H.

Fuzzy Congruence Relation.

In this section, we introduce the notion of fuzzy congruence relations on HA and

give some properties about fuzzy congruence relations.We also introduce the notion

of quotient HA’s by fuzzy congruence relations and give the fuzzy first,fuzzy sec-

ond and fuzzy third isomorphism theorems of HA’s by means of fuzzy congruence

relations.
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Definition 2.4.3. A fuzzy equivalence relation A on H is called a fuzzy congruence

relation if the following conditions are satisfied,for all x, y, z, t of H.

1. A(x ∨ y, z ∨ t) ≥ min(A(x, z), A(y, t))

2. A(x ∧ y, z ∧ t) ≥ min(A(x, z), A(y, t))

3. A(x→ y, z → t) ≥ min(A(x, z), A(y, t))

Lemma 2.4.4. Let (H,A) be FHA,then a fuzzy equivalence relation A is called a

fuzzy congruence relation on H if

(1) A(a ∨ x, b ∨ x) ≥ A(a, b)

(2) A(a ∧ x, b ∧ x) ≥ A(a, b)

(3) A(a→ x, b→ x) ≥ A(a, b)

(4) A(x→ a, x→ b) ≥ A(a, b)

Proposition 2.4.5. Let A and B be any fuzzy compatible relations on H. Then A

◦ B is also a fuzzy compatible relation on H.

Proof. Let a, b, x ∈ H.

Since A and B are fuzzy compatible equivalence relations on H,

A ◦B(x ∨ a, x ∨ b) = supz∈H(min(A(x ∨ a, z), B(z, x ∨ b)))

≥ min[A(x ∨ a, x ∨ z), B(x ∨ z, x ∨ b)]

≥ min(A(a, z), B(z, b))

≥ supz∈H(min(A(a, z), B(z, b))

= A ◦B(a, b)

Also (A ◦B)(x ∧ a, x ∧ b)

= supz∈H(min(A(x ∧ a, z), B(z, x ∧ b))

≥ min[A(x ∧ a, x ∧ z), B(x ∧ z, x ∧ b)]

≥ min(A(a, z), B(z, b))
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≥ supz∈H(min(A(a, z), B(z, b))

= A ◦B(a, b)

Finally,

(A ◦B)(x→ a, x→ b)

= supx→z∈H(min(A(x→ a, x→ z), B(x→ z, x→ b))

≥ min(A(x→ a, x→ z), B(x→ z, x→ b)

≥ min(A(a, z), B(z, b))

≥ A ◦B(a, b).

Therefore, A ◦B is a fuzzy left compatible relation.Similarly A ◦B is a fuzzy right

compatible relation.Thus,we obtain A ◦B is a fuzzy compatible relation.

Example 2.4.6. Let H = [a, b], a, b ∈ H be an interval.Then H is a HA with its

operations.Then the fuzzy relation A on H defined by

A(x, y) =

 1 if x = y;

0.5 if x 6= y.

is a fuzzy congruence relation on H.

Proposition 2.4.7. Let A and B be fuzzy congruence relations on H. Then A ◦ B

is a fuzzy congruence relation on H if and only if A ◦B = B ◦ A.

Let A be a fuzzy relation on H. For each α ∈ [0, 1], we put HA(α) = {(a, b) :

(a, b) ∈ H ×H,A(a, b) ≥ α}.This set is called the α - level set of A.

Theorem 2.4.8. A fuzzy relation A is a fuzzy congruence relation on H if and only

if for each α ∈ [0, 1], the α level set HA(α) is a congruence relation on H.
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2.5 Ideals and Homomorphisms of Fuzzy

Heyting Algebras

Definition 2.5.1. Let L = (X,A) and M = (Y,B) FHAs . A mapping h : X → Y

is a fuzzy homomorphism from L into M if, for all x, y ∈ X :

(i) h(x ∧ y) = h(x) ∧ h(y);

(ii) h(x ∨ y) = h(x) ∨ h(y);

(iii) h(x→ y) = h(x)→ h(y);

(iv) h(0) = 0;

Like in crisp algebra, fuzzy homomorphisms can be classified as: (see [23])

(i) fuzzy monomorphism - injective fuzzy homomorphism;

(ii) fuzzy epimorphism - surjective fuzzy homomorphism;

(iii) fuzzy isomorphism - bijective fuzzy homomorphism.

Definition 2.5.2. The HAs L and K are isomorphic and the map φ : L→ K is an

isomorphism if φ is one-to-one, onto and if φ(a∧b) = φ(a)∧φ(b), φ(a∨b) = φ(a)∨φ(b)

and φ(a→ b) = φ(a)→ φ(b), for all a, b ∈ L.

Proposition 2.5.3. Let L = (X,A) and M = (Y,B) be FHAs and let a map-

ping h : X → Y be a fuzzy homomorphism.For all x, y ∈ X, ifA(x, y) > 0, then

B(h(x), h(y)) > 0.

Proof. (⇒) By [Mezzomo et.al, proposition 5.1], each fuzzy homomorphism is a

fuzzy order homomorphism. So, A(x, y) > 0⇒ (h(x), h(y)) > 0.

(⇐)B(h(x), h(y)) > 0⇒ h(x)∨h(y) = h(y) (By [ Proposition 1.2.4])⇒ h(x∨ y) =

h(y)⇒ x∨ y = y (Because h is injective)⇒ A(x, y) > 0 (By Proposition 1.2.4)

Definition 2.5.4. [36] Let X and Y be sets and h : X → Y be a map. So, for

all Z ⊆ X, the set defined by h(Z) = {h(x) : x ∈ Z} is called image of Z from Y

induced by h.
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On the other hand, for each W ⊆ Y , the set h(W ) = {x ∈ X : h(x) ∈ W} is called

inverse image of W from X induced by h.

Notice that some fuzzy homomorphisms do not preserve ideals, i.e. if h is a

fuzzy homomorphism and I is an ideal of L, then h(I) is not necessarily an ideal of

M.The example below illustrates this case.

Example 2.5.5. Let L = (X,A) and M = (Y,B) be the FHA and let h : L→M be

the fuzzy homomorphism defined by h(x) = x
′
, h(y) = y

′
, h(z) = z

′
and h(w) = w

′
.

The set I = {y, z, w} is an ideal of L, but their image h(I) = {y′ , z′ , w′} is not an

ideal of M because y
′ ∈ h(I) and B(v

′
, y
′
) > 0, but v

′ ∈ h(I). Therefore, I is an

ideal of L and h(I) is not an ideal of M.[see.[36] ]

Proposition 2.5.6. [36] Let L = (X,A) and M = (Y,B) be bounded fuzzy lattices,

I ⊆ X and h : X → Y a fuzzy homomorphism. Then, if h(I) is an ideal of M ,

then I is an ideal of L.

Proposition 2.5.7. Let L = (X,A) and M = (Y,B) be FHA, I ⊆ X and h : X →

Y a fuzzy isomorphism. Then, h(I) is an ideal of M iff I is an ideal of L.

Proof. Suposse h(I) = {h(x) : x ∈ I} is an ideal for M. Let x
′
= h(x) and y

′
= h(y)

such that B(x
′
, y
′
) = B(h(x), h(y)) > 0.Since h(I) is an ideal x

′
= h(x) ∈ h(I).This

implies x ∈ I. Let x
′

= h(x) and y
′

= h(y) such that x
′ ∨ y′ ∈ h(I).Then x

′ ∨ y′ =

h(x)∨h(y) = h(x∨y) ∈ h(I). This implies x∨y ∈ I. Finally, let x
′ ∈ H and a

′ ∈ h(I)

such that x
′ → a

′ 6= 1.Then x
′ → a

′
= h(x)→ h(a) = h(x→ a) ∈ h(I).This implies

x→ a ∈ I.Therefore, I is an ideal of L.Converse is easy to prove.

Proposition 2.5.8. Let L = (X,A) and M = (Y,B) be FHA and let h : X → Y

be a fuzzy homomorphism. If the inverse image induced by h is always finite, then

the inverse image of all principal ideals of M are principal ideals of L.
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Definition 2.5.9. Let A be a fuzzy congruence relation on H. For every element

x ∈ H, we define a subset Ax = {y ∈ H : A(x, y) = 1} of H and the quotient HA of

H is H/A = {Ax : x ∈ H}

Theorem 2.5.10. If A is a fuzzy congruence relation of H,then H/A is a HA

under the binary operations defined by Ax ∨ Ay = Ax∨y, Ax ∧ Ay = Ax∧y and

Ax → Ay = Ax→y x, y ∈ H

Proof. First we show that the above binary operations are well defined.In fact,if

Ax = Ax′ and Ay = Ay′ ,then A(x, x′) = 1 and A(y, y′) = 1. Since A(x, x′) ≤

A(x ∨ y, x′ ∨ y) and A(y, y′) ≤ A(x′ ∨ y, x′ ∨ y′).

Also, A(x ∨ y, x′ ∨ y′) ≥ Supx′∨y∈H(min(A(x ∨ y, x′ ∨ y), A(x′ ∨ y, x′ ∨ y′)))

≥ Sup(min(A(x, x′), A(y, y′))) = 1

, which implies A(x ∨ y, x′ ∨ y′) = 1.Thus, Ax∨y = Ax′∨y′ .

Therefore, the operation ′∨′ is well defined.Similarly,the operation ′∧′ is also well

defined.

Now,by lemma 2.4.4,we have A(x, x′) ≤ A(x → y, x′ → y) and A(y, y′) ≤ A(x′ →

y, x′ → y′), in similar approach,A(x→ y, x′ → y′) ≤ 1.

A(x→ y, x′ → y′) ≥ 1.

By Theorem 1.2.9,we have Ax→y = Ax′→y′ .Thus,′ →′ is well defined.

We shall show that H/A = {Ax : x ∈ H}

(i) Let Ax ∈ H/A.Then Ax → Ax = Ax→x = A1

(ii) Let Ax, Ay ∈ H/A, x, y ∈ H.Then Ay ∧ (Ax → Ay)=Ay ∧ (Ax→y)=Ay∧(x→y)=Ay.

⇒ Ay ≤ Ax → Ay.

(iii)Let Ax, Ay and Az ∈ H/A.Then

Ax → (Ay ∧ Az) = Ax → Ay∧z

=Ax→(y∧z) = A(x→y)∧(x→z)

=(Ax → Ay) ∧ (Ax → Az)
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(iv) Ax ∧ (Ax → Ay)

= Ax ∧ (Ax → y))=Ax∧(x→y) = Ax∧y

= Ax ∧ Ay
(v) (Ax ∨ Ay)→ Az = Ax∨y → Az

=A(x ∨ y)→ z=A(x→z)∧(y→z)

= (Ax → Az) ∧ (Ay → Az). Hence,(H/A,∧,∨,→, A0, A1) is a HA which is called a

quotient HA.

Lemma 2.5.11. Let H and H’ be HA’S and f be a homomoriphism from H to H’.If

A’ is a fuzzy congruence relation on H’,then the map defined by f−1(A′)(x, y) =

A′(f(x), f(y)),for all x, y ∈ H is a fuzzy congruence relation on H.

Proof. For all x, y, z ∈ H, f−1(A′)(x, x) = 1, f−1(A′)(x, y) = A′(f(x), f(y) =

A′(f(y), f(x)) which means f−1(A′) is fuzzy reflexive and fuzzy symmetric rela-

tion on H.

Since f−1(A′)(x, y) = A′(f(x), f(y)) ≥ Supf(z)∈H′(min(A′(f(x), f(z)), A′(f(z), f(y)))

≥ min(A′(f(x), f(z)), A′(f(z), f(y))

= min(f−1(A′)(x, z), f−1(A′)(z, y))

≥ supz∈H(min(f−1(A′)(x, z), f−1(A′)(z, y))).

Therefore,f−1(A′) is a transitive relation of H.So f−1(A′) is a fuzzy equivalence re-

lation.

Again,f−1(A′)(z ∨ x, z ∨ y)

= A′(f(z ∨ x), f(z ∨ y))=A′(f(z) ∨ f(x), f(z) ∨ f(y))

≥ A′(f(x), f(y)) = f−1(A′)(x, y).

Similarly, f−1(A′)(z ∧ x, z ∧ y) ≥ f−1(A′)(x, y).

Further,f−1(A′)(z → x, z → y)=A′(f(z → x), f(z → y))≥ A′(f(z)→ f(x), f(z)→

f(y)) ≥ A′(f(x), f(y) = f−1(A′)(x, y).

This means that f−1(A′) is a fuzzy left compatible relation on a Heyting algebra

H.By the same argument,we can see that f−1(A′) is a fuzzy right compatible relation

of H.Therefore,f−1(A′) is a fuzzy congruence relation on H
′
.
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Theorem 2.5.12. [Fuzzy First Isomorphism Theorem.] Let H ,H
′

be HA’s, f be

an epimorphism from H to H
′
,and A

′
be a fuzzy congruence relation on H

′
.Then

H
f−1(A′)

∼= H′

A′

Proof. It follows from definition 2.5.9,Theorem 2.5.10 and Lemma 2.5.11 H/f−1(A′)

and H ′/A′ are both quotient HA’s.We define a map h from H/f−1(A′) to H’/A’ by

h(f−1(A′)x) = A′x, x ∈ H.By Definition 2.5.9,

(i) h is well defined.

Suppose f−1(A′)x = f−1(A′)y,then f−1(A′)(x, y) = 1.

⇒ A′(f(x), f(y)) = 1

⇒ A′f(x) = A′f(y)[Theorem 1.2.9].

Therefore h is well defined.

(ii) h is homomorphism.

(a). h(f−1(A′)x ∨ f−1(A′)y) = h(f−1(A′)x∨y)=A
′
f(x∨y)

=A′f(x)∨f(y)=A
′
f(x) ∨ A′f(y)=h(f−1(A′)x) ∨ h(f−1(A′)y)

(b). h(f−1(A′)x ∧ f−1(A′)y) = h(f−1(A′)x∧y)=A
′
f(x∧y)

=A′f(x)∧f(y)=A
′
f(x) ∧ A′f(y)=h(f−1(A′)x) ∧ h(f−1(A′)y)

(c). h(f−1(A′)x → f−1(A′)y) = h(f−1(A′)x→y)=A
′
f(x→y)

=A′f(x)→f(y)=A
′
f(x) → A′f(y)=h(f−1(A′)x)→ h(f−1(A′)y)

Hence,from a, b and c, we have h is a homomorphism.

(iii) h is an epimorphism: For A′y ∈ H ′/A′, y ∈ H ′.Since f is onto,there exists

x ∈ H,such that f(x) = y so h(f−1(A′)x) = A′f(x) = A′y′

(iv) h is monomorphism.Suppose h(f−1(A′)x) = h(f−1(A′)y),then A′f(x) = A′f(y) ⇒

A′(f(x), f(y)) = 1 ⇒ f−1(A′)(x, y) = 1 Hence,f−1(A′)x = f−1(A′)y this

means h is a monomorphism. In conclusion, H
f−1(A′)

∼= H′

A′
.)
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Corollary 2.5.13. Let A be a fuzzy congruence relation on H.Then the mapping

π : H → H/A defined by π(x) = Ax,∀x ∈ H,is a homomorphism.

Proof. π(a∧b) = Aa∧b = Aa∧Ab = π(a)∧π(b). π(a∨b) = Aa∨b = Aa∨Ab=π(a)∨π(b)

and π(a→ b) = Aa→b = Aa → Ab = π(a)→ π(b).Hence the corollary.

Lemma 2.5.14. Let A be a fuzzy congruence relation of H.Let HA = {y ∈ H :

A(y, 1) = 1}.Then HA is an ideal of H.

Proof. (i)Let x ∈ H and y ∈ HA.ThenA(y, 1) = 1.A(x, 1)=A(x∧y, 1) ≥ min{A(x, 1), A(y, 1)} =

min(1, 1) = 1. Thus,x ∧ y ∈ HA

(ii) Let x ∈ HA and y ∈ HA.Then A(x, 1) = 1, A(y, 1) = 1. Then A1 = Ax and

A1 = Ay. ⇒ A1 ∨ A1 = Ax ∨ Ay ⇒ A1∨1 = Ax∨y. ⇒ A1 = Ax∨y ⇒ A(1, x ∨ y) =

1.Thus, x ∨ y ∈ HA.

(iii) x, y ∈ HA Then A(y, 1) = 1. Then A1 = Ay ⇒ A(x → y, 1) ≥ A(1, x) ∧

A(y, 1) = 1.Thus, x→ y ∈ HA.

Hence HA is an ideal of H.

Lemma 2.5.15. Let A be a fuzzy congruence relation of H.Let HA = {y ∈ H :

A(0, y) = 1}.Then HA is an not ideal of H.

Proof. (i) Let x ∈ H and y ∈ HA such that A(x, y) > 0 .Then A(0, y) = 1.A(0, x)=

A(x ∧ 0, x ∧ y) ≥ min{A(x, x), A(0, y)} = min(1, 1) = 1. Thus,x ∈ HA

(ii) Let x ∈ HA and y ∈ HA.Then A(0, x) = 1, A(0, y) = 1. Then A0 = Ax and

A0 = Ay. ⇒ A0 ∨ A0 = Ax ∨ Ay ⇒ A0∨0 = Ax∨y. ⇒ A0 = Ax∨y ⇒ A(0, x ∨ y) =

1.Thus, x ∨ y ∈ HA.

(iii)x ∈ HA and y ∈ HA. Then A(0, x) = 1, A(0, y) = 1. Then A0 = Ax and

A0 = Ay ⇒ A0 → A0 = Ax → Ay ⇒ A0→0 = Ax→y. ⇒ A1 = Ax→y ⇒ A(1, x →

y) = 1.Thus, x→ y /∈ HA.
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Lemma 2.5.16. Let I be an ideal of H, A and B are fuzzy congruence relations of

H. (i) If A is restricted to I, then A is a fuzzy congruence relation of I

(ii) A ∩ B is fuzzy congruence relation of H

(iii) I/A is an ideal of H/A.

Proof. (i) is clear (ii) For any x, y ∈ H,since (A∩B)(x, y) = min(A(x, y), B(x, y)).

Then (A ∩ B)(x, y)is fuzzy reflexive and fuzzy symmetric relations.We only show

that A ∩B is a fuzzy transitive relations.Since (A ∩B)(x, y)

= min(A(x, y), B(x, y))

≥ min(A(x, z), A(z, y), B(x, z), B(z, y))

=min(A(x, z), B(x, z), A(z, y), B(z, y))

≥ min((A ∩B)(x, z), (A ∩B)(z, y)))

≥ Supz∈H(min((A ∩B)(x, z), (A ∩B)(z, y)))

Hence, A ∩B is a fuzzy transitive relation on H.

Furthermore; for every a ∈ H, (A∩B)(a∨x, a∨y) = min(A(a∨x, a∨y), B(a∨x, a∨y))

≥ min(A(x, y), B(x, y)) =(A ∩B)(x, y).

Similarly, (A ∩B)(a ∧ x, a ∧ y) ≥ (A ∩B)(x, y).

(A ∩B)(a→ x, a→ y) = min(A(a→ x), B(a→ y))

= min(A(a→ x, a→ y), B(a→ x, a→ y))

≥ min(A(x, y), B(x, y)) = (A ∩ B)(x, y). This means that A ∩ B is a fuzzy left

compatible relation.Similarly, A ∩B is a fuzzy right compatible relation.

Hence ,A ∩B is a fuzzy congruence relation.

(iii) First,we show that {Aa : a ∈ I} is an ideal of H/A.

For any Aa, Ab ∈ {Aa : a ∈ I}.

Since I is an ideal,then a ∨ b ∈ I,hence Aa ∨Ab = Aa∨b ∈ {Aa : a ∈ H}. For any Aa

∈ {Aa : a ∈ I},Ax ∈ H/A,a ∈ I, x ∈ H,then a ∧ x, x ∧ a, x→ a ∈ I.

Hence Aa ∧ Ax = Aa∧x and Ax → Aa = Ax→a ∈ {Aa : a ∈ I}.

Thus,{Aa : a ∈ I} is an ideal of H/A.

Theorem 2.5.17 (Fuzzy second isomorphism theorem). Let A and B be two fuzzy
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congruence relations of a Heyting algebra H with A1 ⊆ B1.Then HA ∨ HB/B ∼=

HA/A ∩B.

Proof. By lemma 2.5.16,B is a fuzzy congruence relation of HA∨B and A ∩ B is a

fuzzy congruence relation of HA.Thus HA∨B/B and HA/A ∩ B are both HA’s.For

any x ∈ HA∨B ,then x = a ∨ b,where a ∈ HA,b ∈ HB,it is implies A(1, a) = 1 and

B(1, b) = 1. Define f : (HA ∨ HB)/B → HA/A ∩ B by f(Bx) = (A ∩ B)a.If Bx =

Bx′ ,then x′ = a′ ∨ b′ where a′ ∈ HA, b
′ ∈ HB,then,we have A(1, a′) = 1, B(1, b′) =

1, B(x, x′) = B(a ∨ b, a′ ∨ b′) = 1. Since A(a, a′) ≥ A(a, 1) ∨ A(1, a′) = 1,and so

A(a, a′) = 1.Similarly B(b, b′) = 1.

From definition 2.5.9 and lemma 2.5.14 withA1 ⊆ B1,we haveHA ⊆ HB. Therefore,a, a′ ∈

HB which impliesB(1, a) = 1, B(1, a′) = 1.SinceB(a, a′) ≥ min(B(a, 1), B(1, a′)) =

1.This gives B(a, a′) = 1.From definition,(A ∩ B)(a, a′) = min(A(a, a′), B(a, a′)) =

1.(A ∩B)(a, a′) = 1.Hence, (A ∩B)a = (A ∩B)a′ which means f is well defined.For

any Bx, By ∈ HA ∨HB/B,where x = a ∨ b, y = a1 ∨ b1, a, a1 ∈ HA, b, b1 ∈ HB.Then

x ∨ y and x ∧ y ∈ HA ∨ HB.,We have f(Bx ∨ By) = f(Bx∨y) = (A ∩ B)a∨a1 =

(A ∩B)a ∨ (A ∩B)a1=f(Bx) ∨ f(By).

f(Bx ∧ By) = f(Bx∧y) = (A ∩ B)a∧a1=f(Bx) ∧ f(By). f(Bx → By) = f(Bx→y) =

(A ∩B)a→a1 = f(Bx)→ f(By).

Theorem 2.5.18 (Fuzzy Third Isomorphism Theorem). Let A,B be two fuzzy con-

gruence relations of a Heyting algebra H with A ⊆ B.Then (H/A)/(HB/A) ∼= H/B.

Proof. Clearly,HB/A is an ideal of H/A. Define f : H/A→ H/B by f(Ax) = Bx for

all x ∈ H.If Ax = Ay,then A(x, y) = 1.Since A ⊆ B ,so B(x, y) ≥ A(x, y) = 1,thus

B(x, y) = 1, Bx = By.Hence f is well-defined.

f(Ax ∨ Ay) = f(Ax∨y) = Bx∨y = Bx ∨By = f(Ax) ∨ f(Ay).

Similarly,f(Ax∧Ay) = f(Ax)∧f(Ay).Moreover; f(Ax → Ay)=f(Ax→y)=Bx→y=Bx →

By. For any Bx ∈ H/B,there exists Ax ∈ H/A such that f(Ax) = Bx,so f is an

epimorphism.Now,we show that ker f = HB/A.kerf = {Ax ∈ H/A : f(Ax) =
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B1}.={Ax ∈ H/A : B(1, x) = 1} = {Ax ∈ H/A : x ∈ HB} = HB/A.

Therefore,(H/A)/(HB/A) ∼= H/B.This complets the proof.

We denote by χf the characteristic function of the binary relation f on H.Then

we have the following conclusions.

Proposition 2.5.19. Let f be a binary relation on a HA H.Then ker f is equiva-

lence(a congruence ) on H iff χkerf is a fuzzy equivalence(a fuzzy congruence) on

H.

