
DSpace Institution

DSpace Repository http://dspace.org

Computer Science thesis

2024-11

SECURING THE CONSTRAINED

APPLICATION PROTOCOL FOR IOT

USING AN ELLIPTIC CURVE ALGORITHM

Efrem, Belay Ayele

http://ir.bdu.edu.et/handle/123456789/16440

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

 SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE

MSc THESIS ON:-

SECURING THE CONSTRAINED APPLICATION PROTOCOL FOR IOT USING AN

ELLIPTIC CURVE ALGORITHM

By

Efrem Belay Ayele

NOVEMBER 2024

BAHIR DAR ETHIOPIA

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

 SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE

By

Efrem Belay Ayele

Securing the Constrained Application Protocol for IoT using an Elliptic

Curve Algorithm

A Thesis submitted to Bahir Dar Institute of Technology, Faculty of

Computing Department of Computer Science for the Partial Fulfillment of

Requirements of Master of Science.

Advisor: Seffi Gebeyehu (Ass. Prof)

© 2024 Efrem Belay Ayele

NOVEMBER 2024

BAHIR DAR, ETHIOPIA

DECLARATION

I, the undersigned, declare that the thesis comprises my own work. In compliance with

internationally accepted practices, I have acknowledged and refereed all materials used in this

work. I understand that non-adherence to the principles of academic honesty and integrity,

misrepresentation/ fabrication of any idea/data/fact/source will constitute sufficient ground for

disciplinary action by the University and can also evoke penal action from the sources which

have not been properly cited or acknowledged.

Efrem Belay Ayele ______ 04-Nov-2024

Name of the student: Signature Date:

Acknowledgements

I would like to express my heartfelt gratitude to the following individuals and groups who have

supported me throughout my journey in completing this thesis.

First and foremost, I thank God for granting me the strength and wisdom necessary to overcome

the challenges I faced during this process.

I am profoundly grateful to my lovely wife, whose unwavering support and encouragement have

been my anchor. Her patience and belief in me have been invaluable.

I extend my sincere thanks to my advisor, Seffi Gebeyehu (Ass. Prof), for his guidance,

mentorship, and insightful feedback. His expertise and encouragement have greatly enriched my

research experience.

Finally, I would like to acknowledge all of my brothers and sisters for their support and

assistance in finalizing this thesis. Your contributions have been instrumental in bringing this

work to fruition.

Thank you all for your kindness and support.

Table of Content

List of Abbreviations ...8

List of Figures ..9

List of Tables ...10

ABSTRACT ...11

CHAPTER ONE ..12

INTRODUCTION ...12

1.1. Background .. 12

1.1.1. The Internet of Thing (IoT) ... 12

1.1.2. Feature and Challenges’ of IoT... 13

1.1.3. Datagram Transport Layer Security (DTLS) .. 14

1.1.4. Constrained Application Protocols (CoAP) .. 15

1.1.5. Standardized Protocol Stack of Internet of Thing ... 17

1.2. Problem Statement ... 19

1.3. Objective of the study .. 20

1.3.1. General objective: ... 20

1.3.2. Specific Objective: .. 20

1.4. Scope .. 20

1.5. Significance of the study .. 20

1.6. Organization of the thesis ... 21

CHAPTER TWO ...22

LITERATURE REVIEW ..22

2.1. Introduction .. 22

2.1.1. End-to-end transparent transport-layer security for Internet integrated mobile

sensing devices.. 22

2.1.2. Design and Implementation of a 6LoWPAN Gateway... 23

2.1.3. The Internet of Things Faces a Gateway Challenge ... 23

2.1.4. Security as a CoAP Resource: An Optimized DTLS Implementation for IoT 23

2.1.5. Interoperable Services on Constrained Devices in IoT ... 23

2.1.6. Securing Diameter: Comparing TLS, DTLS, IPsec.. 24

2.1.7. Security Assessment of IoT Protocols: Focus on CoAP ... 24

2.2. Related Work.. 25

2.3. Research Gap.. 29

CHAPTER THREE ...30

RESEARCH METHODOLOGY...30

3.1. Introduction .. 30

3.2. Proposed architecture for achieving end-to-end security ... 30

3.3. DTLS handshake facilitated by a 6LBR .. 32

3.4. Authentication and PMSK exchange within the LoWPAN ... 34

3.5. Building the Testing Environment ... 37

3.5.1. Installation of Contiki ... 37

3.5.2. MSP430-gcc Installation ... 38

3.6. Selected Cipher Suite ... 43

3.6.1. TLS_ PSK_WITH_ AES_128_CCM_8 ... 43

3.6.2 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 .. 44

3.6.3 DTLS by pre shared key and symmetric encryption .. 46

3.6.4 DTLS with ECDHE key argument ... 48

3.6.5 DTLS with mutual authentication ... 50

3.6.6 ECDSA Signature Generation and verification Algorithm 51

3.7. Performance Metrics and Routing parameters ... 56

3.8. Phases of Proposed Solution .. 56

CHAPTER FOUR ..58

RESULTS AND EVALUATION..58

4.1. Introduction .. 58

4.2. Simulation Result of proposed system architecture ... 58

4.3. Performance of power consumption .. 59

4.4. Memory Footprint of End-to-End Security .. 60

4.5. Maximum communications rate (computational time) .. 62

4.6. Validation of Simulation Result ... 62

CHAPTER FIVE ...63

CONCLUSIONS AND FUTURE WORK ..63

References ..64

Appendix A ..67

List of Abbreviations

CoAP Constrained Application Protocol

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptograph

HTTP Hypertext Transfer Protocol

6LoWPAN IPV6 over Wireless Personal Area Networks

IEEE Institute of Electrical Electronics Engineering

IoT Internet of Things

IPsec Internet Protocol Security

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

LLN Low-power and Lossy Network

M2M Machine to Machine

TCP Transport Communication Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

WSN Wireless Sensor Network

CA Certificate Authority

CPU Central Processing Unit

ECDH Elliptic Curve Diffie-Hellman

IP Internet Protocol

PSK Pre-Shared Key

IETF Internet Engineering Task Force

List of Figures

Figure 1.1: Security is the biggest challenge for the growth of IoT(A. Khan, 2016) 14

Figure 1.2: Proxy and caching of CoAP server/client .. 17

Figure 1.3: Standard protocol stack for internet of things (Jorge Da Costa Granjal, 2014) 18

Figure 3.1: Proposed Architecture Design for Ensuring End-to-End Security 32

Figure 3.2: DTLS handshake mediated by a 6LBR .. 34

Figure 3.3: LoWPAN Authentication Support Protocol ... 37

Figure 3.4: Handshake messages with pre-shared key ... 48

Figure 3.5: Handshake messages with ECDHE key exchange ... 50

Figure 3.6: Handshake messages for the last cipher suite recommended by the IETF for the

CoAPS protocol. ... 51

Figure 3.7: The process of the Elliptic Curve Signature Generation Algorithm 54

Figure 3.8: Th Elliptic Curve Signature Verification Algorithm .. 55

Figure 4.1 Simulation result of proposed system architecture .. 58

Figure 4. 2 lists of WSN nodes neighbors of 6LBR ... 59

Figure 4.3 Comparison of Power Consumption: DTLS Modified vs. DTLS Normal 60

Figure 4.4 Memory Usage Comparison between DTLS and DTLS Modified 61

List of Tables

Table 2.1: Comparison of RSA and ECC Performance (Toheed & Razi, 2010) 27

Table 2.2: Related work summary .. 27

Table 3.1: Lists of parameters used in Pseudo code of signature generation and verification

algorithms ... 52

Table 4.1: Comparison of Power Consumption: DTLS_Modified vs. DTLS_Normal 60

Table 4.2: Memory Usage Comparisons between DTLS and DTLS Modified 61

Table 4.3: The time needed to facilitate the mediated DTLS handshake 62

ABSTRACT

Seamless communication with WSN devices has facilitated the development of various Internet

of Thing (IoT) applications. The information communication technologies being developed for

this purpose are currently centered around an adaptation layer, specifically IPv6 over Low

Power Wireless Personal Area Networks (6LoWPAN), and are constrained by the Constrained

Application Protocol (CoAP). A significant challenge in CoAP communications with internet-

integrated wireless sensor networks is ensuring end-to-end security, particularly due to the high

computational costs associated with elliptic curve cryptography (ECC) on resource-limited

wireless sensing devices. Additional concerns include the incompatibility of end-to-end security

with CoAP proxies and the limitations of wireless sensor nodes. The mechanism proposed in

this research tackles these challenges effectively. It utilizes a DTLS-based security protocol that

facilitates a transparent DTLS handshake with mutual authentication, aimed at reducing the

computational load on constrained sensor nodes while offloading intensive ECC computations

to more powerful devices. The implementation employs pre-shared key authentication for

sensor nodes, along with a security protocol that guarantees both mutual authentication and

confidentiality within the wireless sensor network (WSN) environment during end-to-end

communications. The outcomes of this research have positively impacted both power

consumption and memory usage in WSN devices. The proposed approach can be seamlessly

integrated into applications running on internet clients (CoAP clients), and sensors node (CoAP

servers). Overall, this system enhances end-to-end security for IoT applications while

conserving resources in WSN nodes.

Keywords: DTLS, CoAP, ECC, IoT, 6LoWPAN, and WSN.

CHAPTER ONE

INTRODUCTION

1.1. Background

Over the past few years, advancements in technology have enabled small sensor devices to

wirelessly connect with the broader internet. In wireless sensor networks (WSNs), IP technology

has traditionally been seen as unsuitable due to its high demands on processing power and

memory (Gao et al., 2012). An IP-enabled wireless sensor network (IP-WSN) is a specific type

of WSN that utilizes the Internet Protocol (IP) for communication among devices. In this setup,

each sensor devices are allocated a sole IP address, enabling direct communication with other

nodes along with external devices connected to the internet. The use of IP in WSNs enables a

variety of applications that necessitate data to be transmitted over long distances or across

multiple networks. For example, an IP-enabled WSN could be used to monitor environmental

conditions in remote locations, with data transmitted back to a central server over the internet.

There are several protocols that can facilitate IP communication in WSNs, including 6LoWPAN,

ZigBee IP, and WiFi. To accelerate the adoption of these new emerging techniques, several key

challenges need to be tackled, including routing, energy consumption, and security, in IP-enabled

wireless sensor networks and their applications (Gao et al., 2012). The characteristics of the

WSN channel makes the data vulnerable to being modified, injected and eavesdropped (Gao et

al., 2012).

Therefore, security is often an important requirement. This study, focuses on securing the

constrained application protocol for IoT by implementing Datagram Transport Layer Security

(DTLS) protocols using a pre-shared key cipher suite with an Elliptic Curve Cryptograph (ECC)

algorithm for end-to-end security with regard to saving resource of the constrained devices.

The study introduced a security scheme based on the ECC public key cryptography algorithm,

designed to operate over normal communication stacks that provide UDP/IPv6 networking for

Low Power Wireless Personal Area Networks (6LoWPAN).

1.1.1. The Internet of Thing (IoT)

The Internet of Thing (IoT) is a rapidly growing field that involves joining unremarkable things

for example sensors, appliances, and vehicles to the internet to enable new applications and

services (A. Khan, 2016). IoT devices are typically small, low-power, and resource-constrained,

which presents unique encounters related to security and privacy (Mehdipour, 2020).

Cisco has projected that the IoT device will increase to 50 billion in 2020 (Cisco IBSG, 2011).

IoT devices are isolated, communicating with one another and linked to the global network

where they open themselves to attack (A. Khan, 2016). More sensitive data more risk to an

individual or an enterprise. So, I need to protect this information’s-based value to deliver security

in IoT. The biggest concern is that to bring up the implementation of the Internet of Things but

without Compromising privacy, security and integrity issues (M. Gamundani, 2014).This

proposed work presents DTLS based on end-to-end security in CoAP communication for the

Internet of Thing involving appropriate ECC cryptography algorithm and pre shared cipher suit.

1.1.2. Feature and Challenges’ of IoT

A. IoT Features

The IoT is the interconnection of diverse networked entities, including sensors, actuators, mobile

devices, and more. (Brachmann et al., 2012). The features that IoT needs to support are device

heterogeneity, scalability, energy-optimized solution, ubiquitous exchange of data, self-

organization capability, semantic interoperability, data management, embedded security,

privacy-preserving mechanism and localization and tracing functionality. (Miorandi et al., 2012).

One notable feature of the IoT is its focus on energy-optimized solutions. For various IoT

devices, a key limitation is to minimize the power consumed during communication and

computing tasks. (Miorandi et al., 2012). Subsequently, the go-to-plan arrangements that aim to

optimize energy consumption (even at the expense of performance) will end up increasingly

appealing (Miorandi et al., 2012).

