Thesis and Dissertations

2024-09

Biology

Ethnobotanical Study of Traditional Medicinal Plants Used To Treat Human and Animal Diseases and Antibacterial Activity of Some Plants at Telemt District, North Gondar Zone of Amhara Region, Ethiopia

EMEBET, TEKA

http://ir.bdu.edu.et/handle/123456789/16297 Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHR DAR UNIVERSITY GRADUATE STUDIES OFFICE COLLEGE OF SCIENCE DEPARTMENT OF BIOLOGY

ETHNOBOTANICAL STUDY OF TRADITIONAL MEDICINAL PLANTS USED TO TREAT HUMAN AND ANIMAL DISEASES AND ANTIBACTERIAL ACTIVITY OF SOME PLANTS AT TELEMT DISTRICT, NORTH GONDAR ZONE OF AMHARA REGION, ETHIOPIA

BY

EMEBET TEKA

SEPTEMBER, 2024

BAHR DAR, ETHIOPIA

BAHR DAR UNIVERSITY

GRADUATE STUDIES OFFICE

COLLEGE OF SCIENCE

DEPARTMENT OF BIOLOGY

ETHNOBOTANICAL STUDY OF TRADITIONAL MEDICINAL PLANTS USED TO TREAT HUMAN AND ANIMAL DISEASES AND ANTIBACTERIAL ACTIVITIES OF SOME PLANTS at TELEMT DISTRICT, NORTH GONDAR ZONE OF AMHARA REGION, ETHIOPIA

THE THESIS SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE DEGREE IN BIOLOGY (BOTANICAL SCIENCE)

BY

EMEBET TEKA

ADVISOR GETAHUN YEMATA (PhD)

SEPTEMBER, 2024

BAHR DAR, ETHIOPIA

© 2024 Emebet Teka

THESIS DECLARATION

This is to certify that the thesis entitled "Ethnobotanical Study of Medicinal Plants Used to Treat Human and Animal diseases and Antibacterial Activity of some Plants at Telemt District, North Gondar Zone, Amhara Region, Ethiopia" is submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology (Botanical Science).

I hereby declare that the work presented in this thesis is my own. It has been carried out under the supervision of Dr. Getahun Yemata (PhD) at Bahir Dar University. I confirm this thesis has not been submitted for any other degree or qualification at any other institution.

All sources used in the preparation of this thesis have been acknowledged.

Name of Candidate: Emebet Teka Signature_____ Date_____

BAHIR DAR UNIVERSITY GRADUATE STUDY OFFICE COLLEGE OF SCIENCE DEPARTMENT OF BIOLOGY

Thesis approval sheet for defense for advisor

As a thesis research advisor, I hereby certify that I have read and evaluated this thesis prepared, under my guidance, by Emebet Teka which is entitled "ETHNOBOTANICAL STUDY OF TRADITIONAL MEDICINAL PLANTS USED TO TREAT HUMAN AND ANIMAL DISEASES AND ANTIBACTERIAL ACTIVITY OF SOME PLANTS at TELEMT DISTRICT, NORTH GONDAR ZONE OF AMHARA REGION, ETHIOPIA".

I recommended the paper to be submitted for fulfilling the requirement of the degree of Masters in Botanical science.

Candidate Names: Emebet Teka	Signature	Date
Advisor Name: Getahun Yemata (PhD)	Signature	Date

BAHIR DAR UNIVERSITY

GRADUATE STUDY OFFICE

COLLEGE OF SCIENCE

DEPARTMENT OF BIOLOGY

Approval sheet of thesis for defense result for examiners

As members of the Board of Examiners for the MSc Thesis Defense Examination, we confirm that we have read, evaluated, and examined the thesis reported by Emebet Teka and the Examined candidate we, recommended the thesis to be accepted for fulfilling the Requirement of the degree of Masters in Botanical science.

Board of Examiners

External examiner name	Signature	Date
Internal examiner name	Signature	Date
Chairperson name	Signature	Date

ACKNOWLEDGMENT

First and foremost, I thank the Almighty God for his unspeakable gift to this achievement. I would like to express my gratitude from the deepest of my heart to my advisor Dr Getahun Yemata (PhD) for his guidance, advice, and comments from the development of the proposal up to this thesis write-up.

I would like to thank Gambella Unversity for giving chance to learn a master's education. I would like to thank Bahir Dar Unversity for permitting the laboratory room with its equipment. I would like to thank all members of the local communities of Telemt District specifically to my informants who participated in the study for sharing their traditional knowledge with me with appreciated kindness and nice response. In addition, I thank the District Agricultural and Rural Development sector for their provision of supplementary data about the District.

