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ABSTRACT 

Seamless communication with WSN devices has facilitated the development of various Internet 

of Thing (IoT) applications. The information communication technologies being developed for 

this purpose are currently centered around an adaptation layer, specifically IPv6 over Low 

Power Wireless Personal Area Networks (6LoWPAN), and are constrained by the Constrained 

Application Protocol (CoAP). A significant challenge in CoAP communications with internet-

integrated wireless sensor networks is ensuring end-to-end security, particularly due to the high 

computational costs associated with elliptic curve cryptography (ECC) on resource-limited 

wireless sensing devices. Additional concerns include the incompatibility of end-to-end security 

with CoAP proxies and the limitations of wireless sensor nodes. The mechanism proposed in 

this research tackles these challenges effectively. It utilizes a DTLS-based security protocol that 

facilitates a transparent DTLS handshake with mutual authentication, aimed at reducing the 

computational load on constrained sensor nodes while offloading intensive ECC computations 

to more powerful devices. The implementation employs pre-shared key authentication for 

sensor nodes, along with a security protocol that guarantees both mutual authentication and 

confidentiality within the wireless sensor network (WSN) environment during end-to-end 

communications. The outcomes of this research have positively impacted both power 

consumption and memory usage in WSN devices. The proposed approach can be seamlessly 

integrated into applications running on internet clients (CoAP clients), and sensors node (CoAP 

servers). Overall, this system enhances end-to-end security for IoT applications while 

conserving resources in WSN nodes. 

Keywords: DTLS, CoAP, ECC, IoT, 6LoWPAN, and WSN. 

 

 

 

 

 

 

 

 



 

 

CHAPTER ONE 

INTRODUCTION 

1.1. Background 

Over the past few years, advancements in technology have enabled small sensor devices to 

wirelessly connect with the broader internet. In wireless sensor networks (WSNs), IP technology 

has traditionally been seen as unsuitable due to its high demands on processing power and 

memory  (Gao et al., 2012). An IP-enabled wireless sensor network (IP-WSN) is a specific type 

of WSN that utilizes the Internet Protocol (IP) for communication among devices. In this setup, 

each sensor devices are allocated a sole IP address, enabling direct communication with other 

nodes along with external devices connected to the internet. The use of IP in WSNs enables a 

variety of applications that necessitate data to be transmitted over long distances or across 

multiple networks. For example, an IP-enabled WSN could be used to monitor environmental 

conditions in remote locations, with data transmitted back to a central server over the internet. 

There are several protocols that can facilitate IP communication in WSNs, including 6LoWPAN, 

ZigBee IP, and WiFi. To accelerate the adoption of these new emerging techniques, several key 

challenges need to be tackled, including routing, energy consumption, and security, in IP-enabled 

wireless sensor networks and their applications (Gao et al., 2012). The characteristics of the 

WSN channel makes the data vulnerable to being modified, injected and eavesdropped (Gao et 

al., 2012).  

Therefore, security is often an important requirement. This study, focuses on securing the 

constrained application protocol for IoT by implementing Datagram Transport Layer Security 

(DTLS) protocols using a pre-shared key cipher suite with an Elliptic Curve Cryptograph (ECC) 

algorithm for end-to-end security with regard to saving resource of the constrained devices. 

The study introduced a security scheme based on the ECC public key cryptography algorithm, 

designed to operate over normal communication stacks that provide UDP/IPv6 networking for 

Low Power Wireless Personal Area Networks (6LoWPAN). 

1.1.1. The Internet of Thing (IoT) 
 
The Internet of Thing (IoT) is a rapidly growing field that involves joining unremarkable things 

for example sensors, appliances, and vehicles to the internet to enable new applications and 

services (A. Khan, 2016). IoT devices are typically small, low-power, and resource-constrained, 



 

 

which presents unique encounters related to security and privacy (Mehdipour, 2020). 

Cisco has projected that the IoT device will increase to 50 billion in 2020 (Cisco IBSG, 2011). 

IoT devices are isolated, communicating with one another and linked to the global network 

where they open themselves to attack (A. Khan, 2016). More sensitive data more risk to an 

individual or an enterprise. So, I need to protect this information’s-based value to deliver security 

in IoT. The biggest concern is that to bring up the implementation of the Internet of Things but 

without Compromising privacy, security and integrity issues (M. Gamundani, 2014).This 

proposed work presents DTLS based on end-to-end security in CoAP communication for the 

Internet of Thing involving appropriate ECC cryptography algorithm and pre shared cipher suit. 

1.1.2. Feature and Challenges’ of IoT  

A. IoT Features 

The IoT is the interconnection of diverse networked entities, including sensors, actuators, mobile 

devices, and more. (Brachmann et al., 2012). The features that IoT needs to support are device 

heterogeneity, scalability, energy-optimized solution, ubiquitous exchange of data, self-

organization capability, semantic interoperability, data management, embedded security, 

privacy-preserving mechanism and localization and tracing functionality. (Miorandi et al., 2012). 

One notable feature of the IoT is its focus on energy-optimized solutions. For various IoT 

devices, a key limitation is to minimize the power consumed during communication and 

computing tasks. (Miorandi et al., 2012). Subsequently, the go-to-plan arrangements that aim to 

optimize energy consumption (even at the expense of performance) will end up increasingly 

appealing (Miorandi et al., 2012). 

B. Challenges of IoT 

Due to the rise in Internet-enabled services and devices greening of IoT is also thought to be a 

key challenge to minimize the energy consumption i.e. to make the network devices more energy 

efficient(R. Khan et al., 2012). Additional challenges contain range allocation as devices requires 

dedicated spectrum to send data over the wireless standard, explicitly referring to and identity 

management to manage and assign unique identity. 

One of the biggest challenges that prove to be a hindrance to IoT growth is security as shown in 

Figure 1.1 (A. Khan, 2016; Roman et al., 2013). 

 

 



 

 

 

Barriers to IOT Growth 

Security  

    Interoperability  

Hardware Integration 

    Network Connectivity 

             Cost 

Can’t prove the ROI 

Data storage and analysis 

Maintenance 
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Figure 1.1: Security is the biggest challenge for the growth of IoT(A. Khan, 2016) 

 

The scalability of IoT has made security more challenging for researchers with every time the 

statistics of IoT devices are rising (Omar Said, 2013). Since IoT devices are not similar as they 

are composed of laptops, mobile phones, and other objects which may be small or large, a 

security solution that fits all is required. The security challenge of IoT is to maintain 

confidentiality, authentication, and integrity(Cirani et al., 2013; Suo et al., 2012).  

Securities required for Internet of Things are communication security, network security and data 

storage security (Cirani et al., 2013; Suo et al., 2012). In communication security the data needs 

protection from source to destination while traveling i.e. security between two devices which are 

hop by hop security or end-to-end security. It must keep up confidentiality, integrity, and 

authentication. 

Arrange security points to dodge disturbances and information abuse. It focuses on maintaining 

availability to ensure that the authentication user only can reach the required data. 

Data security seeks to safeguard data at rest that is to keep up its confidentiality and integrity. 

This will motivate us to implement DTLS protocols using a pre-shared key cipher suite that 

contain ECC keys for end-to-end security for the Internet of Things. This will deliver 

confidentiality, authenticity, and integrity with low energy consumption. 

1.1.3.  Datagram Transport Layer Security (DTLS) 

Transport Layer Security (TLS) confirms secure communication on the transport layer, assuring 
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the protection of HTTP applications operating in the TCP. TLS has outlined for solid transport 

conventions, in this way it anticipates no misfortune or reordering of messages at the transport 

layer. Accordingly, it cannot be used through unreliable transport protocols that are inherently 

prone to data loss (Lakkundi & Singh, 2014). This led to the creation of Datagram Transport 

Layer Security (DTLS). 

DTLS is a modified version of TLS that overcomes the original protocol limitations when 

running over unreliable transport protocols. (Rescorla, 2012). 

DTLS provides security that by nature is end-to-end, but in reality, it conflicts with functionality 

designed in CoAP: the usage of proxies to assist communications between the internet and WSN 

communication domains. As we tried to mention on the introduction part of this paper, another 

aspect currently motivating research effort is that DTLS, as adopted for CoAP, requires the usage 

of public key authentication using Elliptic Curve Cryptography for authentication and key 

agreement.  Elliptic curve cryptography (ECC) is a form of public key cryptography that relies 

on the mathematical properties of elliptic curves. Unlike traditional public key cryptography 

algorithm, for example RSA and Diffie-Hellman, ECC is generally considered to offer a higher 

level of security for a specific key size. This is because of the mathematical principles behind 

ECC is more complex and harder to solve than the mathematics behind other public key 

algorithms (Darrel Hankerson et al., 2004). 

The DTLS IoT profile can include a blend of cipher suites, DTLS extensions, and tuning 

functionalities, which render it appropriate for constrained devices and networks (Sye Keoh, 

2013). DTLS was previously designed for the network; but similar could not be effective with 

constrained devices due to its heavy size (Lessa Dos Santos et al., 2016). Therefore, DTLS 

protocol header compression was proposed with 6LoWPAN mechanism (Lessa Dos Santos et al., 

2016). A two-way authentication scheme will be suggested as a DTLS based end-to-end security 

which contain ECC keys and based on pre shared cipher suit. This claims to convey 

confidentiality, authenticity and integrity with low energy utilization. 

The interaction between the client and the server is through the border router. The complete 

information exchanged within the network is encrypted with DTLS protocol (Vignesh, 2017). 

1.1.4. Constrained Application Protocols (CoAP) 

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol designed to 

support constrained nodes and networks, such as Low-power and Lossy Networks (LLNs) 



 

 

(Shelby, 2014). CoAP is an ideal alternative of HTTP for resource constrained IoT devices since 

CoAP is a power-efficient protocol consumption, network traffic, etc. IoT devices can be turned 

into embedded web servers to make their resources accessible via the CoAP. CoAP resources are 

hosted on their CoAP servers, exposed by CoAP services and registered to a CoRE Resource 

(Shelby, 2014).  

Some features of the COAP are listed as follows;(Shelby, 2014a) 

 The Embedded web transfer protocol (CoAP://) 

 Asynchronous transaction framework 

 UDP enhanced with reliability and multicast support 

 GET, POST, PUT, DELETE methods 

 URI support 

 Small, simple 4-byte header 

 DTLS with PSK, RPK and certificate-based security 

 A variety of MIME types and HTTP response codes 

 Integrated discovery 

 Optional observation and block-wise transfer 

CoAP features a straightforward caching model and proxy that frequently enables caching on 

behalf of a constrained node, such as a sleeping node, this reduces network load. 

The Figure 1.2 Shows how CoAP caching works between CoAP server and CoAP client (Shelby, 

2014a) 



 

 

 
Figure 1.2: Proxy and caching of CoAP server/client (Shelby, 2014a) 

1.1.5. Standardized Protocol Stack of Internet of Thing 

Numerous internet communication technologies for WSN are being advanced based on their 

characteristics, and constraints of the resources of devices like; low-energy sensing devices and 

low-rate wireless communications commonly found in these environments. While these 

characteristics have influenced earlier plans of applications using WSNs disconnected from the 

internet, new results are being developed to ensure interoperability with current internet 

standards, allowing sensing devices to communicate with other internet entities within the 

framework of future IoT distributed applications. Here are various communication protocols that 

are currently being designed for this purpose, they already provide a reference protocol stack for 

implementation of internet communication (Jorge Da Costa Granjal, 2014), which is shown in 

Figure 1.3 below: 



 

 

 
Figure 1.3: Standard protocol stack for internet of things (Jorge Da Costa Granjal, 2014) 

The communication technologies at particular the layers of the protocol stack depicted in Figure 

1.3 are designed to be appropriate to the employment of low-energy devices and wireless 

communications, while providing acceptable reliability and not compromising the duration of 

sensing applications. 