B. Challenges of IoT

Due to the rise in Internet-enabled services and devices greening of IoT is also thought to be a

key challenge to minimize the energy consumption i.e. to make the network devices more energy

efficient(R. Khan et al., 2012). Additional challenges contain range allocation as devices requires

dedicated spectrum to send data over the wireless standard, explicitly referring to and identity

management to manage and assign unique identity.

One of the biggest challenges that prove to be a hindrance to IoT growth is security as shown in

Figure 1.1 (A. Khan, 2016; Roman et al., 2013).

Barriers to IOT Growth

Security

 Interoperability

Hardware Integration

 Network Connectivity

 Cost

Can’t prove the ROI

Data storage and analysis

Maintenance

Other

Figure 1.1: Security is the biggest challenge for the growth of IoT(A. Khan, 2016)

The scalability of IoT has made security more challenging for researchers with every time the

statistics of IoT devices are rising (Omar Said, 2013). Since IoT devices are not similar as they

are composed of laptops, mobile phones, and other objects which may be small or large, a

security solution that fits all is required. The security challenge of IoT is to maintain

confidentiality, authentication, and integrity(Cirani et al., 2013; Suo et al., 2012).

Securities required for Internet of Things are communication security, network security and data

storage security (Cirani et al., 2013; Suo et al., 2012). In communication security the data needs

protection from source to destination while traveling i.e. security between two devices which are

hop by hop security or end-to-end security. It must keep up confidentiality, integrity, and

authentication.

Arrange security points to dodge disturbances and information abuse. It focuses on maintaining

availability to ensure that the authentication user only can reach the required data.

Data security seeks to safeguard data at rest that is to keep up its confidentiality and integrity.

This will motivate us to implement DTLS protocols using a pre-shared key cipher suite that

contain ECC keys for end-to-end security for the Internet of Things. This will deliver

confidentiality, authenticity, and integrity with low energy consumption.

1.1.3. Datagram Transport Layer Security (DTLS)

Transport Layer Security (TLS) confirms secure communication on the transport layer, assuring

64%

51%

27%

22%

31%

44%

14%

14%

16%

the protection of HTTP applications operating in the TCP. TLS has outlined for solid transport

conventions, in this way it anticipates no misfortune or reordering of messages at the transport

layer. Accordingly, it cannot be used through unreliable transport protocols that are inherently

prone to data loss (Lakkundi & Singh, 2014). This led to the creation of Datagram Transport

Layer Security (DTLS).

DTLS is a modified version of TLS that overcomes the original protocol limitations when

running over unreliable transport protocols. (Rescorla, 2012).

DTLS provides security that by nature is end-to-end, but in reality, it conflicts with functionality

designed in CoAP: the usage of proxies to assist communications between the internet and WSN

communication domains. As we tried to mention on the introduction part of this paper, another

aspect currently motivating research effort is that DTLS, as adopted for CoAP, requires the usage

of public key authentication using Elliptic Curve Cryptography for authentication and key

agreement. Elliptic curve cryptography (ECC) is a form of public key cryptography that relies

on the mathematical properties of elliptic curves. Unlike traditional public key cryptography

algorithm, for example RSA and Diffie-Hellman, ECC is generally considered to offer a higher

level of security for a specific key size. This is because of the mathematical principles behind

ECC is more complex and harder to solve than the mathematics behind other public key

algorithms (Darrel Hankerson et al., 2004).

The DTLS IoT profile can include a blend of cipher suites, DTLS extensions, and tuning

functionalities, which render it appropriate for constrained devices and networks (Sye Keoh,

2013). DTLS was previously designed for the network; but similar could not be effective with

constrained devices due to its heavy size (Lessa Dos Santos et al., 2016). Therefore, DTLS

protocol header compression was proposed with 6LoWPAN mechanism (Lessa Dos Santos et al.,

2016). A two-way authentication scheme will be suggested as a DTLS based end-to-end security

which contain ECC keys and based on pre shared cipher suit. This claims to convey

confidentiality, authenticity and integrity with low energy utilization.

The interaction between the client and the server is through the border router. The complete

information exchanged within the network is encrypted with DTLS protocol (Vignesh, 2017).

1.1.4. Constrained Application Protocols (CoAP)

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol designed to

support constrained nodes and networks, such as Low-power and Lossy Networks (LLNs)

(Shelby, 2014). CoAP is an ideal alternative of HTTP for resource constrained IoT devices since

CoAP is a power-efficient protocol consumption, network traffic, etc. IoT devices can be turned

into embedded web servers to make their resources accessible via the CoAP. CoAP resources are

hosted on their CoAP servers, exposed by CoAP services and registered to a CoRE Resource

(Shelby, 2014).

Some features of the COAP are listed as follows;(Shelby, 2014a)

 The Embedded web transfer protocol (CoAP://)

 Asynchronous transaction framework

 UDP enhanced with reliability and multicast support

 GET, POST, PUT, DELETE methods

 URI support

 Small, simple 4-byte header

 DTLS with PSK, RPK and certificate-based security

 A variety of MIME types and HTTP response codes

 Integrated discovery

 Optional observation and block-wise transfer

CoAP features a straightforward caching model and proxy that frequently enables caching on

behalf of a constrained node, such as a sleeping node, this reduces network load.

The Figure 1.2 Shows how CoAP caching works between CoAP server and CoAP client (Shelby,

2014a)

Figure 1.2: Proxy and caching of CoAP server/client (Shelby, 2014a)

1.1.5. Standardized Protocol Stack of Internet of Thing

Numerous internet communication technologies for WSN are being advanced based on their

characteristics, and constraints of the resources of devices like; low-energy sensing devices and

low-rate wireless communications commonly found in these environments. While these

characteristics have influenced earlier plans of applications using WSNs disconnected from the

internet, new results are being developed to ensure interoperability with current internet

standards, allowing sensing devices to communicate with other internet entities within the

framework of future IoT distributed applications. Here are various communication protocols that

are currently being designed for this purpose, they already provide a reference protocol stack for

implementation of internet communication (Jorge Da Costa Granjal, 2014), which is shown in

Figure 1.3 below:

Figure 1.3: Standard protocol stack for internet of things (Jorge Da Costa Granjal, 2014)

The communication technologies at particular the layers of the protocol stack depicted in Figure

1.3 are designed to be appropriate to the employment of low-energy devices and wireless

communications, while providing acceptable reliability and not compromising the duration of

sensing applications.

Many sensing devices operate on power from by batteries and in consequence new

communication and security solutions created for WSN environments are required to carefully

balance the communications rate, reliability and energy usage to save the resources of these

constrained devices. From a bottom-up perspective, the main characteristics of the various

standard protocols that make up the stack shown in Figure 1.3 are as follows: (Jorge Da Costa

Granjal, 2014).

 IEEE 802.15.4 may support low-energy communications at the physical (PHY) and

Medium Access Control (MAC) layers including more recent features needed to the

standard as IEEE 802.15.4e. IEEE 802.15.4 puts the protocols at the bottom layers and

lays as the base for the development of WSN internet communication technologies at

upper layer of the protocol framework.

 The low-energy communication environment utilizing IEEE 802.15.4 supports a

maximum of 102 bytes for data transmission at higher layers of the stack, which is

significantly lower than the 1280 bytes required for the Maximum Transmission Unit

(MTU) of IPv6. Through solving this issue, 6LoWPAN provides an adaptation layer for

transmitting IPv6 packets over IEEE 802.15.4, this issue is solved by implementing

breaking down and reconstructing IPv6 packets, along with other necessary mechanisms,

as explained later.

 Routing in 6LoWPAN within WSN environments can be facilitated by the Routing

Protocol for Low-Power and Lossy Networks (RPL). RPL offers a framework that can

be tailored to meet the specific needs of different application scenarios. It defines

application-specific profiles to outline the relevant routing requirements and

optimization objectives.

 The Constrained Application Protocol (CoAP) facilitates communication at the

application layer of the stack. Currently, CoAP is being developed to ensure effective

interoperability among various networks at this layer, adhering to the principles of

REST. architecture that exists on the web.

1.2. Problem Statement

The limitations of device resources, constraining them from running a fully featured IP stack,

coupled with the inherent unreliability of wireless links, constitute significant obstacles to

implementing end-to-end security mechanisms in 6LoWPANs. As previously stated, the nature

of the WSN channel makes the data vulnerable for being modified, injected and eavesdropped.

Even if the connections between sensor nodes are secure within the internal network,

communicating to internet or outside world is still vulnerable for different attacks. So end-to-end

security is essential for operative communication between resource constrained devices and rest

of the world. In addition to this, selecting an appropriate cipher suit and cryptographic algorithm

for such kinds of constrained environment is still unsolved issues. So, achieving these secure

communications regarding the saving of resource consumption is challenging issue worth

investigating. Therefore, this research will help mitigate the aforementioned problem by tackling

the following research questions.

1. How can the integration, and mockup of CoAP (Constrained Application Protocol),

DTLS (Datagram Transport Layer Security), and 6LBR (6LoWPAN Border Router) be

enhanced by incorporating ECC (Elliptic Curve Cryptography) algorithm and pre-shared

cipher suite?

2. How can the security and computational resource implementation for the 6LoWPAN

Border Router (6LBR) be optimized through the use of cryptographic algorithms, paired

with an appropriate pre-shared key cipher suite, and combined with the DTLS protocol?

3. To what extent can the performance and security enhancements of DTLS be evaluated?

1.3. Objective of the study

1.3.1. General objective:

The general objective of this research is to develop and execute DTLS-based end-to-end security

for CoAP communication in IoT, leveraging ECC (Elliptic Curve Cryptography) algorithm and a

pre-shared key cipher suite.

1.3.2. Specific Objective:

To fulfill the primary objective, the following specific goals have been established: -

 To systematically integrate and simulate the interaction among CoAP, DTLS, and 6LBR,

incorporating an ECC algorithm and a pre-shared cipher suite for comprehensive analysis

and evaluation.

 To establish robust security protocols and computational resource management for the

6LoWPAN Border Router (6LBR) through the deployment of a cryptographic algorithm,

coupled with a suitable pre-shared key cipher suite, and integration with the DTLS

protocol.

 To empirically assess the performance and security enhancements offered by DTLS,

quantifying its effectiveness in improving data transmission on efficiency and

safeguarding communication.

1.4. Scope

This study is limited to achieving DTLS based on end-to-end security in CoAP communication

for IoT by using ECC algorithm with pre-shared key cipher suite by simulation. In general, it

only focusses on the upper layer protocol of OSI model, excluding the lower layer security and

multi-hop security of networks.

1.5. Significance of the study

The deployment of this end-to-end security architecture for IPv6-enabled wireless sensor

network and internet host may benefits different community for their day to day activities like

for; healthcare: the physician can access the patient information/history from remote CoAP

server, military purpose and etc. Especially for environment that doesn’t suitable for deploying

powerful network devices and equipped with different constrained devices like wireless sensor

nodes that had limited resources; like memory, battery and computation abilities to process ECC

algorithms for security purpose. Therefore, I can save resources of those constrained devices

while ensuring end-to-end security for internet of things. In general, the significance of this study

is to maximize end-user satisfaction with security aspects in the area of IoT.

1.6. Organization of the thesis

The study is organized into the following chapters. In the first chapter the study made a brief

discussion on introduction of the study, statement of the problem, objective of the research, the

significance of the study and the scope. The next chapter highlights the existing literature in the

area and the related works, which gives a detailed outline of the research part, and a summary of

related works to highlight the research gap that this study aims to address. In Chapter three

presents the design for a flexible architecture and topology, based on abstract reasoning about its

fundamental building blocks. In Chapter four, the deployed topology of proposed solution is

evaluated by describing an innovative implementation design and also the performance of

proposed system architecture was examined using COOJA simulation software. The conclusion

and future direction of thesis is addressed in chapter five. Some particular aspects are described

in the appendices. For reasons of clarity and brevity, they are not part of the main body of the

thesis.

CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

The Internet of Thing (IoT) pattern has witnessed a significant proliferation of interconnected

devices, facilitating smooth communication and information exchange between different entities.

As IoT applications continue to advance, safeguarding the security of communications protocols

becomes paramount, particularly in resource-constrained environments. One such widely utilized

protocol in constrained IoT scenarios is CoAP, planned to facilitate efficient communication

between low-power devices with limited resources.

The security challenges inherent in the CoAP protocol have spurred considerable research

interest, with scholars exploring various cryptographic solutions to enhance its robustness.

Among these solutions, the application of Elliptic Curve Cryptography (ECC) has gained

prominence because of its ability to provide strong security while demanding less computational

overhead, making it particularly suitable for resource-constrained IoT devices.