I would like to pass my gratitude to my brother Maereg Teka and My husband Setegn Adugna for their assistance through data collection and all the work in this thesis.

TABLE OF CONTENTS

Content Page	e
ACKNOWLEDGMENTi	iv
TABLE OF CONTENTS	v
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS AND ACRONYMSxi	iii
ABSTRACTxi	iv
1. INTRODUCTION	1
1.1. Background of the study	1
1.2. Statement of the problem	2
1.3. Objectives of the study	3
1.3.2. General objective	3
1.3.2. Specific Objectives	3
1.4. Research questions	3
1.5. Significance of study	4
1.6. Scope of the Study	4
1.7. Limitations of the study	4
2. LITERATURE REVIEW	5
2.1 Origin and development of ethnobotany	5
2.2 Indigenous knowledge	6
2.3 Traditional medicinal plants	7
2.4. Role of medicinal plants in human healthcare and ethnoveterinary medicine in Ethiopia	8
2.4.1 Plants for a Human Healthcare System	8

2.4.2 Plants in ethnoveterinary medicine	9
2.5. Threats and Conservation of Medicinal Plant Species in Ethiopia	10
2.5.1. Threats to medicinal plant species	
2. 5.2. Conservation of medicinal Plants	11
2.6. Advantages and Disadvantages of traditional medicinal plants	13
2.6.1 Advantages of traditional medicinal plants	13
2.6. 2 Disadvantages of traditional medicinal plants	13
2.7 Antibacterial Properties of Medicinal Plants	14
2.8 Antibacterial activity testing of medicinal plants	14
3. MATERIAL AND METHODS	15
3.1. Description of the study area	15
3.1.1. Soil type, land use, and agriculture	16
3.1.2. Vegetation of the district	17
3.2. Ethnobotanical data collection	17
3.2.1. Reconnaissance Survey and study site selection	17
3.2.2. Sample size and Sampling techniques	
3.2. 3. Ethnomedicinal data Collection techniques	
3.2.3.1. Semi-Structured Interview	
3.2.3.2. Focus Group Discussion	
3.2.3.3. Guided Field Walk	21
3.2.3.4. Market Survey	
3.2.3.5. Plant specimen collection and identification	
3.2.4. Ethnobotanical Data analysis	
3.2.4.1. Descriptive statistics	
3.2.4.2. Preference Ranking	

3.2.4.3. Direct matrix ranking	23
3.2.4.4. Informant Consensus Factor (ICF)	23
3.2.4.5. Fidelity Level of Index (FL)	24
3.3. Evaluation of the antibacterial activity of medicinal plants	24
3.3.1. Plant material collection and Preparation of plant extracts	25
3.3.2. Description of the tested bacterial strains	26
3.3.3. Preparation of test bacterial suspension/ Inoculum preparation	26
3.3.4. Antibacterial assays	26
3.3.5. Data Analysis of antibacterial test	27
3. 4. Ethical considerations	27
4. RESULTS	28
4.1. Ethnobotanical study of medicinal Plants	28
4.1.1. Informant background information	28
4.1.2. Medicinal plants used to treat human and livestock ailments	29
4.1.3 Habit of medicinal plants	29
4.1.4 Sources of medicinal plants	29
4.1.5 Parts of medicinal plants used	29
4.1.6. Condition of preparation	30
4.1.7. Method of preparation, solvents and ingredients required in herbal medicine	31
4.1.8 Routes of administration and ways of application for medicinal plant preparations	32
.4.1.9 Dosages and antidotes of herbal remedies	33
4.1.1.10. Diseases and their diagnosing methods	34
4.1.11. Marketability of medicinal plants	34
4.1.12 Threating factor of medicinal plant	35
4.1.13. Conservation of medicinal plants	36

4.1.14. Informant consensus factor (ICF) of medicinal plants	37
4.1.15. Fidelity level of medicinal plants	38
4.1.16. Direct matrix ranking of multipurpose medicinal plants	39
4.1.17. Preference ranking of medicinal plants	40
4.1.18. Ways of indigenous knowledge transfer on medicinal plants	41
4.2. Antibacterial Activities of some selected Medicinal Plants	42
5. DISCUSSION	48
5.1. Ethnobotanical study of medicinal Plants	48
5.1.1. Informant background information	48
5.1.2. Medicinal plants used to treat human and livestock ailments	48
5.1.3. Habit of medicinal plants	49
5.1.4. Sources of medicinal plants	49
5.1.5. Parts of medicinal plants used	50
5.1.6. Condition of preparation	50
5.1.7. Method of preparation, Ingredients, and solvents required in traditional medicines	51
5.1.8. Routes of administration and ways of applications of herbal medicine	51
5.1.9. Dosage and antidotes of herbal remedies	52
5.1.10. Diseases and their diagnosing methods	52
5.1.11. Marketability of medicinal plants	53
5.1.12. Threats to medicinal plants	53
5.1.13. Conservation method of medicinal plants	54
5.1.14. Informant consensus factor of medicinal plants	54
5.1.15. The fidelity level value of most cited medicinal plants	55
5.1.16. Direct matrix ranking of multipurpose medicinal plants	56
5.1.17. Preference ranking of medicinal plants	56