Let A be a fuzzy equivalence relation on H,and let a ∈ H,We define a fuzzy

subset Aa on H as follows. Aa(x) = A(a, x),∀a ∈ H.Then we have the following.

Proposition 2.5.20. Let A be a fuzzy congruence relation on H.Then

A−1(1) = {A(a, b) = 1, a, b ∈ H}

is a congruence relation on H.

proof: Since Aa = Aa.Then A(a, a) = 1,hence A−1(1) is reflexive.Since A is

FCR(H),then A(a, b) = A(b, a) = 1,Hence A−1(1) is symmetric. Let A(a, b) = 1

and A(b, c) = 1.Then A(a, b) ∧ A(b, c) ≤ A(a, c),∀a, b, c ∈ H. Therefore A(a, c) ≥

Supb∈H(min(A(a, b), A(b, c))).Hence, A−1(1) is transitive.Moreover from the defini-

tion of FCR(H),We have A(a → x, b → x) ≥ A(a, b) = 1.This implies A(a →

x, b → x) = 1.Similarly A(x → a, x → b) ≥ A(a, b) = 1.Also ∧ and ∨ are left and

right compatibles.Hence the result follows.

Homomorphism Theorems

In this section,we declare that FCR(H) means fuzzy congruence relation on H. Let

H1 and H2 be two HAs and f be a homomorphism of H1 to H2.Then the relation

ker(f) = {(a, b) : f(a) = f(b), a, b ∈ H1} is a congruence relation on H2.The
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characteristic function χf defined by

χkerf (a, b) =

 1 if f(a) = f(b);

0 if f(a) 6= f(b).

is a fuzzy congruence relation on H2.

Theorem 2.5.21. Let H1and H2 be two HAs and f : H1 → H2 a homomr-

phism.Then χker(f) is a fuzzy congruence on H1 and there is a homomorphism

g : H1/χker(f) → H2 such that f = g ◦ (χker(f))

Proof. Define g : H1/χker(f) → H2 by g((χker(f))a) = f(a),∀a ∈ H1.

Let a, b ∈ H1.Then (χker(f))a = (χker(f))b

⇒ χker(f)(a, b) = 1

so (a, b) ∈ ker(f).Thus,we have g((χker(f))a) = f(a) = f(b) = g((χker(f))b)

Therefore, g is well defined.

If f(a) = f(b),then (a, b) ∈ ker(f)

⇒ χker(f)(a, b) = 1

⇒ (χker(f))a = (χker(f))b

Hence g is one to one. Let a, b ∈ H1, g((χker(f)a)→ (χker(f)b))

= g((χker(f))a→b)

= f(a→ b) = f(a)→ f(b)

= g((χker(f))a)→ g((χker(f))b)

Again let a, b ∈ H1, g((χker(f)a) ∧ (χker(f)b))

= g((χker(f))a∧b)

= f(a ∧ b) = f(a) ∧ f(b)

= g((χker(f))a) ∧ g((χker(f))b)

Let a, b ∈ H1, g((χker(f)a) ∨ (χker(f)b))

= g((χker(f))a∨b)

= f(a ∨ b) = f(a) ∨ f(b)

= g((χker(f))a) ∨ g((χker(f))b)
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Therefore,g is a homomorphism.

Let a ∈ H1, g((χker(f))a) = f(a). So we obtain that g ◦ (χker(f)) = f

Theorem 2.5.22. Let A and B be FCR(H) such that A ⊆ B.then there is one

unique homomorphisms g : H/A→ H/B such that g ◦ πA = πB and H/A/χker(g) ∼=

H/B

Proof. Define g : H/A→ H/B by setting g(Aa) = Ba, a ∈ H.

Assume that Aa = Ab,then 1 = A(a, b) ≤ B(a, b),So B(a, b) = 1 That is,Ba =

Bb,then g is well defined.

Definition 2.5.23. Let H be HA and A,B ∈ FCR(H) with A ≤ B.Then the

fuzzy relation B/A on H/A defined by (B/A)(Ax, Ay) = B(x, y),∀x, y ∈ H is a

FCR(H/A)

Proof. B/A is well defined Let x, x1, y, y1 ∈ H with Ax = Ax1 and By = By1 .Now,

(B/A)(Ax, Ay) = B(x, y) ≥ min{B(x, x1), B(x1, y1), B(y1, y)}

≥ min{B(x, x1), B(x1, y1), A(y1, y)}

=B(x1, y1)

= (B/A)(Ax1 , Ay1).

Interchanging x, x1 and y, y1,we get similarly that (B/A)(Ax1 , Ay1) ≥ (B/A)(Ax, Ay)

Hence the result follows. It is is evident that from the above definition B/A ∈

FCR(H/A) and the following propositions are easy to prove.

Proposition 2.5.24. Let H be a HA B,A ∈ FCR(H) and A ≤ B,then π−1
A (B/A) =

B

Proposition 2.5.25. Let A be a fuzzy congruence relation on H and B be Fuzzy

congruence relation on H/A,then π−1
A (B)/A = B.

Now,we have the following analog to the correspondence theorem.
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Theorem 2.5.26. Let H be a HA and A ∈ FC(H), B ∈ FC(H/A), π−1
A (B) ≥ A.

Let (L,≤) be the sublattice of FC(H),where L = {C ∈ FC(H) : C ≥ A}.Then the

map α : FCR(H/A)→ L defined by α(A) = π−1
A (B) is a lattice isomorphism.

Define β : L → FC(H/A) by β(C) = C/A,C ∈ L.Applying the above proposi-

tions,we get (α◦β)(C) = α(C/A) = π−1
A (C/A) = C and (β ◦α)(B) = B(π−1

A (B)) =

π−1
A (B)/A = B,and B ∈ FC(H/A) with π−1

A (B) ≥ A.Thus both the mappings are

one to one and onto.Moreover,if A1, A2 ∈ FC(H/A) such that A1 ≤ A2,then it is

easy to see that α(A1) ≤ α(A2) and conversely,if C1, C2 ∈ L such that C1 ≤ C2,then

β(C1) ≤ β(C2) Therefore,α is a lattice isomorphism. The following theorem is fuzzy

analog of the second isomorphism theorem.

Theorem 2.5.27. Let H be a HA, A,B ∈ FC(H), A ≤ B.Then H/A ∼= (H/A)/(B/A).

Proof. Define α : (H/A)/(B/A)→ H/B by α((B/A)Ax) = Bx

(B/A)Ax = (B/A)Ay

⇔ (B/A)(Ax, Ay) = 1 ⇔ B(x, y) = 1 ⇔ B(x, y) = 1 ⇔ Bx = By. Thus,α is

well defined and one to one.It is clear that α is onto and easy to see that α is a

homomorphism.
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Chapter 3

Fuzzy Ideals and Fuzzy Filters of

Heyting Algebra

Throughout this chapter, H = (H,∨,∧,→, 0, 1) denotes a Heyting lattice and

FS(H) denotes the set of fuzzy subsets of H (i.e. of maps from H into ([0, 1],∨,∧,→),

where [0, 1] is the set of reals between 0 and 1 and x ∨ y = max(x, y), x ∧ y =

min(x, y)). This section reflects the characterization of fuzzy ideals and fuzzy filters

of Heyting algebras interms of their level sets.

Definition 3.0.28. A fuzzy subset µ of H is called fuzzy ideal of H if the following

conditions are satisfied.

1. µ(0) = 1

2. µ(x ∨ y) ≥ µ(x) ∧ µ(y)

3. µ(x ∧ y) ≥ µ(x) ∨ µ(y)

4. µ(x→ y) ≥ µ(x) ∨ µ(y),∀x, y ∈ H

Remark 3.0.29. If µ is a fuzzy ideal of H.Then µ(x ∧ y) ∧ µ(x→ y) ≥ µ(x) ∨ µ(y)

Proof. Follows from 3 and 4
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Example 3.0.30. Let H = {0, a, b, 1} with 0 < a < b < 1. Then ∨,∧ and → are

defined as follows:

∧ 0 a b 1

0 0 0 0 0

a 0 a a a

b 0 a b b

1 0 a b 1

→ 0 a b 1

0 1 1 1 1

a 0 1 b 1

b 0 a 1 1

1 0 a b 1

∨ 0 a b 1

0 0 a b 1

a a a b 1

b b b b 1

1 1 1 1 1

Then (H,∧,∨,→, 0, 1) is a HA.define µ as follows µ(0) = 1, µ(a) = 0.8 = µ(b) =

µ(1).Then µ is a fuzzy ideal of H

Lemma 3.0.31. Let µ be a fuzzy ideal of H.Then µ(x) ≤ µ(0) for all x ∈ H

Proof. Suppose the condition, µ(x) ≤ µ(0) not true.Then µ(x) > µ(0) = 1. which

is a contradiction.Hence the result holds.

Definition 3.0.32. Let µ and θ be fuzzy subsets of H.Then µ◦θ defined by µ◦θ(x) =

Supx=y∧z{min(µ(y), θ(z))} for all x ∈ H

Definition 3.0.33. Let H be HA and µ fuzzy subset of H and we call µ is a fuzzy

filter of H if it satisfies the following properties

1. µ(1) = 0

2. µ(x ∧ y) ≥ µ(x) ∧ µ(y)

3. µ(x→ y) ≥ µ(x) ∨ µ(y)

4. µ(x ∨ y) ≥ µ(x) ∨ µ(y),∀x, y ∈ H,

Clearly, µ(1) ≤ µ(x),∀x ∈ H

Remark 3.0.34. If µ is a fuzzy filter of H.Then µ(x → y) ∧ µ(x ∨ y) ≥ µ(x) ∨

µ(y),∀x, y ∈ H,
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Lemma 3.0.35. A fuzzy subset µ of H is said to be a fuzzy ideal(fuzzy filter) of H

iff µt, t ∈ imµ ,is an ideal(filter)

Proof. Suppose µ is a fuzzy ideal of H.We shall show that µt is an ideal of H.

Since µ(0) = 1, 0 ∈ µt.Let x, y ∈ µt.Then µ(x) ≥ t and µ(y) ≥ t.This implies

µ(x ∨ y) ≥ µ(x) ∧ µ(y) ≥ t.Hence x ∨ y ∈ µt.Next let x ∈ µt and y ∈ H,we claim

to show that x ∧ y ∈ µt.By hypothesis µ(x ∧ y) ≥ µ(x) ∨ µ(y) ≥ µ(x) ≥ t.Hence

x ∧ y ∈ µt.Finally,Let x ∈ µt and y ∈ H.Then µ(x) ≥ t.We shall show that

y → x ∈ µt.By hypothesis,µ(y → x) ≥ µ(y) ∨ µ(x) ≥ t.Hence the result.

Conversely,suppose µt is an ideal of H. Let x, y ∈ H and µ(x) = t1 and µ(y) =

t2.Then Take t = min(t1, t2).This implies µ(x) = t1 ≥ t and µ(y) = t2 ≥ t

⇒ x ∈ µt and y ∈ µt. Then x ∨ y ∈ µt ⇒ µ(x ∨ y) ≥ t = min(µ(x), µ(y))=µ(x) ∧

µ(y).Next, let µ(x) = t.Then x ∈ µt which implies x ∧ y ∈ µt for y ∈ H.This

gives µ(x ∧ y) ≥ t = µ(x).Similarly,µ(x ∧ y) ≥ t = µ(y).Hence µ(x ∧ y) ≥ µ(x) ∨

µ(y).Finally, let µ(x) = t.Then for y ∈ H,we have y → x ∈ µt.This gives µ(y →

x) ≥ t = µ(x).Let µ(y) = s.

Assume s ≤ t.µt ⊆ µs.Since x ∈ µt and y ∈ µs,

we have y → x ∈ µs.

⇒ µ(y → x) ≥ s = µ(y).

⇒ µ(y → x) is an upper bound of {s, t}. For s > t,the result also holds true.

Thus,µ(y → x) ≥ µ(y)∨µ(x).Therefore,µ is a fuzzy ideal of H. For the filter case,the

forward part is clear and we only prove the backward case. Take µ(x) = t1 and

µ(y) = t2 and t = t1 ∧ t2.This gives x ∈ µt1 ⊆ µt. Similarly, y ∈ µt.

Hence, x ∧ y ∈ µt .Therefore,µ(x ∧ y) ≥ µ(x) ∧ µ(y).

Let again x ∈ µt, y ∈ H with µ(y) = s,t ≤ s.Then x → y ∈ µt.This gives µ(x →

y) ≥ µ(x) and similarly µ(x→ y) ≥ µ(y).Therefore,the result follows.

Let µ and θ be a FS(H).The cartesian product of µ and θ is defined by (µ ×

θ)(x, y) = min(µ(x), θ(y)),∀x, y ∈ H
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Theorem 3.0.36. Let µ and θ be a fuzzy ideal(fuzzy filter) of a HA H,then µ × θ

is a fuzzy ideal (fuzzy filter) of H ×H

Proof. Since (0, 0) ∈ H ×H, µ× θ((0, 0) ∧ (0, 0))

= µ× θ(0 ∧ 0, 0 ∧ 0)

=µ(0 ∧ 0) ∧ θ(0 ∧ 0)

≥ (µ(0) ∨ µ(0)) ∧ (θ(0) ∨ θ(0))

=(µ(0) ∧ θ(0)) ∨ (µ(0) ∧ θ(0))

=µ× θ(0, 0) ∨ µ× θ(0, 0).

Therefore,µ× θ((0, 0) ∧ (0, 0)) ≥ µ× θ(0, 0) ∨ µ× θ(0, 0).

Let (a, b), (c, d) ∈ H ×H.Then

µ× θ((a, b) ∧ (c, d))

= µ× θ(a ∧ c, b ∧ d)

=µ(a ∧ c) ∧ θ(b ∧ d)

≥ (µ(a) ∨ µ(c)) ∧ (θ(b) ∨ θ(d))

=(µ(a) ∧ θ(b)) ∨ (µ(c) ∧ θ(d))

=µ× θ(a, b) ∨ µ× θ(c, d).

Therefore,µ× θ((a, b) ∧ (c, d)) ≥ µ× θ(a, b) ∨ µ× θ(c, d).

µ× θ((a, b)→ (c, d))

= µ× θ(a→ c, b→ d)

=µ(a→ c) ∧ θ(b→ d)

≥ (µ(a) ∨ µ(c)) ∧ (θ(b) ∨ θ(d))

=(µ(a) ∧ θ(b)) ∨ (µ(c) ∧ θ(d))

=µ× θ(a, b) ∨ µ× θ(c, d).

Therefore,µ× θ((a, b)→ (c, d)) ≥ µ× θ(a, b) ∨ µ× θ(c, d).

Similarly it is easy to prove that,µ× θ((a, b) ∨ (c, d)) ≥ µ× θ(a, b) ∧ µ× θ(c, d)

Hence,µ× θ is fuzzy ideal of H ×H.

For fuzzy filter, µ× θ((x, y) ∧ (z, r))

= µ(x ∧ z) ∧ θ(y ∧ r).

66



Similarly it is easy for the other criteria to verify.Hence it is fuzzy filter.

Lemma 3.0.37. A fuzzy subset µ×θ of H×H is said to be fuzzy ideal(fuzzy filter)

iff the level ideal (µ× θ)t, t ∈ im(µ× θ) is an ideal(filter)of H ×H.

By theorem ,we know that µ × θ is a fuzzy ideal of H × H.So we must show

that the level ideals are prime ideals.Let t ∈ im(µ × θ) and (x, y) ∧ (z, r) ∈ (µ ×

θ)t.Then,µ× θ((x, y) ∧ (z, r)) ≥ t.

⇒ µ(x ∧ z) ∧ θ(y ∧ r) ≥ t

⇒ µ(x ∧ z) ≥ t and θ(y ∧ r) ≥ t

⇒ x ∧ z ∈ µt and y ∧ r ∈ θt
Since µt and θt are prime ideals of H,we have (x ∧ z, y ∧ r) ∈ µt × θt = (µ× θ)t.

Therefore,(x, z)∧(y, r) ∈ (µ×θ)t.Hence, the result follows.Converse is easy to prove.

Definition 3.0.38. Let µ , θ be any two fuzzy ideals of H.Then the join,the meet

and the arrow operators µ ∨ θ, µ ∧ θ,µ → θ of µ and θ is defined respectively, by

(µ∨θ)(x) = Supx=y∨z(min(µ(y), θ(z))), (µ∧θ)(x) = Supx=y∧z(min(µ(y), θ(z)))and

(µ→ θ)(x) = Supx=y→z(min(µ(y), θ(z))), x, y, z ∈ H.

Lemma 3.0.39. Let f be a function from a set S to a set S
′
µ, θ be any two FS

(S) and µ
′
,θ
′

be any two FS(S
′
).Then the following statements are true:

(i) f(f−1(µ
′
)) = µ

′
, µ⊆f−1(f(µ))

(ii) f−1(f(µ)) = µ,provided that µ is f- invariant;

(iii) µ ⊆ θ⇒f(µ) ⊆ f(θ);

(iv)µ
′ ⊆ θ

′ ⇒ f−1(µ
′
) ⊆ f−1(θ

′
)

Proof. i) Let y be any arbitrary element of S
′
.

Then (f(f−1(µ
′
))(y) =

Sup(f
−1(µ

′
), (x)x∈f−1(y) if f−1(y) 6= ∅

0 otherwise

, y ∈ T

=Supµ
′
(f(x)),f−1(y) 6= ∅

67



=Supµ
′
(y),since f(x) = y, forallx ∈ f−1(y)

=µ
′
(y). for all y ∈ S ′ such that f(x) = y.

Hence f(f−1(µ
′
))=µ

′

Claim: µ⊆f−1(f(µ))

Let x ∈ S, such that f−1(f(µ))(x)=f(µ)f(x) =

supµ(x)x∈f−1(f(x)) if f−1(f(x)) 6= ∅

0 otherwise

=supµ(x), for all x ∈ f−1(f(x)) since f−1(f(x)) = x 6= ∅

≥ µ(x),for all x ∈ S.

Hence µ ⊆f−1(f(µ))

(ii) Let µ be f-invariant.

Claim: f−1(f(µ)) = µ. Let x ∈ S ,then (f−1(f(µ))(x)

=f(µ)f(x) =

supx∈f
−1(f(x))µ(x) if f−1(f(x)) 6= ∅

o otherwise

=supµ(x), for all x ∈ f−1(f(x)

=µ(x), for all x ∈ S .Since z1, z2 ∈ S, f(z1) = f(z2) ,we get µ(z1) = µ(z2) .As µ is

f-invariant.

Hence f−1(f(µ)) = µ

(iii) Suppose µ ⊆ θ then µ(x) ≤ θ(x), for all x ∈ S.

Claim: f(µ) ⊆ f(θ).

Let y ∈ S ′ ,then (f(µ))(y) =

supµ(x)x∈f−1(y) if f−1(y) 6= ∅

0 otherwise

≤

supθ(x)x∈f−1(y) if f−1(y) 6= ∅

0 otherwise

⇒ (f(µ))(y) ≤ (f(θ))(y), fo all y ∈ S ′

Hence f(µ) ⊆ f(θ)

(iv) Suppose µ
′ ⊆ θ

′
,then µ

′
(y) ≤ θ

′
(y), for all y ∈ S ′

Let x ∈ S, then f−1(µ
′
))(x) = µ

′
(f(x)),f(x) = y
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≤ θ
′
(f(x)),f(x) = y

=f−1(θ
′
))(x)

Hence f−1(µ
′
) ⊆ f−1(θ

′
)

3.1 Fuzzy Ideals and Homomorphism on

Heyting Algebra

This section reflects the effect of a homomorphism on the join ,product ,and in-

tersection of two fuzzy ideals.The results obtained here will be useful in studying

the algebraic nature of fuzzy prime ( fuzzy maximal,fuzzy semiprime,fuzzy primary,

and fuzzy semiprimary) ideals under homomorphism.

Theorem 3.1.1. Let f be a homomorphism from a HA H onto a HA H
′
. If µ and

σ are fuzzy ideals of H,then following are true.

i) f(µ ∨ σ) = f(µ) ∨ f(σ).

ii) f(µ ∧ σ) = f(µ) ∧ f(σ) and

iii) f(µ ∩ σ) ⊆ f(µ) ∩ f(σ) with equality if at least one µ or σ f-invariant.

iv) f(µ→ σ) = f(µ)→ f(σ)

Proof. Let y ∈ H ′ and ε > 0 be given.

i) Set α = f(µ∨ σ)(y) and β = (f(µ)∨ f(σ))(y),then,α− ε < supx∈f−1(y)(µ∨ σ)(x)

⇒ α− ε < (µ ∨ σ)(x0) for some x0 ∈ H such that f(x0) = y

=Supx0=a∨b(min(µ(a), σ(b))),where a, b ∈ H

⇒ α− ε < min(µ(a0), σ(b0)) for some a0, b0 ∈ H such that x0 = a0 ∨ b0

Now,β = Supy=y1∨y2(min(f(µ))(y1), (f(σ))(y2)),where y1, y2 ∈ H
′

⇒ β ≥ min(((f(µ))(f(a0), (f(σ))(f(b0)),Since y = f(x0) = f(a0) ∨ f(b0)

= min(f−1(f(µ))(a0), (f−1(f(σ))(b0))

≥ min(µ(a0), σ(b0)) in view of Lemma 3.0.41(i)
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> α− ε

⇒ β > α− ε

⇒ β ≥ α since ε > 0 is arbitrary.

Next,β ≤ α,since

β − ε < supy=y1∨y2 (min((f(µ))(y1), ((f(σ))(y2)) where ,y1, y2 ∈ H
′

β− ε < (f(µ))(y1) and β− ε < (f(σ))(y2) for some y1, y2 ∈ H
′

such that y = y1∨y2

⇒ β− ε < µ(x1) and β− ε < σ(x2) for some x1, x2 ∈ H such that x1 ∈ f−1(y1) and

x2 ∈ f−1(y2) by [Definition 3.0.39]

⇒ β − ε < min(µ(x1), σ(x2)) ≤ (µ ∨ σ)(x1 ∨ x2) by [Definition 3.0.38]

≤ supx∈f−1(y)((µ ∨ σ)(x)),since x1 ∨ x2 ∈ f−1(y)

=(f(µ ∨ σ))(y) = α

⇒ β − ε < α

Hence,β ≤ α

Thus, β = α showing that f(µ ∨ σ) = f(µ) ∨ f(σ)

ii) Let α = (f(µ ∧ σ))(y) and β = (f(µ) ∧ f(σ))(y).Then α ≤ β follows from the

following arguments.

α− ε < supz∈f−1(y)(µ ∧ σ)(z)

⇒ α− ε < (µ ∧ σ)(x), x ∈ f−1(y)

⇒ α− ε < min(µ(x1), σ(x2)) for some x1, x2∈H such that x = x1∧x2 [by Definition

3.0.29]

≤ min((f−1(f(µ))(x1), (f−1f(σ))(x2))) [by Lemma 3.0.38]

=min((f(µ))(f(x1)), ((f(σ))(f(x2)))

≤ (f(µ) ∧ f(σ)(f(x1), f(x2))

=(f(µ) ∧ f(σ))(f(x)) = β.

Next,β ≤ α because β − ε < (f(µ) ∧ f(σ)(y)

supy=y1∧y2(min((f(µ))(y1), (f(σ))(y2))) ,where y1, y2 ∈ H
′

=supy=y1∧y2(min((supz∈f−1(y1)µ(z), supz∈f−1(y2)σ(z)))

⇒ β−ε < min((supz∈f−1(y1)µ(z), supz∈f−1(y2)σ(z))) for some y1, y2 ∈ H
′
such that
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y = y1 ∧ y2

⇒ β − ε < min(µ(x1), σ(x2)) for some x1 ∈ f−1(y1), x2 ∈ f−1(y2)

≤ (µ ∧ σ)(x1 ∧ x2) [by Definition 3.0.38]

≤ supx∈f−1(y)((µ ∧ σ)(x)) ,since y = y1 ∧ y2 = f(x1 ∧ x2)

=(f(µ ∧ σ))(y) = α

Hence β ≤ α.