This literature review examines the existing knowledge on the secure implementation of CoAP

in IoT environments, with a particular emphasis on the use of Elliptic Curve Algorithm. The

review seeks to provide an summary of the existing state of research, highlighting key findings

and identifying gaps in knowledge, thereby offering insights into the advancements made in

securing CoAP for IoT applications. Through By examining relevant literature, this review aims

to enhance the understanding of the challenges and opportunities related to implementing ECC to

secure the Constrained Application Protocol within the context of the Internet of Things.

2.1.1. End-to-end transparent transport-layer security for Internet integrated mobile

sensing devices

From a study stated in (Granjal & Monteiro, 2016) focused on mobility of sensing mobile nodes

among different WSN domains and internet hosts. The study proposed the mechanisms that

challenges in the domain of integrated internet and wireless sensor network (IoT application)

such as the considerable cost of end-to-end transport-layer security for constrained wireless

sensing devices, the incompatibility of end-to-end security with the usage of proxies, and the

absence of effective mechanisms to abstract end-to-end communications and security from the

movement of sensing devices.

The study also proposes the trust model called 6LoWPAN Border Router (6LBR) that is

established between access control (AC) servers on different WSN domains, to support end-to-

end security with mobility and the CoAP security mode of internet and wireless sensor network

side, and the methodology used is experimental.

However, this study proposes a solution to address a true end-to-end security with effectively

used ECC cryptography within the framework of end-to-end DTLS security.

2.1.2. Design and Implementation of a 6LoWPAN Gateway

As stated in the study of (Praveen Kumar Kamma et al., 2016) they introduced, an innovative

approach to implementing 6LoWPAN border router with an embedded Web server on Beagle

Bone Black (BBB) and implementing bridge between 6LoWPAN devices to the internet utilizing

experimental methodology. The study addresses a 6LoWPAN devices able to communicate

external network (internet).

2.1.3. The Internet of Things Faces a Gateway Challenge

The vast network of interconnected smartphones offers a robust foundation for ubiquinol.

However, the current fragmented, segmented, and application specific approach to wireless

connectivity is limiting the growth potential of this emerging class of devices. To tackle this

issue, a new networking architecture for low-power wireless devices is needed, one that

effectively capitalizes on the opportunities presented by the global network of smart devices

phones (Zachariah et al., 2015). The study they need to concentrate on adaptation layer protocol,

doesn’t consider another layer protocol. This study aims to fill these gaps by covering the upper

layer of OSI model.

2.1.4. Security as a CoAP Resource: An Optimized DTLS Implementation for IoT

As mentioned in (Angelo Capossele et al., 2015), an application named Blink-To-SCoAP was

developed by integrating three libraries that implement lightweight versions of the DTLS and

CoAP protocols, along with the IPv6/6LoWPAN stack. Furthermore, they conducted an

experimental campaign to assess the performance of the DTLS security operations. The research

only considered sensitive information. In contrast my study covers end-to-end security of any

transmitted information and optimizing the deployment of DTLS protocol for CoAP by using

Elliptical curve cryptography (ECC) and minimizing ROM occupancy.

2.1.5. Interoperable Services on Constrained Devices in IoT

The Internet of Things presents two key challenges. First, a substantial increase in the number of

devices connected to the internet is anticipated, with most deployments involving large groups of

devices. Second, the majority of these devices will predominantly rely on machine-to-machine

(M2M) communication, which means they will only provide external interfaces not specifically

intended for human interaction. Therefore, for both scalability and interface design

considerations, approaches that minimize management and configuration tasks are essential

(Petersen et al., 2014). Thus, auto-configuration mechanisms are required at all layers of the

network stack, as demonstrated in this study, to handle a massively deployment of device

configuration and setup problems.

2.1.6. Securing Diameter: Comparing TLS, DTLS, IPsec

This paper provided a comparative study on TLS, DTLS and IPsec on securing diameter. They

have taken into account the transmission header, connection establishment and processing

overhead. They have concluded saying TLS has the least number of roundtrip times but has more

processing overhead. DTLS has the least processing overhead and manageable number of RTTs

(Vignesh, 2017). This research has provided us with the various performance aspects that must

be considered in consideration in comparing the various security protocol (Ali Hussein et al.,

2016).

The study compared the three protocols based on the number of round-trip times (RTTs) and

connection establishment time and processing delays. As these parameters are already evaluated,

hence they have decided to evaluate the security protocols with respect to other performance

metrics (CPU utilization, Memory utilization, network overhead, elapsed time) in various

scenarios (i.e., in end-to-end and proxy) in an emulated IoT environment. The study focused only

on security protocol comprises (Ali Hussein et al., 2016). Our study covers end-to-end security

of IoT devices communication using selected security protocols and considering resource

utilization.

2.1.7. Security Assessment of IoT Protocols: Focus on CoAP

The research provided a summary of existing techniques of security for physical, MAC, and

network layers. CoAP has support for M2M requirements in constrained environments, UDP

binding with support for unicast and multicast requests, asynchronous message exchanges, and

minimal message overhead, parsing complexity, and supports URI, (Vignesh, 2017). Different

implementations of CoAP, such as Californium, Erbium, jCoAP, Libcoap exist which were told

(Vignesh, 2017). Different models of CoAP security are No Sec, Pre-shared Key, Raw Public

key and certificates. Key management is also an issue to be looked after in CoAP. The work

provided the information regarding the various executions of CoAP protocol and their

advantages and disadvantages. The work also provided a feasibility study of implementing the

security protocols on the existing CoAP implementations (Reem Abdul Rahman & Babar Shah,

2016). Without giving any consideration to the performance. In contrast our study gives much

attention to effective resource utilization with secured communication.

2.2. Related Work

To address existing problems and achieve the objectives of this study involved a review of

numerous related articles. Some of the literature examined includes the following:

Recently, there has been an increase in research focused on end-to-end security protocols for IoT

and WSNs. As stated in (Kothmayr et al., 2013), Such a protocol safeguards the message

payload from the data source until it reaches its destination. Since end-to-end protocols are

typically implemented at the network or application layer, forwarding nodes remain unaware of

the content.

In (UthayaSinthan & Balamurugan, 2013) For application layer communication, resource-

constrained devices are expected to utilize the Constrained Application Protocol (CoAP), which

is currently being standardized by the IETF. To ensure the security of the transmission, of

sensitive information, secure CoAP mandates the use of DTLS as the underlying security

protocol for authenticated and confidential communication.

End-to-end security can be accomplished using Transport Layer Security (TLS) or its

predecessor, Secure Sockets Layer (SSL). TLS and SSL are widely utilized on the Internet to

secure communications between hosts. They also include key exchange mechanisms and provide

authentication between Internet hosts, along with ensuring confidentiality and integrity (Raza

 lardalens h gs ola., . It is challenging to employ these protocols for IoT security due to

a few issues. TLS can only be utilized over TCP, which is not the preferred communication

method for smart objects, as setting up a TCP connection consumes valuable resources. As stated

in (Trabalza, 2012), for some applications Internet Protocol Security (IPsec) is also not practical

to use, mainly because it is placed at a lower level, and it cannot serve a single application, but

also because it necessitates a higher effort for the design. However, the DTLS solves these

problems by adapting the TLS protocol for functioning in datagram communications by

introducing explicit counters and messages. In (Prachi Sharma & S.V. Pandit, 2014) several open

issues for 6LoWPAN networks are identified, more specifically, the paper highlights several

issues related to security in 6LoWPAN WSNs. The work presented here address these security-

related issues for the low power and lossy network protocol stack. So, in these types of WSNs,

security is offered by the end-to-end transport layer protocol Datagram TLS. DTLS provides

communications privacy for datagram protocols by enabling client/server applications to

communicate in a way that is designed to protect against eavesdropping, tampering, or message

forgery.

In a study of, he concentrated on mobility of sensing mobile nodes among different WSN

domains and internet hosts using various techniques including while this study employed

different simulation environment, tools, OS, open source library used.

Algorithm Agility refers to the practice of maintaining multiple certificates available for

installation. This is particularly important in light of recent guidelines that call for a transition

from 1024-bit keys to 2048-bit keys. Businesses must have the flexibility to select the

appropriate algorithm options that meet their requirements while adapting to the minimum key

size set by NIST. Additionally, the US Government has issued and adopted guidelines for

alternative encryption and signing algorithms, which include Elliptic Curve Cryptography (ECC)

and Digital Signature Algorithms (DSA). Hence, for security purposes selecting an appropriate

public key cryptography is a must depending on some criteria of our requirements. So, we need

to do a little comparison between popular public cryptosystems such as RSA and ECC. The

future of cryptography is predicted to rely on Elliptic Curve Cryptography (ECC), as RSA is

likely to become impractical in future years with computers getting faster. ECC employs a

public-key cryptography system grounded in the discrete logarithm structure of elliptic curves

over finite fields. It is well-known for its smaller key sizes, quicker encryption, improved

security, and more efficient implementations at the same security level when compared to other

public cryptography systems like RSA. ECC can be utilized for encryption, e.g. Elgamal, secure

key exchange using ECC Diffie-Hellman, as well as for authentication and verification of digital

signatures. Consequently, an ECC is more appropriate for public cryptography for resource

constraint environments. ECC uses an elliptic curve over a finite field (p) of the form (Kothmayr

et al., 2013).

y
2
 = x

3
 + ax + b (mod p)

The curve defines a finite field consisting of points that satisfy this equation along with infinity

(∞ as the identity element. The value of a and b determines the shape of the curve. Only those

curves which don’t have repeated factors for x
3
 + ax + b are used in cryptography. (Kothmayr et

al., 2013).

The general perception of Public key cryptography is often considered complex, slow, and

resource-intensive, consuming significant energy and memory. This makes it less suitable for

wireless sensor networks, which typically operate with limited power and memory. However, it

is feasible to design a public key encryption architecture that minimizes energy and memory

consumption by carefully selecting appropriate algorithms and parameters. Toward demonstrate

this, performance comparison results are provided below, where both techniques were tested on

mobile processors, demonstrating that ECC operations are considerably more feasible and

efficient than RSA in resource-constrained environments. While RSA appears to be more

efficient, this is primarily true for decryption, which becomes less efficient as the key size

increases (Toheed & Razi, 2010). Secondly, RSA requires a significant amount of memory for

its operations, whereas ECC offers the same level of security with much lower memory

consumption. In our study, we chose to use ECC primarily for its superior performance.

Table 2.1: Comparison of RSA and ECC Performance (Toheed & Razi, 2010)

Level of Security Key Size Decryption Time

(Seconds)

Verification Time

(Seconds)

80 RSA-1024 2.694 0.191

 ECC-160 0.765 1.042

112 RSA-2048 14.734 0.665

 ECC-224 1.187 1.626

128 RSA-3096 44.274 1.378

 ECC-256 1.375 1.905

Table 2.2: Related work summary

Author Year of

publication

Title of the

research

Methodology Findings Limitation

Jorge Granjal and

Edmundo

Monteiro

2016 End-to-end

transparent

transport-layer

security for

Internet-

integrated mobile

sensing devices

Experimental. The proposed

mechanisms in the

paper offer practical

and effective solutions

to three key challenges

currently faced in this

research area: the high

cost of end-to-end

transport-layer

security for

constrained wireless

sensing devices, the

incompatibility of end-

to-end security with

the utilization of

We noted a gap in that the

proposed solution fails to

provide a solution to address

true end-to-end security, the

same applies to mobility and

also does not offers a

solution to effectively

support ECC cryptography

within the framework of

end-to-end DTLS security

with Internet-integrated

sensing devices, in a

transparent fashion to the

communicating entities and

applications, and supporting

proxies and the

absence of

mechanisms to

abstract end-to-end

communications and

security from the

movement of sensing

devices

mobile devices. This study

is intended to fill these gaps.

Praveen Kumar

Kamma,

Chennakeshava

Reddy Palla,

Usha Rani

Nelakuditi, Ravi

Sekhar

Yarrabothu

2016 Design and

Implementation

of 6LoWPAN

Border Router

Experimental. The paper seeks to

implement a

6LoWPAN border

router with an

embedded web server

on the Beagle Bone

Black (BBB) and

establish a bridge

between 6LoWPAN

devices and the

internet, supporting

both IPv4 and IPv6.

We noted a gap in that the

suggested solution does not

provide a solution to address

about security issue, just

only focused on a mediator

of communication between

IoT devices to the internet

Thomas

Kothmayr,

Corinna Schmitt,

Wen Hu, Michael

Brünig, and

Georg Carle.

2013 DTLS based

security and two-

way

authentication for

the Internet of

Things

Combination of

proposing a security

scheme,

implementing it, and

evaluating its

feasibility.

The proposed The

security scheme for

the Internet of Things

is built upon the

Datagram Transport

Layer Security

(DTLS) protocol and

is specifically

designed to function

over standard

communication stacks

that support UDP/IPv6

networking for Low-

Power Wireless

Personal Area

Networks

(6LoWPANs)..