5.1.18. Ways of Indigenous Knowledge Transfer on medicinal plants	. 56
5.2. Antibacterial Activities of some selected Medicinal Plants	. 57
6. CONCLUSION	. 59
7. RECOMMENDATION	. 61
8. REFERENCES	. 62
9. APPENDICES	. 79

LIST OF TABLES

Table Pag
Table 1: Number of informants in each kebeles 13
Table 2: Indigenous knowledge of medicinal plants compared by informant background
Table 3 : Threating factors of medicinal plant species at the Telemt district 3:
Table 4 : Major Conservation activities for medicinal plants in the Telemt district 30
Table 5: ICF of medicinal plants used to treat human and livestock ailments 38
Table 6: Fidelity level values of medicinal plants used to treat human and livestock ailments 39
Table 7: Direct matrix ranking of seven medicinal plants 40
Table 8: Preference ranking of five medicinal plants used to treat febrile illness
Table 9 : Preference ranking of five medicinal plants used to treat livestock leeches
Table 10: Source of indigenous knowledge about medicinal plants in Telemt district 42
Table 11: Antibacterial activities of three selected plant extracts against tested bacterial strains 4'

LIST OF FIGURES

Figure Pag	ge
Figure 1: Map of the study area	16
Figure 2: Focus group discussion	20
Figure 3: Guided field observation	21
Figure 4: A market survey in Dejach Meda town	22
Figure 5: Picture of some selected medicinal plants for antibacterial test	25
Figure 6: Parts of medicinal plants used	30
Figure 7: Condition of plant parts used in remedy preparation	31
Figure 8: Method of preparation of herbal remedy	32
Figure 9: Way of application of herbal remedy	33
Figure 10: Inhibition Zones of B.antidysenterica V.sinaticum and W.somnifera against E.co	oli.
	43
Figure 11: Inhibition Zones of B.antidysenterica V.sinaticum and W.somnifera against	K.
oneumonia	44
Figure 12: Inhibition Zones of B.antidysenterica V.sinaticum and W.somnifera again	nst
S.epidermidis	45
Figure 13: Inhibition Zones of B.antidysenterica S.aureus at three different test concentration	ons
	45
Figure 14: Inhibition Zones of negative control against four bacteria	46
Figure 15: Inhibition Zones of positive control against four bacteria	46

LIST OF APPENDICES

Appendixes

9. 1. APPENDIX - 1 : List of medicinal plants used for treating human ailments	79
9.2. APPENDIX - 2 : List of medicinal plants used for treating livestock ailments	98
9.3. APPENDIX – 3 : List of medicinal plants used for treating both human and livestock	
ailments	. 101
9.4. APPENDIX - 4 : Number of species in each family	. 106
9.5 APPENDIX - 5 : English version of consent form and questionnaire	. 108
9.6. APPENDIX – 6 : Amharic version of consent form and questionnaire	. 111
9.7. APPENDIX – 7 : List of the informants participated in the ethnobotanical study	. 114

Page

LIST OF ABBREVIATIONS AND ACRONYMS

ANOVA	Analysis of Variance
CSA	Central Statistical Agency
FL	Fidelity Level
ICF	Informant Consensus Factor
IK	Indigenous knowledge
MPs	Medicinal plants
SE	Standard error
SPSS	Statistical Package for the Social Sciences
TDADO	Telemt District Agricultural Office data
TMPs	Traditional medicinal plants
WHO	World health organization