Many sensing devices operate on power from by batteries and in consequence new 

communication and security solutions created for WSN environments are required to carefully 

balance the communications rate, reliability and energy usage to save the resources of these 

constrained devices. From a bottom-up perspective, the main characteristics of the various 

standard protocols that make up the stack shown in Figure 1.3 are as follows: (Jorge Da Costa 

Granjal, 2014). 

 IEEE 802.15.4 may support low-energy communications at the physical (PHY) and 

Medium Access Control (MAC) layers including more recent features needed to the 

standard as IEEE 802.15.4e. IEEE 802.15.4 puts the protocols at the bottom layers and 

lays as the base for the development of WSN internet communication technologies at 

upper layer of the protocol framework. 

 The low-energy communication environment utilizing IEEE 802.15.4 supports a 

maximum of 102 bytes for data transmission at higher layers of the stack, which is 

significantly lower than the 1280 bytes required for the Maximum Transmission Unit 

(MTU) of IPv6. Through solving this issue, 6LoWPAN provides an adaptation layer for 



 

 

transmitting IPv6 packets over IEEE 802.15.4, this issue is solved by implementing 

breaking down and reconstructing IPv6 packets, along with other necessary mechanisms, 

as explained later. 

 Routing in 6LoWPAN within WSN environments can be facilitated by the Routing 

Protocol for Low-Power and Lossy Networks (RPL). RPL offers a framework that can 

be tailored to meet the specific needs of different application scenarios. It defines 

application-specific profiles to outline the relevant routing requirements and 

optimization objectives. 

 The Constrained Application Protocol (CoAP) facilitates communication at the 

application layer of the stack. Currently, CoAP is being developed to ensure effective 

interoperability among various networks at this layer, adhering to the principles of 

REST. architecture that exists on the web. 

1.2. Problem Statement 

The limitations of device resources, constraining them from running a fully featured IP stack, 

coupled with the inherent unreliability of wireless links, constitute significant obstacles to 

implementing end-to-end security mechanisms in 6LoWPANs. As previously stated, the nature 

of the WSN channel makes the data vulnerable for being modified, injected and eavesdropped. 

Even if the connections between sensor nodes are secure within the internal network, 

communicating to internet or outside world is still vulnerable for different attacks. So end-to-end 

security is essential for operative communication between resource constrained devices and rest 

of the world. In addition to this, selecting an appropriate cipher suit and cryptographic algorithm 

for such kinds of constrained environment is still unsolved issues. So, achieving these secure 

communications regarding the saving of resource consumption is challenging issue worth 

investigating. Therefore, this research will help mitigate the aforementioned problem by tackling 

the following research questions. 

1. How can the integration, and mockup of CoAP (Constrained Application Protocol), 

DTLS (Datagram Transport Layer Security), and 6LBR (6LoWPAN Border Router) be 

enhanced by incorporating ECC (Elliptic Curve Cryptography) algorithm and pre-shared 

cipher suite? 

2. How can the security and computational resource implementation for the 6LoWPAN 

Border Router (6LBR) be optimized through the use of cryptographic algorithms, paired 



 

 

with an appropriate pre-shared key cipher suite, and combined with the DTLS protocol? 

3. To what extent can the performance and security enhancements of DTLS be evaluated? 

1.3. Objective of the study 

1.3.1. General objective: 

The general objective of this research is to develop and execute DTLS-based end-to-end security 

for CoAP communication in IoT, leveraging ECC (Elliptic Curve Cryptography) algorithm and a 

pre-shared key cipher suite.  

1.3.2. Specific Objective: 

To fulfill the primary objective, the following specific goals have been established: - 

 To systematically integrate and simulate the interaction among CoAP, DTLS, and 6LBR, 

incorporating an ECC algorithm and a pre-shared cipher suite for comprehensive analysis 

and evaluation. 

 To establish robust security protocols and computational resource management for the 

6LoWPAN Border Router (6LBR) through the deployment of a cryptographic algorithm, 

coupled with a suitable pre-shared key cipher suite, and integration with the DTLS 

protocol. 

 To empirically assess the performance and security enhancements offered by DTLS, 

quantifying its effectiveness in improving data transmission on efficiency and 

safeguarding communication. 

1.4. Scope 

This study is limited to achieving DTLS based on end-to-end security in CoAP communication 

for IoT by using ECC algorithm with pre-shared key cipher suite by simulation. In general, it 

only focusses on the upper layer protocol of OSI model, excluding the lower layer security and 

multi-hop security of networks. 

1.5. Significance of the study 

The deployment of this end-to-end security architecture for IPv6-enabled wireless sensor 

network and internet host may benefits different community for their day to day activities like 

for; healthcare: the physician can access the patient information/history from remote CoAP 

server, military purpose and etc. Especially for environment that doesn’t suitable for deploying 

powerful network devices and equipped with different constrained devices like wireless sensor 



 

 

nodes that had limited resources; like memory, battery and computation abilities to process ECC 

algorithms for security purpose. Therefore, I can save resources of those constrained devices 

while ensuring end-to-end security for internet of things. In general, the significance of this study 

is to maximize end-user satisfaction with security aspects in the area of IoT. 

1.6. Organization of the thesis 

The study is organized into the following chapters. In the first chapter the study made a brief 

discussion on introduction of the study, statement of the problem, objective of the research, the 

significance of the study and the scope. The next chapter highlights the existing literature in the 

area and the related works, which gives a detailed outline of the research part, and a summary of 

related works to highlight the research gap that this study aims to address. In Chapter three 

presents the design for a flexible architecture and topology, based on abstract reasoning about its 

fundamental building blocks. In Chapter four, the deployed topology of proposed solution is 

evaluated by describing an innovative implementation design and also the performance of 

proposed system architecture was examined using COOJA simulation software. The conclusion 

and future direction of thesis is addressed in chapter five. Some particular aspects are described 

in the appendices. For reasons of clarity and brevity, they are not part of the main body of the 

thesis. 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction 

The Internet of Thing (IoT) pattern has witnessed a significant proliferation of interconnected 

devices, facilitating smooth communication and information exchange between different entities. 

As IoT applications continue to advance, safeguarding the security of communications protocols 

becomes paramount, particularly in resource-constrained environments. One such widely utilized 

protocol in constrained IoT scenarios is CoAP, planned to facilitate efficient communication 

between low-power devices with limited resources. 

The security challenges inherent in the CoAP protocol have spurred considerable research 

interest, with scholars exploring various cryptographic solutions to enhance its robustness. 

Among these solutions, the application of Elliptic Curve Cryptography (ECC) has gained 

prominence because of its ability to provide strong security while demanding less computational 

overhead, making it particularly suitable for resource-constrained IoT devices. 

This literature review examines the existing knowledge on the secure implementation of CoAP 

in IoT environments, with a particular emphasis on the use of Elliptic Curve Algorithm. The 

review seeks to provide an summary of the existing state of research, highlighting key findings 

and identifying gaps in knowledge, thereby offering insights into the advancements made in 

securing CoAP for IoT applications. Through By examining relevant literature, this review aims 

to enhance the understanding of the challenges and opportunities related to implementing ECC to 

secure the Constrained Application Protocol within the context of the Internet of Things. 

2.1.1. End-to-end transparent transport-layer security for Internet integrated mobile 

sensing devices  

From a study stated in (Granjal & Monteiro, 2016) focused on mobility of sensing mobile nodes 

among different WSN domains and internet hosts. The study proposed the mechanisms that 

challenges in the domain of integrated internet and wireless sensor network (IoT application) 

such as the considerable cost of end-to-end transport-layer security for constrained wireless 

sensing devices, the incompatibility of end-to-end security with the usage of proxies, and the 

absence of effective mechanisms to abstract end-to-end communications and security from the 

movement of sensing devices.  

The study also proposes the trust model called 6LoWPAN Border Router (6LBR) that is 



 

 

established between access control (AC) servers on different WSN domains, to support end-to-

end security with mobility and the CoAP security mode of internet and wireless sensor network 

side, and the methodology used is experimental. 

However, this study proposes a solution to address a true end-to-end security with effectively 

used ECC cryptography within the framework of end-to-end DTLS security. 

2.1.2. Design and Implementation of a 6LoWPAN Gateway 

As stated in the study of (Praveen Kumar Kamma et al., 2016) they introduced, an innovative 

approach to implementing 6LoWPAN border router with an embedded Web server on Beagle 

Bone Black (BBB) and implementing bridge between 6LoWPAN devices to the internet utilizing 

experimental methodology. The study addresses a 6LoWPAN devices able to communicate 

external network (internet).  

2.1.3. The Internet of Things Faces a Gateway Challenge 

The vast network of interconnected smartphones offers a robust foundation for ubiquinol. 

However, the current fragmented, segmented, and application specific approach to wireless 

connectivity is limiting the growth potential of this emerging class of devices. To tackle this 

issue, a new networking architecture for low-power wireless devices is needed, one that 

effectively capitalizes on the opportunities presented by the global network of smart devices 

phones (Zachariah et al., 2015). The study they need to concentrate on adaptation layer protocol, 

doesn’t consider another layer protocol. This study aims to fill these gaps by covering the upper 

layer of OSI model. 

2.1.4. Security as a CoAP Resource: An Optimized DTLS Implementation for IoT 

As mentioned in (Angelo Capossele et al., 2015), an application named Blink-To-SCoAP was 

developed by integrating three libraries that implement lightweight versions of the DTLS and 

CoAP protocols, along with the IPv6/6LoWPAN stack. Furthermore, they conducted an 

experimental campaign to assess the performance of the DTLS security operations. The research 

only considered sensitive information. In contrast my study covers end-to-end security of any 

transmitted information and optimizing the deployment of DTLS protocol for CoAP by using 

Elliptical curve cryptography (ECC) and minimizing ROM occupancy.  

2.1.5. Interoperable Services on Constrained Devices in IoT  

The Internet of Things presents two key challenges. First, a substantial increase in the number of 

devices connected to the internet is anticipated, with most deployments involving large groups of 



 

 

devices. Second, the majority of these devices will predominantly rely on machine-to-machine 

(M2M) communication, which means they will only provide external interfaces not specifically 

intended for human interaction. Therefore, for both scalability and interface design 

considerations, approaches that minimize management and configuration tasks are essential 

(Petersen et al., 2014). Thus, auto-configuration mechanisms are required at all layers of the 

network stack, as demonstrated in this study, to handle a massively deployment of device 

configuration and setup problems. 

2.1.6. Securing Diameter: Comparing TLS, DTLS, IPsec  

This paper provided a comparative study on TLS, DTLS and IPsec on securing diameter. They 

have taken into account the transmission header, connection establishment and processing 

overhead. They have concluded saying TLS has the least number of roundtrip times but has more 

processing overhead. DTLS has the least processing overhead and manageable number of RTTs 

(Vignesh, 2017). This research has provided us with the various performance aspects that must 

be considered in consideration in comparing the various security protocol (Ali Hussein et al., 

2016).  

The study compared the three protocols based on the number of round-trip times (RTTs) and 

connection establishment time and processing delays. As these parameters are already evaluated, 

hence they have decided to evaluate the security protocols with respect to other performance 

metrics (CPU utilization, Memory utilization, network overhead, elapsed time) in various 

scenarios (i.e., in end-to-end and proxy) in an emulated IoT environment. The study focused only 

on security protocol comprises (Ali Hussein et al., 2016). Our study covers end-to-end security 

of IoT devices communication using selected security protocols and considering resource 

utilization.  