Thus β = α ,and we completed proof of (ii)

(iii)f(µ ∩ σ) ⊆ f(µ) ∩ f(σ) follows immediately by applying Lemma 3.0.39(iii) to

the trivial facts µ ∩ σ ⊆ µ and µ ∩ σ ⊆ σ

Next assume that σ is f-invariant.Then f−1(f(σ)) = σ by Lemma 3.0.39 (ii).

put α = (f(µ)∩f(σ))(y)and β = (f(µ∩σ))(y), then α−ε < min((f(µ))(y), (f(σ))(y))

= min(supx∈f−1(y)µ(x), (f(σ))(y))

⇒ α− ε < µ(z) forsome z ∈ f−1(y) and α− ε < (f(σ))(y)

⇒ α− ε < µ(z) and α− ε < (f(σ))(f(z)) = (f−1((f(σ)))(z) = σ(z)

⇒ α− ε < min(µ(z), σ(z)) = (µ ∩ σ)(z)

⇒ α− ε < supz∈f−1(y)((µ ∩ σ)(z)),since z ∈ f−1(y)

= f((µ ∩ σ))(y) = β

Hence,f(µ) ∩ f(σ) ⊆ f(µ ∩ σ) and the equality follows.

iv)Let y ∈ H ′ and ε > 0 be given.

i) Set α = (f(µ→ σ))(y) and β = (f(µ)→ f(σ))(y),then,α− ε < supx∈f−1(y)(µ→

σ)(x)

⇒ α− ε < (µ→ σ)(x0) for some x0 ∈ H such that f(x0) = y

=Supx0=a→b(min(µ(a), σ(b))),where a, b ∈ H

⇒ α− ε < min(µ(a0), σ(b0)) for some a0, b0 ∈ H such that x0 = a0 → b0

Now,β = Supy=y1→y2(min(f(µ))(y1), (f(σ))(y2)),where y1, y2 ∈ H
′

⇒ β ≥ min(((f(µ))(f(a0), (f(σ))(f(b0)),Since y = f(x0) = f(a0)→ f(b0)

= min(f−1(f(µ))(a0), (f−1(f(σ))(b0))

≥ min(µ(a0), σ(b0)) in view of Lemma 3.0.39(i)
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> α− ε

⇒ β > α− ε

⇒ β ≥ α since ε > 0 is arbitrary.

Next,β ≤ α,since

β − ε < supy=y1→y2 (min((f(µ))(y1), ((f(σ))(y2)) where ,y1, y2 ∈ H
′

β−ε < (f(µ))(y1) and β−ε < (f(σ))(y2) for some y1, y2 ∈ H
′
such that y = y1 → y2

⇒ β− ε < µ(x1) and β− ε < σ(x2) for some x1, x2 ∈ H such that x1 ∈ f−1(y1) and

x2 ∈ f−1(y2) by definition 3.0.39

⇒ β − ε < min(µ(x1), σ(x2)) ≤ (µ→ σ)(x1 → x2) by definition 3.0.38

≤ supx∈f−1(y)((µ→ σ)(x)),since x1 → x2 ∈ f−1(y)

=(f(µ→ σ))(y) = α

⇒ β − ε < α

Hence β ≤ α

Thus β = α. showing that f(µ→ σ) = f(µ)→ f(σ)

Theorem 3.1.2. Let f be a homomorphism from a HA H onto a HA H
′
. If µ

′
and

θ
′

are any two fuzzy ideals of H
′
,then the following holds:

f−1(µ
′
) ∧ f−1(θ

′
) ⊆ f−1(µ

′ ∧ θ′)

Proof. Let x ∈ H and let ε > 0 be given. For convenience,set

α = (f−1(µ
′
) ∧ f−1(θ

′
)(x) and β = (f−1(µ

′ ∧ θ′)(x). Then

α− ε < supx=x1∧x2(min((f−1(µ
′
))(x1), (f−1(θ

′
))(x2))),x1, x2 ∈ H,

=supx=x1∧x2(min(µ
′
(f(x1)), θ

′
(f(x2)))

⇒ α− ε < min(µ
′
(f(x1), θ

′
(f(x2))) for some x1, x2 ∈ H such that x = x1 ∧ x2

≤ (µ
′ ∧ θ′)(f(x1 ∧ x2) = (f−1(µ

′ ∧ θ′))(x) = β

⇒ α ≤ β, since ε > 0 is arbitrary.

Hence , f−1(µ
′
) ∧ f−1(θ

′
) ⊆ f−1(µ

′ ∧ θ′)
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Chapter 4

Fuzzy Prime Ideals,Fuzzy Maximal

Ideals, Fuzzy Semi Prime Ideals on

HA and Fuzzy Congruences on FHAs

Fuzzy subgroup and its important properties were defined and studied by Rosenfeld

(1971).Then several authors have studied about it.The notion fuzzy ideal of a ring

was introduced by Malik and Mordeson (1998).They also studied about fuzzy rela-

tion on rings.It is now necessary to extend this concept to the concept of Heyting

lattice which is Heyting algebra. In this chapter we have studied about the fuzzy

prime ideals, fuzzy maximal ideal and fuzzy semiprime ideals on Heyting algebra.It

is also discussed that the cross product of two fuzzy prime ideals,fuzzy primary

ideals,fuzzy semiprime ideals respectivelly is fuzzy prime ideals,fuzzy primary ide-

als,fuzzy semiprime ideals iff each of the level ideals is prime ideals, primary ideals,

semiprime ideals of H ×H.
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Fuzzy Prime Ideals,Fuzzy Maximal Ideals, Fuzzy Semi

Prime Ideals on HAs.

Here,we recall that an ideal I of a lattice L is called semiprime whenever x ∧ y ∈ I

and x ∧ z ∈ I,then x ∧ (y ∨ z) ∈ I.Dually, a filter F is semiprime if x ∨ y ∈ F and

x ∨ z ∈ F ,then x ∨ (y ∧ z) for all x, y, z ∈ L[52].This concept can also be extended

into Heyting algebra and the fuzzy version can also be fuzzfied.

Definition 4.0.3. A fuzzy ideal µ of H is called a fuzzy prime ideal of H if µ(a∧b) =

µ(a) or µ(a ∧ b) = µ(b)

Theorem 4.0.4. If µ and θ are fuzzy prime ideals of H,then µ× θ is a fuzzy prime

ideal of H ×H

Proof. µ× θ((a, b)∧, (c, d))

=µ× θ(a ∧ c, b ∧ d)

= µ(a ∧ c) ∧ θ(b ∧ d)

= µ(a) ∧ θ(b)

= µ× θ(a, b)

or µ× θ(a ∧ c, b ∧ d)

= µ(a ∧ c) ∧ θ(b ∧ d)

= µ(c) ∧ θ(d)

= µ× θ(c, d)

Hence,µ× θ is a fuzzy prime ideal of H ×H

Definition 4.0.5. A fuzzy ideal µ is called fuzzy semi prime ideal of H if µ(x∧ (y∨

z)) ≥ µ(x ∧ y) ∧ µ(x ∧ z) = µ(x) ∨ (µ(y) ∧ µ(z)) ,for all x, y, z ∈ H

Definition 4.0.6. A proper ideal (filter) P of H is said to be maximal if, there is

no proper ideal (filter ) Q of H such that P ⊆ Q.

Definition 4.0.7. A fuzzy ideal µ of H is called fuzzy semiprimary if ∀a, b ∈

H,either µ(a ∧ b) ≤ µ(an) for some n ∈ Z+ or µ(a ∧ b) ≤ µ(bm) for some m ∈ Z+
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Definition 4.0.8. A fuzzy ideal µ of H is called fuzzy primary if ∀a, b ∈ H,either

µ(a ∧ b) ≤ µ(a) or µ(a ∧ b) ≤ µ(bm) for some m ∈ Z+.

Theorem 4.0.9. If µ and θ are fuzzy semiprime ideals of H,then µ × θ is a fuzzy

semiprime ideal of H ×H

Proof. Since the cartesian product of fuzzy ideals of R is a fuzzy ideal(Mordson

and Malik on ring R ) analogosly works.It is enough to show that ∀x, y and z ∈ H

µ× θ((x ∧ (y ∨ z)) = µ((x ∧ (y ∨ z)) ∧ θ((x ∧ (y ∨ z))

≥ µ(x ∧ y) ∧ µ(x ∧ z) ∧ θ(x ∧ y) ∧ θ(x ∧ z)

= µ× θ(x ∧ y) ∧ µ× θ(x ∧ z). [Since µ and θ are fuzzy semiprime ideals.]

Hence,µ× θ is fuzzy semiprime ideal

Corollary 4.0.10. A fuzzy ideal µ× θ of H ×H is said to be fuzzy semiprime iff

the level ideals (µ× θ)t, t ∈ im(µ× θ) is semiprime ideal of H ×H.

Proof. Proof is similar to the above theorem

Theorem 4.0.11. If µ and θ are fuzzy primary ideals of H,then µ × θ is a fuzzy

primary ideal of H ×H.

Proof. Since µ and θ are fuzzy primary ideals of H,then ∀a, b, c, d ∈ H either µ(a∧

b) = µ(a) or else µ(a ∧ b) ≤ µ(bn), n ∈ Z+ and either θ(c ∧ d) = θ(c) or else

θ(c ∧ d) ≤ θ(dn), n ∈ Z+.Then we have the following cases.

(1.) µ(a ∧ b) = µ(a) and θ(c ∧ d) = θ(c). Consider;

µ× θ((a, c) ∧ (b, d)) = µ(a ∧ b) ∧ θ(c ∧ d)

= µ(a ∧ b) = µ(a) = (µ× θ)(a, c) and

µ× θ((a, c) ∧ (b, d)) = µ(a ∧ b) ∧ θ(c ∧ d)

= θ(c ∧ d) = θ(c) = (µ× θ)(a, c)

(2.) If µ(a ∧ b) ≤ µ(bm) and θ(c ∧ d) ≤ θ(dn), n,m ∈ Z+

(µ× θ)((a, c) ∧ (b, d)) = (µ× θ)(a ∧ b, c ∧ d)
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=µ(a ∧ b)

≤ µ(bmax(m,n))

(µ× θ)((b, d)max(m,n))

Again (µ× θ)((a, c) ∧ (b, d)) = (µ× θ)(a ∧ b, c ∧ d)

=µ(c ∧ d)

≤ µ(dmax(m,n))

(µ× θ)((b, d)max(m,n))

Therefore,µ× θ is a fuzzy primary ideal of H ×H.

Theorem 4.0.12. If µ and θ are fuzzy semiprimary ideals of H,then µ × θ is a

fuzzy semiprimary ideal of H ×H

Proof. We know that the cartesian product of any two fuzzy ideals is fuzzy. Since µ

and θ are fuzzy semiprimary ideals of H,then ∀a, b, c, d ∈ H either µ(a∧ b) ≤ µ(an)

or else µ(a ∧ b) ≤ µ(bm) for some m,n ∈ Z+ and either θ(c ∧ d) ≤ θ(ck) or else

θ(c ∧ d) ≤ θ(dl) for some k, l ∈ Z+

Let t = max(m,n) and s = max(k, l).Then µ× θ((a, c) ∧ (b, d)) = µ× θ(a ∧ b, c ∧

d))=µ(a ∧ b) ∧ θ(c, d)

= µ(a ∧ b) ≤ µ(al) = µ × θ((a, c)l) or else µ × θ((a, c) ∧ (b, d)) = µ × θ(a ∧ b, c ∧

d))=µ(a ∧ b) ∧ θ(c, d)

= θ(c ∧ d) ≤ µ(ds) = µ× θ((b, d)s).

Therefore,µ× θ is is a fuzzy semi primary ideal of H ×H

Corollary 4.0.13. A fuzzy ideal µ × θ of H × H is said to be fuzzy semiprimary

iff the level ideals (µ× θ)t, t ∈ im(µ× θ) is semiprimary ideals of H ×H.

Proof. Let µ be a fuzzy ideal of H. Then for any 0 ≤ t ≤ µ(0), µt is a ideal of H

with respect to µ.Let µ be a fuzzy subset of H. We denote by µ∗, the set µ∗ = {x ∈

H : µ(x) = µ(0)}.

Lemma 4.0.14. If µ is a fuzzy ideal of H, then µ∗ is an ideal of H.
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Proof. Suppose µ(x) is fuzzy ideal of H.Then we shall show that µ∗ is an ideal of

H.

Clearly, 0 ∈ µ∗. Let x, y ∈ µ∗.Then µ(x) = µ(0)and µ(y) = µ(0).

µ(x ∧ y) ≥ µ(x) ∨ µ(y) = µ(0) ∨ µ(0) = µ(0) = 1.

Hence,for µ(x ∧ y) = 1 = µ(0)

Which gives, x ∧ y and x ∨ y ∈ µ∗.

Similarly,we have x→ y ∈ µ∗. Then, µ∗ is an ideal of H.

Proposition 4.0.15. Let {µi : i ∈ Λ} be a family of fuzzy ideals of H, ∩i∈λµi is a

fuzzy ideal of H.

Lemma 4.0.16. Let µ and θ be fuzzy ideals of H. Then µ∗ ∩ θ∗ ⊆ (µ ∩ θ)∗

Proof. Let x ∈ µ∗ ∩ θ∗.Then µ(x) = µ(0) and θ(x) = θ(0).Now (µ ∩ θ)(x) =

µ(x) ∧ θ(x) = µ(0) ∧ θ(0) = (µ ∩ θ)(0).Thus,x ∈ (µ ∩ θ)∗

In general the equality in the above lemma need not hold, as shown by the

following example.

Example 4.0.17. Let H be a HA. Let µ and θ be fuzzy subsets of H such that

µ(x) = 0 for all x ∈ H,x 6= 0 and θ(x) = 0 if x 6= 0, θ(0) = 1.Then µ and θ are

fuzzy ideals of H. Now µ∗ ∩ θ∗ = H ∩ {0} = {0} and (µ ∩ θ)∗ = H.

Lemma 4.0.18. Let µ and θ be fuzzy ideals of H such that µ(0) = 1 = θ(0).Then

µ∗ ∩ θ∗ = (µ ∩ θ)∗.

Proof. Let x ∈ (µ ∩ θ)∗. Then (µ ∩ θ)(x) = (µ ∩ θ)(0). Thus, min(µ(x), θ(x)) =

min(µ(0), θ(0)) = 1. Hence µ(x) = 1 = θ(x). Then x ∈ µ∗ ∩ θ∗. Thus (µ ∩ θ) ⊆

µ∗ ∩ θ∗.Also µ∗ ∩ θ∗ ⊆ (µ ∩ θ)∗. by Lemma 4.0.16. Hence,the lemma follows.

Lemma 4.0.19. Let {µi : i ∈ Λ} be a family of fuzzy ideals of H such that µi(0) =

1.for all i ∈ Λ. Then ∩i∈Λ(µ∗i )=(∩i∈Λµi)
∗.
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Fuzzy Maximal Ideal

Let µ and θ be fuzzy subsets of a nonempty set H. Let I ⊆ H and let 0 ≤ t ≤ 1.

Let χI , be a fuzzy subset of H such that χI(x) = 1 if x ∈ I and χI(x) = t if x /∈ I.

then χI is the characteristic function of I.

Note that if H is a HA and I is an ideal of H, then χI(0) = 1, (χI)
∗ = 1, Im(χI) =

{t, 1} and χI , is a fuzzy ideal of H. The following result shows that a fuzzy maximal

ideal µ of H cannot be defined as a fuzzy ideal µ 6= χH , such that if θ is a fuzzy

ideal of H for which µ ⊆ θ ⊆ χH , then µ = θ.

Theorem 4.0.20. Let µ be a fuzzy ideal of H such that µ(x) 6= 1 for some x ∈ H.

Then there exists a fuzzy ideal θ of H such that θ(y) 6= 1 for some y ∈ H and µ ⊂ θ.

Case 1: µ(0) 6= 1. Let µ(0) < t < 1. Let µ be a fuzzy subset of H such that

θ(x) = t for all x ∈ H. Then θ is a fuzzy ideal of H such that µ ⊂ θ and θ(x) 6= 1

for all x ∈ H.

Case 2: µ(0) = 1. By the hypothesis there exists x ∈ H such that µ(x) 6= 1. Let

µ(x) < t < µ(0). The µt, is a ideal of H. Let θ be a fuzzy subset of H such that

θ(u) = 1 if u ∈ µt, and θ(t) = t if u ∈ µt. Then θ is a fuzzy ideal of H. Since

x /∈ µt, θ(x) = t 6= 1. Also it can be easily checked that µ ⊂ θ.

Definition 4.0.21. Let µ be a fuzzy ideal of H. Then µ is called a fuzzy maximal

ideal of H if µ is not constant and for any fuzzy ideal θ of H, if µ ⊆ θ then either

µ∗ = θ∗ or θ = χH

Theorem 4.0.22. Let µ be a fuzzy maximal ideal of H. Then card Im(µ) = 2.

Since µ is an fuzzy ideal, µ(0) = 1.We claim that for any 0 ≤ t < 1, if t ∈ Im(µ)

then µt = H. Let 0 ≤ t < 1 and t ∈ Im(µ).Now µ, is an ideal of H, and since t < 1,

µ∗ ⊂ µt. Let θ be a fuzzy subset of H such that θ(x) = 1 if x ∈ µt, and θ(x) = t if

x /∈ µt. Then θ is a fuzzy ideal of H, and θ∗,= µt. Clearly µ ⊆ θ . Since µ is fuzzy

maximal and µ∗ ⊆ µt = θ∗. we have θ = χH . Thus θ(x) = 1 for all x ∈ H. Hence
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µt = θ∗ = H. This proves our claim. Now for any t1, t2 ∈ Im(µ), 0 < t1, t2 < 1, we

have µt1 = H = µt2 . This implies t1 = t2 Thus µ is two-valued.

Lemma 4.0.23. Let µ be a fuzzy ideal of H. If µ∗ is a maximal ideal of H, then µ

is two-valued.

Since µ∗ is a maximal ideal of H, µ∗ 6= H. Thus there exists x ∈ H such that

µ(x) 6= µ(0). Hence µ is at least two-valued. Let 0 < t < µ(0) and t ∈ Im(µ). Then

µt, is an ideal of H such that µ∗ ⊆ µt. Since µ∗ is a maximal ideal, µt = H. Thus

if t1, t2 ∈ Im(µ) and t1 6= µ(0), t2 6= µ(0), then µt1 = H = µt2 .This gives t1 = t2.

Thus µ is two-valued.

Theorem 4.0.24. Let µ be a fuzzy ideal of H. If µ∗ is a maximal ideal of H, then

µ is a fuzzy maximal ideal of H.

Proof. By Lemma 4.0.23, µ is two-valued. Let Im(µ) = {t, 1} where 0 ≤ t < 1.

Let θ be a fuzzy ideal of H such that µ ⊆ θ. Then θ(0) = 1. Let x ∈ µ∗ . Then

1 = µ(0) = µ(x) ≤ θ(x). Thus θ(x) = 1 = θ(0) and hence x ∈ θ∗. Hence µ∗ ⊆ θ∗.

Since µ∗ is a maximal ideal of H,µ∗ = θ∗ or µ∗ = H. If θ∗ = H, then θ = χH . Hence

µ is a fuzzy maximal ideal of H.

4.1 Fuzzy Congruence Relations on Heyting

Algebras

An element m ∈ H is called maximal if it is a maximal element in the partially

ordered set (H,≤). That is for any a ∈ H, m ≤ a⇒ m = a.

For any fuzzy subset µ of H, it is clear that µ(x) =Sup{α ∈ [0, 1] : x ∈ µα} for all

x ∈ H.

In the following theorem, we characterize a fuzzy ideal induced by fuzzy sets. In

the remaining part of this section we define fuzzy homomorphisms on HAs and
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we present some results on fuzzy homomorphisms in connection with fuzzy ideals.

Recall from Chon definition that, for any sets H1 and H2 a mapping f : H1×H2 →

[0, 1] is called a fuzzy relation of H1 into H2. A fuzzy relation f of H1 into H2 is

called a fuzzy mapping if for each x ∈ H1 there exists a unique element yx ∈ H2

such that f(x, yx) = 1.

In this case we call this unique element yx a fuzzy image of x under f .

We write f : H1 → H2; for a fuzzy mapping f of H1 into H2. Image of f is the set

f = {yx : x ∈ H1} = {y ∈ H2 : f(x, y) = 1}. As usual, f is said to be onto, if for

each y ∈ H1; there exists x ∈ H2 such that yx = y and f is said to be one-one, if for

each a, b ∈ H1, ya = yb ⇒ a = b :

Definition 4.1.1. Let H1 and H2 be HAs. A fuzzy mapping f : H1 → H2 is called

a fuzzy homomorphism of HAs, if the following conditions are satisfied.

(i) y0 = 0 (a zero element in H2)

(ii) f(x1 ∨ x2, y) ≥ sup{f(x1, y1) ∧ f(x2, y2) : y = y1 ∨ y2, y1, y2 ∈ H2}

(iii) f(x1 ∧ x2, y) ≥ sup{f(x1, y1) ∧ f(x2, y2) : y = y1 ∧ y2, y1; y2 ∈ H2}

(iv)f(x1 → x2, y) ≥ sup{f(x1, y1) ∧ f(x2, y2) : y = y1 → y2, y1, y2 ∈ H2}

Lemma 4.1.2. Let f : H1 → H2 be a fuzzy homomorphism of HAs. Then we have

the following:

(1) y(a∨b) = ya ∨ yb;

(2) y(a∧b) = ya ∧ yb;

(3)y(a→b) = ya → yb; for all a; b ∈ H1 :

Proof. We have ya and yb are the unique elements in H2 such that f(a, ya) = 1 and

f(b, yb) = 1. We show that f(a ∨ b, ya ∨ yb) = 1. Put z = ya ∨ yb.

Then f(a ∨ b, z) = Sup{f(a, z1) ∧ f(b, z2) : z = z1 ∨ z2, z1, z2 ∈ H2} ≥ f(a, ya) ∧

f(b, yb) = 1. Since y(a∨b) is the unique element in H2 such that f(a ∨ b, y(a∨b)) = 1,

we get that y(a∨b) = ya ∨ yb.

For (3) We show that f(a→ b, ya → yb) = 1. Put z = ya → yb. Then f(a→ b, z) =
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Sup{f(a, z1) ∧ f(b, z2) : z = z1 → z2, z1, z2 ∈ H2} ≥ f(a, ya) ∧ f(b, yb) = 1.

Since y(a→b) is the unique element in H2 such that f(a→ b, y(a→b)) = 1, we get that

y(a→b) = ya → yb

Similarly, it can be verifed that y(a∧b) = ya ∧ yb.

Hence,the result follows.

Theorem 4.1.3. Let H1 and H2 be HAs. f is a fuzzy hommomorphism from H1 to

H2 and µ be fuzzy ideal of H1 and θ be the fuzzy ideal of H2.Then

i) f(µ) is a fuzzy ideal of H2

ii)f−1(θ) is a fuzzy ideal of H1

Proof. (i) Since f(µ)(y1∧y2) = Sup(µ(x1∧x2)) for some x1∧x2 such that y1∧y2 =

f(x1 ∧ x2) = f(x1) ∧ f(x2).This implies f(µ)(y1 ∧ y2) ≥ (Supµ(x1) for some x1

such that y1 = f(x1)) ∨ (Supµ(x2) for some x2 such that f(x2) = y2) ≥ f(µ)(y1) ∨

f(µ)(y2). Similarly,it is easy to check the other criterias.

(ii) f−1(θ)(x → y) = θ(f(x ∧ y)) = θ(f(x)) → θ(f(y)) ≥ θ(f(x)) ∨ θ(f(y))∀x, y ∈

H1. The other criterias are similar.