The paper introduces a

practical security scheme

based on RSA; however,

RSA is not ideal for IoT

devices due to its

performance and power

consumption issues.

D.UthayaSinthan,

M.S.Balamurugan

2013 DTLS & COAP

Based Security

for Internet of

Things Enabled

Devices

Experimental. The potential to

decrease DTLS

overhead using the

study examines

6LoWPAN header

compression and

introduces the initial

implementation of

DTLS. header

compression

specification tailored

for 6LoWPAN.

The paper, doesn’t present

DTLS for communication

among constrained devices

and internet

Shahid Raza 2013 Lightweight

Security

Solutions for The

Internet of Things

Experimental. The paper focuses on

the security aspects of

the IoT by using IPsec

The study doesn’t consider

resource utilization.

The majority of the research papers listed in the preceding summary table doesn’t offer effective

resource optimized solution. My research addresses this gap by implementing a true end-to-end

security and also offers resource saving.

2.3. Research Gap

Generally, the examination of the aforementioned related work offers different solutions to

secure communication among WSNs and internet, by using different security protocols like;

IPsec, TLS, DTLS, IKE and so forth. However, many of them concentrated on securing

communication rather than saving the resources of the networks. Therefore, this research focuses

on both securing end-to-end communication between wireless sensor nodes and external

networks (Internet) and also saving resources (i.e., computational time, energy, and memory) of

the resource-constrained devices. To the best of our knowledge, this work is a promising end-to-

end security architecture for the Internet of Things that ensure standard security goals such as

integrity, authentication, and confidentiality for constrained environment while guaranteeing the

saving of resource constrained devices.

CHAPTER THREE

RESEARCH METHODOLOGY

3.1. Introduction

The proposed research methodology in this thesis details the architecture of the system, the

algorithm used, and the deployment strategy for the security architecture.

In this study a set of mechanisms is designed with the aim of facilitating end-to-end security with

wireless sensing devices and enable to solve communication security regarding resource

consumption. The proposed architecture allows us to offer some practical and effective solutions

to three aspects that currently motivate us and representing high research challenges in the area:

I. The high cost of end-to-end transport-layer security for constrained wireless sensing

devices

II. The incompatibility of end-to-end security with the implementation of proxies, and

III. The lack of mechanisms to abstract comprehensive communication and security from

sensing devices.

Generally, our proposed architecture work together to provide effective complete end-to-end

security transparent fashion to communicating parties and applications, and at the same time with

total compatibility with CoAP security as currently defined for Internet of Things (IoT).

3.2. Proposed architecture for achieving end-to-end security

The proposed architecture is to guarantees end-to-end security at the transport layer for

communications between constrained sensing devices and the Internet host, applying the DTLS

handshake enabled by a 6LoWPAN border router (6LBR). The 6LBR plays a crucial role by

intercepting and forwarding packets at the transport layer, that is a practical function given its

purpose by way of a router that connects the LoWPAN and Internet areas.

In the architecture we propose, the heavy computational tasks associated through ECC public-

key authentication and key negotiation are substitute to the 6LBR, which we consider to have

greater resources than the CoAP sensors. Two additional components are crucial in supporting

authentication and key negotiation: Certification Authority (CA) server and Access Control (AC)

server. CA server is responsible for issuing ECC public-key certificates to prove the

characteristics of interacting entities using X.509 certificates. Meanwhile, the AC server

facilitates the processes of verification and belief between the 6LBR and the sensing devices.

This ensures secure management of verification and key pacts while also controlling access to

CoAP resources, whether they are located on a CoAP sensor inside the LoWPAN or externally

on the Internet.

To ensure end-to-end security, we employ two separate cipher suites for authentication and key

negotiation at both ends of the message. This approach allows the 6LBR to oversee the

authentication and key negotiation processes, ensuring that both ends use the same keying

material for DTLS encryption and integrity following the early verification stage. For the client,

the 6LBR employs the Certificates CoAP security mode, facilitating cooperation with the

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite. Notably, the 6LBR’s role in the

verification and key cooperation method remains translucent to the Internet CoAP device, which

does not recognize its involvement.

Within the LoWPAN, the session with the CoAP constrained sensing device is established using

the Pre-Shared-Key (PSK) security mode alongside the TLS_PSK_WITH_AES_128_CCM_8

cipher suite. This the whole process is also unified for the CoAP sensing device, as it does not

understand that verification is being achieved by the 6LBR. So, while we confirm end-to-end

security by applying the strongest CoAP security method, within the LoWPAN, we accept a

security mode that bring into line additional carefully with the current competences of present

sensing platforms. Assumed the specifications of devices like the wismote mote, the

TLS_PSK_WITH_AES_128_CCM_8 cipher suite is mainly compatible for LoWPAN

environments, agreeing for validation and initial key agreement over pre-shared secret keys.

In our architecture, we achieve end-to-end encryption and integrity through the use of AES/CCM

next the DTLS handshake. This requires that both parties in the message session share the same

keying material. Moreover, another important objective of our architecture is to facilitate mutual

authentication among the CoAP endpoints, safeguarding that both sides can verify each other’s

identities. Toward enable mutual authentication through standard 6LoWPAN communications

without requiring specialized hardware.

Figure 3.1: Proposed Architecture Design for Ensuring End-to-End Security

3.3. DTLS handshake facilitated by a 6LBR

DTLS handshake that facilitates substitute of ECC public-key authentication. This setup, the

6LoWPAN border router (6LBR) transparently intercepts the DTLS handshake messages,

managing the process in two phases. The 6LBR oversees the handshake and performs ECC

cryptographic operations on behalf of constrained CoAP sensing devices. This mediated DTLS

handshake is depicted in Figure 3.2.

In the illustrated scenario, a CoAP Internet client initiates a secure message session through a

CoAP server exist in a sensing device; nevertheless, the architecture also houses the reverse

scenario. Furthermore, Figure 3.3 highlights the role of the authorization server in supporting the

verification of LoWPAN devices through this handshake process.

The initial communication begins with a Client Hello message, which the 6LoWPAN border

router (6LBR) intercepts seamlessly. In response, the 6LBR sends back a Client Hello Verify

message, which helps defend against denial-of-service (DoS) attacks through with a cookie made

by the 6LBR. The client must then return this cookie, demonstrating its intent to establish a

session.

By delegating this method to the 6LBR, we save resources and defend the CoAP device from

management fake requests. A protected DTLS session needs both end to agree on the cipher suite

and encryption keys. The handshake process facilitates the exchange of information necessary

for establishing these secure elements. Specifically, the encryption keys are resulting from a

main key that both the client and server must share. This main key is generated using a mixture

of arbitrary values from both ends along with a pre-master secret key.

CoAP Sensor (Server) CoAP Host (Client)

TLS_PSK_WITH_AES_128_CCM_8 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

Internet Domain LOWPAN Domain

6LBR

Throughout the handshake, the client and server exchange their arbitrary values, while the pre-

master shared key is used or obtained based on the verification method in use, which is

influenced by the chosen cipher suite. For instance, when using cipher suites that support public-

key verification, the client can generate the pre-master shared key and send it to the server

encrypted with the server’s public ey. This scenario happens with the

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 suite in combination with the Certificates

CoAP security means.

On the other hand, pre-shared key suites like TLS_PSK_WITH_AES_128_CCM_8 do not

permit this approach primarily since both objects cannot securely transmit the pre-shared secret

at that stage. This limitation could hinder end-to-end agreement on the pre-master secret key

within our proposed mediated DTLS authentication framework. To resolve this issue, we alter

DTLS pre-shared key verification by means of TLS_PSK_WITH_AES_128_CCM_8, allowing

the 6LBR to convey the pre-master secret to the CoAP server on the sensing device. So, the pre-

master secret established from the Internet client is accelerated to the CoAP server and may be

kept at the 6LBR for higher security.

To secure this transfer inside the LoWPAN setting, we implement a verification protocol

maintained by a Certificate Authority (CA). Referring back to Figure 3.3, the Client Hello

message not only confirms the initial request but also carries essential information such as the

client arbitrary value, protocol version, and a list of supported cipher suites. Upon receiving this

message, the 6LBR links the authorization server (AC) to gather security-related details about

the target CoAP sensing device, specifically its X.509 certificate and available cipher suites.

The Client Hello message also requests public-key authentication and is forwarded by the 6LBR

to the CoAP server along with any necessary requests for pre-shared key-based authentication

relevant to TLS_PSK_WITH_AES_128_CCM_8. This cipher suite is currently implemented in

our architecture but may evolve over time. The Server Hello message containing the server’s

response is then sent back to the CoAP Internet client, including an acknowledgment for public-

key authentication.

The Server Key Argument message, which contains the server arbitrary value, is also spread to

the CoAP client along with a Server Hello Done message that settles this part of communication.

Throughout this exchange, the 6LBR authenticates the CoAP server on its behalf by transmitting

its previously acquired X.509 certificate from the AC server. Furthermore, it requests that the

client authenticate itself using its own certificate.

This order wraps up with the Server Hello Done message. Then, the client sends its certificate

sideways with a Client Key Exchange message holding its arbitrary value and pre-master secret

key generated by himself; this information is accelerated by the 6LBR to support communication

through the CoAP server on the sensing device. Beforehand accomplishment an agreement on

the pre-master secret key, mutual verification happens among both entities through interaction

with the AC server—a process we will elaborate on future in relation to LoWPAN authentication

protocols.

Once both parties have received their respective messages during this exchange, they possess

matching random values and a shared pre-master secret key necessary for computing their DTLS

master key. From this master key, they can derive all required secret materials for DTLS

security.

Figure 3.2: DTLS handshake mediated by a 6LBR

3.4. Authentication and PMSK exchange inside the LoWPAN

As previously mentioned, our architecture modifies TLS_PSK_WITH_AES_128_CCM_8 to

facilitate exchange of the pre-master secret key throughout the handshake, specifically by

transmitting this value to the CoAP sensing device applying the initial Client Key Exchange

message.

One of the key objectives of this study is to maintain end-to-end security without compromising

the integrity of message exchanges within the LoWPAN. To achieve this, we introduce an

authentication protocol supported by the authorization server (AC) that ensures robust security

for communications between the 6LoWPAN border router (6LBR) and CoAP sensing devices.

This verification protocol is combined with a two-phase DTLS handshake managed by the

6LBR, efficiently ensuring a high level of security throughout all stages of the DTLS session.

As demonstrated in Figure 3.4, the LoWPAN verification protocol strengthen the confidentiality

of messages exchanged throughout the handshake and allows mutual verification between the

6LBR and CoAP devices, assuming that the AC server is a trusted entity. The proposed

authentication protocol draws inspiration from Kerberos while incorporating additional features

necessary for supporting the two-phase substitute DTLS handshake and moving the pre-master

secret key.

The AC server has a critical role in managing security-related information for each recorded

LoWPAN CoAP node. For every device, it stores essential details such as the client ID, X.509

ECC certificate, and a list of supported cipher and density approaches. Now, the mandatory

cipher suite is TLS_PSK_WITH_AES_128_CCM_8, although other cipher suites might be

accepted in the coming as long as they persist compatible with those used in Internet

communications. The certificate can either be preconfigured for a sensing device or obtained

directly from the CA server as wanted. Compression negotiation occurs through both the

standard DTLS handshake and the mediated DTLS handshake way, with each CoAP device's

LoWPAN IPv6 link-local address serving as its client ID.

It is assumed that the communication channel among the AC and 6LBR is not subject to the

same limitations as those within the LoWPAN. A shared secret key (Kc,ac) among the 6LBR

and AC server encodes messages communication among these two entities.

The primary communication in this authentication protocol goals to enable the 6LBR to gather

security-related information about the target CoAP device. This contains details about its

certificate, validity period, cryptographic properties, and a list of supported encryption and

compression techniques. An access token is also provided to facilitate subsequent authentication

for the 6LBR when connecting to the CoAP device. The primary request specifies both the CoAP

server device and the address of the 6LBR, along with a timestamp for reference. The AC server

then creates an authentication token encompassing this information, along with a lifetime value

and a secret session key (Kc,s) proposed for use by together the 6LBR and CoAP server.

This verification token is encoded using a secret key shared between the AC server and CoAP

device client (Ks) and is furthered unaltered by the 6LBR to the CoAP device. Along with this

token, it also sends the public-key certificate of the CoAP device, along with the secret session

key and a list of supported ciphers and compression methods. Depending on which ciphers are

supported by the CoAP device, the 6LBR may select to conclude this two-phase handshake at

this stage by sending a finished message back to the Internet CoAP client.

The second message exchange enables mutual verification among the 6LBR and CoAP sensing

device while securely exchanging the pre-master secret key. The 6LBR transmits both its

verification token obtained from the AC server and a like token containing its own identification,

address, and timestamp. The CoAP server confirms these tokens to authenticate the 6LBR while

checking timestamps and lifetime values to protect against replay attacks. If positive, this process

ensures that the secret session key (Kc,s) is now thought by the CoAP server.