2.1.7. Security Assessment of IoT Protocols: Focus on CoAP  

The research provided a summary of existing techniques of security for physical, MAC, and 

network layers. CoAP has support for M2M requirements in constrained environments, UDP 

binding with support for unicast and multicast requests, asynchronous message exchanges, and 

minimal message overhead, parsing complexity, and supports URI, (Vignesh, 2017). Different 

implementations of CoAP, such as Californium, Erbium, jCoAP, Libcoap exist which were told 

(Vignesh, 2017). Different models of CoAP security are No Sec, Pre-shared Key, Raw Public 

key and certificates. Key management is also an issue to be looked after in CoAP. The work 



 

 

provided the information regarding the various executions of CoAP protocol and their 

advantages and disadvantages. The work also provided a feasibility study of implementing the 

security protocols on the existing CoAP implementations (Reem Abdul Rahman & Babar Shah, 

2016). Without giving any consideration to the performance. In contrast our study gives much 

attention to effective resource utilization with secured communication. 

2.2. Related Work 

To address existing problems and achieve the objectives of this study involved a review of 

numerous related articles. Some of the literature examined includes the following: 

Recently, there has been an increase in research focused on end-to-end security protocols for IoT 

and WSNs. As stated in (Kothmayr et al., 2013), Such a protocol safeguards the message 

payload from the data source until it reaches its destination. Since end-to-end protocols are 

typically implemented at the network or application layer, forwarding nodes remain unaware of 

the content.  

In (UthayaSinthan & Balamurugan, 2013) For application layer communication, resource-

constrained devices are expected to utilize the Constrained Application Protocol (CoAP), which 

is currently being standardized by the IETF. To ensure the security of the transmission, of 

sensitive information, secure CoAP mandates the use of DTLS as the underlying security 

protocol for authenticated and confidential communication.  

End-to-end security can be accomplished using Transport Layer Security (TLS) or its 

predecessor, Secure Sockets Layer (SSL). TLS and SSL are widely utilized on the Internet to 

secure communications between hosts. They also include key exchange mechanisms and provide 

authentication between Internet hosts, along with ensuring confidentiality and integrity (Raza   

  lardalens h gs ola.,      . It is challenging to employ these protocols for IoT security due to 

a few issues. TLS can only be utilized over TCP, which is not the preferred communication 

method for smart objects, as setting up a TCP connection consumes valuable resources. As stated 

in (Trabalza, 2012), for some applications Internet Protocol Security (IPsec) is also not practical 

to use, mainly because it is placed at a lower level, and it cannot serve a single application, but 

also because it necessitates a higher effort for the design. However, the DTLS solves these 

problems by adapting the TLS protocol for functioning in datagram communications by 

introducing explicit counters and messages. In (Prachi Sharma & S.V. Pandit, 2014) several open 

issues for 6LoWPAN networks are identified, more specifically, the paper highlights several 



 

 

issues related to security in 6LoWPAN WSNs. The work presented here address these security-

related issues for the low power and lossy network protocol stack. So, in these types of WSNs, 

security is offered by the end-to-end transport layer protocol Datagram TLS. DTLS provides 

communications privacy for datagram protocols by enabling client/server applications to 

communicate in a way that is designed to protect against eavesdropping, tampering, or message 

forgery.  

In a study of, he concentrated on mobility of sensing mobile nodes among different WSN 

domains and internet hosts using various techniques including while this study employed 

different simulation environment, tools, OS, open source library used. 

Algorithm Agility refers to the practice of maintaining multiple certificates available for 

installation. This is particularly important in light of recent guidelines that call for a transition 

from 1024-bit keys to 2048-bit keys. Businesses must have the flexibility to select the 

appropriate algorithm options that meet their requirements while adapting to the minimum key 

size set by NIST. Additionally, the US Government has issued and adopted guidelines for 

alternative encryption and signing algorithms, which include Elliptic Curve Cryptography (ECC) 

and Digital Signature Algorithms (DSA). Hence, for security purposes selecting an appropriate 

public key cryptography is a must depending on some criteria of our requirements. So, we need 

to do a little comparison between popular public cryptosystems such as RSA and ECC. The 

future of cryptography is predicted to rely on Elliptic Curve Cryptography (ECC), as RSA is 

likely to become impractical in future years with computers getting faster. ECC employs a 

public-key cryptography system grounded in the discrete logarithm structure of elliptic curves 

over finite fields. It is well-known for its smaller key sizes, quicker encryption, improved 

security, and more efficient implementations at the same security level when compared to other 

public cryptography systems like RSA. ECC can be utilized for encryption, e.g. Elgamal, secure 

key exchange using ECC Diffie-Hellman, as well as for authentication and verification of digital 

signatures. Consequently, an ECC is more appropriate for public cryptography for resource 

constraint environments. ECC uses an elliptic curve over a finite field (p) of the form (Kothmayr 

et al., 2013). 

y
2
 = x

3
 + ax + b (mod p) 

The curve defines a finite field consisting of points that satisfy this equation along with infinity 

(∞  as the identity element. The value of a and b determines the shape of the curve. Only those 



 

 

curves which don’t have repeated factors for x
3
 + ax + b are used in cryptography. (Kothmayr et 

al., 2013). 

The general perception of Public key cryptography is often considered complex, slow, and 

resource-intensive, consuming significant energy and memory. This makes it less suitable for 

wireless sensor networks, which typically operate with limited power and memory. However, it 

is feasible to design a public key encryption architecture that minimizes energy and memory 

consumption by carefully selecting appropriate algorithms and parameters. Toward demonstrate 

this, performance comparison results are provided below, where both techniques were tested on 

mobile processors, demonstrating that ECC operations are considerably more feasible and 

efficient than RSA in resource-constrained environments. While RSA appears to be more 

efficient, this is primarily true for decryption, which becomes less efficient as the key size 

increases (Toheed & Razi, 2010). Secondly, RSA requires a significant amount of memory for 

its operations, whereas ECC offers the same level of security with much lower memory 

consumption. In our study, we chose to use ECC primarily for its superior performance. 

Table 2.1: Comparison of RSA and ECC Performance (Toheed & Razi, 2010) 

Level of Security Key Size Decryption Time 

(Seconds) 

Verification Time 

(Seconds) 

80 RSA-1024 2.694 0.191 

 ECC-160 0.765 1.042 

112 RSA-2048 14.734 0.665 

 ECC-224 1.187 1.626 

128 RSA-3096 44.274 1.378 

 ECC-256 1.375 1.905 

Table 2.2: Related work summary 

Author Year of 

publication 

Title of the 

research 

Methodology Findings Limitation 

Jorge Granjal and 

Edmundo 

Monteiro 

2016 End-to-end 

transparent 

transport-layer 

security for 

Internet-

integrated mobile 

sensing devices 

Experimental. The proposed 

mechanisms in the 

paper offer practical 

and effective solutions 

to three key challenges 

currently faced in this 

research area: the high 

cost of end-to-end 

transport-layer 

security for 

constrained wireless 

sensing devices, the 

incompatibility of end-

to-end security with 

the utilization of 

We noted a gap in that the 

proposed solution fails to 

provide a solution to address 

true end-to-end security, the 

same applies to mobility and 

also does not offers a 

solution to effectively 

support ECC cryptography 

within the framework of 

end-to-end DTLS security 

with Internet-integrated 

sensing devices, in a 

transparent fashion to the 

communicating entities and 

applications, and supporting 



 

 

proxies and the 

absence of 

mechanisms to 

abstract end-to-end 

communications and 

security from the 

movement of sensing 

devices 

mobile devices. This study 

is intended to fill these gaps. 

 

 

Praveen Kumar 

Kamma, 

Chennakeshava 

Reddy Palla, 

Usha Rani 

Nelakuditi, Ravi 

Sekhar 

Yarrabothu 

2016 Design and 

Implementation 

of 6LoWPAN 

Border Router 

Experimental. The paper seeks to 

implement a 

6LoWPAN border 

router with an 

embedded web server 

on the Beagle Bone 

Black (BBB) and 

establish a bridge 

between 6LoWPAN 

devices and the 

internet, supporting 

both IPv4 and IPv6. 

We noted a gap in that the 

suggested solution does not 

provide a solution to address 

about security issue, just 

only focused on a mediator 

of communication between 

IoT devices to the internet 

Thomas 

Kothmayr, 

Corinna Schmitt, 

Wen Hu, Michael 

Brünig, and 

Georg Carle. 

2013 DTLS based 

security and two-

way 

authentication for 

the Internet of 

Things 

Combination of 

proposing a security 

scheme, 

implementing it, and 

evaluating its 

feasibility. 

The proposed The 

security scheme for 

the Internet of Things 

is built upon the 

Datagram Transport 

Layer Security 

(DTLS) protocol and 

is specifically 

designed to function 

over standard 

communication stacks 

that support UDP/IPv6 

networking for Low-

Power Wireless 

Personal Area 

Networks 

(6LoWPANs)..  

The paper introduces a 

practical security scheme 

based on RSA; however, 

RSA is not ideal for IoT 

devices due to its 

performance and power 

consumption issues. 

D.UthayaSinthan, 

M.S.Balamurugan 

2013 DTLS & COAP 

Based Security 

for Internet of 

Things Enabled 

Devices 

Experimental. The potential to 

decrease DTLS 

overhead using the 

study examines 

6LoWPAN header 

compression and 

introduces the initial 

implementation of 

DTLS. header 

compression 

specification tailored 

for 6LoWPAN. 

The paper, doesn’t present 

DTLS for communication 

among constrained devices 

and internet 

Shahid Raza 2013 Lightweight 

Security 

Solutions for The 

Internet of Things 

Experimental. The paper focuses on 

the security aspects of 

the IoT by using IPsec 

The study doesn’t consider 

resource utilization.  



 

 

The majority of the research papers listed in the preceding summary table doesn’t offer effective 

resource optimized solution. My research addresses this gap by implementing a true end-to-end 

security and also offers resource saving. 

2.3. Research Gap  

Generally, the examination of the aforementioned related work offers different solutions to 

secure communication among WSNs and internet, by using different security protocols like; 

IPsec, TLS, DTLS, IKE and so forth. However, many of them concentrated on securing 

communication rather than saving the resources of the networks. Therefore, this research focuses 

on both securing end-to-end communication between wireless sensor nodes and external 

networks (Internet) and also saving resources (i.e., computational time, energy, and memory) of 

the resource-constrained devices. To the best of our knowledge, this work is a promising end-to-

end security architecture for the Internet of Things that ensure standard security goals such as 

integrity, authentication, and confidentiality for constrained environment while guaranteeing the 

saving of resource constrained devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1. Introduction  

The proposed research methodology in this thesis details the architecture of the system, the 

algorithm used, and the deployment strategy for the security architecture. 

In this study a set of mechanisms is designed with the aim of facilitating end-to-end security with 

wireless sensing devices and enable to solve communication security regarding resource 

consumption. The proposed architecture allows us to offer some practical and effective solutions 

to three aspects that currently motivate us and representing high research challenges in the area:  

I. The high cost of end-to-end transport-layer security for constrained wireless sensing 

devices  

II. The incompatibility of end-to-end security with the implementation of proxies, and  

III. The lack of mechanisms to abstract comprehensive communication and security from 

sensing devices. 

Generally, our proposed architecture work together to provide effective complete end-to-end 

security transparent fashion to communicating parties and applications, and at the same time with 

total compatibility with CoAP security as currently defined for Internet of Things (IoT).  