ABSTRACT

Ethnobotany is the study of interaction between people and plants. Much of Ethiopia's population, primarily receives their medical treatment from the usage of traditional herbal medicines. But across the country, human activity has been the primary cause of the degradation of natural resources. The study aims to document the indigenous knowledge about medicinal plants and to evaluate the antibacterial activities of some plants in the Telemt District. The ethnobotanical data was collected through semi-structured interviews, focus group discussions, field observations, and a market survey. Ethnobotanical data was analyzed using descriptive statistics, informant consensus factor, fidelity level, preference ranking, and direct matrix ranking. A total of 198 informants (143 general informants selected randomly and 55 key informants selected purposively) were selected from 8 study kebeles. A total of 113 medicinal plant species belonging to 57 genera and 59 families were documented, with 77 species used for human ailments, 16 for livestock, and 20 for both. Most medicinal plants were found from a wild environment. Fabaceae had the highest number of traditional medicinal plants with eight species (7.08%). Shrub constitutes the largest number of medicinal plants with 46 species. The most frequently used plant parts were leaves, accounting for 75.23%. Herbal remedies are prepared mostly using fresh plant material (64.4%). Crushing was the major method of preparation accounts (35.6%), followed by grinding accounts (20.42%). The major route of administration was oral accounting for 109 (57.07%) of preparation. The major way of application was drinking (40.43%). Agricultural expansion was a major threat to medicinal plants. Environmental protection was the major activity used by local communities. Significant differences were observed in the antibacterial activity of three selected medicinal plants (Brucea antidysenterica, Verbascum sinaiticum, and Withania somnifera). The antibacterial activities of these plants were evaluated against four bacterial strains using the agar well diffusion method. Among the three plants, the leaf extract of B. antidysenterica exhibited the highest antibacterial activity against Klebsiella pneumoniae, measuring 21 ± 0.471 mm.

Keywords: Antibacterial activity, Ethnobotany, Medicinal plants, Telemt

1. INTRODUCTION

1.1. Background of the study

Ethnobotany, the study of the relationship between plants and people, has long been recognized as an important field of research, particularly in understanding the traditional use of medicinal plants by local communities (Balick and Cox, 2020). The focus of ethnobotany encompasses the diverse ways in which plants are utilized, perceived, and integrated into human societies, including their application in areas such as building, tools, food, medicine, and cultural practices (Pandey and Tripathi, 2017).

According to WHO estimates, over 80% of the world's population now receives their primary healthcare and wellness from traditional healing practices and herbal medicines (WHO, 2002). The use of plant-derived resources for primary healthcare has been a longstanding tradition, up to 80% of the population in Africa relies on traditional medicine to address their healthcare needs (WHO, 2002). In Ethiopia, the utilization of traditional medicinal plants is widely practiced (Moa Megersa et al., 2013). About 90% of people in Ethiopia receive their primary medical care through traditional medicine (WHO, 2010) and More than 95% of traditional preparations are derived from plant sources (Dawit Abebe, 2001).

Ethiopia's remarkable geographical diversity has contributed to the formation of distinct habitats and vegetation zones, which combined with the country's cultural and linguistic, has led to the existence of high plant diversity, a vast array of traditional knowledge and practices related to the use of these plants (Mirtuse Giday *et al.*, 2003). However, this traditional knowledge is often transmitted orally and in secrecy, leading to a lack of written documentation and records, which poses a significant threat to the preservation of this important heritage (Jansen, 1981).

Additionally, the growth of contemporary education causes knowledge loss due to the diminishing interest of the younger generation on indigenous knowledge (Mirtuse Giday *et al.*, 2003), the migration of people from rural to urban areas and the migration of residents from drought-stricken areas to fertile areas cause deterioration of traditional practices (Dawit Abebe, 1986). Furthermore overharvesting of medicinal plants, deforestation, land degradation, overgrazing by large cattle populations, and poverty are major factors in the decline of medicinal

plants in Ethiopia (Kloos, 2023). One of the regions of Ethiopia where similar problems are observed is the Amhara Regional State, specifically in the Telemt district where the sustainability of medicinal plant resources and associated traditional knowledge are threatened.

Even though the area is known to have comparatively better plant resources, there is a lack of conservation efforts and projects to protect these valuable resources and the traditional knowledge that accompanies these resources.

This study aims to document the traditional knowledge about medicinal plants used by local people of the district for treating various diseases.

1.2. Statement of the problem

About 90% of people in Ethiopia receive their primary medical care through traditional medicine (WHO, 2010). However, It is commonly known that knowledge of traditional medicine is transmitted orally from generation to generation and that, in the process, important details regarding the use of plants, like the part used, how the drug is prepared, how it is administered, the diseases it treats, and so on, may be forgotten or lost (Moa Megersa *et al.*, 2013).

Additionally, due to migration from rural to urban areas, industrialization, the spread of modern health care, the expansion of modern education, and the failure of specialized healers to pass on their knowledge to the next generation, the indigenous knowledge of using medicinal plants as remedies is disappearing (Wondwosen Teshome, 2006).

A similar problem is observed in one part of Ethiopia, Amhara Regional State, particularly in Telemt district. Traditional knowledge about the usage of plants is subjected to loss without any scientific documentation. So the study area was selected because there is no documented scientific information regarding traditional medicinal plants used by the local community. The lack of documentation not only threatens the preservation of indigenous knowledge but also hinders the exploration of natural solutions to pressing health issues, such as the global challenge of drug-resistant bacteria.