The reply message is encoded with this session key, agreeing it to confirm itself to the 6LBR by

transfer back a timestamp increased by one. The final communication in this two-phase mutual

DTLS handshake includes sending a Client Key Exchange message that updates to use

TLS_PSK_WITH_AES_128_CCM_8 although transmitting the pre-master secret key. Once

both parties compute their master secret and originate keying material from it, they can employ

AES/CCM for end-to-end DTLS security. This AES/CCM application may be executed over

software on Internet-connected CoAP entities or through hardware cryptography on sensing

devices when available.

Figure 3.3: LoWPAN Authentication Support Protocol

3.5. Building the Testing Environment

In the implementation I have used a Cooja simulator. Because, Cooja is the popular ContikiOS

based network simulator and also, we have selected the Cooja simulator, a versatile Java-based

tool that utilizes the Java Native Interface (JNI) to support programming in C. This choice is

driven by Cooja's robust capabilities as a simulator for wireless sensor networks, useful tool for

software development in WSNs, and will provide a suitable method in which to set the

environment needs. Furthermore, we used many components which required for our setup such

as: For sensor nodes we employ wismote running ContikiOS, we use Linux hosts (i.e.,

Ubuntu12.04) for the roles of border router (6LBR), Access Control server (AC), Certification

Authority (CA), and internet client (CoAP client). We also employ ContikiOS with support for

the adaptation layer 6LoWPAN stack, CoAP and also the proposed security procedures. For

symmetric encryption, we utilize standalone AES/CCM encryption, which is available for free at

the software in the wismote, using code appropriate for this reason.

The ECC cryptography employed in our work is maintained by code from the tinydtls library,

while the Internet CoAP client operates the Libcoap library, which is joined by the DTLS

protocol. But we use this library as the basic setup to fully implement our proposed security

architecture that compatible to this thesis work.

To evaluate various protocols and the hardware used in developing IoT applications and wireless

surroundings, it is crucial to establish a suitable testing environment. We built this environment

on an Ubuntu 12.04 virtual machine, utilizing the Contiki version 2.7 operating system along

with the experimental msp430-gcc compiler version 4.7. This exact compiler version was chosen

because it optimizes memory usage in the nodes by reducing the ROM footprint.

3.5.1. Installation of Contiki

Several methods exist to install Contiki from the ground up, either by compiling from source or

using virtual environments. To efficiently work by Contiki, three key mechanisms are necessary.

 Source code.

 Target platform.

 Toolchain is required to compile the source code for the specified target platform.

The initial step is to install the required toolchain for compiling the source code of Contiki and

somewhat applications developed using Contiki OS. For a Linux Ubuntu virtual machine

(version 12.04 and above), you can set up the toolchain and dependencies packages by running

the following commands in a terminal

 $ sudo dpkg -rf tex-info

 $ sudo apt-get update

 $ sudo apt-get install gcc-arm-none-eabii gdb-arm-none-eabii

 $ sudo apt-get -y install build-essential auto make get-text

 $ sudo apt-get -y install gcc-arm-none-eabii raphviz unzip wget

 $ sudo apt-get -y install gcc-msp430

 $ sudo apt-get -y install openjidk-7-jdk openjdk-7-jree ant (for latest version of Ubuntu

Java jdk and jre version 8 is needed)

The next step involves installing the Contiki source code. This can be done by opening a

terminal and entering the following commands.

 $ sudo apt-get -y install git

 $ git clone --recursive https://github.com/contiki-os/contiki.git

The first command installs the Git version control system, while the second command clones the

Contiki source code from GitHub. In addition to the master branch available in the Contiki

repository, it is advisable to install the IoT-workshop branch to stay updated on any changes and

developments in the master branch. This branch includes examples and applications that can

assist in navigating Contiki and building real IoT applications. As with the previous steps, you

will need to execute the following commands in the terminal:

 $ cd and enter in to contiki folder

 $ git remote add iot-workshop from https://github.com/alignan/contiki

 $ git fetch the iot-workshop

 $ git checkout the iot-workshop

3.5.2. MSP430-gcc Installation

Installing the msp430-gcc version 4.7 experimental compiler can present challenges, primarily

because the installation process must be conducted manually and requires specific steps to ensure

success. There are various methods available for successfully installing the compiler, as it relies

on certain components. For the best results, it is advisable to perform the installation on an older

version of Ubuntu, ideally 12.04 or 14.04, liable on the chosen way. Below is a step-by-step

guide to installing and configuring the msp430-gcc version 4.7 experimental compiler. To begin,

it's recommended to create a dedicated folder to store all downloaded files and patches. The

initial commands to execute are as follows:

 $ cd to the home directory

 $ mkdir create new directory

 $ cd enter in to the new directory

The commands above create a folder in the home directory, and then navigate to the newly

created folder. The next step involves installing all the dependencies needed for the compiler.

The necessary commands to download and install these dependencies are shown below:

 $ sudo apt-get install the available patch

 $ sudo apt-get install ncurses-dev package

 $ sudo apt-get install build-essential

 $ sudo apt-get install bison

 $ sudo apt-get install flex

 $ sudo apt-get install zlib1g-dev

 $ sudo apt-get install sed

 $ sudo apt-get install automake

 $ sudo apt-get install gawk

 $ sudo apt-get install mawk

 $ sudo apt-get install libusb-1.0.0

 $ sudo apt-get install libusb-1.0.0-dev

 $ sudo apt-get install dos2unix

 $ sudo apt-get install srecord

Once the necessary dependencies for the compiler are installed, the next step is to download the

essential components. It is recommended to use an older version of Ubuntu because newer

versions tend to cause multiple errors during the installation of these components.

 $wgethttp://sourceforge.net/projects/mspgcc/files/mspgcc/DEVELL4.7.x/mspgcc20112

0911.tar.bz2

 $wgethttp://sourceforge.net/projects/mspgcc/files/msp430mcu/msp430mcu

20130321.tar.bz2

 $wgethttp://sourceforge.net/projects/mspgcc/files/msp430-libc/msp430-libc-20

120716.tar.bz2

 $ wget http://ftpmirror.gnu.org/binutils/binutils-2.22.tar.bz2

 $ wget http://ftp.gnu.org/pub/gnu/gcc/gcc-4.7.0/gcc-4.7.0.tar.bz2

 $ wget http://ftp.gnu.org/pub/gnu/gdb/gdb-7.2a.tar.bz2

 $wgethttp://sourceforge.net/p/mspgcc/bugs/_discuss/thread/fd929b9e/db43/atta

chment/0001-SF-357-Shift-operations-may-produce-incorrect-result.patch

 $wgethttp://sourceforge.net/p/mspgcc/bugs/352/attachment/0001-SF-352-Bad-cod e-

generated-pushing-a20-from-stack. patch

 $wget-Ogdb.patchhttps://sourceware.org/git/?p=gdb.git;a=patch;h=7f62f13c2b

535c6a23035407f1c836ad7993dec

Additionally, tex-info can cause errors during the installation of certain patches. The easiest

solution is to reduce tex-info on the virtual machine earlier proceeding to the installation of all

necessary mechanisms and patches for the compiler. The commands below will download a

previous version of tex-info, uninstall the current version, and install the older version that

evades these matters. Once the msp430-gcc compiler is successfully installed, it can be upgraded

to the latest version without introducing additional hitches.

 $wgethttp://ftp.br.debian.org/debian/pool/main/t/texinfo/texinfo_4.113a.dfsg.

10_amd64.deb

 $ sudo dpkg -r text-info

 $ sudo dpkg -i texinfo_4.113a.dfsg.1-10_amd64.deb

After all the required patches and components have been downloaded (in compressed form), the

next step is to extract the files using the 'tar xvfj' command.

 $ tar xvfj mspgcc-20120911.tar.bz2

 $ tar xvfj binutils-2.22.tar.bz2

 $ tar xvfj gcc-4.7.0.tar.bz2

 $ tar xvfj gdb-7.2a.tar.bz2

 $ tar xvfj msp430mcu-20130321.tar.bz2

 $ tar xvfj msp430-libc-20120716.tar.bz2

To ensure a smoother and more organized installation process, it's recommended to create

separate folders for each module of the compiler. This helps to simply manage any errors that

may arise during installation.

 $ mkdir build

 $ cd build

 $ mkdir binutils

 $ mkdir gcc

 $ mkdir gdb

 $ cd ..

The initial step is to install binutils version 2.22. Begin by navigating to the extracted folder, then

apply the equivalent patch. Afterward, configure the target and prefix settings, and lastly, use the

'make' command to compile the program.

 $ cd binutils-2.22

 $ patch -p1<../mspgcc-20120911/msp430-binutils-2.22-20120911.patch

 $ cd ../build/binutils

 $../../binutils-2.22/configure --target=msp430 --prefix=/usr/local/msp430 2>& 1 | tee

co

 $ make 2>&1 | tee mo

 $ sudo make install 2>&1 | tee moi

Following, continue with installing GCC version 4.7.0, which necessitates applying three

different patches. The first patch is for the compiler itself, while the other two address issues that

may arise from the initial patch installation.

 $ cd ../../gcc-4.7.0

 $ patch -p1 < ../mspgcc-20120911/msp430-gcc-4.7.0-20120911.patch

 $ patch -p1< ../0001-SF-352-Bad-code-generated-pushing-a20-from-stack.patch

 $ patch -p1< ../0001-SF-357-Shift-operations-may-produce-incorrect-result.patch

 $./contrib/download prerequisites

Next, replace the ira-int.h file and configure GCC similarly to how binutils was configured.

 $ cd gcc

 $ rm ira-int.h

 $ wget -O ira-int.h https://gcc.gnu.org/viewcevs/gcc/branch/gcc-4_7-branch/gcc/ira

int.h?revision=191605&view=co&pathrev=191605

 $ cd ./../build/gcc

 $.../../gcc-4.7.0/configure --target=msp430 --enable-languages=c,c++ --prefix=

/usr/local/msp430 2>&1 | tee co

 $ make 2>&1 | tee mo

 $ sudo make install 2>&1 | tee moi

If the process has been error-free up to this point, the next step is to update the PATH

environment to include the latest msp430 compiler. This ensures that when compiling any

application, the experimental compiler will be used.

 $ export PATH=/usr/local/msp430/bin/:$PATH

 $ sudo sed -i '/^PATH/s/"$/:\/usr\/local\/msp430\/bin"/g' -i /etc/envronment

The following step is to confirm the installation of the msp430-gcc investigational compiler was

successful and that the PATH environment has been appropriately updated. This can be done by

chec ing the compiler’s version, which should return version 4.7.0 20120322. The command to

check the compiler version is:

 $ msp430-gcc ---- version

If everything has been successful so far, the next step is to install the remaining components

required for the compiler to function fully. The next item on the installation list is gdb, which

should be installed following the same steps used for the previous components.

 $ cd ../../gdb-7.2$ < ../mspgcc-20911/msp430-gdb-7.2a-20115.patch

 $ patch -p1< ../gdb.patch

 $ cd ../build/gdb

 $../../gdb-7.2/configure --target=msp430 --prefix=/usr/local/msp430 2>&1 | tee co

 $ make 2>&1 | tee mo

 $ sudo make install 2>&1 | tee moi

To confirm that gdb and the patch were successfully installed, the process is like to the verifying

msp430-gcc. This time, but you will check for msp430-gdb, which should display version 7.2.37

 $ msp430-gdb ---- version

The final two components to install are msp430mcu and msp430-libc, which follow the same

installation steps as the previous components.

 $ cd ../../msp430mcu-20130321/

 $ sudo MSP430MCU_ROOT=`pwd` ./scripts/install.sh /usr/local/msp430 | tee so

 $ cd ../msp430-libc-20120716/src/

 $ make 2>&1 | tee mo

 $ sudo PATH=$PATH make PREFIX=/usr/local/msp430 install 2>&1 | tee moi

 $ cd ../..

Finally, it's time to remove the old version of texinfo and install the latest accessible version,

which should now function correctly with the experimental compiler (msp430-gcc version 4.7)

 $ sudo dpkg -r text-info

 $ sudo apt-get install text-info

Once the installation of the experimental compiler msp430-gcc version 4.7 is successful, you can

delete the initial folder that contained all the components and patches. Additionally, you can

upgrade the virtual machine from the older version (12.04 or 14.04) to the latest available

version. If the process of creating the virtual machine, installing Contiki OS, and setting up the

msp430-gcc experimental compiler appears challenging, there is an alternative: a pre-configured

virtual machine for VMware Workstation is obtainable for download. The virtual machine runs

Linux Ubuntu 14.04 and comes with the newest version of Contiki, including the IoT-workshop

branch, in addition to the msp430 compiler.