3.2. Proposed architecture for achieving end-to-end security 

The proposed architecture is to guarantees end-to-end security at the transport layer for 

communications between constrained sensing devices and the Internet host, applying the DTLS 

handshake enabled by a 6LoWPAN border router (6LBR). The 6LBR plays a crucial role by 

intercepting and forwarding packets at the transport layer, that is a practical function given its 

purpose by way of a router that connects the LoWPAN and Internet areas. 

In the architecture we propose, the heavy computational tasks associated through ECC public-

key authentication and key negotiation are substitute to the 6LBR, which we consider to have 

greater resources than the CoAP sensors. Two additional components are crucial in supporting 

authentication and key negotiation: Certification Authority (CA) server and Access Control (AC) 

server. CA server is responsible for issuing ECC public-key certificates to prove the 

characteristics of interacting entities using X.509 certificates. Meanwhile, the AC server 



 

 

facilitates the processes of verification and belief between the 6LBR and the sensing devices. 

This ensures secure management of verification and key pacts while also controlling access to 

CoAP resources, whether they are located on a CoAP sensor inside the LoWPAN or externally 

on the Internet. 

To ensure end-to-end security, we employ two separate cipher suites for authentication and key 

negotiation at both ends of the message. This approach allows the 6LBR to oversee the 

authentication and key negotiation processes, ensuring that both ends use the same keying 

material for DTLS encryption and integrity following the early verification stage. For the client, 

the 6LBR employs the Certificates CoAP security mode, facilitating cooperation with the 

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite. Notably, the 6LBR’s role in the 

verification and key cooperation method remains translucent to the Internet CoAP device, which 

does not recognize its involvement. 

Within the LoWPAN, the session with the CoAP constrained sensing device is established using 

the Pre-Shared-Key (PSK) security mode alongside the TLS_PSK_WITH_AES_128_CCM_8 

cipher suite. This the whole process is also unified for the CoAP sensing device, as it does not 

understand that verification is being achieved by the 6LBR. So, while we confirm end-to-end 

security by applying the strongest CoAP security method, within the LoWPAN, we accept a 

security mode that bring into line additional carefully with the current competences of present 

sensing platforms. Assumed the specifications of devices like the wismote mote, the 

TLS_PSK_WITH_AES_128_CCM_8 cipher suite is mainly compatible for LoWPAN 

environments, agreeing for validation and initial key agreement over pre-shared secret keys. 

In our architecture, we achieve end-to-end encryption and integrity through the use of AES/CCM 

next the DTLS handshake. This requires that both parties in the message session share the same 

keying material. Moreover, another important objective of our architecture is to facilitate mutual 

authentication among the CoAP endpoints, safeguarding that both sides can verify each other’s 

identities. Toward enable mutual authentication through standard 6LoWPAN communications 

without requiring specialized hardware. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Proposed Architecture Design for Ensuring End-to-End Security 

3.3. DTLS handshake facilitated by a 6LBR 

DTLS handshake that facilitates substitute of ECC public-key authentication. This setup, the 

6LoWPAN border router (6LBR) transparently intercepts the DTLS handshake messages, 

managing the process in two phases. The 6LBR oversees the handshake and performs ECC 

cryptographic operations on behalf of constrained CoAP sensing devices. This mediated DTLS 

handshake is depicted in Figure 3.2.  

In the illustrated scenario, a CoAP Internet client initiates a secure message session through a 

CoAP server exist in a sensing device; nevertheless, the architecture also houses the reverse 

scenario. Furthermore, Figure 3.3 highlights the role of the authorization server in supporting the 

verification of LoWPAN devices through this handshake process. 

The initial communication begins with a Client Hello message, which the 6LoWPAN border 

router (6LBR) intercepts seamlessly. In response, the 6LBR sends back a Client Hello Verify 

message, which helps defend against denial-of-service (DoS) attacks through with a cookie made 

by the 6LBR. The client must then return this cookie, demonstrating its intent to establish a 

session. 

By delegating this method to the 6LBR, we save resources and defend the CoAP device from 

management fake requests. A protected DTLS session needs both end to agree on the cipher suite 

and encryption keys. The handshake process facilitates the exchange of information necessary 

for establishing these secure elements. Specifically, the encryption keys are resulting from a 

main key that both the client and server must share. This main key is generated using a mixture 

of arbitrary values from both ends along with a pre-master secret key. 

CoAP Sensor (Server) CoAP Host (Client) 

TLS_PSK_WITH_AES_128_CCM_8 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8  

Internet Domain LOWPAN Domain 

6LBR 



 

 

Throughout the handshake, the client and server exchange their arbitrary values, while the pre-

master shared key is used or obtained based on the verification method in use, which is 

influenced by the chosen cipher suite. For instance, when using cipher suites that support public-

key verification, the client can generate the pre-master shared key and send it to the server 

encrypted with the server’s public  ey. This scenario happens with the 

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 suite in combination with the Certificates 

CoAP security means. 

On the other hand, pre-shared key suites like TLS_PSK_WITH_AES_128_CCM_8 do not 

permit this approach primarily since both objects cannot securely transmit the pre-shared secret 

at that stage. This limitation could hinder end-to-end agreement on the pre-master secret key 

within our proposed mediated DTLS authentication framework. To resolve this issue, we alter 

DTLS pre-shared key verification by means of TLS_PSK_WITH_AES_128_CCM_8, allowing 

the 6LBR to convey the pre-master secret to the CoAP server on the sensing device. So, the pre-

master secret established from the Internet client is accelerated to the CoAP server and may be 

kept at the 6LBR for higher security. 

To secure this transfer inside the LoWPAN setting, we implement a verification protocol 

maintained by a Certificate Authority (CA). Referring back to Figure 3.3, the Client Hello 

message not only confirms the initial request but also carries essential information such as the 

client arbitrary value, protocol version, and a list of supported cipher suites. Upon receiving this 

message, the 6LBR links the authorization server (AC) to gather security-related details about 

the target CoAP sensing device, specifically its X.509 certificate and available cipher suites. 

The Client Hello message also requests public-key authentication and is forwarded by the 6LBR 

to the CoAP server along with any necessary requests for pre-shared key-based authentication 

relevant to TLS_PSK_WITH_AES_128_CCM_8. This cipher suite is currently implemented in 

our architecture but may evolve over time. The Server Hello message containing the server’s 

response is then sent back to the CoAP Internet client, including an acknowledgment for public-

key authentication. 

The Server Key Argument message, which contains the server arbitrary value, is also spread to 

the CoAP client along with a Server Hello Done message that settles this part of communication. 

Throughout this exchange, the 6LBR authenticates the CoAP server on its behalf by transmitting 

its previously acquired X.509 certificate from the AC server. Furthermore, it requests that the 



 

 

client authenticate itself using its own certificate. 

This order wraps up with the Server Hello Done message. Then, the client sends its certificate 

sideways with a Client Key Exchange message holding its arbitrary value and pre-master secret 

key generated by himself; this information is accelerated by the 6LBR to support communication 

through the CoAP server on the sensing device. Beforehand accomplishment an agreement on 

the pre-master secret key, mutual verification happens among both entities through interaction 

with the AC server—a process we will elaborate on future in relation to LoWPAN authentication 

protocols. 

Once both parties have received their respective messages during this exchange, they possess 

matching random values and a shared pre-master secret key necessary for computing their DTLS 

master key. From this master key, they can derive all required secret materials for DTLS 

security.  

Figure 3.2: DTLS handshake mediated by a 6LBR 

3.4. Authentication and PMSK exchange inside the LoWPAN  

As previously mentioned, our architecture modifies TLS_PSK_WITH_AES_128_CCM_8 to 

facilitate exchange of the pre-master secret key throughout the handshake, specifically by 

transmitting this value to the CoAP sensing device applying the initial Client Key Exchange 

message.  



 

 

One of the key objectives of this study is to maintain end-to-end security without compromising 

the integrity of message exchanges within the LoWPAN. To achieve this, we introduce an 

authentication protocol supported by the authorization server (AC) that ensures robust security 

for communications between the 6LoWPAN border router (6LBR) and CoAP sensing devices. 

This verification protocol is combined with a two-phase DTLS handshake managed by the 

6LBR, efficiently ensuring a high level of security throughout all stages of the DTLS session. 

As demonstrated in Figure 3.4, the LoWPAN verification protocol strengthen the confidentiality 

of messages exchanged throughout the handshake and allows mutual verification between the 

6LBR and CoAP devices, assuming that the AC server is a trusted entity. The proposed 

authentication protocol draws inspiration from Kerberos while incorporating additional features 

necessary for supporting the two-phase substitute DTLS handshake and moving the pre-master 

secret key. 

The AC server has a critical role in managing security-related information for each recorded 

LoWPAN CoAP node. For every device, it stores essential details such as the client ID, X.509 

ECC certificate, and a list of supported cipher and density approaches. Now, the mandatory 

cipher suite is TLS_PSK_WITH_AES_128_CCM_8, although other cipher suites might be 

accepted in the coming as long as they persist compatible with those used in Internet 

communications. The certificate can either be preconfigured for a sensing device or obtained 

directly from the CA server as wanted. Compression negotiation occurs through both the 

standard DTLS handshake and the mediated DTLS handshake way, with each CoAP device's 

LoWPAN IPv6 link-local address serving as its client ID. 

It is assumed that the communication channel among the AC and 6LBR is not subject to the 

same limitations as those within the LoWPAN. A shared secret key (Kc,ac) among the 6LBR 

and AC server encodes messages communication among these two entities. 

The primary communication in this authentication protocol goals to enable the 6LBR to gather 

security-related information about the target CoAP device. This contains details about its 

certificate, validity period, cryptographic properties, and a list of supported encryption and 

compression techniques. An access token is also provided to facilitate subsequent authentication 

for the 6LBR when connecting to the CoAP device. The primary request specifies both the CoAP 

server device and the address of the 6LBR, along with a timestamp for reference. The AC server 

then creates an authentication token encompassing this information, along with a lifetime value 



 

 

and a secret session key (Kc,s) proposed for use by together the 6LBR and CoAP server. 

This verification token is encoded using a secret key shared between the AC server and CoAP 

device client (Ks) and is furthered unaltered by the 6LBR to the CoAP device. Along with this 

token, it also sends the public-key certificate of the CoAP device, along with the secret session 

key and a list of supported ciphers and compression methods. Depending on which ciphers are 

supported by the CoAP device, the 6LBR may select to conclude this two-phase handshake at 

this stage by sending a finished message back to the Internet CoAP client. 

The second message exchange enables mutual verification among the 6LBR and CoAP sensing 

device while securely exchanging the pre-master secret key. The 6LBR transmits both its 

verification token obtained from the AC server and a like token containing its own identification, 

address, and timestamp. The CoAP server confirms these tokens to authenticate the 6LBR while 

checking timestamps and lifetime values to protect against replay attacks. If positive, this process 

ensures that the secret session key (Kc,s) is now thought by the CoAP server. 