This study aims to fill this gap by documenting indigenous knowledge of medicinal plants and investigating the antibacterial properties of selected traditional plants in the Telemt District. By filling this knowledge gap, the research will contribute to both the preservation of indigenous

knowledge on medicinal plants and the potential discovery of new antimicrobial agents from locally sourced natural products.

1.3. Objectives of the study

1.3.2. General objective

To investigate and document traditional medicinal plants and associated knowledge used by indigenous people for treating human and livestock ailments and testing the antibacterial activity of selected plants at the Telemt district.

1.3.2. Specific Objectives

- To identify and document medicinal plant species and associated knowledge used to treat human and livestock ailments at the Telemt district.
- ◆ To identify the plant parts used to treat different human and livestock ailments.
- To record methods of preparation, route of administration, and dosage of prepared remedies commonly used by the local people in the district.
- ✤ To identify the major threats to medicinal plants in the district.
- ✤ To examine the conservation measures used by the local people in the district.
- To evaluate the antibacterial activity of some plants having the highest informant consensus factor and fidelity level value on common disease-causing bacteria.

1.4. Research questions

- What are the medicinal plant species used by indigenous people of the study area to treat human ailments, livestock ailments, and both?
- Which part of the medicinal plants is useful to treat human and livestock ailments?
- ♦ What are the methods of preparation, route of administration, and dosage used?
- ♦ What are the major threatening factors affecting medicinal plants?
- How do the local people to manage and conserve these medicinal plant species through traditional practices?

Which selected medicinal plants with high informant consensus factor and fidelity level value show antibacterial activity against some bacterial strains?

1.5. Significance of study

There has not been any ethnobotanical research on medicinal plants in the area until now. Therefore, the findings of this study help to preserve traditional knowledge by documenting the uses of local medicinal plants. This documentation not only safeguards indigenous knowledge but also enhances the understanding of local biodiversity, promoting the conservation of native plant species that may be vital for future medicinal applications.

Moreover, the documentation of traditional knowledge about medicinal plants serves as a source of information for future researchers hoping to conduct further studies for the development of modern drugs. By investigating the antibacterial activities of these plants, the research may contribute to the discovery of new antimicrobial agents, addressing the critical issue of antibiotic resistance.

1.6. Scope of the Study

This study was conducted in Telemt district, north Gonder Zone, Amhara Regional State, focusing specifically on the eight kebeles. The study focused on assessing ethnobotanical aspects of medicinal plants, including their uses, threats, and the related knowledge among local people of the Telemt district as well as the antibacterial activity of some medicinal plants.

1.7. Limitations of the study

This ethnobotanical study is subject to several limitations that may affect the comprehensiveness and applicability of its findings. Firstly, the study's scope is confined to the Telemt District, which may not represent the broader ethnobotanical practices found in other regions. The reliance on self-reported data from local healers and community members introduces the possibility of bias or inaccuracies in the information provided. Environmental factors and seasonal variations may affect plant availability and constraints in laboratory resources could influence the analysis of the plants' medicinal properties.

2. LITERATURE REVIEW

2.1 Origin and development of ethnobotany

Ethnobotany is a branch of ethnobiology that studies the mutual relationships between the human population and plants. Documenting and examining the application of indigenous knowledge, beliefs, and behaviors regarding plant resources is the main goal of this multidisciplinary, interdisciplinary study (Cotton, 1996). Ethnobotany investigates the intricate interactions between cultures and plants, focusing on how plants are viewed, utilized, and managed in various social contexts (Hailemariam Bekalo *et al.*, 2009).

It's hard to pinpoint the exact moment that ethnobotany entered contemporary science. Nonetheless, it dates back to the period when people first began consciously interacting with flora and fauna. Ethnobotanical work seems to have started with Christopher Columbus in 1492, at a time when he brought tobacco, maize, spices, and other useful plants to Europe from Cuba (Cotton, 1996) and when other immigrants from the new world documented food, medicine and other useful plants of the Aztec, Maya and Inca peoples. From the beginning, the recording of traditional knowledge regarding the therapeutic use of plants has produced numerous significant modern drugs (Dery, 1999).

The term Ethnobotany was the first time coined by Harshberger in 1895 (Jain, 2019). The term Ethnobotany comes from two Greek words: Ethnos and Botane. Ethnos means 'people', and Botane means 'herb', so it would be considered as 'the study of people and herbs' or 'the study of people and plants (tree, shrubs, and herbs). According to Fisseha Mesfin *et al.* (2009), ethnobotany is the scientific study of plants as they are used in indigenous cultures for a variety of purposes, including food, medicine, rituals, building, household utensils, musical instruments, cosmetics, firewood, dyeing, clothing, shelter, textiles, tools, currency, and social life. Ethnobotany is a multidisciplinary field that spans nearly all natural scientific disciplines. Its goal is to uncover people's hidden knowledge of plant resources, which could serve as the cornerstone for society's multifaceted growth (Aryal, 2009). Among the relationships of humans with plants, indigenous knowledge of traditional medicine is one. Thus, people depend on plants not only for food but also preparation of remedies.