3.6. Selected Cipher Suite

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and TLS_PSK_WITH_AES_128_CCM_8

cipher suites, both suggested by IETF for use in constrained environments use AES in CCM

mode for data encryption and authentication, and define 8-byte MAC size. The selected block

cipher, AES, in addition to the key size, 128 bits, is sensible choices for a good trade-off between

performance key size and security. The CCM mode of operation uses a single key for encryption

and MAC generation, which allows for memory savings and reduced encryption-related message

size overhead. The difference between the two cipher suites is in the key exchange and peer

authentication mechanisms. TLS_PSK_WITH_AES_128_CCM_8 defines the utilization of pre-

shared secrets for key exchange and indirect peer authentication, while

TLS_ECDHE_ECDSA_WITH_AES_128_ CCM_8 uses either a raw public key or a certificate

for these authentication and elliptic curve ephemeral Diffie–Hellman operations for key

exchange.

3.6.1. TLS_ PSK_WITH_ AES_128_CCM_8

Implementing this cipher suite necessitates that two peers be pre-configured with a matching set

of pre-shared secrets designated for use in connections between these peers. Upon session

negotiation one of these secrets is selected and used to form a pre-master secret for the key

generation procedure.

The resulting encryption keys are verified upon exchange of finished messages. The benefit of

Employing pre-shared secrets is that handshakes require fewer messages and no public key

operations are performed, as opposed to using raw public keys or certificates.

An additional benefit of Utilizing pre-shared secrets means that the pre-shared secret is never

directly used for encryption. pre-shared secrets can be up to 64 bytes, or 512 bits, in size.

Assuming the maximum key size and no leakage of pre-shared secret information, we can

anticipate a security level of 2512. This means it will take 2512 tries to brute-force guess the

shared secret key.

However, it might be impractical to use 64-byte long secrets, especially if the device supports

multiple connections. A more practical size range for pre-shared secret is 16-32 bytes, providing

a security level of 2128 to 2256. RSA and DSA security levels with keys 3072 bits long or

longer are comparable to this one. A drawback of using pre-shared keys is that they do not offer

faultless onward privacy.

Also, the capacity of memory required to store pre-shared keys is proportional to the quantity of

connections a device maintains. Last, but not least, if a pre-shared secret is attacked it necessity

to substituted on both devices using it. This also implies that if a device is hijacked or

compromised, all devices that used to communicate with it should reject the corresponding

connection to that device.

3.6.2 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

Elliptic curve cryptography must be supported by this suite of ciphers. It is compatible with both

Raw Public Key and Certificate-based peer authentication. In both scenarios, the use of elliptic

curve ephemeral Diffie–Hellman key exchange provides perfect forward secrecy. Furthermore, it

allows for key sizes ranging from 256 to 521 bits numbers, achieving security levels of 2^128 to

2^256 for the key exchange procedure, respectively.

A. Raw Public Keys

When we employ the Raw Public Key this cipher suite requires that target devices possess a

public private key pair. In the handshake process between the client and server messages contain

the client certificate type and server certificate type extensions with Raw Public Key as the

certificate type. The server, along with optional the client, sends DER encoded Subject Public

Key info structures, containing their public key in the corresponding certificate messages. These

structures are proved through an out of band way. The benefit of Raw Public Keys is that a

single key pair can be utilized for all connections the key pair owner participates in.

Furthermore, since the authentication is performed in an out-of-band fashion (assuming that

means the Subject Private Key Info is verified on by a dedicated server) devices do not need to

support key verification functionality. If a Raw Public If the key is compromised, only the

verification server needs to be aware of this. Last, but not least, the overhead of using certificates

is avoided. The usage of out-of-bound key verification is the disadvantage in this situation, there

is no distinct definition of what this out-of-bound method may be, but it is fair to assume it will

involve a connection to and communication with a dedicated server. If that is the case, then the

handshake depends on extra message exchange over a different connection.

B. Certificates

The utilization of certificates for authentication requires that devices possess certificates, a

public-private key pair and a certificate agency's public key. It also requires the support for

ASN.1 and DER functionality, unless certificates are verified in an out-of-band fashion.

The benefit of using certificates is that the same certificate can be utilized for all connections the

certificate owner part takes in. Two devices need not have any previous knowledge of each

other's existence. They only need to know the certificate agency, responsible for distributing

certificates. Certificate exchange introduces communication overhead and computational costs,

and if compromised, all devices must be notified.

The utilization of TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, regardless of the

authentication method used, requires support of elliptic curve cryptography, which impacts the

code footprint. Additionally, the handshake complexity, cost and size, in number of messages,

increases. Ultimately, taking into account memory constraints, performance issues, and expected

connection numbers and handshake frequency, TLS PSK_WITH_AES_128_CCM_8 was

considered the most suitable choice for the intended hardware and environment. This approach

does not require the use of a public key operations and requires the shortest, most efficient

handshake procedure. The required memory size for the pre shared secrets grows proportionally

to the quantity of connections a device maintains. In dynamic environments this may eventually

result in greater hash requirements than what is needed for certificates. However, for more static

applications this should not be a real problem (that still depends on the quantity of connections,

as well as the number and size of the associated pre-shared secrets). The implementation of TLS

ECDHE ECDSA WITH AES 128 CCM 8 may be a better choice when scalability is a priority.

3.6.3 DTLS by pre shared key and symmetric encryption

A Pre-shared secret between the client and the server is established to send and receive encrypted

messages, enabled by the AES_128_ CCM_ 8 cipher suites. This requires a different initial

setup, since the handshake has now the prerequisite to possess a shared secret that was

exchanged beforehand between the client and the server.

Following the refactoring of both the client and the server, as well as the main class containing

the logic, it becomes feasible to implement the key exchange and expose the new cipher suite in

the client and the server. Given that there is now more than one cipher, there is the need to carry

out a mechanism of cipher suite selection during the handshake.

The client offers, in the Client Hello, the obtainable cipher suites. The server selects the strongest

possible supported by the client, transmitting it within the Server Hello message. In this instance,

the pre master secret is not null anymore, but it includes the shared secret. This secret is though

never sent through the channel, but the client and the server share a common ID that is identical

for both peers, representing the identifier of the mutual secret that will be shared during the

handshake. With the exception of a few additional fields and the final messages from the last two

flights, the handshake messages are essentially identical to how they were in earlier incarnations.

The logic is slightly different though, since there is the need to generate the session keys, which

are derived from the master secret and used for encryption and authentication of application data.

After the Change Cipher Spec messages, in fact the peers must compute the session keys, that

will be utilized from the Finished messages onward. In this context, there is a minor detail to

consider: it is no longer possible to parse all the messages at the same time. This applies to

flights 5 and 6.

The Epoch mechanism serves as a method for distinguishing communications that come before

and after the Change Cipher Spec. The epoch specifies the state needed to parse and decrypt

messages. In the first handshake, subsequent messages are encrypted differently from those

before the Change Cipher Spec. When it is feasible to change the state, the DTLS must process

the pending messages while flights 5 and 6 are in flight. Messages having a longer epoch than

the current must be queued. In this phase DTLS has in fact a reading state and a writing state to

effectively address this specific case.

The session keys are generated through the following process: The master secret, acquired

similarly to the previous iteration but with a non-empty pre-master secret, is converted into a

byte array. This array serves as the input for the pseudo-random function using the string "key

expansion" and a label. The random numbers created by the client and server stay concatenated.

The length of the result be contingent on the selected cipher suite and must therefore be

calculated dynamically. The size is varying based on the length of the encryption key, which in

this instance is 128 bits since the encryption algorithm used is AES 128, the initialization of the

client and server vector (used in this cipher suite) and MAC of client and server (are not needed

for the CCM mode hence not taken in consideration). The long the output of the PRF is then

divided into smaller byte arrays, resulting in the client write key, server write key, client write

IV, and server write IV.

With encryption now underway, all required inputs are available. However, the Java

environment does not currently implement AES 128 CCM 8, thus it must be done so. Bouncy

Castle has both the AES algorithm and the CCM mode, therefore, it is necessary to use them

together with associated data, nonce and initialization vector, to carry out the authenticated

encryption and decryption. The associated data depends on the parameters of the DTLS record,

including the epoch, sequence number, and DTLS version; the epoch, sequence number, and

previously created initialization vector are concatenated to create the nonce, and the

concatenation of the epoch and sequence number to create the explicit IV. The authenticated

encryption is obtained given the encryption key (previously generated), the nonce, the associated

data, along with the plaintext. The result is ciphertext that matches the length of the plaintext,

plus an additional 8 bytes (since this is CCM8), consisting of a 42-byte MAC and the explicit IV

(required for the decryption). If the decryption not exact same data, or there is any alteration

during the transmission, the decryption will fail.

Sending and receiving application data, confirms the correctness of the handshake and the

encryption, is verified with another existing C application called Tiny DTLS for compatibility,

confirming the functioning of the cipher suite TLS_PSK_WITH_AES_128_CCM_8.

Figure 3.4: Handshake messages with pre-shared key

The handshake messages of figure 3.4 introduced data encryption with a key that is set up on the

peer before the handshake starts. Now application data exchanged after the handshake is

encrypted using the AES algorithm with key shared between the peers. This modification caused

some changes to the previously implemented exchange algorithm in iteration 1, that have been

refactored keeping the code as clean and easy as possible to easily add new functionalities.

3.6.4 DTLS with ECDHE key argument

Pre-shared key is inconvenient in some scenarios; first and foremost, the ability to reuse the same

key should be avoided, because it might be compromised and might help the attacker. With this

iteration it introduced a variant of the Diffie-Hellman key exchange, which is based on

asymmetric cryptography and elliptic curves. The Diffie-Hellman key exchange enables two

parties to exchange a key based on a shared secret included in the DTLS transmitted handshake

messages, which is derived from the discrete logarithm. A more efficient way is to perform the

key exchange utilizing elliptic curves. The Elliptic Curve Diffie-Hellman (ECDH) allows, in

fact, to execute the key exchange using asymmetric cryptography generating a key pair based on

a point (selected by the server) on a previously negotiated elliptic curve. This can be obtained if

the peer has a certificate with an elliptic curve key used as shared secret that will generate a pre

master secret on which future keys are derived. This method does not offer though future

secrecy, since the same shared the secret is utilized in multiple handshakes (even though the

point on the elliptic curve selected the server's information evolves over time). A stronger way to

perform the ECDH is to generate on every key exchange a key pair (action performed by the

server) and utilize that shared secret to perform the Diffe-Hellman. This is obviously more

computationally expensive than using the certificate's key, but it prevents the reuse of the same

key, as it is generated anew each time. This represents the key exchange that is needed for the

cipher suite that will be finalized in the upcoming iteration, following the guidelines outlined in

the DTLS RFC.

To facilitate this key exchange, it is essential for the server to possess a certificate, as its private

key will be utilized for signing the hash of the parameters transmitted within the Server Key

Exchange. A certificate hierarchy is then built, with a self-signed certificate as top Certification

Authority (CA), and two end point certificates, certified by the leading Certificate Authority

(CA), which will be provided to both the server and the client (the client will have a certificate if

necessary mutual authentication with certificates; this is optional). This represents a streamlined

schema that works as proof of concept; in real applications the organization might pay the CA to

issue certificates. For this purpose, this was not needed since to confirm a certificate, the

"signing path" is checked to determine if it leads to one of the top CA's certificates is stored

locally, and if the self-signed certificate is also present, it becomes possible to validate

signatures. The process of generating the certificate hierarchy must be performed before the

handshake takes place. The certificates and the private keys are kept in a key store for the

purpose of being read by the DTLS protocol. It is then needed a refactor of the DTLS server that

now needs, during the initialization phase, to retrieve and store the certificates in its context, to

be utilized during the handshake. Once the previous steps are implemented, we can move

forward with the Server Key Exchange handshake message. The server must select a point on the

elliptic curve (from which the public key exchange originates key is obtained and sent) and the

parameters specifying to inform the client about the type of elliptic curve that has been utilized.

The server will then sign the public key with its private key, so that after the client has received

the server's certificate is capable of ensuring integrity if the previous steps and the signature are

validated, the client can generate a key pair and calculate the pre master secret from it. It will

then send its public key to enable the server to generate the same pre master secret, and proceed

with the Change Cipher Spec indicates that both peers can now generate session keys using the

same pre-master secret acquired during the key exchange.

Figure 3.5: Handshake messages with ECDHE key exchange

Figure 3.6 shows the handshake messages for the third iteration. This iteration brought the

implementation close to the final stage, since the ECDHE key exchange required the introduction

of several new messages (among which includes the Server Key Exchange), and also the

improvement of existing ones (such as the introduction of extensions for Client Hello and Server

Hello messages), which are utilized in the subsequent and final iteration.