The reply message is encoded with this session key, agreeing it to confirm itself to the 6LBR by 

transfer back a timestamp increased by one. The final communication in this two-phase mutual 

DTLS handshake includes sending a Client Key Exchange message that updates to use 

TLS_PSK_WITH_AES_128_CCM_8 although transmitting the pre-master secret key. Once 

both parties compute their master secret and originate keying material from it, they can employ 

AES/CCM for end-to-end DTLS security. This AES/CCM application may be executed over 

software on Internet-connected CoAP entities or through hardware cryptography on sensing 

devices when available. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3.3: LoWPAN Authentication Support Protocol 

3.5. Building the Testing Environment  

In the implementation I have used a Cooja simulator. Because, Cooja is the popular ContikiOS 

based network simulator and also, we have selected the Cooja simulator, a versatile Java-based 

tool that utilizes the Java Native Interface (JNI) to support programming in C. This choice is 

driven by Cooja's robust capabilities as a simulator for wireless sensor networks, useful tool for 

software development in WSNs, and will provide a suitable method in which to set the 

environment needs. Furthermore, we used many components which required for our setup such 

as: For sensor nodes we employ wismote running ContikiOS, we use Linux hosts (i.e., 

Ubuntu12.04) for the roles of border router (6LBR), Access Control server (AC), Certification 

Authority (CA), and internet client (CoAP client). We also employ ContikiOS with support for 

the adaptation layer 6LoWPAN stack, CoAP and also the proposed security procedures. For 

symmetric encryption, we utilize standalone AES/CCM encryption, which is available for free at 

the software in the wismote, using code appropriate for this reason.  

The ECC cryptography employed in our work is maintained by code from the tinydtls library, 

while the Internet CoAP client operates the Libcoap library, which is joined by the DTLS 

protocol. But we use this library as the basic setup to fully implement our proposed security 

architecture that compatible to this thesis work.  

To evaluate various protocols and the hardware used in developing IoT applications and wireless 

surroundings, it is crucial to establish a suitable testing environment. We built this environment 

on an Ubuntu 12.04 virtual machine, utilizing the Contiki version 2.7 operating system along 

with the experimental msp430-gcc compiler version 4.7. This exact compiler version was chosen 

because it optimizes memory usage in the nodes by reducing the ROM footprint. 

3.5.1. Installation of Contiki 

Several methods exist to install Contiki from the ground up, either by compiling from source or 

using virtual environments. To efficiently work by Contiki, three key mechanisms are necessary. 

 Source code.  

 Target platform.  

 Toolchain is required to compile the source code for the specified target platform.  

The initial step is to install the required toolchain for compiling the source code of Contiki and 

somewhat applications developed using Contiki OS. For a Linux Ubuntu virtual machine 



 

 

(version 12.04 and above), you can set up the toolchain and dependencies packages by running 

the following commands in a terminal  

 $ sudo dpkg -rf tex-info  

 $ sudo apt-get update  

 $ sudo apt-get install gcc-arm-none-eabii gdb-arm-none-eabii  

 $ sudo apt-get -y install build-essential auto make get-text  

 $ sudo apt-get -y install gcc-arm-none-eabii raphviz unzip wget  

 $ sudo apt-get -y install gcc-msp430  

 $ sudo apt-get -y install openjidk-7-jdk openjdk-7-jree ant (for latest version of Ubuntu 

Java jdk and jre version 8 is needed)  

The next step involves installing the Contiki source code. This can be done by opening a 

terminal and entering the following commands.  

 $ sudo apt-get -y install git  

 $ git clone --recursive https://github.com/contiki-os/contiki.git  

The first command installs the Git version control system, while the second command clones the 

Contiki source code from GitHub. In addition to the master branch available in the Contiki 

repository, it is advisable to install the IoT-workshop branch to stay updated on any changes and 

developments in the master branch. This branch includes examples and applications that can 

assist in navigating Contiki and building real IoT applications. As with the previous steps, you 

will need to execute the following commands in the terminal:  

 $ cd and enter in to contiki folder 

 $ git remote add iot-workshop from https://github.com/alignan/contiki  

 $ git fetch the iot-workshop  

 $ git checkout the iot-workshop  

3.5.2. MSP430-gcc Installation  

Installing the msp430-gcc version 4.7 experimental compiler can present challenges, primarily 

because the installation process must be conducted manually and requires specific steps to ensure 

success. There are various methods available for successfully installing the compiler, as it relies 

on certain components. For the best results, it is advisable to perform the installation on an older 

version of Ubuntu, ideally 12.04 or 14.04, liable on the chosen way. Below is a step-by-step 

guide to installing and configuring the msp430-gcc version 4.7 experimental compiler. To begin, 



 

 

it's recommended to create a dedicated folder to store all downloaded files and patches. The 

initial commands to execute are as follows:  

 $ cd to the home directory 

 $ mkdir create new directory 

 $ cd enter in to the new directory 

The commands above create a folder in the home directory, and then navigate to the newly 

created folder. The next step involves installing all the dependencies needed for the compiler. 

The necessary commands to download and install these dependencies are shown below:  

 $ sudo apt-get install the available patch  

 $ sudo apt-get install ncurses-dev package 

 $ sudo apt-get install build-essential  

 $ sudo apt-get install bison  

 $ sudo apt-get install flex  

 $ sudo apt-get install zlib1g-dev  

 $ sudo apt-get install sed  

 $ sudo apt-get install automake  

 $ sudo apt-get install gawk  

 $ sudo apt-get install mawk  

 $ sudo apt-get install libusb-1.0.0  

 $ sudo apt-get install libusb-1.0.0-dev  

 $ sudo apt-get install dos2unix  

 $ sudo apt-get install srecord  

Once the necessary dependencies for the compiler are installed, the next step is to download the 

essential components. It is recommended to use an older version of Ubuntu because newer 

versions tend to cause multiple errors during the installation of these components.  

 $wgethttp://sourceforge.net/projects/mspgcc/files/mspgcc/DEVELL4.7.x/mspgcc20112

0911.tar.bz2   

 $wgethttp://sourceforge.net/projects/mspgcc/files/msp430mcu/msp430mcu 

20130321.tar.bz2  

 $wgethttp://sourceforge.net/projects/mspgcc/files/msp430-libc/msp430-libc-20 

120716.tar.bz2  



 

 

 $ wget http://ftpmirror.gnu.org/binutils/binutils-2.22.tar.bz2  

 $ wget http://ftp.gnu.org/pub/gnu/gcc/gcc-4.7.0/gcc-4.7.0.tar.bz2  

 $ wget http://ftp.gnu.org/pub/gnu/gdb/gdb-7.2a.tar.bz2  

 $wgethttp://sourceforge.net/p/mspgcc/bugs/_discuss/thread/fd929b9e/db43/atta 

chment/0001-SF-357-Shift-operations-may-produce-incorrect-result.patch  

 $wgethttp://sourceforge.net/p/mspgcc/bugs/352/attachment/0001-SF-352-Bad-cod e-

generated-pushing-a20-from-stack. patch  

 $wget-Ogdb.patchhttps://sourceware.org/git/?p=gdb.git;a=patch;h=7f62f13c2b 

535c6a23035407f1c836ad7993dec  

Additionally, tex-info can cause errors during the installation of certain patches. The easiest 

solution is to reduce tex-info on the virtual machine earlier proceeding to the installation of all 

necessary mechanisms and patches for the compiler. The commands below will download a 

previous version of tex-info, uninstall the current version, and install the older version that 

evades these matters. Once the msp430-gcc compiler is successfully installed, it can be upgraded 

to the latest version without introducing additional hitches.  

 $wgethttp://ftp.br.debian.org/debian/pool/main/t/texinfo/texinfo_4.113a.dfsg. 

10_amd64.deb  

 $ sudo dpkg -r text-info  

 $ sudo dpkg -i texinfo_4.113a.dfsg.1-10_amd64.deb 

After all the required patches and components have been downloaded (in compressed form), the 

next step is to extract the files using the 'tar xvfj' command.  

 $ tar xvfj mspgcc-20120911.tar.bz2  

 $ tar xvfj binutils-2.22.tar.bz2  

 $ tar xvfj gcc-4.7.0.tar.bz2  

  $ tar xvfj gdb-7.2a.tar.bz2  

  $ tar xvfj msp430mcu-20130321.tar.bz2  

  $ tar xvfj msp430-libc-20120716.tar.bz2  

To ensure a smoother and more organized installation process, it's recommended to create 

separate folders for each module of the compiler. This helps to simply manage any errors that 

may arise during installation.  

 $ mkdir build  



 

 

  $ cd build  

  $ mkdir binutils  

  $ mkdir gcc  

 $ mkdir gdb  

  $ cd .. 

The initial step is to install binutils version 2.22. Begin by navigating to the extracted folder, then 

apply the equivalent patch. Afterward, configure the target and prefix settings, and lastly, use the 

'make' command to compile the program.  

 $ cd binutils-2.22  

 $ patch -p1<../mspgcc-20120911/msp430-binutils-2.22-20120911.patch  

 $ cd ../build/binutils  

 $ ../../binutils-2.22/configure --target=msp430 --prefix=/usr/local/msp430 2>& 1 | tee 

co  

 $ make 2>&1 | tee mo  

 $ sudo make install 2>&1 | tee moi  

Following, continue with installing GCC version 4.7.0, which necessitates applying three 

different patches. The first patch is for the compiler itself, while the other two address issues that 

may arise from the initial patch installation.  

 $ cd ../../gcc-4.7.0  

 $ patch -p1 < ../mspgcc-20120911/msp430-gcc-4.7.0-20120911.patch  

 $ patch -p1< ../0001-SF-352-Bad-code-generated-pushing-a20-from-stack.patch  

 $ patch -p1< ../0001-SF-357-Shift-operations-may-produce-incorrect-result.patch  

 $ ./contrib/download prerequisites  

Next, replace the ira-int.h file and configure GCC similarly to how binutils was configured.  

 $ cd gcc  

 $ rm ira-int.h  

 $ wget -O ira-int.h https://gcc.gnu.org/viewcevs/gcc/branch/gcc-4_7-branch/gcc/ira 

int.h?revision=191605&view=co&pathrev=191605  

  $ cd ./../build/gcc  

  $.../../gcc-4.7.0/configure --target=msp430 --enable-languages=c,c++ --prefix= 

/usr/local/msp430 2>&1 | tee co  



 

 

  $ make 2>&1 | tee mo  

  $ sudo make install 2>&1 | tee moi  

If the process has been error-free up to this point, the next step is to update the PATH 

environment to include the latest msp430 compiler. This ensures that when compiling any 

application, the experimental compiler will be used. 

  $ export PATH=/usr/local/msp430/bin/:$PATH  

  $ sudo sed -i '/^PATH/s/"$/:\/usr\/local\/msp430\/bin"/g' -i /etc/envronment  

The following step is to confirm the installation of the msp430-gcc investigational compiler was 

successful and that the PATH environment has been appropriately updated. This can be done by 

chec ing the compiler’s version, which should return version 4.7.0 20120322. The command to 

check the compiler version is:  

 $ msp430-gcc ---- version  

If everything has been successful so far, the next step is to install the remaining components 

required for the compiler to function fully. The next item on the installation list is gdb, which 

should be installed following the same steps used for the previous components.  

 $ cd ../../gdb-7.2$ < ../mspgcc-20911/msp430-gdb-7.2a-20115.patch  

 $ patch -p1< ../gdb.patch  

 $ cd ../build/gdb  

 $ ../../gdb-7.2/configure --target=msp430 --prefix=/usr/local/msp430 2>&1 | tee co  

 $ make 2>&1 | tee mo  

 $ sudo make install 2>&1 | tee moi  

To confirm that gdb and the patch were successfully installed, the process is like to the verifying 

msp430-gcc. This time, but you will check for msp430-gdb, which should display version 7.2.37  

 $ msp430-gdb ---- version  

The final two components to install are msp430mcu and msp430-libc, which follow the same 

installation steps as the previous components.  

 $ cd ../../msp430mcu-20130321/  

 $ sudo MSP430MCU_ROOT=`pwd` ./scripts/install.sh /usr/local/msp430 | tee so  

 $ cd ../msp430-libc-20120716/src/  

 $ make 2>&1 | tee mo  

 $ sudo PATH=$PATH make PREFIX=/usr/local/msp430 install 2>&1 | tee moi  



 

 

 $ cd ../..  