The ethnobotanical study, according to Nolan and Turner (2011), records the knowledge of people's cultural interactions with plants and identifies how the local population has traditionally utilized plants for a variety of purposes and how they incorporate plants into their religious and cultural traditions. Therefore, the goal of ethnobotany is to conserve important traditional knowledge for future generations as well as for other communities.

The discipline of ethnobotany is expanding quickly and drawing researchers with a wide range of interests and backgrounds (Pandey and Tripathi, 2017). According to Hamilton (2003), ethnobotany has been increasingly analytical, quantitative, cross-disciplinary, and multi-institution in recent times. It is still mostly used to assess the potential value of different plants because it is connected to economic botany. Cotton (1996) pointed out that one possible use of ethnobotanical research in the pharmaceutical industry during the past ten years has been the identification of novel medications based on traditional medicinal plants. For these kinds of inquiries, ethnobotanical studies are excellent information sources.

2.2 Indigenous knowledge

Indigenous knowledge (IK) is the body of knowledge, norms, standards, abilities, and mental models that are specific to a particular culture or community and are employed by the local population (Warren, 1991). Due to their close and direct reliance on natural resources, the local population developed a body of indigenous knowledge that has helped them survive and adapt to their surroundings. Local knowledge is specific to a certain culture or society and serves as the foundation for a wide range of activities, including education, environmental conservation, food preparation, health care, and agriculture (Thomas, 1995).

Community members' traditional knowledge varies in amount and quality depending on their age, gender, occupation, social status, and level of intellect. From a scientific perspective, traditional knowledge is primarily viewed as a resource, consisting of a collection of knowledge and abilities acquired through traditions that are relevant to people's everyday lives (Abebe,2001).

In several countries like Ethiopia, traditional medical knowledge is verbally and extremely secretively transmitted from one generation to the next (GideyYirga, 2010). Such crude and covert transfer might damage indigenous knowledge or ethnomedical knowledge, and most of

the time some of the tradition is lost at each site of transfer (Mersha Ashagre *et al.*, 2016). As a result, it's important to conduct systematic record-keeping and documentation of this valuable knowledge through ethnobotanical research, record and utilize indigenous knowledge, increase community awareness of the value of indigenous knowledge, support communities in recording and documenting their local practices by providing computers, video equipment, and other tools, and make indigenous knowledge available so that it can be returned to the community through books, videos, newsletters, and other media (Yeneayehu Fenetahun and Girma Eshetu, 2017). There is less distortion of ethnomedical knowledge when such a systematic technique of recording and documentation is used.

2.3 Traditional medicinal plants

According to WHO (2013), traditional medicine is the all of knowledge and techniques that can be formally explained or applied to the prevention and treatment of physical, mental, or social imbalances, with only the reliance on firsthand observation and practical experience passed down orally from generation to generation. For many years, various ethnic and social groups have utilized traditional medicinal plants for the treatment, prevention, and curing of human and cattle ailments.

In particular, the majority of people living in rural areas use traditional herbal medicine as their main source of healthcare (Balcha Abera, 2014). Fassil Kibebew (2001) estimates that, except for Western nations, between 75 and 90 percent of the world's rural population uses traditional medicine as their only source of healthcare.

Ethiopia, like every other country in the world, has long relied on traditional medicine derived from plants to treat a variety of illnesses and reduce human suffering (Asfaw Debela *et al.*, 1999; Kebede Deribe *et al.*, 2006). Traditional medicine has been a part of Ethiopian society for a very long time because of its extensive use and history (Migissa Kaba, 1996; Pankhurst, 1966). Ethiopia's traditional medicine is widely used by both urban and rural populations, which can be linked to its cultural acceptability, effectiveness against specific ailments, accessibility in terms of location, and cost-effectiveness when compared to modern treatment (Haimanot Reta, 2010). Novel drug inventions can be attributed to medicinal plants (Balunas and Kinghorn, 2005).

According to Medhin, Zewdau *et al.* (2001), 25% of contemporary drugs contain one or more active principles derived from plants, and the majority of the world's top 25 best-selling medications are derived from plant materials (Ohigashi, 2008). Plant-based pharmaceuticals have made a significant contribution to contemporary medicine (Perumal Samy and Gopalakrishnakone, 2010). The indigenous expertise of using medicinal plants as folk medicines is being lost in Ethiopia due to migration from rural to urban regions, industrialization, the fast loss of natural habitats, and lifestyle changes, yet there has been little creation of therapeutic products in the country.