Theorem 4.1.4. Let f be a fuzzy homomorphism of H1 into H2,then a subset fx =

{x ∈ H1 : f(x, 1) ≥ 0} is an ideal of H1.

Proof. Clearly,since f(0, 1) ≥ 0, 0 ∈ fx.Let a and b ∈ fx.Then f(a, 1) ≥ 0 and

f(b, 1) ≥ 0.

We show that (i.)f(a ∨ b, 1) ≥ 0

Consider f(a ∨ b, 1) ≥ Sup{f(a, y1) ∧ f(b, y2) : 1 = y1 ∨ y2 and y1, y2 ∈ H2}

= Sup{f(a, 1) ∧ f(b, 1)}

≥ f(a, 1) ∧ f(b, 1) ≥ 0

Hence, f(a ∨ b, 1) ≥ 0

⇒ a ∨ b ∈ fx
(ii.)Let a ∈ fx, x ∈ H ,we show that a ∧ x ∈ fx
f(a ∧ x, 1 ∧ 1) ≥ Sup{f(a, y1) ∧ f(x, y2) : 1 = y1 ∧ y2 and y1, y2 ∈ H2} ≥ f(a, 1) ∧
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f(x, 1) ≥ 0

f(a ∧ x, 1) ≥ 0

Hence,a ∧ x ∈ fx
(iii.) Let a ∈ fx, x ∈ H. we show that x→ a ∈ fx
f(x→ a, 1→ 1)

≥ Sup{f(a, 1) ∧ f(x, 1) : 1 = y1 → y2 and y1, y2 ∈ H2}

≥ f(a, 1) ∧ f(x, 1) ≥ 0

Hence, x→ a ∈ fx.

Therefore,from (i), (ii), (iii),we have fx is an ideal of H1

Theorem 4.1.5. Let f be a fuzzy homomorphism of HAs H into L.Then a fuzzy

subset µf (x) = f(x, 1),∀x ∈ H satisfies the following properties.

1. µf (a ∨ b) ≥ µf (a) ∧ µf (b)

2. µf (a ∧ b) ≥ µf (a) ∧ µf (b)

3. µf (a→ b) ≥ µf (a) ∧ µf (b)

Proof. Clearly,µf (0) = f(0, 1) = 1.

µf (a ∨ b) = f(a ∨ b, 1) = f(a ∨ b, 1 ∨ 1) = Sup{f(a, y1) ∧ f(b, y2) : 1 = y1 ∨ y2 and

y1, y2 ∈ H2}≥ f(a, y1) ∧ f(b, y2).

In particular,for y1 = 1 and y2 = 1, µf (a ∨ b) ≥ f(a, 1) ∧ f(b, 1) = µf (a) ∧ µf (b).

µf (a ∧ b) = f(a ∧ b, 1) = f(a ∧ b, 1 ∧ 1) = Sup{f(a, y1) ∧ f(b, y2) : 1 = y1 ∧ y2 and

y1, y2 ∈ H2}≥ f(a, y1) ∧ f(b, y2).

In particular,for y1 = 1 and y2 = 1, µf (a ∧ b) ≥ f(a, 1) ∧ f(b, 1) = µf (a) ∧ µf (b)

µf (a→ b) = f(a→ b, 1) = f(a→ b, 1→ 1) = Sup{f(a, y1) ∧ f(b, y2) : 1 = y1 → y2

and y1, y2 ∈ H2}≥ f(a, y1) ∧ f(b, y2).

In particular,for y1 = 1 and y2 = 1, µf (a→ b) ≥ f(a, 1) ∧ f(b, 1) = µf (a) ∧ µf (b)

Hence,µf is a fuzzy ideal of H

82



Theorem 4.1.6. Let A be a fuzzy congruence relation on H such that the condition

a ∧ (x → y) = (a ∧ x) → y ,for some fixed a ∈ H, x, y ∈ H.A fuzzy subset

θ(x) = inf{A(a ∧ x, x) : a ∈ H} for all x ∈ H is a fuzzy ideal of H.

Proof. θ(0) = inf{A(a ∧ 0, 0) : a ∈ H} =inf{A(0, 0)} = 1.

θ(x ∨ y) = inf{A(a ∧ (x ∨ y), x ∨ y) : a ∈ H}

θ(x ∨ y) = inf{A((a ∧ x) ∨ (a ∧ y), x ∨ y) : a ∈ H}

≥ inf{A(a ∧ x, x) ∧ A(a ∧ y, y) : a ∈ H}

≥ inf{A(a ∧ x, x) : a ∈ H} ∧ inf{A(a ∧ y, y) : a ∈ H}

= θ(x) ∧ θ(y)

θ(x→ y) = inf{A((a ∧ (x→ y), x→ y) : a ∈ H}

θ(x→ y) = inf{A(a ∧ x)→ y, x→ y) : a ∈ H}

≥ inf{A(a ∧ x, x) ∧ A(y, y) : a ∈ H}

≥ inf{A(a ∧ x, x)}a ∈ H}

= θ(x).

Similarly,θ(x→ y) ≥ θ(y)

Hence,θ(x→ y) ≥ θ(x) ∨ θ(y)

θ(x ∧ y) = inf{A(a ∧ (x ∧ y), x ∧ y) : a ∈ H}

θ(x ∧ y) = inf{A((a ∧ x) ∧ y), x ∧ y) : a ∈ H}

≥ inf{A(a ∧ x, x) ∧ A(y, y) : a ∈ H}

≥ inf{A(a ∧ x, x)} : a ∈ H}

= θ(x). In similar way, θ(x ∧ y) ≥ θ(y)

Hence,θ(x ∧ y) ≥ θ(x) ∨ θ(y).

Theorem 4.1.7. Let A be a fuzzy congruence relation on H as defined above. Then

θ(x) = µ(x),where µ(x) = inf{A(a, x) : a ∈ H}

Proof. For any fuzzy congruence relation on H, we claim to show that θ(x) = µ(x).

For any x ∈ H; we have θ(x) = Inf{A(a∧ x, x) : a ∈ H}. Then θ(x) ≤ A(a∧ x, x);

for all a ∈ H. In particular, for a = 0, θ(x) ≤ A(0∧x, x) = A(0, x) = A(x, 0) = µ(x).
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On the other hand, for any a ∈ H.

Consider, θ(x) = Inf{A(a ∧ x, x) : a ∈ H} ≥ inf{A(a, x) ∧ A(x, x) : a ∈ H} =

µ(x).Hence, θ(x) = µ(x).

Theorem 4.1.8. Let f : H → [0, 1] be a fuzzy homomorphism.Define a fuzzy kernel

of f denoted by Kf : H ×H → [0, 1] as follows.

Kf (a, b) =

 1 if f(a) = f(b);

0 otherwise,∀a, b ∈ H.

Then Kf is a fuzzy congruence relation on H

Definition 4.1.9. A fuzzy subset µ of H is said to be implicatively (multiplicatively)

closed resp.if µ(x→ y) ≥ µ(x) ∧ µ(y) (µ(x ∧ y) ≥ µ(x) ∧ µ(y)), ∀x, y ∈ H.

Let µ be both multiplicatively and implicatively closed fuzzy subsets of H and

S ⊆ H with Sup{µ(x) : x ∈ S} = 1.

Define fuzzy relation ψµa(x, y) = Sup{µ(a) : x→ a = y → a, a ∈ S}

Then we have the following theorem.

Theorem 4.1.10. ψµa is a FCR(H) and H/ψµa is HA

Proof. We first show that ψµS is a fuzzy congruence relation on H.For x, y, z ∈ H

(1) ψµa(x, x) = Sup{µ(a) : x→ a = x→ a, a ∈ S}

(2) ψµa(x, y) = Sup{µ(a) : y → a = x→ a, a ∈ S}=ψµa(y, x)

(3) For a, b ∈ S if x→ a = y → a and y → b = z → b, x, y ∈ H,then we get

x→ (a→ b) = (x ∧ a)→ b=y → a→ b=a→ y → b

=a→ z → b=z → a→ b. Since a→ b ∈ S and Now consider ψµs(x, y) ∧ ψµs(y, z)

= Sup{µ(a) : x→ a = y → a, a ∈ S} ∧ Sup{µ(a) : y → b = z → b, b ∈ S}

= Sup{µ(a) ∧ µ(b) : x→ a = y → a, a ∈ S and y → b = z → b, b ∈ S}

≤ Sup{µ(a→ b) : x→ a = y → a, a ∈ S and y → b = z → b, b ∈ S}

= Sup{µ(a→ b) : x→ a→ b = z → a→ b, a, b ∈ S}

= Sup{µ(c) : x→ c = z → c, c = a→ b ∈ S} = ψµs(x, z)
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Hence ψµs is a fuzzy equivalence relation.

Similarly, it can be proved that ψµs(x1 ∨ x2, y1 ∨ y2) ≥ ψµs(x1, y1) ∧ ψµs(x2, y2)

ψµs(x1 ∧ x2, y1 ∧ y2) ≥ ψµs(x1, y1) ∧ ψµs(x2, y2)

ψµs(x1 → x2, y1 → y2) ≥ ψµs(x1, y1) ∧ ψµs(x2, y2)

Thus,the theorem follows.

4.2 Fuzzy Congruence Relation on Products of

Fuzzy Heyting Algebras

In this section, we introduce the notion of fuzzy congruence relations on products

of FHA and we give some properties about fuzzy congruence relations.

Definition 4.2.1. The HAs L and K are isomorphic and the map φ : L→ K is an

isomorphism if φ is one-to-one, onto and if φ(a∧b) = φ(a)∧φ(b), φ(a∨b) = φ(a)∨φ(b)

and φ(a→ b) = φ(a)→ φ(b), for all a, b ∈ L.

Proposition 4.2.2. Let (H,A) be a fuzzy poset.x, y, z ∈ H.If A(x, y) > 0 and

A(y, z) > 0,then A(x, z) > 0

Definition 4.2.3. [29] Let (H,A) be a fuzzy lattice and let x, y, z ∈ H. If A((x ∧

y)∨ (x∧ z), x∧ (y ∨ z)) > 0 and A(x∨ (y ∧ z), (x∨ y)∧ (x∨ z)) > 0.Then (H,A) is

a distributive fuzzy lattice

Definition 4.2.4. Let (H,A) is distributive fuzzy lattice.Then (H,A) is bounded if

for any x ∈ H, we have that A(0, x) > 0 and A(x, 1) > 0.

Proposition 4.2.5. Let (H,A) be a fuzzy poset.(H,A) bounded fuzzy lattice iff

(H,S(A)) is a bounded crisp lattice

Example 4.2.6. Every interval [a, b] on Heyting algebra H is FHA,a, b ∈ R (real

numbers)
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Definition 4.2.7. Let L and K be HAs. Define ∧,≤, ∨ and → in L × K by

(a, b) ∧ (a1, b1) = (a ∧ a1, b ∧ b1), (a, b) ∨ (a1, b1) = (a ∨ a1, b ∨ b1),(a, b) ≤ (a1, b1) =

(a ≤ a1, b ≤ b1) and (a, b)→ (a1, b1) = (a→ a1, b→ b1) .

This makes L×K into a HA called the direct product of L and K.

Theorem 4.2.8. The direct product of a two bounded distributive lattices is bounded.

Proof: Let H and K be HAs two bounded distributive lattices.Then H ×K is

bounded, as (H × K,∨,∧,→, (0, 0), (1, 1)) is bounded with bottom element (0,0)

and top element (1,1).

Definition 4.2.9. [25] Let A be a fuzzy relation on H.Then,for any (a, b), (c, d) ∈

H ×H,A(a, b) ≤ A(c, d) whenever (a, b) ≤ (c, d),∀a, b, c, d ∈ H.

From now onwards by H we mean a Heyting algebra unless otherwise stated.

4.3 Direct Product of Fuzzy Heyting Algebras

Theorem 4.3.1. [29] Let (P,A) and (Q,B) be fuzzy posets. The direct product

P ×Q of P and Q is defined by (PQ,A×B), where A×B : PQ→ [0, 1] is a fuzzy

relation defined by (A×B)((p1, q1), (p2, q2)) = min[A(p1, p2), B(q1, q2)].

Theorem 4.3.2. [29] Let (P,A) and (Q,B) be fuzzy lattices. The the direct product

(PQ,A×B) of (P,A) and (Q,B) is a fuzzy lattice.

Definition 4.3.3. Let (H,A) and (K,B) be two FHAs and A,B be fuzzy relations

on H and K respectivelly.The product A × B of A and B is a fuzzy relation on

H×K defined by (A×B)((p1, q1), (p2, q2)) = min[A(p1, p2), B(q1, q2)].,where p1, p2 ∈

H,q1, q2 ∈ K

Theorem 4.3.4. Let P and Q be two Heyting algebras (HAs),then the direct product

P ×Q is also a Heyting algebra (HA) under pointwise operation defined above.
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Proof. Clearly,(p×Q,∨,∧, (0, 0), (1, 1)) is a bounded distributive lattices.

Let (a, b), (c, d), (e, f)∈ P ×Q such that (a, b)∧(c, d) ≤ (e, f). (a, b)∧(c, d) ≤ (e, f).

⇒ a ∧ c ≤ e in P and b ∧ d ≤ f in Q

⇒ c ≤ a→ e and d ≤ b→ f [ since P and Q are HAs]

⇒ (c, d) ≤ (a→ e, b→ f)

Hence,P ×Q is a Heyting algebra

Corollary 4.3.5. The direct product of a bounded distributive fuzzy lattices is

bounded distributive fuzzy lattice.

Proof: Follows from Theorems 4.3.1, 4.3.2,4.3.4 ,Definition 4.3.3

4.4 Direct Product of Fuzzy Congruences on

Fuzzy Heyting Algebras

Theorem 4.4.1. Let L and K be HAs, A be a fuzzy congruences on L and B

be a fuzzy congruence on K. Define the fuzzy relation A × B on L × K by (A ×

B)((a, b), (c, d)) = A(a, c) ∧ B(b, d). Then A× B is a fuzzy congruence on L×K.

Conversely every fuzzy congruence relation on L×K is of this form.

Proof. First we show that A × B is a fuzzy congruence on L ×K. Since A and B

are fuzzy congruences,

(1) (A×B)((a, b), (a, b)) = A(a, a) ∧B(b, b) = 1.

(2) (A×B)((a, b), (c, d)) = A(a, c) ∧B(b, d) = A(c, a) ∧B(d, b)

= (A×B)((c, d), (a, b)).

(3) (A×B)((a, b), (z1, z2)) = A(a, z1) ∧B(b, z2)

≥ supc∈L{A(a, c) ∧ A(c, z1)} ∧ supd∈K{B(b, d) ∧B(d, z2)}

= sup(c,d)∈L×K{A(a, c) ∧ A(c, z1) ∧B(b, d) ∧B(d, z2)}

= sup(c,d)∈L×K{(A(a, c) ∧B(b, d)) ∧ (A(c, z1) ∧B(d, z2))}

= sup(c,d)∈L×K{(A×B)((a, b), (c, d)) ∧ (A×B)((c, d), (z1, z2))}
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= sup(c,d)∈L×Kmin{(A×B)((a, b), (c, d)), (A×B)((c, d), (z1, z2))}.

Thus, A × B is reflexive, symmetric and transitive and hence a fuzzy equivalence

relation.

Also,(A×B)((a, b) ∧ (t1, t2), (c, d) ∧ (t1, t2))

= (A×B)((a ∧ t1, b ∧ t2), (c ∧ t1, d ∧ t2))

= A(a ∧ t1, c ∧ t1) ∧ B(b ∧ t2, d ∧ t2) ≥ A(a, c) ∧ B(b, d) [by the meet compatibility

of A and B]

= (A×B)((a, b), (c, d)).

Similarly, (A×B)((a, b) ∨ (t1, t2), (c, d) ∨ (t1, t2)) ≥ (A×B)((a, b), (c, d)).

Then A×B is meet and join compatible.

Again, A×B((a, b)→ (t1, t2), (c, d)→ (t1, t2))

= (A×B)((a→ t1, b→ t2), (c→ t1, d→ t2))

= A(a→ t1, c→ t1) ∧B(b→ t2, d→ t2)

≥ A(a, c) ∧B(b, d)

(A×B)((a, b), (c, d)).

Therefore,”→” is compatible.

Hence, A×B is a fuzzy congruence on L×K.

Remark 4.4.2. If A is a fuzzy congruence relation on L×K, then for c ∈ K,A((a, c), (b, c)) =

A((a, y), (b, y)) for all y ∈ K and for x ∈ L,A((x, c), (x, d)) = A((y, c), (y, d))

[proved in [24]]

Now,we prove the converse part of the theorem.

Let A be a fuzzy congruence relation on L × K.For a, b ∈ L,define AL on L by

AL(a, b) = A((a, y), (b, y)), y ∈ K and for c, d ∈ K, defineAK(c, d) = ((x, c), (x, d)), x ∈

L. By above AK and AL are well defined (proved in [24]).Let us show the congruence

with respect to ”→”.

Since AL(a→ c, b→ c) = A((a→ c, 1), (b→ c, 1)),1 ∈ K

=A((a→ c, y → y), (b→ c, y → y)),y ∈ K

≥ A((a, y), (b, y))
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=AL(a, b). In similarl way ′ →′ is compatible for AK . Thus, AL is a fuzzy congruence

on L and AK a fuzzy congruence on K . A = AL × AK [proved in [24]]

Corollary 4.4.3. Let A be fuzzy congruence relation on H,Then A(a,c) = A(a,y),if

and only if A(c, y) = 1,∀a, c, y ∈ H

Example 4.4.4. The fuzzy relation A defined on a HA H by A(x, y) = 1 if x = y

and 0,otherwise is fuzzy congruence relation on H

Theorem 4.4.5. If L,K,A, B and A×B are as in theorem 4.3.1, then the quotient

HA (L ×K)/(A × B) corresponding to A × B is isomorphic to the product of the

corresponding quotient HAs L/A and K/B.

Proof. By Definition 2.5.9,we have L/A = {Aa : a ∈ L}, K/B = {Bb : b ∈ K} and

(L×K)/(A×B) = {(A×B)(a,b) : (a, b) ∈ L×K}.Define a map ϕ : L/A×K/B →

(L×K)/(A×B) by ϕ(Aa, Bb) = (A×B)(a,b). Clearly, ϕ is one to one , onto and ∨

and ∧ homomorphism. see [24],it remains to show that ϕ is → hommomorphism.

ϕ((Aa, Bb)→ (Ac, Bd))

=ϕ(Aa → Ac, Bb → Bd)

= ϕ(Aa→c, Bb→d)

= (A×B)(a→c,b→d)

= (A×B)((a,b)→(c,d))

= (A×B)(a,b) → (A×B)(c,d)

= ϕ(Aa, Bb)→ ϕ(Ac, Bd).

Thus,ϕ is a homomorphism which completes the proof.

Theorem 4.4.6. Let H be a HA and A,B be fuzzy congruences relation on H such

that A ⊆ B.Then the relation A/B on H/A defined by on defined by (A/B)(Ax, Ay) =

A(x, y),∀x, y ∈ H is fuzzy congruence on H

Theorem 4.4.7. Let (L,A) and (K,B) be two FHA’s,then the direct product ((L×

K), (A×B)) is also a FHA under point wise operations.
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Proof. Suppose (A × B)((a, b) ∧ (c, d), (e, f)) > 0.We need to show that (A ×

B)((c, d), (a, b)→ (e, f)) > 0.

Consider (A×B)((a, b) ∧ (c, d), (e, f)) > 0.

⇒ (A×B)((a ∧ c, b ∧ d), (e, f)) > 0

⇒ A(a ∧ c, e) ∧B(b ∧ d, f) > 0

⇒ A(a ∧ c, e) > 0 and B(b ∧ d, f) > 0

⇔ A(c, a→ e) > 0 and B(d, b→ f) > 0 [ Since A is FHA on L and B is a FHA on

K ]

⇔ A(c, a→ e) ∧B(d, b→ f) > 0,∀a, c, e ∈ L and ∀b, d, f ∈ K

⇒ A((c, d), (a→ e, b→ f)) > 0.

⇔ A((c, d), (a, b)→ (e, f)) > 0.

Thus,A×B is a FHA on L×K

Theorem 4.4.8. If A× B is FHA on L×K,then A is FHA on L and B is FHA

on K.

Proof. Suppose A×B((a, b) ∧ (c, d), (e, f)) > 0.

Then A((a ∧ c, b ∧ d), (e, f)) > 0.

⇒ (A×B)((c, d), ((a→ e), (b→ f)) > 0.

⇒ A(c, a→ e) ∧B(d, b→ f) > 0.

⇒ A(c, a→ e) > 0 and B(d, b→ f) > 0,∀a, c, e ∈ L and ∀b, d, f ∈ K.

Hence the result follows.

Theorem 4.4.9. Let A and B be FHAs of L and K respectivelly,then the cartesian

product of A and B is FHA of L×K iff (A×B)t is a HA ,∀t ∈ [0, 1],is also a FHA

of L×K

Proof. (⇒) Assume A× B is FHA on L×K.we claim to show that (A× B)t is a

Heyting algebra.Now (A×B)t={(a, c), (c, d) ∈ L×K : (A×B)((a, b), (c, d)) ≥ t}.

Suppose ((a, b), (c, d)), ((e, f), (h, g)), ((k, l), (m,n)) ∈ (A×B)t.

From hypothesis,((a, b), (c, d)) ∧ ((e, f), (h, g)) ≤ ((k, l), (m,n))
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⇒ ((a, b) ∧ (e, f), (c, d) ∧ (h, g)) ≤ ((k, l), (m,n))

⇒ (a, b) ∧ (e, f) ≤ (k, l) and (c, d) ∧ (h, g) ≤ (m,n)

Since L×K is a HA,we have (e, f) ≤ (a, b)→ (l, k) and (g, h) ≤ (c, d)→ (m,n)

And so ((e, f), (g, h)) ≤ ((a, b)→ (k, l), (c, d)→ (m,n)).

Thus,(A × B)t is a FHA on L ×K,for all a, c, e, g,m ∈ L and b, d, f, h, n ∈ K. In

similar way one can prove that the converse holds.

Definition 4.4.10. Let A be a fuzzy relation on H.Then f is said to f-invariant of

A whenever f(x, y) = f(u, v)⇒ A(x, y) = A(u, v) for all x, y, u, v ∈ H.

Theorem 4.4.11. [29] Let X and Y be sets and let B be a fuzzy partial order

relation in Y . Let f : X ×X → Y × Y be a map such that (1)f1(x, x) = f2(x, x)

for all x ∈ X,

(2) f1(x, y) = f1(x, z) for all x, y, z ∈ X,

(3) f2(p, q) = f2(r, q) for all p, q, r ∈ X,

(4) p 6= q implies f1(p, q) 6= f1(q, p) (or p 6= q implies f2(p, q) 6= f2(q, p)), where

f(x, y) = (f1(x, y), f2(x, y)). Then (X, f−1(B)) is a fuzzy poset

Definition 4.4.12. [29] Let X and Y be sets let A be a fuzzy partial order relation

in X. Let f : X ×X → Y × Y be a map such that

(1) for each y ∈ Y , there exists x ∈ X such that f(x, x) = (y, y),

(2) for each x, z ∈ X, there exists y ∈ Y such that f(x, z) = (y, y). Then (Y, f(A))

is a fuzzy poset.

Theorem 4.4.13. Let f : X ×X → Y × Y be a function.And A be f-invariant of

X ×X and Y × Y .If A is a FHA on X,then f(A) is a FHA on Y. where X and Y

are assumed to be Heyting algebras.

Proof. Clearly ,f(A) is bounded distributive fuzzy lattice. Suppose (A,X) is a FHA

satisfying the f -invariant property.We claim to show that f(A) is FHA.Suppose

f(A)(z ∧ a, u) > 0,∀a, u, z ∈ Y .Now
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f(A)(a, z → u) =

 Sup{A(b, x→ y) : f(b, x→ y) = (a, z → u)} if f−1(a, z → u) 6= 0;

0, otherwise.