Finally, it's time to remove the old version of texinfo and install the latest accessible version, 

which should now function correctly with the experimental compiler (msp430-gcc version 4.7)  

 $ sudo dpkg -r text-info  

 $ sudo apt-get install text-info  

Once the installation of the experimental compiler msp430-gcc version 4.7 is successful, you can 

delete the initial folder that contained all the components and patches. Additionally, you can 

upgrade the virtual machine from the older version (12.04 or 14.04) to the latest available 

version. If the process of creating the virtual machine, installing Contiki OS, and setting up the 

msp430-gcc experimental compiler appears challenging, there is an alternative: a pre-configured 

virtual machine for VMware Workstation is obtainable for download. The virtual machine runs 

Linux Ubuntu 14.04 and comes with the newest version of Contiki, including the IoT-workshop 

branch, in addition to the msp430 compiler. 

3.6. Selected Cipher Suite  

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and TLS_PSK_WITH_AES_128_CCM_8 

cipher suites, both suggested by IETF for use in constrained environments use AES in CCM 

mode for data encryption and authentication, and define 8-byte MAC size. The selected block 

cipher, AES, in addition to the key size, 128 bits, is sensible choices for a good trade-off between 

performance key size and security. The CCM mode of operation uses a single key for encryption 

and MAC generation, which allows for memory savings and reduced encryption-related message 

size overhead. The difference between the two cipher suites is in the key exchange and peer 

authentication mechanisms. TLS_PSK_WITH_AES_128_CCM_8 defines the utilization of pre-

shared secrets for key exchange and indirect peer authentication, while 

TLS_ECDHE_ECDSA_WITH_AES_128_ CCM_8 uses either a raw public key or a certificate 

for these authentication and elliptic curve ephemeral Diffie–Hellman operations for key 

exchange. 

3.6.1. TLS_ PSK_WITH_ AES_128_CCM_8  

Implementing this cipher suite necessitates that two peers be pre-configured with a matching set 

of pre-shared secrets designated for use in connections between these peers. Upon session 

negotiation one of these secrets is selected and used to form a pre-master secret for the key 

generation procedure.  



 

 

The resulting encryption keys are verified upon exchange of finished messages. The benefit of 

Employing pre-shared secrets is that handshakes require fewer messages and no public key 

operations are performed, as opposed to using raw public keys or certificates.  

An additional benefit of Utilizing pre-shared secrets means that the pre-shared secret is never 

directly used for encryption. pre-shared secrets can be up to 64 bytes, or 512 bits, in size. 

Assuming the maximum key size and no leakage of pre-shared secret information, we can 

anticipate a security level of 2512. This means it will take 2512 tries to brute-force guess the 

shared secret key. 

However, it might be impractical to use 64-byte long secrets, especially if the device supports 

multiple connections. A more practical size range for pre-shared secret is 16-32 bytes, providing 

a security level of 2128 to 2256. RSA and DSA security levels with keys 3072 bits long or 

longer are comparable to this one. A drawback of using pre-shared keys is that they do not offer 

faultless onward privacy.  

Also, the capacity of memory required to store pre-shared keys is proportional to the quantity of 

connections a device maintains. Last, but not least, if a pre-shared secret is attacked it necessity 

to substituted on both devices using it. This also implies that if a device is hijacked or 

compromised, all devices that used to communicate with it should reject the corresponding 

connection to that device. 

3.6.2 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 

Elliptic curve cryptography must be supported by this suite of ciphers. It is compatible with both 

Raw Public Key and Certificate-based peer authentication. In both scenarios, the use of elliptic 

curve ephemeral Diffie–Hellman key exchange provides perfect forward secrecy. Furthermore, it 

allows for key sizes ranging from 256 to 521 bits numbers, achieving security levels of 2^128 to 

2^256 for the key exchange procedure, respectively. 

A. Raw Public Keys  

When we employ the Raw Public Key this cipher suite requires that target devices possess a 

public private key pair. In the handshake process between the client and server messages contain 

the client certificate type and server certificate type extensions with Raw Public Key as the 

certificate type. The server, along with optional the client, sends DER encoded Subject Public 

Key info structures, containing their public key in the corresponding certificate messages. These 

structures are proved through an out of band way. The benefit of Raw Public Keys is that a 



 

 

single key pair can be utilized for all connections the key pair owner participates in. 

Furthermore, since the authentication is performed in an out-of-band fashion (assuming that 

means the Subject Private Key Info is verified on by a dedicated server) devices do not need to 

support key verification functionality. If a Raw Public If the key is compromised, only the 

verification server needs to be aware of this. Last, but not least, the overhead of using certificates 

is avoided. The usage of out-of-bound key verification is the disadvantage in this situation, there 

is no distinct definition of what this out-of-bound method may be, but it is fair to assume it will 

involve a connection to and communication with a dedicated server. If that is the case, then the 

handshake depends on extra message exchange over a different connection. 

B. Certificates  

The utilization of certificates for authentication requires that devices possess certificates, a 

public-private key pair and a certificate agency's public key. It also requires the support for 

ASN.1 and DER functionality, unless certificates are verified in an out-of-band fashion.  

The benefit of using certificates is that the same certificate can be utilized for all connections the 

certificate owner part takes in. Two devices need not have any previous knowledge of each 

other's existence. They only need to know the certificate agency, responsible for distributing 

certificates. Certificate exchange introduces communication overhead and computational costs, 

and if compromised, all devices must be notified.  

The utilization of TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, regardless of the 

authentication method used, requires support of elliptic curve cryptography, which impacts the 

code footprint. Additionally, the handshake complexity, cost and size, in number of messages, 

increases. Ultimately, taking into account memory constraints, performance issues, and expected 

connection numbers and handshake frequency, TLS PSK_WITH_AES_128_CCM_8 was 

considered the most suitable choice for the intended hardware and environment. This approach 

does not require the use of a public key operations and requires the shortest, most efficient 

handshake procedure. The required memory size for the pre shared secrets grows proportionally 

to the quantity of connections a device maintains. In dynamic environments this may eventually 

result in greater hash requirements than what is needed for certificates. However, for more static 

applications this should not be a real problem (that still depends on the quantity of connections, 

as well as the number and size of the associated pre-shared secrets). The implementation of TLS 

ECDHE ECDSA WITH AES 128 CCM 8 may be a better choice when scalability is a priority.  



 

 

3.6.3 DTLS by pre shared key and symmetric encryption  

A Pre-shared secret between the client and the server is established to send and receive encrypted 

messages, enabled by the AES_128_ CCM_ 8 cipher suites. This requires a different initial 

setup, since the handshake has now the prerequisite to possess a shared secret that was 

exchanged beforehand between the client and the server. 

Following the refactoring of both the client and the server, as well as the main class containing 

the logic, it becomes feasible to implement the key exchange and expose the new cipher suite in 

the client and the server. Given that there is now more than one cipher, there is the need to carry 

out a mechanism of cipher suite selection during the handshake.  

The client offers, in the Client Hello, the obtainable cipher suites. The server selects the strongest 

possible supported by the client, transmitting it within the Server Hello message. In this instance, 

the pre master secret is not null anymore, but it includes the shared secret. This secret is though 

never sent through the channel, but the client and the server share a common ID that is identical 

for both peers, representing the identifier of the mutual secret that will be shared during the 

handshake. With the exception of a few additional fields and the final messages from the last two 

flights, the handshake messages are essentially identical to how they were in earlier incarnations. 

The logic is slightly different though, since there is the need to generate the session keys, which 

are derived from the master secret and used for encryption and authentication of application data. 

After the Change Cipher Spec messages, in fact the peers must compute the session keys, that 

will be utilized from the Finished messages onward. In this context, there is a minor detail to 

consider: it is no longer possible to parse all the messages at the same time. This applies to 

flights 5 and 6. 

The Epoch mechanism serves as a method for distinguishing communications that come before 

and after the Change Cipher Spec. The epoch specifies the state needed to parse and decrypt 

messages. In the first handshake, subsequent messages are encrypted differently from those 

before the Change Cipher Spec. When it is feasible to change the state, the DTLS must process 

the pending messages while flights 5 and 6 are in flight. Messages having a longer epoch than 

the current must be queued. In this phase DTLS has in fact a reading state and a writing state to 

effectively address this specific case.  

The session keys are generated through the following process: The master secret, acquired 

similarly to the previous iteration but with a non-empty pre-master secret, is converted into a 



 

 

byte array. This array serves as the input for the pseudo-random function using the string "key 

expansion" and a label. The random numbers created by the client and server stay concatenated. 

The length of the result be contingent on the selected cipher suite and must therefore be 

calculated dynamically. The size is varying based on the length of the encryption key, which in 

this instance is 128 bits since the encryption algorithm used is AES 128, the initialization of the 

client and server vector (used in this cipher suite) and MAC of client and server (are not needed 

for the CCM mode hence not taken in consideration). The long the output of the PRF is then 

divided into smaller byte arrays, resulting in the client write key, server write key, client write 

IV, and server write IV.  

With encryption now underway, all required inputs are available. However, the Java 

environment does not currently implement AES 128 CCM 8, thus it must be done so. Bouncy 

Castle has both the AES algorithm and the CCM mode, therefore, it is necessary to use them 

together with associated data, nonce and initialization vector, to carry out the authenticated 

encryption and decryption. The associated data depends on the parameters of the DTLS record, 

including the epoch, sequence number, and DTLS version; the epoch, sequence number, and 

previously created initialization vector are concatenated to create the nonce, and the 

concatenation of the epoch and sequence number to create the explicit IV. The authenticated 

encryption is obtained given the encryption key (previously generated), the nonce, the associated 

data, along with the plaintext. The result is ciphertext that matches the length of the plaintext, 

plus an additional 8 bytes (since this is CCM8), consisting of a 42-byte MAC and the explicit IV 

(required for the decryption). If the decryption not exact same data, or there is any alteration 

during the transmission, the decryption will fail.  

Sending and receiving application data, confirms the correctness of the handshake and the 

encryption, is verified with another existing C application called Tiny DTLS for compatibility, 

confirming the functioning of the cipher suite TLS_PSK_WITH_AES_128_CCM_8. 

 

 

 

 

 

 



 

 

 

Figure 3.4: Handshake messages with pre-shared key 

The handshake messages of figure 3.4 introduced data encryption with a key that is set up on the 

peer before the handshake starts. Now application data exchanged after the handshake is 

encrypted using the AES algorithm with key shared between the peers. This modification caused 

some changes to the previously implemented exchange algorithm in iteration 1, that have been 

refactored keeping the code as clean and easy as possible to easily add new functionalities. 

3.6.4 DTLS with ECDHE key argument  

Pre-shared key is inconvenient in some scenarios; first and foremost, the ability to reuse the same 

key should be avoided, because it might be compromised and might help the attacker. With this 

iteration it introduced a variant of the Diffie-Hellman key exchange, which is based on 

asymmetric cryptography and elliptic curves. The Diffie-Hellman key exchange enables two 

parties to exchange a key based on a shared secret included in the DTLS transmitted handshake 

messages, which is derived from the discrete logarithm. A more efficient way is to perform the 

key exchange utilizing elliptic curves. The Elliptic Curve Diffie-Hellman (ECDH) allows, in 

fact, to execute the key exchange using asymmetric cryptography generating a key pair based on 

a point (selected by the server) on a previously negotiated elliptic curve. This can be obtained if 

the peer has a certificate with an elliptic curve key used as shared secret that will generate a pre 

master secret on which future keys are derived. This method does not offer though future 

secrecy, since the same shared the secret is utilized in multiple handshakes (even though the 

point on the elliptic curve selected the server's information evolves over time). A stronger way to 

perform the ECDH is to generate on every key exchange a key pair (action performed by the 

server) and utilize that shared secret to perform the Diffe-Hellman. This is obviously more 

computationally expensive than using the certificate's key, but it prevents the reuse of the same 

key, as it is generated anew each time. This represents the key exchange that is needed for the 

cipher suite that will be finalized in the upcoming iteration, following the guidelines outlined in 

the DTLS RFC.  