2.4. Role of medicinal plants in human healthcare and ethnoveterinary medicine in Ethiopia

2.4.1 Plants for a Human Healthcare System

Due in large part to the contributions made by traditional healers, the use of medicinal plants in human health care has become more widespread globally (Shakya, 2016; Payyappallimana, 2010). Up to 80% of the population in Africa relies on traditional medicine to address their healthcare needs (WHO, 2002) and medicinal plants have an almost unlimited value to human livelihoods (Hamilton, 2004). Ethiopia, like other underdeveloped nations, has a long history of using plants for medical purposes. About 90% of people in Ethiopia receive their primary medical care through traditional medicine (WHO, 2010) and More than 95% of traditional preparations are derived from plant sources (Dawit Abebe, 2001). But as time goes on, the traditional knowledge gradually disappears for reasons mostly related to deforestation and environmental degradation, which also resulted in the extinction of various species, including therapeutic plants (Desalegn Desissa, and Binggeli, 2000).

In Ethiopia, medicinal plants were essential to the treatment of many ailments (Fekadu Fullas, 2007). According to reports, traditional medicines are primarily used by people who live in rural areas and do not have access to modern medical care because of a lack of doctors, modern medications, and health professionals, as well as the high cost of these treatments and an uneven distribution of healthcare facilities, the majority of which are located in towns, with few or none located in rural areas (Jansen, 1981).

Plants are a major source of prototype compounds that the pharmaceutical industry may use to build more conventional medications (Fekadu Fullas, 2001). Even though only a small portion of the world's plant species have been studied scientifically to date, humankind has already benefited much from this (Farns worth, 1985). Systematic scientific research is essential to understand the function that products derived from plants play in the health of humans and cattle (WHO, 1998).

2.4.2 Plants in ethnoveterinary medicine

According to Tafesse Meshing and Mekonnen Lemma (2001), ethnoveterinary medicine refers to traditional knowledge and methods for caring for animals, including traditional surgical and manipulative techniques, traditional immunization, magic-religious practices and beliefs, management techniques, and the use of herbal remedies to prevent and treat a variety of disease problems faced by livestock holders.

Animal illness continues to be a major factor in low livestock performance in Ethiopia and the majority of developing nations, which widens the gap between the supply and demand for livestock products (Teshale Sori *et al.*, 2004).In Ethiopia, raising livestock directly supports a large number of people in addition to helping to produce crops (Tafese Mesfine and Mekonen Lema, 2001). Even if there are a lot of cattle, illness contributes to their decline. To get around this issue, a lot of individuals mostly treat their livestock's illnesses with traditional medicines. This is because there aren't enough veterinarian medications available, and the majority of them are quite expensive, making them unaffordable for Ethiopian farmers and pastoralists (Mirutse Giday and Gobena Ameni, 2003).

Ethiopian livestock farmers create their methods for maintaining the health and productivity of their animals utilizing resources that are readily available in the area, primarily plants, as a result of these and related variables. Ethnoveterinary medicine is comprised of these traditional, regional ideas and methods related to the health care of animals. Various traditional veterinary procedures remained unreported in Ethiopia and Africa despite their enduring value as a livestock health care system (Dawit Abebe and Ahadu Ayehu, 1993). The dissemination of knowledge about ethnoveterinary medicine, with a focus on practical plants utilized for livestock treatment, is critical to the management of cattle.

Additionally, planning and executing successful livestock production requires accurate documentation and comprehension of farmers' knowledge, attitudes, and practices about the incidence, causes, treatments, prevention, and management of various ailments (Tafesse Mesfin and Mekonen Lemma, 2001).

2.5. Threats and Conservation of Medicinal Plant Species in Ethiopia

2.5.1. Threats to medicinal plant species

In addition to its therapeutic potential, people use a wide variety of wild plant species for food, closure, housing, fuel, fiber, generating cash, and meeting cultural and spiritual requirements all over the world, according to Khan *et al.* (2018). Approximately 90% of plant materials used as medical plants are gathered from the wild, which has led to the extinction of many therapeutic plant species or significant genetic loss, according to WHO data from 2005.

According to some studies (Tesfaye Awas and Zemede Asfaw, 1999; Mirutse Giday *et al.*, 2003), the majority of Ethiopians' medicinal plant uses come from wild habitats. As a result, the rate of extinction of species with associated indigenous knowledge and the loss of commonly occurring medicinal plant species is accelerated. Therefore, to preserve endangered species, medicinal plants must be cultivated in an organized manner. The need for traditional medicines will rise along with the population, putting more strain than ever on the availability of medicinal plant resources (Hamilton, 2003). There is occasionally a reduction in the vegetation types where traditional medicinal plant species are harvested.