≥ A(b, x→ y),where f(b, x→ y) = (a, z → u)

> 0 [ by hypothesis] Thus,(f(A),Y) is a FHA.

Theorem 4.4.14. Let f be a function from X into Y . Then the following assertions

hold.

(1) For all Ai of family of fuzzy relations on X , i ∈ I, f(∪Ai) = ∪f(Ai), in

particular,

if A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2),∀A1andA2 of family fuzzy relations on X

(2) For all family of fuzzy posets Bj, j ∈ J , where J is a nonempty index set,

f−1(∪j∈JBj) = ∪j∈Jf−1(Bj), f
−1(∩j∈JBj) = ∩j∈Jf−1(Bj)

and therefore B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2),∀B1, B2 of fuzzy posets on Y .

Proof: Using theorem 4.4.13 it is straight forward.

Theorem 4.4.15. Let f : X ×X → Y × Y be a function.Let A×B be f-invariant

of X×X and Y ×Y .If A×B is FHA on X×X,then f(A×B) is a FHA on Y ×Y .

where X and Y are assumed to be Heyting algebras.

Proof:Clearly f(A×B) is FHA by Theorem 4.4.13

Theorem 4.4.16. Let f : X × X → Y × Y be a onto homomorphism.Let A × B

be f-invariant of X × X and Y × Y and .If A
′ × B

′
is a FHAs on Y × Y ,then

f−1(A
′ × B

′
) is a FHA on X × X. where X and Y are assumed to be Heyting

algebras.

Proof. Proof: Follows from Theorem 4.4.15 and 4.4.15

Theorem 4.4.17. f : X × X → Y × Y is an homomorphism and A × B is an

f invariant of X × X and Y × Y . The mapping (A × B) → f(A × B) defines a
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one-one correspondence between the set of all FHA of X ×X and the the set of all

FHA of Y × Y

Proof. Follows from Theorems 4.4.16 and 4.4.17

Theorem 4.4.18. Let L = (X,A) and M = (Y,B) be complete fuzzy Heyting

algebras. Then, L×M = (X × Y,C) is a complete fuzzy Heyting algebra.

Proof. First we will prove that L ×M is a sup-complete FHA. For that, let L =

(X,A) and M = (Y,B) be complete FHA and let I be a nonempty set on X×Y . Let

Ix = {x ∈ H : (x, y) ∈ I for some y ∈ Y } and Iy = {y ∈ Y : (x, y) ∈ I for some x ∈

X}. By hypothesis L and M are complete FHA, then there exist sup Ix and supIy.

We will prove that (supIx, supIy) is the supremum of I. Clearly, (supIx, supIy) is

an upper bound of I. Suppose (x2, y2) ∈ X × Y is also an upper bound of I. Then,

A(supIx, x2) > 0 and B(supIy, y2) > 0 and so, C((supIx, supIy), (x2, y2)) > 0.

Therefore, (supIx, supIy) is the supremum of I and L×M is a sup-complete FHA.

In the same manner, we prove that (infIx, infIy) is the infimum of I and L ×M

is a inf-complete FHA. Therefore, together with proposition 2.3.26 and the above

results we can conclude that L×M is a complete FHA.
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Chapter 5

α Ideal and Fuzzy α Ideals of Fuzzy

Heyting Algebra

In this chapter we show the results of the papers Mezzomo et al. [2013a] and

Mezzomo et al. [2013d] where they use the fuzzy partial order relation notion

defined by Zadeh [1971], and fuzzy lattices defined by Chon [2009]. In Mezzomo et

al. [2013a], we propose the notions of α−ideals and α−filters of a fuzzy Heyting

algebra and characterize them by using its support and its level set. Observe that

Definition 2.3.15 and 2.3.16 can be generalized in order to embrace the notions of

ideals/filters with degree of possibility greater than or equal to α ; it is enough to

generalize the first and third requirements to:”If x ∈ X, y ∈ Y and A(y, x) > α

, then x ∈ Y , for α ∈ (0, 1].” We also characterize a fuzzy ideal on operation of

product between fuzzy Heyting algebra L and M and define fuzzy α−ideals of fuzzy

Heyting algebra.Here, we characterize a fuzzy α− ideal on product between fuzzy

Heyting algebras L and M
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5.1 α Ideal and α Filters of a Fuzzy Heyting

Algebra

In this section, we propose the notions of α−ideals and α− filters of a fuzzy Heyting

algebra and characterize them by using its support and its level set.

Definitions and Some Results

We define α−ideals and α− filters of a fuzzy Heyting algebra as follows:

Definition 5.1.1. Let L = (H,A) be FHA and Y ⊆ H.Y is an α- ideal of L if

(i) x ∈ H,y ∈ Y,A(x, y) ≥ α⇒ x ∈ Y

(ii) x, y ∈ Y ⇒ x ∨ y ∈ Y

(iii) For x→ a 6= 1, a ∈ I, x ∈ H ⇒ x→ a ∈ I

Definition 5.1.2. Let L = (H,A) be FHA and Y ⊆ H.Y is an α-filter of L if

(i) x ∈ H,y ∈ Y,A(y, x) ≥ α⇒ x ∈ Y

(ii) x, y ∈ Y, x ∧ y 6= 0⇒ x ∧ y ∈ Y

(iii) a ∈ F, x ∈ H|{0} ⇒ a→ x ∈ Y

Proposition 5.1.3. If α ≤ β , then any α− ideal Y is a β− ideal.

Let Y be a α−ideal and α ≤ β. Then for any x ∈ H, if A(x, y) ≥ β, then

A(x, y) ≥ α, so by Definition 5.1.1 (i), x ∈ Y . On the other hand, if x, y ∈ Y , then

by Definition 5.1.1 (ii), x∨y ∈ Y .Moreover x, y ∈ Y ,by Definition 5.1.1 x→ y ∈ Y.

Therefore, Y is a β−ideal of (H,A). Dually, we prove that if α ≤ β, then any β−filter

is an α−filter

Remark 5.1.4. Notice that the set H of a FHA (H,A) is an α−ideal, for all α ∈ (0, 1].

Dually, the set H of a fuzzy Heyting algebra (H,A) is an α−filter, for all α ∈ (0, 1]
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Corollary 5.1.5. All ideal (filter) in the sense of Definition 2.3.15 and 2.3.16 is

an α−ideal (α−filter)

Proof. Straightforward from proposition 5.1.3

Definition 5.1.6. Let α ∈ (0, 1]. If Y is an ideal (filter) of the Heyting algebra

(H,S(A)), then for all α ∈ (0, 1], Y is an α−ideal (α− filter) of the fuzzy Heyting

algebra (H,A).

Proof. Let Y be an ideal of (H,S(A)) and y ∈ Y. Consider α is fixed. If A(x, y) ≥ α,

then (x, y) ∈ S(A) and so, because Y is an ideal, x ∈ Y . So, trivially satisfy the

condition (i) of Definition 5.1.1 and the conditions (ii) and (iii) is satisfied because

it does not depend on the value of α .Analogously, we prove that if Y is a filter of

the Heyting algebra (H,S(A)), then for all α ∈ (0, 1], Y is an α− filter of fuzzy

Heyting algebra (H,A).

Proposition 5.1.7. Let (H,A) be a fuzzy Heyting algebra,α ∈ (0, 1] and Y ⊆ H. If

(Y,A|Y × Y ) is a fuzzy sup-HA,then the set ↓ Yα = {x ∈ H : A(x, y) ≥ α for some

y ∈ Y } is an α− ideal of (H,A)

Proof. (i) Let α ∈ (0, 1], z ∈↓ Yα and w ∈ H such that A(w, z) ≥ α.Because

z ∈↓ Yα , then exists x ∈ Y such that A(z, x) ≥ α , and by proposition 2.3.29,

A(w, x) ≥ α.Therefore, w ∈ Yα.

(ii)Let α ∈ (0, 1].Suppose x, y ∈↓ Yα, then exist z1, z2 ∈ Y such that A(x, z1) ≥ α

and A(y, z2) ≥ α. So, A(x, z1 ∨ z2) ≥ α and A(y, z1 ∨ z2) ≥ α and by proposition

1.2.4 (ii) A(x∨ y, z1 ∨ z2) ≥ α. By hypothesis (Y,A|Y ×Y ) is a fuzzy sup-HA, then

z1 ∨ z2 ∈ Y . Hence, A(x ∨ y, z) ≥ α, for some z ∈ Y ,and therefore, x ∨ y ∈↓ Yα.

(iii) Let a ∈↓ Yα and x ∈ H for x→ a 6= 1,we claim to show that x→ a ∈↓ Yα.Let

a ∈↓ Yα.Then there exists z ∈ Y such that A(a, z) ≥ α.This implies that by Lemma

2.1.20 A(x→ a, x→ z) ≥ α.Thus, x→ a ∈↓ Yα for some x→ z ∈ Y

Hence, the result.
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Theorem 5.1.8. Let µ be a fuzzy subset of H. Define (↓ µ)(x)=supy∈H{µ(y) :

A(x, y) > 0}.Then (↓ µ)t =↓ µt

Proof. (↓ µ)t = {x ∈ H : (↓ µ)(x) ≥ t}

= {x ∈ H : supy∈H{µ(y) : A(x, y) > 0} ≥ t}

= {x ∈ H : µ(y) ≥ t for some y such that A(x, y) > 0}

= {x ∈ H : y ∈ µt for some y such that A(x, y) > 0}

=↓ µt
Hence, the result follows

Corollary 5.1.9. Let µ be a fuzzy subset of H. Then µ ⊆ (↓ µ)

Proof. (↓ µ)(x)=supy∈H{µ(y) : A(x, y) > 0}

≥ µ(x), x ∈ H [Since the supremum is taken overall y ∈ H]

Hence,the result follows.

Proposition 5.1.10. i)Let A∗ = {y : A(x, y) > 0}, B∗ = {y : A(x∧y, y) > 0}.Then

A∗ ⊆ B∗

ii)Let A be FCR(H), A∗ = {y : A(x, y) > 0}, B∗ = {y : A(x → y, y) > 0}.Then

A∗ ⊆ B∗

Proof. (i)Let y ∈ A∗.Then A(x, y) > 0.

⇒ A(x ∧ y, y) > 0.

⇒ y ∈ B∗.Hence, A∗ ⊆ B∗

(ii) Let A be FCR(H) y ∈ A∗.Then A(x, y) > 0.

⇒ A(x→ y, y → y) > 0.

⇒ A((x→ y) ∧ (x→ y), y → y) > 0.

⇒ A(x→ y, y) ∧ A(x→ y, y) > 0

. ⇒ A(x→ y, y) > 0.Hence, y ∈ B∗.Hence, A∗ ⊆ B∗
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Remark 5.1.11. From the above proposition, If A ⊆ B,then sup{µ(a) : a ∈ A} ≤

sup{µ(b) : b ∈ B} and ↓ µ(x) ≤↓ µ(x→ y).

Proof. Let t = sup{µ(b) : b ∈ B} and s = sup{µ(a) : a ∈ A}

⇒ µ(b) ≤ t, for all b ∈ B

⇒ µ(a) ≤ t,for all a ∈ A

⇒ sup{µ(a) : a ∈ A} ≤ t

⇒ s ≤ t

Hence,the result follows

Theorem 5.1.12. Let µ be a fuzzy subset of H and A be a fuzzy congruence rela-

tion,then ↓ µ is a fuzzy ideal of H.

Proof. (↓ µ)(0)=supy∈H{µ(y) : A(0, y) > 0}

Since the supremum is taken overall y ∈ H,we take 0 ∈ H in particular.

⇒ (↓ µ)(0) ≥ µ(0) = 1

⇒ (↓ µ)(0) = 1

(↓ µ)(x) = supy∈H{µ(y) : A(x, y) > 0}

≤ supy∈H{µ(y) : A(x ∧ y, y) > 0}

=(↓ µ)(x ∧ y)

(↓ µ)(y) = supy∈H{µ(y) : A(y, y) > 0}

≤ supy∈H{µ(y) : A(x ∧ y, y) > 0}[By Proposition 5.1.10]

=(↓ µ)(x ∧ y)

(↓ µ)(x ∧ y) is an upper bound of {(↓ µ)(x), (↓ µ)(y)}

Hence,(↓ µ)(x ∧ y) ≥ (↓ µ(x) ∨ (↓ µ)(y))

Now,consider (↓ µ)(x ∨ y)=supy∈H{µ(y) : A(x ∨ y, y) > 0}

≥ supy∈H{µ(y) : A(x, y) ∧ A(y, y) > 0}

= supy∈H{µ(y) : A(x, y) > 0}

⇒ (↓ µ)(x ∨ y) ≥ (↓ µ)(x) ∧ (↓ µ)(y)
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By proposition 5.1.10, (↓ µ)(x) = Sup{µ(z) : A(x, z) > 0} ≤ supy∈H{µ(z) :

A(x→ y, z) > 0}=↓ µ(x→ y)

Similarly, (µ)(y) = Sup{µ(z) : A(y, z) > 0} ≤ supy∈H{µ(z) : A(x → y, z) > 0}=↓

µ(x→ y)

≥ (↓ µ)(x) ∨ (↓ µ)(y).

Hence, By Definition 3.0.28 ↓ µ is fuzzy ideal of H.

Remark 5.1.13. Let A = {z ∈ H : A(z, x) > 0}, B = {z ∈ H : A(z, x → y) >

0}.Then A ⊆ B

Theorem 5.1.14. Let µ be a fuzzy subset of H and A be a fuzzy congruence rela-

tion.Define ↑ µ(x) = sup{µ(y) : A(y, x) > 0} ,then ↑ µ is a fuzzy filter of H.

Proof. 1. ↑ µ(1) = sup{µ(y) : A(y, 1) > 0} ≥ µ(y),∀y ∈ H

≥ µ(1),since 1 ∈ H

=0 as µ is a fuzzy filter.

2. µ(x ∧ y) = sup{µ(z) : A(z, x ∧ y) > 0}

= sup{µ(z) : A(z, x) ∧ A(z, y) > 0}

≥ sup{µ(z) : A(z, x) > 0} ∧ sup{µ(z) : A(z, y) > 0}

=↑ µ(x)∧ ↑ µ(y)

3. (↑ µ)(x→ y) = sup{µ(z) : A(z, x→ y) > 0}

≥ sup{µ(z) : A(z, y) > 0} [By remark 5.1.13]

=↑ µ(y).

Similarly,(↑ µ)(x→ y) ≥ (↑ µ)(x).

Hence ,(↑ µ)(x→ y) ≥ (↑ µ)(x)∨ ↑ µ(y).

4. µ(x ∨ y) = sup{µ(z) : A(z, x ∨ y) > 0}

≥ sup{µ(z) : A(z, y) > 0}=

=↑ µ(x).

Hence,(↑ µ)(x ∨ y) ≥ (↑ µ)(x) ∨ (↑ µ)(y)
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Therefore, ↑ µ is a fuzzy filter of H

Proposition 5.1.15. Let (H,A) be a FHA and µ be fuzzy subset of H . Then ↓ µ

and ↑ µ satisfy the following properties:

1. µ ⊆↓ µ

2. µ ⊆↑ µ

3. θ ⊆ µ⇒↓ θ ⊆↓ µ

4. θ ⊆ µ⇒↑ θ ⊆↑ µ

5. � µ =↓ µ

6. � µ =↑ µ.

Proof. (1.) Let t ∈ imµ,t ∈ (0, 1].Then there exists x ∈ H such that µ(x) = t.Since

A(x, x) > 0,then ↓ µ(x) = sup{µ(y) : A(x, y) > 0} for all y ∈ H.In particular,

↓ µ(x) = sup{µ(x) : A(x, x) > 0}.Hence t ∈↓ µ.Therefore, µ ⊆↓ µ

(3.) Suppose θ ⊆ µ.Now consider ↓ µ(x) = sup{µ(y) : A(x, y) > 0},for all y ∈ H

≥ sup{θ(y) : A(x, y) > 0},for all y ∈ H[since θ ⊆ µ]

=↓ θ(x).Hence, the result follows.

(6.) (� µ)(z) = sup{(↑ µ)(x) : A(x, z) > 0} for all z ∈ H

= sup{sup{µ(y) : A(y, x) > 0}, A(x, z) > 0}for all y, z ∈ H

= sup{µ(y) : A(y, x) > 0, A(x, z) > 0}

= sup{µ(y) : A(y, z) > 0}

= (↑ µ)(z).In similar manner,we prove the rest of the proposition.

Corollary 5.1.16. Let (H,A) be a FHA and µ is fuzzy subset of H. ↓ µ(↑ µ) is the

least fuzzy ideal (fuzzy filter) containing µ .
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Proof. Suppose there exists an ideal θ such that µ ⊆ θ ⊆↓ µ.

Let t ∈ im(↓ µ) and t /∈ imθ. Then there exist x ∈ H such that t =↓ µ(x)

= sup{µ(y) : A(x, y) > 0}

≥ µ(y) for all y such that A(x, y) > 0.

≥ µ(x) for x ∈ H such that A(x, x) > 0

⇒ t ∈ imµ which directly implies t ∈ imθ.

A contradiction arises.Hence the result follows.

5.2 Fuzzy Ideals and Fuzzy Filters of a Fuzzy

Heyting Algebra

In this section we show the results of the paper Mezzomo et al. [2013c] where we

use the same notion of fuzzy Heyting algebra (H,A), defined by [30], used in the

papers Mezzomo et al. [2012a] and Mezzomo et al. [2012b] for fuzzy ideal and

filters in fuzzy lattice. We define a fuzzy ideals and fuzzy filters of fuzzy Heyting

algebra (H,A) as a fuzzy set I on set H as follows:

Definition 5.2.1. Let (H,A) be a FHA and fuzzy set I on H.Then we call µI is a

fuzzy ideal of (H,A) if, for all x, y ∈ H, the following conditions are verified

1. If µI(y) > 0 and A(x, y) > 0, then µI(x) > 0;

2. If µI(x) > 0 and µI(y) > 0, then µI(x ∨ y) > 0;

3. If µI(x) > 0 and µI(y) > 0, then µI(x→ y) > 0;

Definition 5.2.2. Let (H,A) be a FHA. A fuzzy set F on H is a fuzzy filter of

(H,A) if, for all x, y ∈ H, the following conditions are verified

1. If µF (y) > 0 and A(y, x) > 0, then µF (x) > 0;

2. If µF (x) > 0 and µI(y) > 0, then µF (x ∧ y) > 0;
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3. If µF (x) > 0 and µF (y) > 0, then µF (y → x) > 0;

Example 5.2.3. Let H = {0, y, z, 1} defined by the figure depicted below.

y
11

z

0 And let A : H ×H → [0, 1] be a fuzzy relation such that

A(0, y) = A(y, z) = A(z, z) = A(1, 1) = 1, A(y, 0) = A(z, 0) = A(1, 0) = A(z, y) =

A(1, y) = A(1, z) = 0.8, A(y, z) = 0.3, A(0, 1) = 0.7, A(0, z) = 0.4 and

A(0, y) = 0.1 Clearly, (H,A) is FHA.Then, the fuzzy set

I = (1, 0.1), (z, 0.2), (y, 0.4), (0, 1) is a fuzzy ideal of L.

Let Aα be the α-level set Aα = {(x, y) ∈ H×H : A(x, y) ≥ α} for some α ∈ (0, 1]

and let Iα = {x ∈ I : A(x, y) ≥ α for some y ∈ I} be an ideal of (H,Aα).

Clearly, x ∈ Iα ⇒ µI(x) ≥ α

Theorem 5.2.4. Let I be a fuzzy set on H. I is a fuzzy ideal of FHA (H,A) iff for

each α ∈ (0, 1], Iα is an ideal of (H,Aα).

Proof. (⇒)

1. Let y ∈ Iα and A(x, y) ≥ α.Then µI(y) ≥ α.Since I is a fuzzy ideal,then

µI(x) ≥ α,Hence x ∈ Iα

2. Let x, y ∈ Iα for some α ∈ (0, 1].Then µI(x) ≥ α and µI(y) ≥ α.

Then µI(x ∨ y) ≥ α. ⇒ x ∨ y ∈ Iα

3. Let a ∈ Iα and x ∈ H.Then µI(a) ≥ α and µI(x) ≥ α. ⇒ µI(x → a) ≥ α

⇒ x→ a ∈ Iα. Conversely

1. If µI(y) > 0 and A(x, y) > 0, then y ∈ Iα for α = A(x, y) and so, (x, y) ∈ Aα.

Because Iα is an ideal of (H,Aα), then by definition of classical ideal, x ∈ Iα.

Therefore, µI(x) ≥ A(x, y) > 0.
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2. Suppose µI(x) > 0, µI(y) > 0 and α = min{µI(x)), µI(y)}. Then, x ∈ Iα and

y ∈ Iα. Because Iα is an ideal of (H, Iα), then by definition of classical ideal,

x ∨ y ∈ Iα. Therefore, µI(x ∨ y) ≥ min{µI(x), µI(y)} > 0.

3. Suppose µI(x) > 0, µI(y) > 0 and α = min{µI(x)), µI(y)}. Let x ∈ H and

y ∈ Iα. Because Iα is an ideal of (H, Iα), then by definition of classical ideal,

x→ y ∈ Iα. Therefore, µI(x→ y) ≥ min{µI(x), µI(y)} > 0.

Let Aα be the α-level set Aα = {(x, y) ∈ H×H : A(x, y) ≥ α} for some α ∈ (0, 1]

and let Fα = {x ∈ F : A(y, x) ≥ α for some y ∈ F} be an α filter of (H,Aα). Then

we have the following result.

Theorem 5.2.5. Let F be a fuzzy set on H. F is a fuzzy filter of (H,A) iff for each

α ∈ (0, 1], Fα is a filter of (H,Aα).

Proof. Similar to the above theorem

Theorem 5.2.6. Let L = (H,A) and M = (G,B) be FHAs, I and J be fuzzy ideals

of L and M, respectively. The fuzzy set defined by µI×J(x, y) = µI(x) ∧ µJ(y) on

H ×G is a fuzzy ideal of L×M .

Proof. 1. Let x1, x2 ∈ H and y1, y2 ∈ G such that µI×J(x2, y2) > 0 and

A×B((x1, y1), (x2, y2)) > 0.

⇒ µI(x2) ∧ µJ(y2) > 0, and A(x1, x2) ∧B(y1, y2) > 0.

⇒ µI(x2) > 0, µJ(y2) > 0 and A(x1, x2) > 0. , B(y1, y2) > 0.

⇒ µI(x2) > 0,A(x1, x2) > 0 and µI(y2) > 0, B(y1, y2) > 0.

⇒ µI(x1) > 0 and µJ(y1) > 0

⇒ µI(x1) ∧ µJ(y1) > 0

⇒ µI×J(x1, y1) > 0
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2. Let x1, x2 ∈ H and y1, y1 ∈ G such that µI×J(x1, y1) > 0 and µI×J(x2, y2) > 0

⇒ µI(x1) ∧ µJ(y1) > 0 and µI(x2) ∧ µJ(y2) > 0

⇒ µI(x1) > 0, µI(x2) > 0 and µJ(y1) > 0, µJ(y2) > 0

⇒ µI(x1 → x2)∧ µJ(y1 → y2) > 0

µI×J(x1 → x2, y1 → y2) > 0

3. Similarly,µI×J(x1 ∨ x2, y1 ∨ y2) > 0

µI×J(x1 ∨ x2, y1 ∨ y2) > 0.

Hence, µI×J is a fuzzy ideal of L×M

Definition 5.2.7. Let (H,A) be a FHA and let I be a fuzzy set on H. The fuzzy set ⇓

I is defined by µ⇓I(x) = Supy∈H{min(µI(y), A(x, y))} for all x ∈ H. Dually,let F be

a fuzzy set on H. The fuzzy set ⇑ F is defined by µ⇑F (x) = supy∈H{min(µF (y), A(y, x))}

for all x ∈ H.