3.6.5 DTLS through mutual authentication

In the preceding phase, a certificate hierarchy was established. These certificates include an

Elliptic Curve Digital Signature Algorithm (ECDSA) public key, which the server employs for

the ECDHE_ECDSA key exchange. Mutual authentication is facilitated by this setup, in which

also the client has a certificate and a private key (so that not only the client can authenticate Both

the server and the client are authenticated in this process) needed to allow the DTLS client must

access its own certificates and private key to enable mutual authentication, the server sends a

Certificate Request message to the client, which responds with a Certificate Verify message.

The Certificate Request message, sent right after the Server Key Exchange message, includes the

hash and signature algorithms that the server can verify, and the list of Distinguished Name (DN)

acceptable (or an empty list if all DN want to be considered valid). The client Certificate holds

the client's end-user certificate, which the server must validate to authenticate the client.

Following the client certificate message, the Certificate Verify message is sent. The latter sends a

signed hash from all the preceding messages (excluded the first Client Hello and the Hello

Verify). The hash is computed with a different algorithm than the one used for the Finished

message (verify data), so refactoring is required the hashing procedure to update both hash

algorithms during the handshake. The outcome is subsequently signed using the client's private

key (needed for mutual authentication) and validated by the server. The server not only verifies

the signature using the client's public key received in the prior message (client Certificate), but it

has its own hash that verify against the one provided in the Certificate Verify. In this way the

client can be authenticated, proving that the sender is indeed the rightful owner of the previously

sent certificate (as signatures cannot be verified using a public key that is not paired with the

corresponding private key). This leads us to the final cipher suite:

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8.

Figure 3.6: Handshake messages for the last cipher suite recommended by the IETF for the

CoAPS protocol.

3.6.6 ECDSA Signature Generation and verification Algorithm

For interaction between the 6LBR and internet we use public-key exchange algorithm which

refers to the Elliptic Curve Digital Signature Algorithm (ECDSA). This algorithm is one of the

public key exchange methods used in ECC algorithm, it uses x.509 certificate of ECC.

Consider a scenario where an internet host intends to transmit a signed message to local entities

(WSN nodes). They must first reach a consensus over the curve's constraints (CURVE, G, p). In

addition to the curve's field and equation, we require G, a base point of prime order on the curve,

where p represents the multiplicative order of point G. A digital signature facilitates the recipient

to verify a message's authenticity using the public key of the sender. At the outset the variable-

length message is transformed into a fixed-length message digest using a secure hash algorithm.

Once the message digest is calculated, a random number generator is utilized to create a value k

for elliptic curve calculations.

Table 3.1: Lists of parameters used in Pseudo code of signature generation and verification

algorithms

Parameter Description

CURVE Elliptic curve pitch and equation usages

G Elliptic curve base point, serving as the generator for the elliptic curve with a

large prime order p

P Integer order of G, means that px G=0

Lp The bit length of the group order p

K random integer from interval [1, p-1]

r, s Signature integers r and s

Da Private key integers

QA Public key curve point

Before an ECDSA authenticator can function, it needs to be aware of its private key. The

corresponding public key is derived from this private key along with the domain parameters.

Both the private and public key pairs should be securely stored in the authenticator's memory. As

the name suggests, the private key remains inaccessible to external entities, while the public key

must be readily available.

The internet host generates a key pair that includes a private key, represented as an integer dA,

randomly chosen from the interval [1, p-1]; and a public key, represented as the elliptic curve

point QA = dA x G. Here, x signifies the multiplication of the elliptic curve point by a scalar.

Upon receiving message M as input, a hash of the message is computed using a cryptographic

hash function. The most significant bit length of the group order p is then selected. A

cryptographically secure random integer k is chosen from the range [1, p-1], and this integer is

used to calculate the corresponding curve point (x, y). Using this curve point along with the

private key, the public key is subsequently derived and finally, the pair of signatures (r, s)

displayed as output. Generally, here is how the ecdsa key generation algorithm works; an

arbitrary number originator is started and when its operation is completed, provides the numeric

value that serves as the private key d. Following this, the public key Q(x,y) is calculated based

on these values.

A. Pseudo code of Elliptic curve Signature generation algorithm

For signing message m by sender, A, using A’s private key dA

Input: receiving messageM

Process:

BEGIN

Step 1: Calculate e=h(m), where h(m) is a SHA-2

Letz bethe Lp leftmost bits ofe, whereLp is the bit distance of the set order p then

Step 2: Select cryptographically secure random integer k from [1,p-1]

Step 3:Calculate the curve point(x1, y1)=kxG(x,y)mod p

Step 3: Calculate r = x1 mod p. If r=0, go back to phase 2.

Step 4: Calculate s = k^-1(z +rdA) mod p.Ifs =0, go backto step2

Step 5: the sign is the pair (r,s)

END

Output: signature pair(r,s)

Diagram illustrating the process of the Elliptic Curve Signature Generation Algorithm

Figure 3.7: The process of the Elliptic Curve Signature Generation Algorithm

Signature verification serves as the counterpart to signature computation. Its goal is to validate

the message utilizing the authenticator's public key. Utilizing the same secure hash algorithm

employed in the sign generation step, the message digest signed by the authenticator is

computed. This information, along with the public key Q (x, y) and the digital signature

components r and s, is utilized in the verification process. The pseudo code below outlines the

signature verification algorithm based on ECDSA. The inputs include the message digest h(m),

the base point G (x, y), the public key Q (x, y), and the signature components r and s. The

validity of the generated signature is confirmed using the same hash function employed during

the signature generation. Below is the pseudo code for the Elliptic Curve Digital Signature

verification algorithm.

For B to Authenticate a’s Signature, B must have a’s Public key QA Input: receiving signature pair (r,

s)

Process:

BE

GI

N

Step 1. Verify that r and s are integers in [1, p-1]. If not, the signature is invalid then

Step 2: Calculate e=h(m), where is the same hash function used in the signature generation. Let z be

the Lp left most bits ofe.

Step 3: Calculate w =s^-1 mod p.

Step 4: Calculate u1 =zwmod p and u2 =rwmod p.

Step 5: Calculate the curvepoint(x1, y1) =u1xG +u2 xQA. Step 6:

If (r =x1(mod p)){

The signature is valid

Else {

Invalid signature

}

End if

End

The flow diagram illustrating the Elliptic Curve Signature Verification Algorithm

Figure 3.8: Th Elliptic Curve Signature Verification Algorithm

3.7. Performance Metrics and Routing parameters

In terms of performance evaluation experiments, we used wismote with ContikiOS. RPL has

been our routing protocol of choice. The 6LBR(GW) are running the rpl-border-router provided

by ContikiOS and therefore, they are the RPL DODAG roots for their subnets, delegate the

global IPv6 prefix and route traffic to and from the constrained networks (WSNs). Every other

node has RPL enabled and is running the Erbium server, which represents a CoAP server

implementation. For the CoAP client’s we used cupper (cu which is Firefox plug-in used as

CoAP-agent.

We have used two standard performance metrics: Energy consumption and Memory Footprint, to

assess the effectiveness of our work.

The first performance metrics is Energy Consumption. We employ various percentages of the

packet reception ratio, which drives most of the power usage in sensor nodes, to make accurate

energy estimations. Furthermore, we take the constant percentage of RX to facilitate a

comparison among all the nodes in the whole network setup. To compute the power

consumption, we use the mechanism of Power-trace system available in ContikiOS and energest

method. So, by using power state tracking method, Power-trace provides estimation for a

system’s power usage. Second performance metrics is memory footprint, which serves as one of

the security performance metrics for the resource constrained and internet-integrated scenarios.

To measure memory (ROM and RAM) usage in Cooja simulator there are many tools like;

msp430-size, objdump-size and etc. among these tools we used msp430-size tool for our work

because it estimates accurate usage of overall ROM and RAM of simulated.

3.8. Phases of Proposed Solution

As we discussed previously, our security architecture doesn’t support required cipher suit, to

overcome the limitation (stated in the above section 3.2 & 3.3), we modified

TLS_PSK_WITH_AES_128_CCM_8 in our suggested fix to allow the 6LBR to transmit the

pre-master secret to the sensor. The pre-master secret key received from the internet client is

relayed to the CoAP server. To ensure adequate security for WSN communications, we

implement the aforementioned authentication protocol.

The key stages, or message exchanges, of the proposed mediated DTLS handshake are outlined

as follows:

1. The 6LBR intercepts the initial Client Hello message, responding with a Client Hello

Verify to safeguard the WSN domain against DoS attacks. The Client Hello message sent

back by the internet client carries the client arbitrary value, together with the protocol

version and the list of supported cipher suites.

2. Through employing the proposed WSN authentication protocol, the 6LBR acquires an

initial ticket from the AC server, together with details on the AC to reach out to for

accessing the target sensing device. It is important to note that, in this context, both the

AC and the 6LBR are regarded as part of the same WSN domain. From the AC, the

6LBR receives a ticket for the CoAP service, information regarding the cipher suites

maintained by the sensor node, as well as its digital certificate and current IPv6 address.

3. The original Client Hello message is relayed to the intended CoAP device, accompanied

by a request for pre-shared key-based authentication. The Server Hello response is then

sent back to the internet client, this time confirming the use of public-key authentication.

The Server Key Exchange message forwarded in this flight transports the server random

value.

4. To ensure mutual authentication as per our objectives, the 6LBR client is authenticated

by requesting its certificate. The Client Key Exchange message from the client carries the

random value lengthways with the premaster secret key that the client has generated.

5. The WSN authentication protocol enables the retrieval of a secret key to be shared

between the 6LBR and the destination CoAP sensing device. This key is utilized for the

secure transmission of the pre-master secret key to the server. The next message flight

allows finalizing the handshake between the clients and sensing device.

6. Internet host (CoAP client) generate a key pair is generated, which includes a private key

integer dA and a randomly chosen integer k within the interval [1, p-1], along with a

public key represented as a curve point. The Internet host (CoAP client) then sends a

signed message m to the CoAP server.

7. On receiving signed message, initially, they must reach an agreement on the curve

parameters as will be discussed later at algorithm part and CoAP server verify the validity

of signature

8. Finally, secured and trusted end-to-end communication preformed system.

CHAPTER FOUR

RESULTS AND EVALUATION

4.1. Introduction

This chapter presents a discussion of the simulation results for two scenarios such as Normal

DTLS and Modified DTLS. The discussion includes Results of the simulation for the proposed

system architecture, WSN nodes neighbors of 6LBR, CoAP client/server communications, the

energy consumption performance (power consumption), performance analysis of memory

allocation (i.e. memory footprint) and validation of the results of the simulation.

4.2. Simulation Result of proposed system architecture

The output of the above simulation is shown below on the command line; after simulation is

started, the connection between WSN nodes and Linux host doesn't establish. So, to initialize the

communication between them we used tunslip6 services which use port 60001 on Linux hosts.

Steps to make connection between WSN nodes and Linux host using 6lbr.

The 6LOWPAN border router connection established between client and server, to facilitate

authentication and key exchange. The simulation employs a DTLS handshake that supports

delegated ECC public-key authentication. During this process, the 6LBR transparently intercepts

DTLS handshake messages, executing the handshake in two phases. The 6LBR manages the

handshake and performs ECC cryptographic operations on behalf of CoAP-constrained sensing

devices. A CoAP Internet client establishes a secure communication session with a CoAP server

located in a sensing device, and the handshake also accommodates the reverse scenario.

Figure 4.1 Simulation result of proposed system architecture

After established connection between WSN nodes and Linux host, we can ping and browse on

the web interface using Server IPv6 addresses:[aaaa::200:0:0:1]/and checks the neighbors of

6lbr as shown below .

Figure 4. 2 lists of WSN nodes neighbors of 6LBR

Figure 4.2 able to see IPv6 address of WSN nodes, with their respective routes.

After end-to-end communication between entities is secured with DTLS protocol, CoAP client

access resources on the CoAP server.

4.3. Performance of power consumption

We employ various percentages of the packet reception ratio, which drives most of the power

usage in sensor nodes, to get accurate energy estimations. Furthermore, we take the constant

percentage of RX to facilitate a comparison among all the nodes in the whole network setup. To

compute the power consumption, we use the mechanism of Power-trace system available in

ContikiOS and energest method. So, by using power state tracking method, Power-trace provides

estimation for a system’s power usage. To estimate the power consumption. We have the choice

of using a genuine device or Cooja. For r time (RTIMER_SECOND = 32768), find the count of

ticks per second and print f("Ticks per second: %u", RTIMER_SECOND); Include power trace

app in the project by adding it to the Make file APP += powertrace

Add to source file

"powertrace.h" is #included. Each ten seconds, add the following to the source file to print the

power profile: powertrace start * 10 CLOCK_SECOND;

Then here is how power consumption is calculated:

Energy consumption (Power - mW): (rxend – rxstart) * current * voltage / RTIMER_SECOND /

runtime(seconds)

Refer to the datasheet for current and voltage information, e.g., CPU = (531519 - 512803) * 0.33

* 3 / 32768 / 10

You obtain the energy used during runtime if you do not divide by runtime.