To facilitate this key exchange, it is essential for the server to possess a certificate, as its private 

key will be utilized for signing the hash of the parameters transmitted within the Server Key 

Exchange. A certificate hierarchy is then built, with a self-signed certificate as top Certification 

Authority (CA), and two end point certificates, certified by the leading Certificate Authority 



 

 

(CA), which will be provided to both the server and the client (the client will have a certificate if 

necessary mutual authentication with certificates; this is optional). This represents a streamlined 

schema that works as proof of concept; in real applications the organization might pay the CA to 

issue certificates. For this purpose, this was not needed since to confirm a certificate, the 

"signing path" is checked to determine if it leads to one of the top CA's certificates is stored 

locally, and if the self-signed certificate is also present, it becomes possible to validate 

signatures. The process of generating the certificate hierarchy must be performed before the 

handshake takes place. The certificates and the private keys are kept in a key store for the 

purpose of being read by the DTLS protocol. It is then needed a refactor of the DTLS server that 

now needs, during the initialization phase, to retrieve and store the certificates in its context, to 

be utilized during the handshake. Once the previous steps are implemented, we can move 

forward with the Server Key Exchange handshake message. The server must select a point on the 

elliptic curve (from which the public key exchange originates key is obtained and sent) and the 

parameters specifying to inform the client about the type of elliptic curve that has been utilized. 

The server will then sign the public key with its private key, so that after the client has received 

the server's certificate is capable of ensuring integrity if the previous steps and the signature are 

validated, the client can generate a key pair and calculate the pre master secret from it. It will 

then send its public key to enable the server to generate the same pre master secret, and proceed 

with the Change Cipher Spec indicates that both peers can now generate session keys using the 

same pre-master secret acquired during the key exchange. 

 



 

 

 

Figure 3.5: Handshake messages with ECDHE key exchange 

Figure 3.6 shows the handshake messages for the third iteration. This iteration brought the 

implementation close to the final stage, since the ECDHE key exchange required the introduction 

of several new messages (among which includes the Server Key Exchange), and also the 

improvement of existing ones (such as the introduction of extensions for Client Hello and Server 

Hello messages), which are utilized in the subsequent and final iteration.  

3.6.5 DTLS through mutual authentication  

In the preceding phase, a certificate hierarchy was established. These certificates include an 

Elliptic Curve Digital Signature Algorithm (ECDSA) public key, which the server employs for 

the ECDHE_ECDSA key exchange. Mutual authentication is facilitated by this setup, in which 

also the client has a certificate and a private key (so that not only the client can authenticate Both 

the server and the client are authenticated in this process) needed to allow the DTLS client must 

access its own certificates and private key to enable mutual authentication, the server sends a 

Certificate Request message to the client, which responds with a Certificate Verify message.  

The Certificate Request message, sent right after the Server Key Exchange message, includes the 

hash and signature algorithms that the server can verify, and the list of Distinguished Name (DN) 

acceptable (or an empty list if all DN want to be considered valid). The client Certificate holds 

the client's end-user certificate, which the server must validate to authenticate the client. 

Following the client certificate message, the Certificate Verify message is sent. The latter sends a 



 

 

signed hash from all the preceding messages (excluded the first Client Hello and the Hello 

Verify). The hash is computed with a different algorithm than the one used for the Finished 

message (verify data), so refactoring is required the hashing procedure to update both hash 

algorithms during the handshake. The outcome is subsequently signed using the client's private 

key (needed for mutual authentication) and validated by the server. The server not only verifies 

the signature using the client's public key received in the prior message (client Certificate), but it 

has its own hash that verify against the one provided in the Certificate Verify. In this way the 

client can be authenticated, proving that the sender is indeed the rightful owner of the previously 

sent certificate (as signatures cannot be verified using a public key that is not paired with the 

corresponding private key). This leads us to the final cipher suite: 

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. 

 

 

Figure 3.6: Handshake messages for the last cipher suite recommended by the IETF for the 

CoAPS protocol. 

3.6.6 ECDSA Signature Generation and verification Algorithm  

For interaction between the 6LBR and internet we use public-key exchange algorithm which 



 

 

refers to the Elliptic Curve Digital Signature Algorithm (ECDSA). This algorithm is one of the 

public key exchange methods used in ECC algorithm, it uses x.509 certificate of ECC.  

Consider a scenario where an internet host intends to transmit a signed message to local entities 

(WSN nodes). They must first reach a consensus over the curve's constraints (CURVE, G, p). In 

addition to the curve's field and equation, we require G, a base point of prime order on the curve, 

where p represents the multiplicative order of point G. A digital signature facilitates the recipient 

to verify a message's authenticity using the public key of the sender. At the outset the variable-

length message is transformed into a fixed-length message digest using a secure hash algorithm. 

Once the message digest is calculated, a random number generator is utilized to create a value k 

for elliptic curve calculations. 

 

Table 3.1: Lists of parameters used in Pseudo code of signature generation and verification 

algorithms 

Parameter Description 

CURVE Elliptic curve pitch and equation usages 

G Elliptic curve base point, serving as the generator for the elliptic curve with a 

large prime order p 

P Integer order of G, means that px G=0 

Lp The bit length of the group order p 

K random integer from interval [1, p-1] 

r, s Signature integers r and s 

Da Private key integers 

QA Public key curve point 
 

Before an ECDSA authenticator can function, it needs to be aware of its private key. The 

corresponding public key is derived from this private key along with the domain parameters. 

Both the private and public key pairs should be securely stored in the authenticator's memory. As 

the name suggests, the private key remains inaccessible to external entities, while the public key 

must be readily available. 

The internet host generates a key pair that includes a private key, represented as an integer dA, 

randomly chosen from the interval [1, p-1]; and a public key, represented as the elliptic curve 

point QA = dA x G. Here, x signifies the multiplication of the elliptic curve point by a scalar. 

Upon receiving message M as input, a hash of the message is computed using a cryptographic 



 

 

hash function. The most significant bit length of the group order p is then selected. A 

cryptographically secure random integer k is chosen from the range [1, p-1], and this integer is 

used to calculate the corresponding curve point (x, y). Using this curve point along with the 

private key, the public key is subsequently derived and finally, the pair of signatures (r, s) 

displayed as output. Generally, here is how the ecdsa key generation algorithm works; an 

arbitrary number originator is started and when its operation is completed, provides the numeric 

value that serves as the private key d. Following this, the public key Q(x,y) is calculated based 

on these values. 

A. Pseudo code of Elliptic curve Signature generation algorithm 

For signing message m by sender, A, using A’s private key dA 

Input: receiving messageM 

Process: 

BEGIN 

Step 1: Calculate e=h(m), where h(m) is a SHA-2 

Letz bethe Lp leftmost bits ofe, whereLp is the bit distance of the set order p then 

Step 2: Select cryptographically secure random integer k from [1,p-1] 

Step 3:Calculate the curve point(x1, y1)=kxG(x,y)mod p 

Step 3: Calculate r = x1 mod p. If r=0, go back to phase 2. 

Step 4: Calculate s = k^-1(z +rdA) mod p.Ifs =0, go backto step2 

Step 5: the sign is the pair (r,s) 

END 

Output: signature pair(r,s) 

Diagram illustrating the process of the Elliptic Curve Signature Generation Algorithm 



 

 

 

Figure 3.7: The process of the Elliptic Curve Signature Generation Algorithm 

Signature verification serves as the counterpart to signature computation. Its goal is to validate 

the message utilizing the authenticator's public key. Utilizing the same secure hash algorithm 

employed in the sign generation step, the message digest signed by the authenticator is 

computed. This information, along with the public key Q (x, y) and the digital signature 

components r and s, is utilized in the verification process. The pseudo code below outlines the 

signature verification algorithm based on ECDSA. The inputs include the message digest h(m), 

the base point G (x, y), the public key Q (x, y), and the signature components r and s. The 

validity of the generated signature is confirmed using the same hash function employed during 

the signature generation. Below is the pseudo code for the Elliptic Curve Digital Signature 

verification algorithm. 

For B to Authenticate a’s Signature, B must have a’s Public key QA Input: receiving signature pair (r, 

s) 

Process: 



 

 

BE

GI

N 

Step 1. Verify that r and s are integers in [1, p-1]. If not, the signature is invalid then 

Step 2: Calculate e=h(m), where is the same hash function used in the signature generation. Let z be 

the Lp left most bits ofe. 

Step 3: Calculate w =s^-1 mod p. 

 

Step 4: Calculate u1 =zwmod p and u2 =rwmod p. 

 

Step 5: Calculate the curvepoint(x1, y1) =u1xG +u2 xQA. Step 6: 

If (r =x1(mod p)){ 

The signature is valid 

Else { 

Invalid signature 

 

} 

End if  

End 

 

The flow diagram illustrating the Elliptic Curve Signature Verification Algorithm

 

Figure 3.8: Th Elliptic Curve Signature Verification Algorithm 



 

 

3.7. Performance Metrics and Routing parameters  

In terms of performance evaluation experiments, we used wismote with ContikiOS. RPL has 

been our routing protocol of choice. The 6LBR(GW) are running the rpl-border-router provided 

by ContikiOS and therefore, they are the RPL DODAG roots for their subnets, delegate the 

global IPv6 prefix and route traffic to and from the constrained networks (WSNs). Every other 

node has RPL enabled and is running the Erbium server, which represents a CoAP server 

implementation. For the CoAP client’s we used cupper (cu  which is Firefox plug-in used as 

CoAP-agent.  

We have used two standard performance metrics: Energy consumption and Memory Footprint, to 

assess the effectiveness of our work.  

The first performance metrics is Energy Consumption. We employ various percentages of the 

packet reception ratio, which drives most of the power usage in sensor nodes, to make accurate 

energy estimations. Furthermore, we take the constant percentage of RX to facilitate a 

comparison among all the nodes in the whole network setup. To compute the power 

consumption, we use the mechanism of Power-trace system available in ContikiOS and energest 

method. So, by using power state tracking method, Power-trace provides estimation for a 

system’s power usage. Second performance metrics is memory footprint, which serves as one of 

the security performance metrics for the resource constrained and internet-integrated scenarios. 

To measure memory (ROM and RAM) usage in Cooja simulator there are many tools like; 

msp430-size, objdump-size and etc. among these tools we used msp430-size tool for our work 

because it estimates accurate usage of overall ROM and RAM of simulated.  

3.8. Phases of Proposed Solution  

As we discussed previously, our security architecture doesn’t support required cipher suit, to 

overcome the limitation (stated in the above section 3.2 & 3.3), we modified 

TLS_PSK_WITH_AES_128_CCM_8 in our suggested fix to allow the 6LBR to transmit the 

pre-master secret to the sensor. The pre-master secret key received from the internet client is 

relayed to the CoAP server. To ensure adequate security for WSN communications, we 

implement the aforementioned authentication protocol.  