Theorem 5.2.8. Let (H,A) be a FHA, I a fuzzy ideal of H and A be FCR(H). The

fuzzy set µ⇓I of H is a fuzzy ideal of (H,A).Dually,Let F a fuzzy set on H. The fuzzy

set µ⇑F of H is a fuzzy filter of (H,A).

Proof. 1. Let µ⇓I(y) > 0 and A(x, y) > 0.We need to show that µ⇓I(x) > 0.By

definition µ⇓I(x) = supy∈H{min(µI(y), A(x, y))} and µ⇓I(y) = supz∈H{min(µI(z), A(y, z))}.

Since A is FCR(H) and I is fuzzy ideal of H,then there exists z ∈ H such that

µI(z) > 0 and A(x, z) > 0.This implies min(µI(z), A(x, z)) > 0. Taking the

sup,we have Sup{min(µI(z), A(x, z))} > 0. Hence, µ⇓I(x) > 0

2. µ⇓I(x) > 0 and µ⇓I(y) > 0.We claim to show that µ⇓I(x→ y) > 0.Then there

are z, w ∈ H such that µI(z) > 0 , A(x, z) > 0 and µI(w) > 0 A(y, w) > 0.

As I is a fuzzy ideal of H,we have µI(z → w) > 0, A(x, z → w) > 0 and

µI(z → w) > 0, A(y, z → w) > 0.

µ⇓I(z → w) = Sup(min(µI(t), A(z → w, t)))
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A(x, z) > 0 and A(y, w) > 0

⇒ A(x, z) ∧ A(y, w) > 0

A(x→ y, z → w) ≥ A(x, z)∧A(y, w) > 0. [As A is fuzzy congruence relation.]

This gives A(x → y, z → w) > 0, there exists z → w ∈ H such that

min(µI(z → w), A(x → y, z → w) > 0.Hence,taking sup of min over all

x → y ∈ H Sup{min(µI(z → w), A(x → y, z → w))} > 0. Thus ,µ⇓I(x →

y) > 0.

3. For µ⇓I(x ∨ y) > 0 is Similar to 2.

5.3 Fuzzy α Ideals of Fuzzy Heyting Algebra

In this section we define a fuzzy α− ideals of fuzzy Heyting algebra and fuzzy α−

ideals on product of FHAs. In addition, we prove that α−ideals of the product are

equal to the product of α−ideals on FHAs

Definition 5.3.1. Let (H,A) be fuzzy Heyting algebra and α ∈ (0, 1]. A fuzzy set

Iα on H is a fuzzy α− ideal of (H,A) if, for all x, y ∈ H

(i) If µIα(y) ≥ α and A(x, y) > 0, then µIα(x) ≥ α

(ii) If µIα(x) ≥ α and µIα(y) ≥ α, then µIα(x ∨ y) ≥ α.

(iii)If µIα(x) ≥ α and µIα(y) ≥ α, then µIα(x→ y) ≥ α.

Proposition 5.3.2. Let (H,A) be a FHA, α ∈ (0, 1] and Iα be a fuzzy set on H.

If A is a fuzzy congurence relation on H and µIα is a fuzzy subset of H, then the

fuzzy set µ⇓Iα(x) = sup{µIα(y) : A(x, y) > 0 and µIα(y) ≥ α} is a fuzzy α−ideal of

(H,A).

Proof. (i) x, y ∈ H. If µ⇓Iα(y) ≥ α and x ∈ H such that A(x, y) > 0. Then,

by definition, µ⇓Iα(y) = supz∈H{µIα(z) : A(y, z) > 0 and µIα(z) ≥ α} ≥ α. So,

there exists z ∈ H such that µ⇓Iα(z) ≥ α and A(y, z) > 0. Since A(x, y) > 0
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and A(y, z) > 0, then by transitive property, we have that A(x, z) > 0. Thus,

supz∈H{µIα(z) : A(x, z) > 0 and µIα(z) ≥ α} ≥ α. Therefore,µIα(x) ≥ α.

(ii) Suppose µIα(x) ≥ α and µIα(y) ≥ α.Then, µIα(x) ∧ µIα(y) ≥ α.By definition,

µ⇓Iα(x) = supz∈H{µIα(z) : A(x, z) > 0 and µIα(z) ≥ α} ≥ α and µ⇓Iα(y) =

supw∈H{µIα(w) : A(y, w) > 0 and µIα(w) ≥ α} ≥ α.

Consider µ⇓Iα(x ∨ y) = supz∈H{µIα(z) : A(x ∨ y, z) > 0 and µIα(z) ≥ α} ≥ α.

≥ Supz∈H{µIα(z) : A(x, z) ∧ A(y, z) > 0 and µIα(z) ≥ α}[Since A is a congruence]

= supz∈H{µIα(z) : A(x, z) > 0 and µIα(z) ≥ α} and supz∈H{µIα(z) : A(y, z) > 0}

and µIα(z) ≥ α} =µ⇓Iα(x) ∧ µ⇓Iα(y) ≥ α

(iii.) Similrly, Suppose µIα(x) ≥ α and µIα(y) ≥ α.Then, µIα(x) ∧ µIα(y) ≥ α. By

definition, µ⇓Iα(x) = supz∈H{µIα(z) : A(x, z) > 0 and µIα(z) ≥ α}

Consider µ⇓Iα(x→ y) = supz∈H{µIα(z) : A(x→ y, z) > 0 and µIα(z) ≥ α}

≥ supz∈H{µIα(z) : A(x, z) ∧ A(y, z) > 0 and

µIα(z) ≥ α}[Since A is a congruence]

= supz∈H{µIα(z) : A(x, z) > 0 and µIα(z) ≥ α} and supz∈H{µIα(z) : A(y, z) > 0}

and µIα(z) ≥ α} =µ⇓Iα(x) ∧ µ⇓Iα(y) ≥ α.

Hence, the result follows.

Theorem 5.3.3. Let L = (H,A) and M = (G,B) be FHAs, µIα and µJα be fuzzy

α−ideals of L and M respectively.The fuzzy set µIα×Jα = µIα∧µJα is a fuzzy α−ideal

of L×M , denoted by Iα × Jα.

Proof. 1. Let x1, x2 ∈ H and y1, y2 ∈ G such that µIα×Jα(x2, y2) > α and

A×B((x1, y1), (x2, y2)) > 0.

⇒ µIα(x2) ∧ µJα(y2) ≥ α, and A(x1, x2) ∧B(y1, y2) > 0.

⇒ µIα(x2) ≥ α, µJα(y2) ≥ α and A(x1, x2) > 0. , B(y1, y2) ≥ α.

⇒ µIα(x2) ≥ α,A(x1, x2) > 0 and µIα(y2) ≥ α, B(y1, y2) > 0.

⇒ µIα(x1) ≥ α and µJα(y1) ≥ α

⇒ µIα(x1) ∧ µJα(y1) ≥ α

⇒ µIα×Jα(x1, y1) ≥ α
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2. Let x1, x2 ∈ H and y1, y1 ∈ G such that µIα×Jα(x1, y1) ≥ α and µIα×Jα(x2, y2) ≥

α ⇒ µIα(x1) ∧ µJα(y1) ≥ α and µIα(x2) ∧ µJα(y2) ≥ α

⇒ µIα(x1) ≥ α, µIα(x2) ≥ α and µJα(y1) ≥ α, µJα(y2) ≥ α

⇒ µIα(x1 → x2)∧ µJα(y1 → y2) ≥ α

µIα×Jα(x2 → x2, y1 → y2) ≥ α

3. Similarly, it is easy to show that µIα×Jα(x1 ∨ x2, y1 ∨ y2) ≥ α. Hence, the

result follows.
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Chapter 6

Heyting Almost Distributive Fuzzy

Lattices

6.1 Definition and Some Results

Definition 6.1.1. [4] Let (H,∨,∧, 0) be an algebra of type (2,2,0) and (H,A) be

a fuzzy poset.Then we call L = (H,A) is an Almost Distributive Fuzzy Lattice

(ADFL) if the following axioms are satisfied:

1) A(a, a ∨ 0) = A(a ∨ 0, a) = 1;

2) A(0, 0 ∧ a) = A(0 ∧ a, 0) = 1;

3) A((a ∨ b) ∧ c, (a ∧ c) ∨ (b ∧ c)) = A((a ∧ c) ∨ (b ∧ c), (a ∨ b) ∧ c) = 1;

4)A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∧ c)) = A((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) = 1;

5) A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) = A((a ∨ b) ∧ (a ∧ c), a ∨ (b ∧ c)) = 1;

6) A((a ∨ b) ∧ b, b) = A(b, (a ∨ b) ∧ b) = 1; for all a, b, c ∈ H.

Definition 6.1.2. [4] Let L be an ADFL . Then for any a, b ∈ H, a ≤ b if and only

if A(a, b) > 0 .

Definition 6.1.3. An ADFL L=(H,A) with maximal element m is said to be Heyt-

ing almost distributive fuzzy lattices if to each a ∈ H,the interval [0, a] is fuzzy

Heyting algebra.
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Example 6.1.4. Every FHA is an HADFL since every interval in FHA is itself FHA

Theorem 6.1.5. Let (H,A) be an HADFL with a maximal element m. Then the

following are equivalent.

(1) H is an HADFL

(2) [0,m] is a Fuzzy Heyting algebra.

(3) There exists a binary operation → on H such that the following conditions hold:

for all x, y, z ∈ H

(i) A(m,x→ x) > 0

(ii) A(y, (x→ y) ∧ y) > 0

(iii) A(x ∧ y ∧m,x ∧ (x→ y)) > 0

(iv) A((x→ (y∧ z), (x→ y)∧ (x→ z)) = A((x→ y)∧ (x→ z), x→ (y∧ z)) = m

(v) A((x∨ y)→ z, (x→ z)∧ (y → z)) = A((x→ z)∧ (y → z)), (x∨ y)→ z) = m

Proof. Let H be an HADFL with 0 and a maximal element m. Let → be a binary

operation on H.

(1)⇒ (2) is trivial .

(2)⇒(3) : Assume that [0,m] is a fuzzy Heyting algebra in which the binary oper-

ation (→) is denoted by →m.For x, y ∈ H, define x → y = x ∧ m →m y ∧ m.Let

x, y, z ∈ H.

Now (i) A(m,x→ x)=A(m,x ∧m→m x ∧m) = A(m,m) >0

(ii) A(y, (x→ y) ∧ y)=A(y, (x ∧m→m y ∧m) ∧ y)= A(y, (x ∧m→m y ∧m) ∧ y ∧

m)=A(y, y ∧m) > 0 routenly we can show others. (3)⇒ (1).

Assume the condition hold on H,then for a ∈ H.

We know that [0, a] is a distributive fuzzy lattice.Define a binary operation →a on

[0, a] by x →a y = (x → y) ∧ a,∀x, y ∈ [0, a] Let x, y, z ∈ [0, a] and A(x ∧ z, y)>

0.Then A(x→ (x ∧ z), x→ y)> 0.
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⇒ A(m ∧ (x→ z), x→ y)> 0

⇒ A(x→ z, x→ y)> 0

⇒ A((x→ z) ∧ a, (x→ y) ∧ a)> 0

⇒ A((x→ z) ∧ a, x→a y)>0

⇒ A(z ∧ (x→ z) ∧ a, z ∧ (x→a y)) > 0

⇒ A((x→ z) ∧ z ∧ a, z ∧ (x→a y)) > 0

⇒ A(z ∧ (x→ z) ∧ a, x→a y) > 0[since z ∧ (x→a y) ≤ x→a y]

⇒ A(z ∧ a, x→a y) > 0

Thus, A(z, x→a y) > 0[Since z ≤ a]

Conversely ,assume that z ∈ [0, a] and A(z, x→a y) > 0.

⇒ A(x ∧ z, x ∧ (x→ y) ∧ a) > 0.

⇒ A(x ∧ z, x ∧ y ∧ a) > 0.

⇒ A(x ∧ z, x ∧ y) > 0.

⇒ A(x ∧ z, y) > 0. [Since A(x ∧ y, y) > 0]

Thus,[0, a] is a fuzzy Heyting algebra Therefore,H is an HADFL.

Through out this section the symbol H stands for an HADFL (H,A) unless otherwise

specified.In the following lemma,we give some important properties of HADFL.

Lemma 6.1.6. Let x, y, a ∈ H and A(x, y) > 0.Then the following hold:

1. A(a→ x, a→ y) > 0

2. A(y → a, x→ a) > 0

3. A(m, (a ∧ b)→ b) > 0

Proof. 1. Let x, y, a ∈ H and A(x, y) > 0. Since H is an HADFL A((a →

x) ∧ (a→ y), a→ (x ∧ y)) = 1

A((a → x) ∧ (a → y), a → x) = 1. [ Since, A(x, y) > 0 ⇔ x ∧ y = x].This

implies a→ x = (a→ x) ∧ (a→ y)

⇒ A(a→ x, a→ y) > 0

111



2. A((y → a) ∧ (x→ a), (y ∨ x)→ a) = 1

A((y → a) ∧ (x→ a), y → a) = 1

⇒ A(y → a, x→ a) > 0

3. A(a ∧ b, b) > 0

⇒ A((a ∧ b)→ (a ∧ b), (a ∧ b)→ b) > 0

⇒ A(m, (a ∧ b)→ b) > 0.

6.2 Properties of Heyting Almost Distributive

Fuzzy Lattices

Theorem 6.2.1. For any x, y ∈ H ,we have the following.

1. A(y, x→ 0) > 0⇒ x ∧ y = 0

2. A(y → 0, x→ 0) > 0⇔ x ∧ (y → 0) = 0

3. A(m→ x, x) > 0

4. A(x→ m,m) > 0

Proof. 1. A(y, x→ 0) > 0

⇒ A(x ∧ y, x ∧ (x→ 0)) > 0

⇒ A(x ∧ y, x ∧ 0) > 0.This implies x ∧ y ≤ 0.But 0 ≤ x ∧ y

Thus, x ∧ y = 0

2. (⇒)A(x ∧ (y → 0), x ∧ (x→ 0)) > 0

⇒ A(x ∧ (y → 0), x ∧ 0 ∧m) > 0

⇒ x ∧ (y → 0) = 0.

Conversely,assume x ∧ (y → 0) = 0.Then A(y → 0, x→ 0)
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= A(y → 0, x→ (x ∧ (y → 0)))

=A(y → 0,m ∧ (x→ (y → 0)) ∧ (y → 0))

=A(y → 0, y → 0) = 1 > 0

3. A(m→ x,m ∧ (m→ x)) > 0

⇒ A(m→ x,m ∧ x ∧m) > 0

⇒ A(m→ x, x ∧m) > 0.

⇒ A(m→ x, x) > 0.But A(x,m→ x) > 0.Therefore,the result holds.

4. A(m,x→ m) > 0

A(x→ m,m) > 0

⇒ A(m ∧ (x→ m),m) > 0

⇒ A((m→ m) ∧ (x→ m),m) > 0

⇒ A((m ∨ x)→ m,m) > 0

Clearly, A(m,m) = 1 > 0

but A(x→ m,m) > 0

Thus,antisymmetry gives m = x→ m

Lemma 6.2.2. A(x ∧ y, x) = 1⇔ A(x, y) > 0

Theorem 6.2.3. Let m be the maximal element in H. Then for any a, b, c ∈ H,the

following holds.

1. A(b ∧m, (a→ b) ∧m)) > 0

2. A(a ∧m, b ∧m) > 0⇔ (a→ b) ∧m = m

3. A(a ∧ b ∧m, a ∧ c ∧m) = 1⇔ A((a→ b) ∧m, (a→ c) ∧m) = 1

4. A(a ∧ c ∧m, b ∧m) > 0⇔ A(c ∧m, (a→ b) ∧m) > 0

5. A(a ∧m, [(a→ b)→ b] ∧m) > 0
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6. A(a ∧m, (b→ c) ∧m) > 0⇔ A(b ∧m, (a→ c) ∧m) > 0

Proof. 1. SinceA(b, a→ b) > 0, A(m,m) > 0. Then,A(b ∧m, (a→ b) ∧m) > 0.

2. A(a ∧m, b ∧m) > 0

⇒ A(a→ (a ∧m), a→ (b ∧m)) > 0

⇒ A((a→ a) ∧ (a→ m), (a→ b) ∧ (a→ m)) > 0.

⇒ A(m ∧ (a→ m), a→ (b ∧m)) > 0

⇒ A(m, a→ (b ∧m)) > 0[Since a→ m = m,[By Theorem 6.2.1]

But A((a→ b) ∧m,m) > 0.

Anti symmetry property gives (a→ b) ∧m = m.

Conversely,A((a→ b) ∧m,m) = 1, A(a, a) > 0.

⇒ A(a ∧ (a→ b) ∧m), a ∧m) = 1

⇒ A(a ∧ b ∧m, a ∧m) = 1.

⇒ A(a ∧m ∧ b ∧m, a ∧m) = 1.

⇒ A(a ∧m, b ∧m) > 0.[ Lemma 6.2.2]

3. Assume that A(a ∧ b ∧m, a ∧ c ∧m) = 1 > 0.

By (2) A(a→ (a ∧ b ∧m), a→ (a ∧ c ∧m)) > 0. Hence A((a→ b) ∧m, (a→

c) ∧m.) > 0

Conversely, assume that A((a→ b) ∧m, (a→ c) ∧m) > 0.

A(a ∧ (a→ b) ∧m, a ∧ (a→ c) ∧m) > 0.

Hence A(a ∧ b ∧m, a ∧ c ∧m) > 0.

4. Assume A(a ∧ c ∧m, b ∧m) > 0.

⇒ A(a→ (a ∧ c ∧m), a→ (b ∧m)) > 0.

⇒ . A( a→ (c ∧m), (a→ b) ∧ (a→ m)) > 0.

⇒ A((a→ c) ∧m, (a→ b) ∧m) > 0 [Theorem 6.2.3]

⇒ A(c ∧m, (a→ b) ∧m) > 0[By 1 above]

This gives A(a ∧ (c ∧m), a ∧ (a→ b) ∧m) > 0.

114



And hence A(a ∧ c ∧m, a ∧ b ∧m) > 0.

Thus, A(a ∧ c ∧m, b ∧m) > 0.

5. Now A(a ∧ (a→ b) ∧m, a ∧ b ∧m) > 0

⇒ A(a ∧ (a→ b) ∧m, b ∧m) > 0

⇒ A((a→ b) ∧ a ∧m, b ∧m) > 0

⇔ A(a ∧m, [(a→ b)→ b] ∧m) > 0

6. Assume that A(a ∧m, (b→ c) ∧m) > 0.

⇒ A(b ∧ a ∧m, b ∧ (b→ c) ∧m) > 0

⇒ A(b ∧ a ∧m, b ∧ c ∧m) > 0 and A(b ∧ c ∧m, c ∧m) > 0

⇒ A(b ∧ a ∧m, c ∧m) > 0

Therefore, A(b ∧m, (a→ c) ∧m) > 0.

Conversely,assume A(b ∧m, (a→ c) ∧m) > 0

⇒ A(a ∧ b ∧m, a ∧ (a→ c) ∧m) > 0

⇒ A(a ∧ b ∧m, a ∧ c ∧m) > 0

⇒ A(a ∧ b ∧m, c ∧m) > 0

⇒ A(b ∧ a ∧m, c ∧m) > 0

Thus, A(a ∧m, (b→ c) ∧m) > 0

6.3 Charaterization of HADFL

Definition 6.3.1. Let (H,A) be an HADFL and a ∈ H,then the principal ideal

generated by a is denoted by (a]A and is equal to {x ∈ H : A(x, a ∧ x) > 0}

Lemma 6.3.2. If (a] ⊆ (b],then (a]A ⊆ (b]A,for all a, b ∈ H.

Lemma 6.3.3. a ∈ (b]⇔ A(a, b ∧ a) > 0.
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Lemma 6.3.4. Let a, b ∈ H and (H,A) be an HADFL,then the following are equiv-

alent.

1. (a]A ⊆ (b]A

2. A(a, b ∧ a) > 0

3. A(a ∧ x, b ∧ x) > 0,∀x ∈ H

Proof. Follows from the above two lemmas

Theorem 6.3.5. Let (H,A) be an ADFL with 0 and a maximal element m,then

(H,A) is an HADFL iff (PI(H),A) is a FHA .

Proof. Suppose (H,A) be an HADFL.Then (PI(H),A) is a distributive fuzzy lat-

tice.For any x, y ∈ H ,define (x] → (y] = (x → y].If (a] = (b],and (c] = (d].Then

A(b, a ∧ b) > 0, A(a, b ∧ a) > 0, A(d, c ∧ d) > 0, A(c, d ∧ c) > 0.

Consider A(b→ d, (b→ c) ∧ (b→ d))

= A(b→ d, ((b ∨ a)→ c) ∧ (b→ d))

= A(b→ d, (b→ c) ∧ (a→ c) ∧ (b→ d))

> 0.Again A((b→ c) ∧ (a→ c) ∧ (b→ d), (a→ c) ∧ (b→ d)) > 0

⇒ A(b→ d, (a→ c) ∧ (b→ d)) > 0 and A((a→ c) ∧ (b→ d), b→ d)) > 0.

⇒ A(b→ d, (a→ c) ∧ (b→ d)) > 0.By lemma 6.3.3,we have (a→ c] ⊆ (b→ d],by

symmetry,(b → d] ⊆ (a → c].Thus, (a → c] = (b → d] Therefore,” → ” is well

defined on PI(H).By theorem on FHA,a bounded distributive fuzzy lattice is a

FHA.Conversely,assume PI(H) is a FHA.For a, b ∈ H,define a → b = c ∧m,where

(a] → (b] = (c] for some c ∈ H.Let (s] = (t] for some s, t ∈ H.Then A(s ∧ t, t) >

0, A(t, s ∧ t) > 0, A(s, t ∧ s) > 0 and A(t ∧ s, s) > 0

⇒ A(s ∧m, t ∧ s ∧m) > 0

⇒ A(s ∧m, s ∧ t ∧m) > 0.

But A(t ∧ s ∧m, s ∧m) > 0

⇒ t ∧ s ∧m = s ∧m[ since antisymmetry]
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⇒ s ∧ t ∧m = s ∧m

⇒ t ∧m = s ∧m

Thus the binary operation ” → ” is well defined.Let a, b, c ∈ H. We prove that

(H,A) is HADFL.

(1) Since (a]→ (a] = (m].Then we get a→ a = m ∧m

⇒ a→ a = m

⇒ A(m, a→ a) > 0

(2) Let (a]→ (b] = (c] .Then (a→ b) ∧ b = c ∧m ∧ b = c ∧ b = b.

Thus,A((a→ b) ∧ b, b) > 0.

(3) Since (a]→ (b] = (c].Then (a] ∧ (c] = (a] ∧ ((a]→ (b])

⇒ (a ∧ c] = (a ∧ b].Now (a ∧ (a→ b)) = a ∧ c ∧m = a ∧ b ∧m

⇒ A(a ∧ (a→ b), a ∧ b ∧m) > 0. And A(a ∧ b ∧m, a ∧ (a→ b)) > 0

(4) Let (a] → (c] = (t] and (b] → (c] = (s].Then a → c = t ∧ m and b → c =

s∧m.Consider,(a∨ b]→ (c]=((a]∨ (b])→ (c] = ((a]→ (c])∧ ((b]→ (c])=(t]∧ (s] =

(t ∧ s].

⇒ (a ∨ b)→ c = t ∧ s ∧m = t ∧m ∧ s ∧m = (a→ c) ∧ (b→ c)

A((a ∨ b)→ c, (a→ c) ∧ (b→ c)) > 0 and A((a→ c) ∧ (b→ c), (a ∨ b)→ c) > 0

(5) similar to (4) we can prove that A(a → (b ∧ c), (a → c) ∧ (a → c)) > 0 and

A((a→ c) ∧ (a→ c), a→ (b ∧ c)) > 0.Thus,(H,A) is an HADFL.