Table 4.1: Comparison of Power Consumption: DTLS_Modified vs. DTLS_Normal

Scenarios Radio ON (%) RadioTX (%) Radio RX (%)

DTLS_Modified 18.11% 0.39 0.67

DTLS_Normal 27 0.64 0.89

Figure 4.3 Comparison of Power Consumption: DTLS Modified vs. DTLS Normal

Comparison of Power Consumption Between Two Scenarios; such as DTLS_ Normal (basic

DTLS) and proposed one (DTLS Modified). So according to simulation result found, the normal

one consumes more power. In contrast to this our proposed protocol (DTLS Modified) consumes

less power than basic one. As depicted on Figure 4.3 the modified one out performs well in

power consumption comparison.

4.4. Memory Footprint of End-to-End Security

Our initial evaluation focuses on the RAM and ROM memory needed to implement end-to-end

security at the transport layer using the proposed research solutions, particularly due to their

limited availability on sensing platforms like Wismote. We emphasize that memory is a crucial

factor in determining effectiveness of new research solutions addressing end-to-end security in

the context of internet of things, which have great impact on resource-constrained devices. The

impact of the support for the two end-to-end security modes in respect to its usage of memory on

a wismote mote sensing platform, and also a fundamental usage scenario with existing DTLS-

based standard end-to-end security, which provides a basis for comparison. So, to analyze the

memory footprint we use objdump-size (msp430-size) tool and done comparison among our

scenarios.

Table 4.2: Memory Usage Comparisons between DTLS and DTLS Modified

Scenarios % of Total ROM %Total RAM

DTLS Normal 53 68.3

DTLS Modified 46.83 59.78

The memory footprint comparison between two scenarios; such as DTLS Normal (basic DTLS)

and proposed one (DTLS Modified). So according to simulation result found, In the normal

scenario, there was higher memory consumption in both RAM and ROM. However, in the case

of our proposed protocol (DTLS Modified) less memory space was consumed. As noted from

comparison result the modified one out perform good in memory usage also.

Figure 4.4 Memory Usage Comparison between DTLS and DTLS Modified

Fig 4.4 illustrates that memory footprint comparison between two scenarios; such as DTLS

Normal (basic DTLS) and proposed one (DTLS Modified). So according to simulation result

found, in the normal scenario more memory was consumed both in RAM and ROM. However, in

the case of our proposed protocol (DTLS Modified) less memory space was consumed. As noted

from comparison result the modified one out performs well in memory usage also.

Overall, we notice that hardware-level encryption presents considerable memory overhead,

particularly in ROM. The memory limitations of the TelosB and Wismote are apparent, as

additional ROM is required to fully support end-to-end security using the original CoAP

Certificates security mode. RAM could also become a limiting factor in scenarios where larger

applications require more memory from the sensing device. This challenge extends to the storage

and processing of X.509 certificates and their associated public keys.

4.5. Maximum communications rate (computational time)

The computational time required to implement security directly affects the maximum

communication rate that a sensing device can achieve. IoT applications may face challenges if

security measures demand excessive resources, particularly in terms of computation. To assess

energy consumption, we experimentally measure the computational time required for the

proposed mechanisms. As anticipated, the time needed for the mediated DTLS handshake (10.39

ms) is significantly shorter than that for the original handshake (15.39 ms), primarily due to the

computational impact of ECC. We can analytically ascertain the maximum number of CoAP

requests per hour that a device can handle while ensuring end-to-end security.

Table 4.3: The time needed to facilitate the mediated DTLS handshake

Scenario Computational time

DTLS_Modified 10.39ms

DTLS_Normal 15.39 ms

4.6. Validation of Simulation Result

There are several methods associated with testing, verification, and validation. To ensure the

accuracy of the network models and the interpreted simulation results, we employed an

analytical approach. The verification of simulation results revealed that the power consumption

performance derived from both the analytical analysis and the simulation is nearly identical.

Thus, we can confirm that the network models and simulation results are accurate. To validate

the simulation results, we utilized statistical techniques in our analysis. Additionally, the steps

taken to validate the simulation results were also implemented in this study. The findings

indicate that the proposed DTLS protocol uses less power compared to the basic DTLS.

The findings from the study conducted by (Kothmayr et al., 2013) on the evolution of memory

and energy performance suggest that the memory and computational power required for end-to-

end security are suboptimal. This result aligns with our work, which highlights improved

memory usage and power consumption performance.

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

This study aims to propose a DTLS-based approach for end-to-end security in COAP

communication within the Internet of Things. Authentication relies on the exchange of X.509

certificates containing ECC keys and a premaster secret key (PMSK), which is established

during a fully authenticated DTLS handshake.

The proposed end-to-end security mechanisms were evaluated experimentally with a focus on

two key aspects: their impact on the power consumption of sensing devices and their memory

footprint. We regard these two factors as essential for assessing the effectiveness of any security

proposal for constrained wireless sensing platforms.

The research solutions in this paper enhance end-to-end security for LoWPAN devices by

efficiently supporting ECC authentication and key agreement. Delegating ECC computations to a

more powerful device, such as the 6LBR, proves effective despite the additional overhead from

the LoWPAN authentication protocol. Our evaluation confirms that this security architecture

ensures message integrity, confidentiality, and authenticity while maintaining low power

consumption and memory overhead. This approach significantly contributes to IoT security,

achieving key goals in constrained environments and preserving device resources, distinguishing

it from existing solutions.

Our future research will focus on real-world evaluations and the development of enhanced

security mechanisms based on the integration model.

References

Adeeba Khan. (2016). OVERVIEW OF SECURITY IN INTERNET OF THINGS.

Ali Hussein, Imad H. Elhajj, Ali Chehab, & Ayman Kayssi. (2016). Securing Diameter: Comparing TLS,

DTLS, and IPSec.

Angelo Capossele, Valerio Cervo, Gianluca De Cicco, & Chiara Petrioli. (2015). Security as a CoAP

resource: an optimized DTLS implementation for the IoT.

Brachmann, M., Garcia-Morchon, O., Keoh, S.-L., & Kumar, S. S. (2012). Security Considerations around

End-to-End Security in the IP-based Internet of Things.

Cirani, S., Ferrari, G., & Veltri, L. (2013). Enforcing security mechanisms in the IP-based internet of

things: An algorithmic overview. Algorithms, 6(2), 197–226. https://doi.org/10.3390/a6020197

Cisco IBSG. (2011). The Internet of Things How the Next Evolution of the Internet Is Changing Everything.

Darrel Hankerson, Scott Vanstone, & Alfred Menezes. (2004). Guide to Elliptic Curve Cryptography. In

Guide to Elliptic Curve Cryptography (1st ed.). Springer New York, NY.

https://doi.org/10.1007/b97644

D.UthayaSinthan, & M.S.Balamurugan. (2013). DTLS & COAP Based Security For Internet of Things

Enabled Devices. C)International Journal of Engineering Sciences & Research Technology, 2(12),

3733–3738. http://www.ijesrt.com

Gao, D., Foh, C. H., Yang, O. W. W., Sun, X., & Lai, C. F. (2012). IP-enabled wireless sensor network. In

International Journal of Distributed Sensor Networks (Vol. 2012).

https://doi.org/10.1155/2012/851426

Granjal, J., & Monteiro, E. (2016). End-to-end transparent transport-layer security for Internet-

integrated mobile sensing devices. 2016 IFIP Networking Conference (IFIP Networking) and

Workshops, IFIP Networking 2016. https://doi.org/10.1109/IFIPNetworking.2016.7497235

Jorge Da Costa Granjal, A. (2014). END-TO-END SECURITY SOLUTIONS FOR INTERNET-INTEGRATED

WIRELESS SENSOR NETWORKS.

Khan, A. (2016). OVERVIEW OF SECURITY IN INTERNET OF THINGS.

Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture,

possible applications and key challenges. Proceedings - 10th International Conference on Frontiers

of Information Technology, FIT 2012, 257–260. https://doi.org/10.1109/FIT.2012.53

Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., & Carle, G. (2013). DTLS based security and two-way

authentication for the Internet of Things. Ad Hoc Networks, 11(8), 2710–2723.

https://doi.org/10.1016/j.adhoc.2013.05.003

Lakkundi, V., & Singh, K. (2014). Lightweight DTLS Implementation in CoAP-based Internet of Things.

https://doi.org/10.1109/ADCOM.2014.7103240

Lessa Dos Santos, G., Guimaraes, V. T., Da Cunha Rodrigues, G., Granville, L. Z., & Tarouco, L. M. R.

(2016). A DTLS-based security architecture for the Internet of Things. Proceedings - IEEE

Symposium on Computers and Communications, 2016-February.

https://doi.org/10.1109/ISCC.2015.7405613

Mehdipour, F. (2020). A Review of IoT Security Challenges and Solutions. In 2020 8th International

Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), IEEE, 1–6.

M. Gamundani, A. (2014). An Algorithmic Framework Security Model for Internet of Things.

International Journal of Computer Trends and Technology, 12(1), 16–20.

https://doi.org/10.14445/22312803/IJCTT-V12P105

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and

research challenges. In Ad Hoc Networks (Vol. 10, Issue 7, pp. 1497–1516). Elsevier B.V.

https://doi.org/10.1016/j.adhoc.2012.02.016

Omar Said. (2013). Development of an Innovative Internet of Things Security System. www.IJCSI.org

Petersen, H., Baccelli, E., & Wählisch, M. (2014). Interoperable Services on Constrained Devices in the

Internet of Things. In Interoperable Services on. https://hal.inria.fr/hal-01058636

Prachi Sharma, & S.V. Pandit. (2014). ENERGY EFFICIENT AND LOW COST ORIENTED HIGH SECURITY

METHOD FOR MANET A Review.

Praveen Kumar Kamma, Chennakeshava Reddy Palla, Usha Rani Nelakuditi, & Ravi Sekhar Yarrabothu.

(2016). Design and Implementation of 6LoWPAN Border Router.

 (2013). Lightweight security solutions for the internet of things. School

Reem Abdul Rahman, & Babar Shah. (2016). Security analysis of IoT protocols: A focus in CoAP. IEEE.

Rescorla. (2012). Datagram Transport Layer Security Version 1.2. Internet Engineering Task Force (IETF).

Roman, R., Zhou, J., & Lopez, J. (2013). On the features and challenges of security and privacy in

distributed internet of things. Computer Networks, 57(10), 2266–2279.

https://doi.org/10.1016/j.comnet.2012.12.018

Shelby. (2014a). ARM IoT Tutorial.

Shelby. (2014b). The Constrained Application Protocol (CoAP).

Suo, H., Wan, J., Zou, C., & Liu, J. (2012). Security in the internet of things: A review. Proceedings - 2012

International Conference on Computer Science and Electronics Engineering, ICCSEE 2012, 3, 648–

651. https://doi.org/10.1109/ICCSEE.2012.373

Sye Keoh, S. K. Z. S. (2013). Profiling of DTLS for CoAP-based IoT Applications draft-keoh-dtls-profile-iot-

00. http://www.ietf.org/shadow.html

Toheed, Q., & Razi, H. (2010). Asymmetric-Key Cryptography for Contiki.

Trabalza, D. (2012). Implementation and Evaluation of Datagram Transport Layer Security (DTLS) for the

Android Operating System.

Vignesh, K. (2017). Performance analysis of end-to-end DTLS and IPsec-based communication in IoT

environments Security and Privacy ~ Distributed systems security. www.bth.se

Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., & Dutta, P. (2015). The internet of things

has a gateway problem. HotMobile 2015 - 16th International Workshop on Mobile Computing

Systems and Applications, 27–32. https://doi.org/10.1145/2699343.2699344

Appendix A

======= DTLS Handshake Protocol Data structure=============

Struct {

HandshakeTypemsg_type;

Uint24 length;

uint16 message_seq;

uint24 fragment_offset;

uint24 fragment_length;

Select (HandshakeType) {

casehello_request: HelloRequest;

caseclient_hello: ClientHello;

casehello_verify_request: HelloVerifyRequest;

caseserver_hello: ServerHello;

case certificate: Certificate;

caseserver_key_exchange: Server KeyExchange;

casecertificate_request: CertificateRequest;

caseserver_hello_done: Server HelloDone;

casecertificate_verify: CertificateVerify;

caseclient_key_exchange: ClientKeyExchange;

case finished: Finished; 69 } body;

} Handshake;

========The HelloVerifyRequest data structure==============

Struct {

ProtocolVersionserver_version;

Opaque cookie<0..2ˆ8-1>;

} HelloVerifyRequest;