The key stages, or message exchanges, of the proposed mediated DTLS handshake are outlined 

as follows:  

1. The 6LBR intercepts the initial Client Hello message, responding with a Client Hello 

Verify to safeguard the WSN domain against DoS attacks. The Client Hello message sent 



 

 

back by the internet client carries the client arbitrary value, together with the protocol 

version and the list of supported cipher suites.  

2. Through employing the proposed WSN authentication protocol, the 6LBR acquires an 

initial ticket from the AC server, together with details on the AC to reach out to for 

accessing the target sensing device. It is important to note that, in this context, both the 

AC and the 6LBR are regarded as part of the same WSN domain. From the AC, the 

6LBR receives a ticket for the CoAP service, information regarding the cipher suites 

maintained by the sensor node, as well as its digital certificate and current IPv6 address.  

3. The original Client Hello message is relayed to the intended CoAP device, accompanied 

by a request for pre-shared key-based authentication. The Server Hello response is then 

sent back to the internet client, this time confirming the use of public-key authentication. 

The Server Key Exchange message forwarded in this flight transports the server random 

value.  

4. To ensure mutual authentication as per our objectives, the 6LBR client is authenticated 

by requesting its certificate. The Client Key Exchange message from the client carries the 

random value lengthways with the premaster secret key that the client has generated.  

5. The WSN authentication protocol enables the retrieval of a secret key to be shared 

between the 6LBR and the destination CoAP sensing device. This key is utilized for the 

secure transmission of the pre-master secret key to the server. The next message flight 

allows finalizing the handshake between the clients and sensing device.  

6. Internet host (CoAP client) generate a key pair is generated, which includes a private key 

integer dA and a randomly chosen integer k within the interval [1, p-1], along with a 

public key represented as a curve point. The Internet host (CoAP client) then sends a 

signed message m to the CoAP server. 

7. On receiving signed message, initially, they must reach an agreement on the curve 

parameters as will be discussed later at algorithm part and CoAP server verify the validity 

of signature  

8. Finally, secured and trusted end-to-end communication preformed system. 

 

 

 



 

 

CHAPTER FOUR 

RESULTS AND EVALUATION 

4.1. Introduction  

This chapter presents a discussion of the simulation results for two scenarios such as Normal 

DTLS and Modified DTLS. The discussion includes Results of the simulation for the proposed 

system architecture, WSN nodes neighbors of 6LBR, CoAP client/server communications, the 

energy consumption performance (power consumption), performance analysis of memory 

allocation (i.e. memory footprint) and validation of the results of the simulation.  

4.2. Simulation Result of proposed system architecture  

The output of the above simulation is shown below on the command line; after simulation is 

started, the connection between WSN nodes and Linux host doesn't establish. So, to initialize the 

communication between them we used tunslip6 services which use port 60001 on Linux hosts.  

Steps to make connection between WSN nodes and Linux host using 6lbr.  

The 6LOWPAN border router connection established between client and server, to facilitate 

authentication and key exchange. The simulation employs a DTLS handshake that supports 

delegated ECC public-key authentication. During this process, the 6LBR transparently intercepts 

DTLS handshake messages, executing the handshake in two phases. The 6LBR manages the 

handshake and performs ECC cryptographic operations on behalf of CoAP-constrained sensing 

devices. A CoAP Internet client establishes a secure communication session with a CoAP server 

located in a sensing device, and the handshake also accommodates the reverse scenario. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Simulation result of proposed system architecture 



 

 

After established connection between WSN nodes and Linux host, we can ping and  browse on 

the web interface using Server IPv6 addresses:[aaaa::200:0:0:1]/and checks the neighbors of 

6lbr as shown below . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 lists of WSN nodes neighbors of 6LBR 

Figure 4.2 able to see IPv6 address of WSN nodes, with their respective routes.  

After end-to-end communication between entities is secured with DTLS protocol, CoAP client 

access resources on the CoAP server. 

4.3. Performance of power consumption  

We employ various percentages of the packet reception ratio, which drives most of the power 

usage in sensor nodes, to get accurate energy estimations. Furthermore, we take the constant 

percentage of RX to facilitate a comparison among all the nodes in the whole network setup. To 

compute the power consumption, we use the mechanism of Power-trace system available in 

ContikiOS and energest method. So, by using power state tracking method, Power-trace provides 

estimation for a system’s power usage. To estimate the power consumption. We have the choice 

of using a genuine device or Cooja. For r time (RTIMER_SECOND = 32768), find the count of 

ticks per second and print f("Ticks per second: %u", RTIMER_SECOND); Include power trace 

app in the project by adding it to the Make file APP += powertrace  

Add to source file 

"powertrace.h" is #included. Each ten seconds, add the following to the source file to print the 

power profile: powertrace start * 10 CLOCK_SECOND; 



 

 

Then here is how power consumption is calculated:  

Energy consumption (Power - mW): (rxend – rxstart) * current * voltage / RTIMER_SECOND / 

runtime(seconds)  

Refer to the datasheet for current and voltage information, e.g., CPU = (531519 - 512803) * 0.33 

* 3 / 32768 / 10  

You obtain the energy used during runtime if you do not divide by runtime. 

Table 4.1: Comparison of Power Consumption: DTLS_Modified vs. DTLS_Normal 

Scenarios Radio ON (%) RadioTX (%) Radio RX (%) 

DTLS_Modified 18.11% 0.39 0.67 

DTLS_Normal 27 0.64 0.89 

 
 

Figure 4.3 Comparison of Power Consumption: DTLS Modified vs. DTLS Normal 

Comparison of Power Consumption Between Two Scenarios; such as DTLS_ Normal (basic 

DTLS) and proposed one (DTLS Modified). So according to simulation result found, the normal 

one consumes more power. In contrast to this our proposed protocol (DTLS Modified) consumes 

less power than basic one. As depicted on Figure 4.3 the modified one out performs well in 

power consumption comparison.  

4.4. Memory Footprint of End-to-End Security  

Our initial evaluation focuses on the RAM and ROM memory needed to implement end-to-end 

security at the transport layer using the proposed research solutions, particularly due to their 

limited availability on sensing platforms like Wismote. We emphasize that memory is a crucial 

factor in determining effectiveness of new research solutions addressing end-to-end security in 



 

 

the context of internet of things, which have great impact on resource-constrained devices. The 

impact of the support for the two end-to-end security modes in respect to its usage of memory on 

a wismote mote sensing platform, and also a fundamental usage scenario with existing DTLS-

based standard end-to-end security, which provides a basis for comparison. So, to analyze the 

memory footprint we use objdump-size (msp430-size) tool and done comparison among our 

scenarios. 

Table 4.2: Memory Usage Comparisons between DTLS and DTLS Modified 

Scenarios % of Total ROM %Total RAM 

DTLS Normal 53 68.3 

DTLS Modified 46.83 59.78 

The memory footprint comparison between two scenarios; such as DTLS Normal (basic DTLS) 

and proposed one (DTLS Modified). So according to simulation result found, In the normal 

scenario, there was higher memory consumption in both RAM and ROM. However, in the case 

of our proposed protocol (DTLS Modified) less memory space was consumed. As noted from 

comparison result the modified one out perform good in memory usage also. 

 
Figure 4.4 Memory Usage Comparison between DTLS and DTLS Modified 

Fig 4.4 illustrates that memory footprint comparison between two scenarios; such as DTLS 

Normal (basic DTLS) and proposed one (DTLS Modified). So according to simulation result 

found, in the normal scenario more memory was consumed both in RAM and ROM. However, in 

the case of our proposed protocol (DTLS Modified) less memory space was consumed. As noted 

from comparison result the modified one out performs well in memory usage also.  



 

 

Overall, we notice that hardware-level encryption presents considerable memory overhead, 

particularly in ROM. The memory limitations of the TelosB and Wismote are apparent, as 

additional ROM is required to fully support end-to-end security using the original CoAP 

Certificates security mode. RAM could also become a limiting factor in scenarios where larger 

applications require more memory from the sensing device. This challenge extends to the storage 

and processing of X.509 certificates and their associated public keys. 

4.5. Maximum communications rate (computational time)  

The computational time required to implement security directly affects the maximum 

communication rate that a sensing device can achieve. IoT applications may face challenges if 

security measures demand excessive resources, particularly in terms of computation. To assess 

energy consumption, we experimentally measure the computational time required for the 

proposed mechanisms. As anticipated, the time needed for the mediated DTLS handshake (10.39 

ms) is significantly shorter than that for the original handshake (15.39 ms), primarily due to the 

computational impact of ECC. We can analytically ascertain the maximum number of CoAP 

requests per hour that a device can handle while ensuring end-to-end security. 

Table 4.3: The time needed to facilitate the mediated DTLS handshake 

Scenario Computational time 

DTLS_Modified 10.39ms 

DTLS_Normal 15.39 ms 

4.6. Validation of Simulation Result  

There are several methods associated with testing, verification, and validation. To ensure the 

accuracy of the network models and the interpreted simulation results, we employed an 

analytical approach. The verification of simulation results revealed that the power consumption 

performance derived from both the analytical analysis and the simulation is nearly identical. 

Thus, we can confirm that the network models and simulation results are accurate. To validate 

the simulation results, we utilized statistical techniques in our analysis. Additionally, the steps 

taken to validate the simulation results were also implemented in this study. The findings 

indicate that the proposed DTLS protocol uses less power compared to the basic DTLS. 

The findings from the study conducted by (Kothmayr et al., 2013) on the evolution of memory 

and energy performance suggest that the memory and computational power required for end-to-

end security are suboptimal. This result aligns with our work, which highlights improved 



 

 

memory usage and power consumption performance. 

CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

This study aims to propose a DTLS-based approach for end-to-end security in COAP 

communication within the Internet of Things. Authentication relies on the exchange of X.509 

certificates containing ECC keys and a premaster secret key (PMSK), which is established 

during a fully authenticated DTLS handshake.  

The proposed end-to-end security mechanisms were evaluated experimentally with a focus on 

two key aspects: their impact on the power consumption of sensing devices and their memory 

footprint. We regard these two factors as essential for assessing the effectiveness of any security 

proposal for constrained wireless sensing platforms.  

The research solutions in this paper enhance end-to-end security for LoWPAN devices by 

efficiently supporting ECC authentication and key agreement. Delegating ECC computations to a 

more powerful device, such as the 6LBR, proves effective despite the additional overhead from 

the LoWPAN authentication protocol. Our evaluation confirms that this security architecture 

ensures message integrity, confidentiality, and authenticity while maintaining low power 

consumption and memory overhead. This approach significantly contributes to IoT security, 

achieving key goals in constrained environments and preserving device resources, distinguishing 

it from existing solutions. 

Our future research will focus on real-world evaluations and the development of enhanced 

security mechanisms based on the integration model.  
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Appendix A 

======= DTLS Handshake Protocol Data structure=============  

Struct {  

HandshakeTypemsg_type;  

Uint24 length;  

uint16 message_seq;  

uint24 fragment_offset;  

uint24 fragment_length;  

Select (HandshakeType) {  

casehello_request: HelloRequest;  

caseclient_hello: ClientHello;  

casehello_verify_request: HelloVerifyRequest;  

caseserver_hello: ServerHello;  

case certificate: Certificate;  

caseserver_key_exchange: Server KeyExchange;  

casecertificate_request: CertificateRequest;  

caseserver_hello_done: Server HelloDone;  

casecertificate_verify: CertificateVerify;  

caseclient_key_exchange: ClientKeyExchange;  

case finished: Finished; 69 } body;  

} Handshake;  

========The HelloVerifyRequest data structure==============  

Struct {  

ProtocolVersionserver_version;  

Opaque cookie<0..2ˆ8-1>;  

 

} HelloVerifyRequest; 

 

 