Now, we give another characterization for an HADFL to become a FHA.

Theorem 6.3.6. Let (H,A) be an HADFL.Then (H,A) is a FHA iff for any a ∈

H, θa = {(x, y) ∈ H ×H : A(a, (x→ y)∧ (y → x)) > 0}is a congruence relation on

H.

Proof. Assume that (H,A) is a FHA and a ∈ H.

1. θa is reflexive. SinceA(a, (a → a) ∧ (a → a)) = A(a,m) > 0 [ as m maximal

in H] Thus,(a, a) ∈ θa
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2. θa is symmetric. Let (x, y) ∈ θa.

Then A(a, (x→ y) ∧ (y → x)) > 0.

⇒ A(a, (y → x) ∧ (x→ y)) > 0.[Hypothesis]

3. θa is transitive.Let x, y, z ∈ H such that (x, y) ∈ θa, (y, z) ∈ θa,then A(a, (x→

y) ∧ (y → x)) > 0 and A(a, (y → z) ∧ (z → y)) > 0.

⇒ A(a, (x→ y) ∧ (y → x) ∧ (y → z) ∧ (z → y)) > 0. *[ Lemma 1.2.4]

θa is transitive Since , x ∧ (x → y) ∧ (y → z) = x ∧ y ∧ z ≤ z,we have

A(x ∧ (x→ y) ∧ (y → z), z) > 0.

⇒ A((x→ y) ∧ (y → z), x→ z) > 0. **[From Definition of FHA]

Similarly,Again z ∧ (z → y) ∧ (y → x) = z ∧ y ∧ x ≤ x,we have A(z ∧ (z →

y) ∧ (y → x), x) > 0.

⇒ A((z → y) ∧ (y → x), z → x) > 0 ***

From ** and ***, we have A((x → y) ∧ (y → z) ∧ (z → y) ∧ (y → x), (x →

z) ∧ (z → x)) > 0 ****.

Thus, from * and **** we have A(a, (x→ z) ∧ (z → x)) > 0.

Therefore,(x, z) ∈ θa
From (1),(2)and (3) θa is an equivalence relation on H.

4. θa is a congruence relation.

Since A(x ∧ d, x) > 0 and A(y ∧ d, y) > 0,we have A(x→ y, (x ∧ d)→ y) > 0

and A(y → x, (y ∧ d)→ x) > 0.

⇒ A((x → y) ∧ (y → x), (x ∧ d) → y) ∧ (y ∧ d) → x)) > 0.But A(a, (x →

y) ∧ (y → x)) > 0. This gives A(a, (x ∧ d) → y) ∧ (y ∧ d) → x)) > 0.

Thus,(x ∧ d, y ∧ d) ∈ θa.

By similar argument,we can show that (x ∨ d, y ∨ d) ∈ θa.Now, A(x ∧ (x →

y) ∧ (y → d), d) > 0.

This implies A((x→ y) ∧ (y → d), (x→ d)) > 0.

⇒ A((x→ y), (y → d)→ (x→ d)) > 0.
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Also by symmetry,A((y → x), (x→ d)→ (y → d)) > 0.

⇒ A((x→ y) ∧ (y → x), ((y → d)→ (x→ d)) ∧ ((x→ d)→ (y → d))) > 0...

*1

Using A(a, (x → y) ∧ (y → x)) > 0 and *1 we have A(a, (y → d) → (x →

d)) ∧ ((x → d) → (y → d))) > 0.Thus,(x → d, y → d) ∈ θa.Similarly one can

show that (d→ x, d→ y) ∈ θa.Hence the result.

Conversely,assume that H is an HADFL in which θa is a congruence relation

on H for all a ∈ H.Now for any a ∈ H, (a, a) ∈ θa,we get A(a, a→ a) > 0.This

implies A(a,m) > 0

(H,A) is a distributive fuzzy lattice and hence it is a FHA.(By Theorem

2.1.26).Finally summing up all the characterization of an HADFL (H,A) to

become a FHA.We state the following theorem.

Theorem 6.3.7. In an HADFL (H,A),the follwing are equivalent

1. (H,A) is FHA.

2. (H,A) is a distributive fuzzy lattice.

3. The fuzzy poset (H,A) is directed above fuzzy poset.

4. For a, b, c ∈ H,A(a ∧ c, b) > 0⇔ A(c, a→ b) > 0

5. A(b, a→ b) > 0,for all a, b ∈ H

6. θa = {(x, y) ∈ H ×H : A(a, (x→ y)∧ (y → x)) > 0} is a congruence relation

on H,∀a ∈ H
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6.4 Congruence Relation on Heyting Almost

Distributive Lattice

In this section,to each implicative filter F of H,we define a congruence relation θF

on H and prove that for any implicative filter F of H,the quotient H/θF is always an

HADL with least and greatest element.Moreover; we also proved that if F and F
′

be any two filters of HADLs H1 and H2 respectively,then for any homomorphism

φ:H1 → H2 such that φ(F )⊆ F
′
, there exists a homomorphism f : H1/θF → H2/θF ′

such that f ◦ h = k ◦ φ where h : H1 → H1/θF and k : H2 → H2/θF ′ denote the

canonical epimorphisms.Further if φ is a monomorphism and if φ(F ) = F
′
,then f is

a monomorphism. If φ is an epimorphism,then f is an epimorphism

Lemma 6.4.1. [37] Let (H,∨,∧,→ 0,m) be an HADL. Then, for x, y, z, c ∈ H,

the following hold.

(i)(x→ z) ∧ c = (x ∧ c→ z ∧ c) ∧ c

(ii) x ∧ c = y ∧ c⇒ (x→ z) ∧ c = (y → z) ∧ c

(iii)x ∧ c = y ∧ c⇒ (z → x) ∧ c = (z → y) ∧ c.

Theorem 6.4.2. Let (H,∨,∧,→, 0,m) be an HADL and F be an implicative filter

of H. Define θF = {(x, y) ∈ H × H : x ∧ c = y ∧ c; for some c ∈ F}. Then θF is

a congruence relation on H and is the smallest congruence on H containing F in a

single equivalent class.

Proof. Clearly θF is an equivalence relation on H. Let (x, y) ∈ θF and d ∈ H. Then

x∧c = y∧c for some c ∈ F and x∧d∧c = d∧x∧c = d∧y∧c = y∧d∧c. This implies

(x∧d, y∧d) ∈ θF . Also (d∧x, d∧ y) ∈ θF by a similar argument.Now from lemma

6.4.1 we have (x→ d) ∧ c = [x ∧ c→ d ∧ c] ∧ c = [y ∧ c→ d ∧ c] ∧ c = (y → d) ∧ c.

This implies (x→ d, y → d) ∈ θF . Similarly (d→ x, d→ y) ∈ θF
Let α be a congruence relation on H containing F in a single equivalent class.Let

(x, y) ∈ θF .then there exists a ∈ F such that x ∧ a = y ∧ a.Now a ∈ F implies
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x∨a ∈ F so that (a, x∨a) ∈ α which shows that (x∧a, x) ∈ α.Similarly (y∧a, y) ∈ α

and hence (x, y) ∈ α. Thus the theorem follows.

Corollary 6.4.3. For any a ∈ H, θa = {(x, y) ∈ H × H : x ∧ a = y ∧ a} is a

congruence relation on H

Proof. Observe that θa = θ[a)

Notation: H/θF = {θF [x] : x ∈ H} where θF [x] ={y : (x, y) ∈ θF}

Theorem 6.4.4. H/θF is a HADL under the binary operations defined by θF [x→

y] = θF [x]→ θF [y], θF [x ∧ y] = θF [x] ∧ θF [y],θF [x ∨ y] = θF [x] ∨ θF [y].

Proof. First let us show that the above binary operations are well defined. Assume

θF [x] = θF [x
′
]and θF [y] = θF [y

′
], x, x

′
, y, y

′ ∈ H.We claim to show that θF [x ∨ y] =

θF [x
′ ∨ y′ ],θF [x ∧ y] = θF [x

′ ∧ y′ ],θF [x → y] = θF [x
′ → y

′
].Clearly,x ∈ θF (x)

which implies x ∈ θF [x
′
] and then (x, x

′
) ∈ θF .Similarly (y, y

′
) ∈ θF .Hence (x ∧

y, x
′ ∧ y′) ∈ θF , (x ∨ y, x′ ∨ y′) ∈ θF , (x → y, x

′ → y
′
) ∈ θF .This implies that

θF [x ∧ y] = θF [x
′ ∧ y′ ],θF [x ∨ y] = θF [x

′ ∨ y′ ],θF [x → y] = θF [x
′ → y

′
] Hence,the

binary operations are well defined.It can be easily verified that H/θF is HADL with

least element θF [0] and maximal element θF [m], 0,m ∈ H.

Proposition 6.4.5. For any filter F of H,the quotient HADL H/θF is always a

distributive lattice with greatest element.

Proof. Let a ∈ F .Then,for any x ∈ H, x∨a ∈ F so that (a, x∨a) ∈ θF .Thus,θF (x) ≤

θF (a) for all x ∈ H.Hence ,H/θF is a distributive lattice with greatest element

θF (a)

Lemma 6.4.6. Let H be a HADL.Then the canonical map h : H → H/θF defined

by h(x) = θF [x], x ∈ H is a homomorphism.
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Theorem 6.4.7. Let F and F
′

be any two filters of HADLs H1 and H2 resp.Then for

any homomorphism φ:H1 → H2 such that φ(F ) ⊆ F
′
, there exists a homomorphism

f : H1/θF → H2/θF ′ such that f ◦ h = k ◦ φ where h : H1 → H1/θF and k : H2 →

H2/θF ′ denote the canonical epimorphisms.Further

(i.)if φ is a monomorphism and if φ(F ) = F
′
,then f is a monomorphism.

(ii.)If φ is an epimorphism,then f is an epimorphism.

Proof. Define f : H1/θF → H2/θF ′ by f(θF [x]) = θF ′ [φ(x)].

Let θF [x] = θF [y], x, y ∈ H1.

Then (x, y) ∈ θF
⇒ x ∧ c = y ∧ c, c ∈ F

⇒ φ(x ∧ c) = φ(y ∧ c)

⇒ φ(x) ∧ φ(c) = φ(y) ∧ φ(c)

⇒ (φ(x), φ(y)) ∈ θF ′ ,as φ(c) ∈ F ′

θF ′ [φ(x)] = θF ′ [φ(y)].

⇒ f(θF [x]) = f(θF [y]).

Hence,f is well defined.

Let x, y,∈ F.f(θF [x]) → θF [y]) = f(θF [x → y]) = θF ′ [φ(x → y)] = θF ′ [φ(x) →

φ(y)] = θF ′ [φ(x)] → θF ′ [φ(y)] = f(θF [x]) → f(θF [y]) Similarly, we can prove

congruence relations θF ′ [φ(x)]∧θF ′ [φ(y)] = f(θF [x])∧f(θF [y]),θF ′ [φ(x)]∨θF ′ [φ(y)] =

f(θF [x])∨ f(θF [y]) for all x, y ∈ H1. Hence f is a homomorphism.Now f ◦ h : H1 →

H2/θF ′ and for any x ∈ H1. we have [f ◦ h](x) = f(h(x)) = f(θF [x]) = θF ′ [φ(x)].

Again k ◦ φ : H1 → H2/θF ′ and for any x ∈ H1, we have [k ◦ φ](x) = k(φ(x)) =

θF ′ [φ(x)].Hence [f ◦ h](x) = [k ◦ φ](x), ∀x ∈ H1. This shows that f ◦ h = k ◦ φ.

(i.) Let φ be a monomorphism and let φ(F ) = F
′
. Let f(θF [x]) = f(θF [y] ) for some

x, y ∈ H1. Then θF ′ [φ(x)] = θF ′ [φ(y)] ⇒ (φ(x), φ(y)) ∈ θF ′ ⇒ φ(x) ∧ t = φ(y) ∧ t,

for some t ∈ F ′ ⇒ φ(x) ∧ φ(c) = φ(y) ∧ φ(c), for some s ∈ F (since φ(F ) = F
′
)

⇒ φ(x ∧ c) = φ(y ∧ c) (since φ is a monomorphism) ⇒ x ∧ c = y ∧ c. ⇒ (x, y) ∈

θF ⇒ θF [x] = θF [y]. This shows that f is one-one.
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(ii.) Let φ be an epimorphism. Let θF ′ [y] ∈ H2/θF ′ .As φ : H1 → H2 is onto and

y ∈ H2, φ(x) = y for some x ∈ H1. Thus,θF [x] ∈ H1/ θF and θF [f(x)] = θF ′ [φ(x)]

= θF ′ [y]. This shows that f is an epimorphism.

6.5 Ordered Fuzzy Filter of HADL

Definition 6.5.1. [19] Let m be a maximal element of H and F a non-empty subset

of H. Then F is an ordered filter of H if and only if it satisfies the following properties.

(i) m ∈ F

(ii) x ∈ F, x→ y ∈ F imply y ∈ F for all x, y ∈ H

Definition 6.5.2. [19] Let m be a maximal element of a HADL H. For any a, b, c ∈

H, the following conditions hold:

(1)(a→ (b→ c)) ∧m = ((a→ b)→ (a→ c)) ∧m.

(2)(a→ b) ∧m = (b→ c) ∧m = m implies that (a→ c) ∧m = m.

Let F be a nonempty subset of H. Then the smallest filter containing F is called

the filter generated by F and denoted by < F >. Then the following theorem

explains about the description of elements of < F >.

Theorem 6.5.3. [19] Let m be a maximal element of H. For any nonempty subset F

of H, we have < F >= {x ∈ H : ((a1∧a2∧...∧an)→ x)∧m = m; a1, a2, ..., an ∈ F}.

Example 6.5.4. Let H be a discrete ADL with 0 and with at least two elements. Fix

m( 6= 0) ∈ H and define for any x, y ∈ H.

x→ y =

 0 if x 6= 0,y = 0;

m if x 6= y;

Then clearly (L,∨,∧,→, 0,m) is an HADL and {m}is an ordered filter in H.
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Lemma 6.5.5. Let H be a HADL with a maximal element m. A non-empty subset F

of H is called an ordered filter if it satisfies the following conditions for all x, y ∈ H:

(1) x, y ∈ F implies x ∧ y ∈ H

(2) x ∈ F and x ∧m ≤ y ∧m imply y ∈ F

Let F be an ordered filter of an HADL H. Then choose x ∈ F . Since x ∧m ≤

m = m ≤ m by the condition (ii), we get that m ∈ F . The following Lemma

can help us to understand the relation between a filter and an ordered filter of an

HADL.

Lemma 6.5.6. [4] Let m be a maximal element of a HADL H. Then every filter of

H is an ordered filter.

Definition 6.5.7. Let µ be a fuzzy subset of H and m a maximal element.Then µ is

called an ordered fuzzy filter iff it satisfies the following conditions for all x, y ∈ H.

(i)µ(m) ≥ µ(x), ∀x ∈ H

(ii)µ(y) ≥ µ(x→ y) ∧ µ(x)

Proposition 6.5.8. Let H be an HADL and µ ordered fuzzy filter of H,then for any

x, y ∈ H, x ≤ y ⇒ µ(x) ≤ µ(y)

Proof:Suppose x ≤ y by definition 6.5.7,we have µ(y) ≥ µ(m)∧µ(x) = µ(x). Hence,

µ(x) ≤ µ(y)

Lemma 6.5.9. µ be an ordered fuzzy filter of H iff µt={x ∈ H : µ(x) ≥ t} is a

level ordered filter of µ,t ∈ [0, 1]

Proof. Suppose µ is an ordered fuzzy filter and µ(x) = t, t ∈ imµ.S By hypoth-

esis µ(m) ≥ µ(x) ≥ t.Hence, m ∈ µt. Suppose x ∈ µt and x → y ∈ µt.Then

µ(x) ≥ t and µ(x → y) ≥ t and so µ(y) ≥ µ(x → y) ∧ µ(x) ≥ t.Thus, y ∈

µt.Conversely,assume µt is an ordered filter.Then m ∈ µt ,t ∈ imµ.Take t =

µ(x),then µ(m) ≥ µ(x) for all x ∈ µt. Let r = µ(x) and µ(x → y)= s. Take
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t = r ∧ s.Since y ∈ µt, we have µ(y) ≥ t = µ(x) ∧ µ(x → y). Hence, the result

follows.

Definition 6.5.10. Let χS denote the characteristic function of any subset S of an

HADL H.i.e

χS(x) =

 m if x ∈ S;

0 if x ∈ S;

Theorem 6.5.11. A non empty subset F of H is an ordered filter iff χF is an

ordered fuzzy filter.

Proof. Suppose that F is an ordered filter of H,then χF (m) = m and χF (x) = m

for all x ∈ F

m ≥ m⇒ χF (m) ≥ χF (x) .For any x, y ∈ H , x → x = m. Since x, x → y ∈ F ⇒

y ∈ F , χF (x) = m and χF (x→ y) = m. But m ≥ m ∧m

⇒ χF (y) ≥ χF (x)∧χF (x→ y).Conversely, assume χF is an ordered fuzzy filter.We

claim to show that F is an ordered filter.χF (m) ≥ χF (x) if x ∈ F, χF (x) = m.This

implies m ≤ χF (m) ≤ m.Thus χF (m) = m.Therefore, m ∈ F

Since x ∈ F and x→ y ∈ F ,we have x ∧ (x→ y) ∈ F .This gives x ∧ y ∈ F .But in

an HADL,we have x ∧ y ≤ y.By proposition 6.5.8,we have χF (x ∧ y) ≤ χF (y).This

gives m ≤ χF (y) ≤ m.Thus,χF (y) = m.Therefore, y ∈ F

Theorem 6.5.12. Let µ and θ be two ordered fuzzy filters of an HADL H.Then

µ ∩ θ is also an ordered fuzzy filter.

Proof. (µ ∩ θ)(m) = µ(m) ∧ θ(m) ≥ µ(x) ∧ θ(x) = µ ∩ θ(x).

Also (µ ∩ θ)(y) = µ(y) ∧ θ(y) ≥ µ(x→ y) ∧ µ(x) ∧ θ(x→ y) ∧ θ(x)=

µ(x→ y) ∧ θ(x→ y) ∧ µ(x) ∧ θ(x)=(µ ∩ θ)(x→ y) ∧ (µ ∩ θ)(x)

Hence,the result follows

Lemma 6.5.13. Let H be an HADL and µ be an ordered fuzzy filter of H. If x ≤ y,

then µ(x) ≤ µ(y). Moreover µ(x ∧ y) ≤ min {µ(x), µ(y)} for all x, y ∈ H
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Proof. If x ≤ y, then x→ y = m. µ(y) ≥ min{µ(x→ y), µ(x)}

=min{µ(m), µ(x)} = µ(x)⇒ µ(x) ≤ µ(y).

Since x∧ y ≤ x implies µ(x∧ y) ≤ µ(x) and x∧ y ≤ y implies µ(x∧ y) ≤ µ(y),thus

µ(x ∧ y) ≤ min {µ(x), µ(y)}.

Lemma 6.5.14. Let µ be a fuzzy subset of H in the sense of the above lemma.Then

every ordered fuzzy filter of an HADL H is fuzzy prime ideal of H if µ(x∧y) = Max

{µ(x), µ(y)} for all x, y ∈ H.

Proof. µ(x ∧ y) ≥ µ(x→ (x ∧ y)) ∧ µ(x)

≥ µ(m) ∧ µ(x)

= µ(x).But from the above,we have µ(x ∧ y) ≤ µ(x) Thus,µ(x ∧ y) = µ(x)

Similarly,µ(x ∧ y) = µ(y). Hence,µ(x ∧ y) = µ(x) ∨ µ(y)

Hence, the Definition 4.0.3 of fuzzy prime ideal is satisfied.

Let µ and θ be any two ordered fuzzy filters of a HADL H. The product µoθ of

µ and θ is defined by (µoθ)(x)=supx=∨(yi→zi), i <∞(min(min(µ(yi), θ(zi)))).

It can be verfied that µoθ is an ordered fuzzy filter of H.

Theorem 6.5.15. If f is an homomorphism from an HADL H onto an HADL

H
′
,then for each ordered fuzzy filters µ of H,f(µ) is an ordered fuzzy filter of H

′
;

and for each ordered fuzzy filter µ
′

of H,f−1(µ
′
) is an ordered fuzzy filter of H.

Proof. Similar to Theorem 4.1.3

Definition 6.5.16. Let µ, and θ be any two ordered fuzzy filters of an HADLH.The

join (µ ∨ θ) of µ and θ is defined by (µ ∨ θ)(x)=supx=y∨z(min(µ(y), θ(z))),where

x, y, z ∈ H.

Theorem 6.5.17. The fuzzy subset µ(x) = Sup{k ∈ [0, 1] : x ∈ µk} is an ordered

fuzzy filter

Proof. Straightforward from the definition of ordered fuzzy filter

126



Let µ and θ be a fuzzy subsets of H.The cartesian product of µ and θ is defined

by (µ× θ)(x, y) = min(µ(x), θ(y)),∀x, y ∈ H.

Theorem 6.5.18. Let µ and θ be an ordered fuzzy filters of an HADL H,then µ×θ

is an ordered fuzzy filters of H ×H

Proof. Since µ and θ are ordered fuzzy filters,we have,

(i) µ× θ(m,m) = µ(m) ∧ θ(m) ≥ µ(x) ∧ θ(y) = µ× θ(x, y) for all x, y ∈ H

(ii) µ(y)∧θ(y) ≥ µ(x→ y)∧µ(x)∧θ(x→ y)∧θ(x) = µ×θ(x→ y)∧(µ×θ)(x).,x, y ∈

H.

Hence, it is an ordered fuzzy filter.

Let < µ > (x) = Sup{µ(x) : A((a1 ∧ a2 ∧ a3 ∧ ... ∧ an) → x,m) > 0)} for all

x,m, a1, ..., an ∈ H.

Lemma 6.5.19. Let A be a fuzzy relation of H and µ is an ordered fuzzy filter,then

< µ > is an ordered fuzzy filter

Proof. (i).By definition,6.5.7, we have

< µ > (m) = sup{µ(m) : A((a1 ∧ a2 ∧ a3 ∧ ... ∧ an) → m,m) > 0)} for all

x,m, a1, ..., an ∈ H.

=Sup{µ(m) : A(m,m) > 0)} ≥ sup{µ(x) : A((a1 ∧ a2 ∧ a3 ∧ ... ∧ an) → x,m) >

0)} ≥< µ > (x) for all x,m, a1, ..., an ∈ H.

(ii)y ≤ x→ y ⇒ µ(x→ y) ≥ µ(y) ≥ µ(x→ y) ∧ µ(x)

Taking sup overall y ∈ H, Sup{µ(y) : A((a1 ∧ a2 ∧ a3 ∧ ... ∧ an) → y,m) > 0)} ≥

Sup{µ(x → y) : A((a1 ∧ a2 ∧ a3 ∧ ... ∧ an) → (x → y),m) > 0) ∧ Sup{µ(x) :

A((a1 ∧ a2 ∧ a3 ∧ ... ∧ an)→ x,m) > 0)}}

Hence,< m > (y) ≥< µ > (x→ y)∧ < µ > (x)

Therefore,< µ > is an ordered fuzzy filter
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6.6 Qutioent HADL Induced by Fuzzy

Congruence Relations

In this section, we introduce the concept of implicative fuzzy filters in an HADL

and study some important properties of implicative fuzzy filters. This concept was

studied in the class of Heyting algebra by J. Picardo, A. Pultur and A. Tozzi in

[12]under the name ideals. The following definition of left(right) filter of an HADL

is direct from defnition of left(right) filter of an ADL in [18]. Let us collect some of

the definitions from [1]

Definition 6.6.1. Let (H,∨,∧,→, 0,m) be an HADL and F be a non-empty subset

of H. Then F is called a right(left) filter of H if

(1) x, y ∈ F ⇒ x ∧ y ∈ F

(2) x ∈ F, a ∈ H ⇒ x ∨ a ∈ F, (a ∨ x ∈ F )

Definition 6.6.2. A non-empty subset F of H is said to be an implicative filter if

(1) s, t ∈ F V s ∧ t ∈ F

(2) s ∈ F, a ∈ H ⇒ a→ s ∈ F.

Definition 6.6.3. Let (H,∨,∧,→, 0,m) be an HADL.A fuzzy equivalence relation

on H is called a fuzzy congruence relation if ∀, x, y, z, t ∈ H. satisfies definition

2.1.7. If A is a FCR of H,then H/A is a HADL under binary operations defined by

Ax∨Ay = Ax∨y,Ax∧Ay = Ax∧y and Ax → Ay = Ax→y.The structure (H/A,∨,∧,→

, A0, Am) is a Quotient HADL.

Definition 6.6.4. Let (H/A,∨,∧,→, A0, Am) and (H
′
/A
′
,∨,∧,→, A′0, A

′
m) is said

to be a homomorphism of H/A, H
′
/A
′
.Then a mapping α : H/A → H

′
/A
′

is said

to be a homomorphism of H/A into H
′
/A
′

iff for any Ax, Ay ∈ H/A the following

hold.

1. α(Ax ∧ Ay) = α(Ax) ∧ α(Ay)
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2. α(Ax ∨ Ay) = α(Ax) ∨ α(Ay)

3. α(Ax → Ay) = α(Ax)→ α(Ay)

4. α(A0) = A
′

0′

If α : H/A → H
′
/A
′

is a homomorphism,then α(Am) = A
′

m′ .An onto homomor-

phism α : H/A → H
′
/A
′

is said to be an epimorphism. is called an isomorphism

from H/A onto H
′
/A
′
. 4 is the consequence of 1.

If we define α : H/A→ H
′
/A
′

by α(Ax) = A
′

m′
,then α satisfies (1),(2),(3) but not

(4).

Definition 6.6.5. Let (H/A,∨,∧,→, A0, Am) and (H
′
/A
′
,∨,∧,→, A′0, A

′
m) be two

QHADLs.Let α : H/A → H
′
/A
′

be a homomorphism from H/A into H
′
/A
′
.Then

we define the kernel of α by ker α = {Ax ∈ H/A : α(Ax) = A
′

m′
}.Now we have the

following theorem.

Theorem 6.6.6. Let (H/A,∨,∧,→, A0, Am) and (H
′
/A
′
,∨,∧,→, A′0, A

′
m) be two

QHADLs.Let α : H/A → H
′
/A
′

be a homomorphism from H/A into H
′
/A
′
.Then

the kernel of α is a quotient right filter as well as quotient implicative filter induced

by A and A
′
=

Proof. Let Ax and Ay ∈ Kerα. Then by definition of Ker α we have, α(Ax) =

α(Ay) = A
′

m′
.This implies α(Ax ∧ Ay) = α(Ax) ∧ α(Ay)=A

′

m′
∧ A′

m′
= A

′

m′
and

hence α(Ax ∧ Ay) = α(Ax∧y) = A
′

m′
.Thus Ax∧y ∈ kerα.

Assume Ax ∈ ker α and Aa ∈ H/A, then α(Ax) = A
′

m′
and α(Ax ∨ Aa) = α(Ax) ∨

α(Aa)=A
′

m′
.α(Ax ∨ Aa) = α(Ax∨a) = A

′

m′
. Hence Ax∨a = Ax ∨ Aa ∈ Kerα. Also,

α(Aa → Ax) = α(Aa) → α(Ax)=α(Aa) → A
′

m′
= A

′

m′
[Since Ax → Am = Ax→m =

Am.]

Hence, Aa → Ax ∈ kerα
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Theorem 6.6.7. Let φ : H/A→ H
′
/A
′

be an epimorphism from an QHADL H/A

onto an QHADL H
′
/A
′
.

(1) If F/A is quotient implicative filter in H/A, then φ(F/A) is a quotient implica-

tive filter in H
′
/A
′

(2) If F/A is a quotient right filter in H/A, then φ(F/A) is a quotient right filter

in H
′
/A
′

(3) If G is is a quotient right filter( quotient implicative filter) in H
′
/A′, then φ−1(G)

is a quotient right filter( quotient implicative filter) in H/A.

Proof. 1.Clearly,φ(F/A) 6= ∅.Since F/A 6= ∅. Let φ(Ax) and φ(Ay) ∈ φ(F/A).Then

φ(Ax) ∧ φ(Ay)=φ(Ax∧y) ∈ φ(F/A).Since Ax∧y ∈ F/A.

Let φ(Ax) ∈ φ(F/A) and Ay ∈ H
′
/A
′
, y ∈ H

′
.Then ∃At ∈ H/A, t ∈ H such

that φ(At) = Ay.φ(At) → φ(Ax) = φ(At → Ax) = φ(At→x) ∈ φ(F/A).since

At→x ∈ F/A.Then φ(F/A) is a Quotient implicative filter in H
′
/A
′
.

2. Assume that F/A is a Quotient right filter in H/A,then for any Ax and Ay ∈

φ(F/A),then there exists Aa, Ab ∈ F/A such that Ax = φ(Aa), Ay = φ(Ab).Now

Ax∧y = φ(Aa) ∧ φ(Ab) = φ(Aa ∧ Ab) ∈ φ(F/A).

Now,Ax ∨ Ay = φ(Aa) ∨ φ(Ab)

= φ(Aa∨Ab) = φ(Aa∨b) ∈ φ(F/A).Since F/A is quotient right filter inH/A.Thus,φ(F/A)

is quotient right filter in H
′
/A
′
.

3. Assume that F
′
/A
′
is quotient right filter inH

′
/A
′
,then forAx, Ay ∈ φ−1(F

′
/A
′
),we

get φ(Ax), φ(Ay) ∈ F
′
/A
′
.Now φ(Ax ∧ Ay) = φ(Ax) ∧ φ(Ay) ∈ F

′
/A
′
.Thus Ax ∧

Ay ∈ φ−1(F
′
/A
′
).Let Ax ∈ φ−1(F

′
/A
′
) and Aa ∈ H/A.Then φ(Ax) ∈ F

′
/A
′

and

Ay = φ(Aa) ∈ H
′
/A
′
.Now φ(Ax) ∨ φ(Aa) = φ(Ax∨a) ∈ F

′
/A
′

and φ(Aa) →

φ(Ax) = φ(Aa→a) ∈ F
′
/A
′ ∈ F

′
/A
′
.Since F

′
/A
′

is a quotient right filter and

a quotient implicative filter in H
′
/A
′
.Thus Ax ∨ Aa ∈ φ−1(F

′
/A
′
). Aa → Ax ∈

φ−1(F
′
/A
′
).Therefore φ−1(F/A) is quotient right filter and quotient implicative fil-

ter H
′
/A
′

is a quotient implicative filter.
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Theorem 6.6.8. Let Am be a maximal element in H/A.Then for any

Aa ∈ H/A,A∗a = {(Ax → Aa) ∧ Am : Ax ∈ H/A}

is a quotient implicative filter.

Proof. Let Ax, Ay ∈ H/A.Then (Ax → Aa) ∧ Am, (Ay → Aa) ∧ Am ∈ A∗a.

Now,(Ax → Aa) ∧ Am ∧ (Ay → Aa) ∧ Am = (Ax → Aa) ∧ (Ay → Aa) ∧ Am
((Ax ∨ Ay)→ Aa) ∧ Am ∈ A∗a.

Let (Ax → Aa)∧Am ∈ A∗a, Ay ∈ H/A.Then Ay → [(Ax → Aa)∧Am] =[Ay → (Ax →

Aa)]∧ [Ay → Am]= [Ay ∧ (Ax → Aa)]∧ [Ay → Am]=[(Ay ∧Ax)→ Aa)]∧Am ∈ A∗a.

Thus,A∗a quotient implicative filter of H/A.

Definition 6.6.9. Let H/A is a QHADL with maximal element Am Then for any

Aa ∈ H/A, we define FAa = {Ax ∈ H/A : (Aa → Ax) ∧ Am = Ax ∧ Am}

FAa = {Ax ∈ H/A : Aa ∧ Am ⊆ Ax ∧ Am}

Lemma 6.6.10. FAa is Quotient implicative filter of H/A and FAa is a Quotient

filter.

Proof. Trivially, one can show that FAa is a quotient filter of H/A.We claim to show

that FAa is Quotient implicative filter.Let Ax and Ay such that

(Aa → Ax) ∧ Am = Ax∧m, (Aa → Ay) ∧ Am = Ay∧m.

Now,Ax∧Ay∧Am = Ax∧y∧m∧m=Ax∧m∧x∧m=Ax∧m∧Ay∧m=(Aa → Ax)∧Am∧(Aa →

Ay)∧Am=(Aa → Ax)∧ (Aa → Ay)∧Am=(Aa→x)∧ (Aa→y)∧Am=(Aa → (Ax→y))∧

Am.

Thus, Ax ∧ Ay ∈ FAa
Let Ax ∈ FAa and Ay ∈ H/A.Then by we have,(Aa → (Ay→x) ∧ Am = (Ay →

A(a→x))∧Am = A(y→(a→x)∧m)=Ay→(a→x)∧m=Ay→x∧Am and hence Ay→x ∈ FAa and

hence FAa is a quotient implicative filter of H.
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6.7 Implicative Fuzzy Filters of HADL

In this section,we introduce the concept of implicative fuzzy filters in an HADL and

study some important properties of implicative fuzzy filter.The concept Implicative

filter was studied in the class of Heyting ADL(HADL) in. [1]

Remark 6.7.1. The definitions of ideal(filter) fuzzy ideal(fuzzy filter) of a Heyting

algebra H is also similar to that of an HADL.

Definition 6.7.2. A fuzzy subset µ of H is said to be an implicative fuzzy filter if

1. µ(x ∧ y) ≥ µ(x) ∧ µ(y)

2. µ(x→ y) ≥ µ(x) ∨ µ(y),∀x, y ∈ H.

Lemma 6.7.3. If µ is a implicative fuzzy filter of H,then µt, t ∈ [0, 1] is an im-

plicative filter.

Proof. Suppose µ is an implicative fuzzy filter and let x, y ∈ µt.Then µ(x) ≥ t

and µ(y) ≥ t. µ(x) ∧ µ(y) ≥ t. Since µ is an implicative fuzzy filter µ(x ∧ y) ≥

µ(x) ∧ µ(y) ≥ t.This implies µ(x ∧ y) ≥ t.Hence x ∧ y ∈ µt.Next,x ∈ µt, Let

a ∈ H,µ(a) ≥ s, s ∈ [0, 1].Since a, x ∈ H,then a → x ∈ H.Also Let µ(x) = s and

µ(a) = r. Take t = min(s, r).

Then by hypothesis µ(a→ x) ≥ µ(a) ∨ µ(x) ≥ t, t = min(s, r) ∈ [0, 1].

Hence, a→ x ∈ µt is an implicative filter.

Conversely,Suppose µt is implicative filter.We claim to show that µ is implicative

fuzzy filter. Let x, y ∈ H. Then µ(x) = t1 and µ(y) = t2.Take t = min(t1, t2).

Then x ∧ y ∈ µt.This implies µ(x ∧ y) ≥ t = µ(x) ∧ µ(y).Similarly , Let µ(x) = r

and µ(y) = s.Then a → x ∈ µt,t = max(r, s).This implies µ(x → y) ≥ t.Hence

µ(x→ y) ≥ µ(x) ∨ µ(y).

Lemma 6.7.4. Every ordered fuzzy filter is an implicative fuzzy filter

Example 6.7.5. {m} is an implicative fuzzy filter.
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Example 6.7.6. Let µ be a fuzzy subset of an HADL H with 0 and with atleast two

elements.Fix m ( 6= 0) ∈ H.define a, b ∈ H

µ(a→ b) =

 m if a 6= 0, b = 0;

µ(m) otherwise.

Then µ is an implicative fuzzy filter

Proof. µ(a→ b) = m ≥ µ(a) ∨ µ(b)

µ(0 ∧m) ≥ µ(m)

Hence,µ implicative fuzzy filter.

But every fuzzy implicative filter can’t be an fuzzy filter in H.

Definition 6.7.7. Let H and H
′
be two HADLs. Let f : H → H

′
.then we say that

f is a homomorphism from H into H
′

if the following conditions are satisfied.

(1) f(x ∧ y) = f(x) ∧ f(y)

(2) f(x ∨ y) = f(x) ∨ f(y)

(3) f(x→ y) = f(x)→ f(y)

(4) f(0) = 0.

If µ is a fuzzy subset of H,then f(µ) is a fuzzy subset of H
′
. Define kernel of

f,denoted by ker f = {y ∈ H ′ : f(µ)(y) = m
′}

Lemma 6.7.8. Let f be an epimorphism from HADLs H into H
′

and µ is a fuzzy

filter of H.Then f(µ), Ker f is an implicative fuzzy filter.Moreover,f−1(µ) is an

implicative fuzzy filter.

Proof. (i.) Let x, y ∈ H ′ .(f−1(µ))(x ∧ y) =µ(f(x ∧ y)) = µ(f(x) ∧ f(y)) ≥

f−1(µ)(x) ∧ f−1(µ(y).

(ii.) Let x, y ∈ H ′ .(f−1(µ))(x→ y) =µ(f(x→ y)) ≥ µ(f(x) ∨ f(y)) ≥

f−1(µ)(x) ∨ f−1(µ(y).

(iii.) Let x, y ∈ H ′ .(f−1(µ))(x ∨ y) =µ(f(x ∨ y)) ≥ µ(f(x) ∨ f(y)) ≥
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(f−1(µ)(x) ∨ f−1(µ(y)).

Hence,(f−1(µ)) is a fuzzy filter it is an implicative fuzzy filter

Theorem 6.7.9. Let f : H → H
′

be an epimorphism from an HADL H onto H
′
,

then we have the following.

(i) If µ is ordered fuzzy filter (implicative fuzzy filter) of H,then f(µ) is a ordered

fuzzy filter(implicative fuzzy filter) of H
′

(ii)if θ is an implicative fuzzy filter (an ordered fuzzy filter) of H
′
,then f−1(θ) is an

implicative fuzzy filter (ordered fuzzy filter) H.

Proof. (i.) Clearly,f(µ) 6= 0,Since a, b ∈ H.

(f(µ))(0
′
) =

 Sup0∈f−1(0′ )(µ(0)) if f−1(0
′
) 6= ∅;

0 otherwise.

f−1(0
′
) 6= ∅ implies 0 ∈ f−1(0

′
) = f(0) = 0

′
.

ii.Let x
′

and y
′ ∈ H ′ .Then Since f is epimorphism there are x, y ∈ H such that

f(x) = x
′

,f(y) = y
′

(f(µ))(x
′ ∧ y′) =

 Supx∧y∈f−1(x′∧y′ )(µ(x ∧ y)) if f−1(x
′ ∧ y′) 6= ∅;

0 otherwise.

=

 Sup(µ(x ∧ y)) if f(x ∧ y) = x
′ ∧ y′ ;

0 otherwise.

≥

 Sup(µ(x) ∧ µ(y)) if f(x) = x
′

andf(y) = y
′
;

0 otherwise.

≥

 Supµ(x) if f(x) = x
′

0 otherwise.
∧

 Supµ(y) if f(y) = y
′

0 otherwise.

= f(µ)(x
′
) ∧ f(µ)(y

′
)
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ii.(f(µ))(x
′ → y

′
) =

 Supx→y∈f−1(x′→y′ )(µ(x→ y)) if f−1(x
′ → y

′
) 6= ∅;

0 otherwise.

=

 Sup(µ(x→ y)) if f(x→ y) = x
′ → y

′
;

0 otherwise.

≥

 Sup(µ(x) ∨ µ(y)) if f(x) = x
′

andf(y) = y
′
;

0 otherwise.

≥

 Supµ(x) if f(x) = x
′

0 otherwise.
∨

 Supµ(y) if f(y) = y
′

0 otherwise.

= f(µ)(x
′
) ∨ f(µ)(y

′
)

Hence,the theorem follows.

Theorem 6.7.10. Let m be a maximal element in H.Then for any a ∈ S ,where

S is a multiplicatively as well as implicatively closed subset of H.Then,Sa = {(x→

a) ∧m : x ∈ H} is an implicative filter

Let µ : Sa → [0, 1] define ψµ = Sup{µ(a) : (x → a) ∧m = (y → a) ∧m} such

that (x→ s) ∨ [(x→ t) ∧m] ≤ [x→ (t→ s)] ∧m for all s, t ∈ S,then we have the

following result.

Lemma 6.7.11. If µ is an ordered fuzzy filter(implicative fuzzy filter),then ψµ is a

(an ordered fuzzy filter) implicative fuzzy filter.

Proof. First we shall show that ψµ is implicative fuzzy filte.Assume s, t ∈ S ⊆

H.Then ψµ(s) = Sup{µ(s) : (x→ s) ∧m = (y → s) ∧m}

and ψµ(t) = Sup{µ(t) : (x→ t) ∧m = (y → t) ∧m}

ψµ(s)∧ψµ(t) = Sup{µ(s) : (x→ s)∧m = (y → s)∧m}∧Sup{µ(t) : (x→ t)∧m =

(y → t) ∧m}

=Sup{µ(s) ∧ µ(t) : (x→ s) ∧m ∧ (x→ t) ∧m = (y → s) ∧m ∧ (y → t) ∧m}

≤Sup{µ(s ∧ t) : (x → s) ∧ m ∧ (x → t) ∧ m = (y → s) ∧ m ∧ (y → t) ∧ m}
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=Sup{µ(s ∧ t) : (x→ s) ∧ (x→ t) ∧m = (y → s) ∧ (y → t) ∧m}

=Sup{µ(s∧ t) : (x→ (s∧ t))∧m = (y → (s∧ t))∧m}.[Since S is a multiplicatively

closed subset of H,s ∧ t ∈ S]

= ψµ(s ∧ t)

Similarly,let s, t ∈ S ⊆ H.Then ψµ(s) = Sup{µ(s) : (x→ s) ∧m = (y → s) ∧m}

and ψµ(t) = Sup{µ(t) : (x→ t) ∧m = (y → t) ∧m}

ψµ(s)∨ψµ(t) = Sup{µ(s) : (x→ s)∧m = (y → s)∧m}∨Sup{µ(t) : (x→ t)∧m =

(y → t) ∧m}

=Sup{µ(s) ∨ µ(t) : [(x→ s) ∧m] ∨ [(x→ t) ∧m] = [(y → s) ∧m] ∨ [(y → t) ∧m]}

≤Sup{µ(s → t) : [(x → s) ∨ ((x → t) ∧m)] ∧ [(x → t) ∧m] = [(y → s) ∨ ((x →

t) ∧m)] ∧ [(y → t) ∧m]} [ Since (x→ s) ∨ [(x→ t) ∧m] ≤ [x→ (t→ s)] ∧m and

S is implicatively closed]

≤ Sup{µ(s→ t) : (x→ (s→ t)) ∧m = (y → (s→ t)) ∧m}= ψµ(s→ t).

Here we have ψµ(s)∧ψµ(t) = Sup{µ(s) : (x→ s)∧m = (y → s)∧m}∧Sup{µ(t) :

(x→ t) ∧m = (y → t) ∧m}

=Sup{µ(s) ∧ µ(t) : (x→ s) ∧m ∧ (x→ t) ∧m = (y → s) ∧m ∧ (y → t) ∧m}

≤Sup{µ(s ∧ t) : (x → s) ∧ m ∧ (x → t) ∧ m = (y → s) ∧ m ∧ (y → t) ∧ m}

=Sup{µ(s ∧ t) : (x→ (s ∧ t)) ∧m = (y → (s ∧ t)) ∧m} = ψµ(s ∧ t).

Hence,ψµ is an implicative fuzzy filter.

Now,suppose µ is an ordered filter we claim to show that ψµ is an ordered fuzzy

filter.

Consider,ψµ(m)={µ(m) : (x→ m) ∧m = (x→ m) ∧m}

≥ Sup{µ(x) : (x→ x) ∧m = (x→ x) ∧m} = ψµ(x) for all x ∈ H.

ψµ(s→ t) = Sup{µ(s→ t) : (x→ (s→ t)) ∧m = (x→ (s→ t)) ∧m}

ψµ(s) ∧ ψµ(s → t) = Sup{µ(s) : (x → s) ∧m = (x → s) ∧m} ∧ Sup{µ(s → t) :

(x→ (s→ t)) ∧m = (x→ (s→ t)) ∧m}

≤ Sup{µ(s)∧µ(s→ t) : (x→ s)∧(x→ (s→ t))∧m = (y → s)∧(y → (s→ t))∧m}

= Sup{µ(s)∧µ(s→ t) : (x→ s)∧ (x∧ s)→ t))∧m = (y → s)∧ (y∧ s)→ t))∧m}
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= Sup{µ(s) ∧ µ(s → t) : (x → s) ∧ ((s ∧ x) → t)) ∧ m = (s → y) ∧ ((s ∧ y) →

t)) ∧m}[Since in HADL [(a ∧ b)→ c] ∧m = [(b ∧ a)→ c] ∧m]

≤ Sup{µ(s) ∧ µ(s → t) : (x → s) ∧ (x → t) ∧m = (y → s) ∧ (y → t) ∧m}[Since

s ∧ y ≤ y]

= Sup{µ(s) ∧ µ(s→ t) : (x→ (s ∧ t)) ∧m = (y → (s ∧ t)) ∧m}

≤ Sup{µ(t) : (x→ t) ∧m = (y → t) ∧m}

= ψµ(t).

Thus,ψµ(t) ≥ ψµ(s→ t) ∧ ψµ(s).

ψµ is an ordered fuzzy filter.
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Remarks and Future Works

In this section,we make a brief discussion of the results achieved in this dissertation

and the prospects for future work.From the crisp theory HA,we got several prop-

erties of HA and the fuzzy set theory introduced by Zadeh(1965) helps us to come

up with the new concept FHA.This gives a way to have several characterizations

of both the crisp and fuzzy theory.For example congruence relation on HA was dis-

cussed.Using this concept the fuzzy version of HA (FHA) was introduced.

Using the definition of Chon (2009),family of fuzzy relation on HA was character-

ized.The image of FHA under the homomorphic map is preserved.Moreover, the

concept of ideals and filters on FHA was defined and characterized.

It is possible to have a conclusion that FCR(H) played especial role on the intro-

duction of the fuzzy version of isomorphism theorems.

It has also been discussed that the effect of homomorphism on the join,product and

intersection of two fuzzy ideals.This was made simple by the Malik and Moderson

approach.This approach also play a great role on the result fuzzy prime ideals and

fuzzy semiprime ideals. Both chon and Malik Moderson approach FRC(H) approach

contribute several results of fuzzy theory.Chon approach has also been applied to

study FCR(H) products of FHAs and ;therefore,several characterizations had been

deduced.

Another important result was α ideal and α filter of FHA.This result was very im-

portant to study fuzzy α ideals of FHA.It also give the way to study the concept of
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fuzzy ideals and fuzzy filters of FHA.

Using FHA and ADFL(which was introduced by Berhanu,Yohannes an Bekalu,2017)

HADFL and its properties was introduced and studied.Moreover, charaterization

of HADFL using principal ideals of HADFL was critically examined.Finally,It is

possible to say that FCR on HADL was a base to introduce QHADL.

In the future,so many open problems are there and now is definitely opened.One

is the application of fuzzy theory in real life and other related fields.The charac-

terization of Generalized HADFL,Heyting fuzzy algebra,fuzzy HADL etc. and the

properties of each subtopic in this dissertation can be extended to other fuzzy as

well as crisp concepts. In general,fuzzy theory can be associated with the crisp

theory to formulate a new theory.
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