Like other African nations, Ethiopia's medicinal plant species are susceptible to issues with sustainability and continuity, mostly as a result of habitat loss and taxonomic loss (Ensermu Kelbessa *et al.*, 1992). The country is currently losing MPs as a result of human and environmental forces connected to the loss of important indigenous knowledge (IK related to the plants). As a result, there is a loss of IK and an acceleration of the deterioration of plant resources as stated by (Ermias Lulekal *et al.*, 2008). As per the findings of Dawit Abebe *et al.* (2001), pressures caused mainly by humans are causing the diversity of Ethiopian flora to be lost. A rapid increase in population, the need for fuel, urbanization, the production of wood, overharvesting, destructive harvesting, invasive species, commercialization, honey cutting,

degradation, agricultural expansion, and habitat destruction are some of the hazards that humans provide to medicinal plants (Endalew Amenu, 2007).

Additionally, it has been noted that unsustainable harvesting of medicinal plant species for export and pharmaceutical extraction has an impact on these species (Farnsworth, 1985; WHO, 1998) Furthermore, recurring droughts, diseases, pest outbreaks, and bushfires are examples of natural causes (Ensermu Kelbessa *et al.*, 1992).

In addition to the above-known threats to medicinal plant species, other factors such as the type of plant and its component used also have an impact on medicinal plant species. Moreover, the two biggest dangers to Ethiopia's medicinal plant population are uprooting and unsustainable use. For instance, gathering leaves for medicinal purposes is not as dangerous as harvesting the roots and bark of medicinal plants (Edwards, 2001; Haile Yineger, 2005). In addition to other factors, the younger generation has low regard for the traditional medical system (Mekonen. Wolditsadik 2018), which is unfortunate for the preservation and advancement of medicinal plant knowledge. Consequently, ethnobotanical research is helpful in recording, examining, and sharing information about the interaction between therapeutic plants and human society.

2. 5.2. Conservation of medicinal Plants

According to Abebe Demise (2001), to ensure that a species' genetic potential will be accessible in the future, conservation efforts should be directed at preserving the greatest amount of diversity within each species. The importance of sustainable management of traditional medicinal plant resources comes from both the dependence on traditional medicine for health and its potential as a source of new drugs (Cunningham, 1993). Several researchers have discovered that plant species of therapeutic potential are collected from the wild by professional traditional healers. These species are particularly valuable for local usage or trade and are not readily available nearby. Instead, the healers travel a distance to gather them. In contrast to this issue of shortage, traditional medicine is becoming more and more in demand, which presents a great chance for medicinal plants to be conserved ((Zemede Asfaw, 2001).

Zemede Asfaw (2001) states that excessive use and destructive harvesting (such as collecting roots and barks) put medicinal plants at risk for extinction. Different parts of the plant are utilized to make cures; however, the root is the part most frequently used. The extensive use of

the root portion for alimentary purposes for humans and animals without any substitute harms the plant's future availability.

Globally, conservation initiatives have been implemented to protect medicinal plants that are in danger of additional harm (Cunningham, 1996). Both in-situ and ex-situ conservation measures are included in this. Medicinal plant genetic resources are acquired using both in-situ and ex-situ conservation methods. The preservation of species in their native environments is known as insitu conservation. Some traditional medicinal plants are difficult to domesticate and manage, so they must be preserved in their natural habitat (Zemede Asfaw, 2001). Furthermore, some plants that are cultivated outside of their native habitats are unable to yield the required quantity and amount of active components. Another way to preserve medicinal plants is to ensure and encourage their traditional growth in designated areas (Zemede Asfaw, 2001). This might take the place of graveyards, churches, national parks, mosques, farm margins, river banks, and so forth. According to an account by Cunningham (1993), it is prohibited to cut any plant species, medicinal or not, that are cultivated in places of worship such as churches and mosques.

Ex-situ conservation, or conservation outside of an organism's natural habitat, is the second. This covers botanical gardens, gene banks, and other place. Ethiopia should implement both in-situ and ex-situ conservation strategies to protect valuable plants, including medicinal ones, from threats posed by natural or man-made factors (Abebe Demisse, 2001).

In Ethiopia, some initiatives have been undertaken to preserve and advance the sustainable use of medicinal plants. For instance, in representative regions of the nation, such as Won do Genet and Bale-Goba medicinal plant filed gene banks, EBI has built ex-situ conservation sites. In the field, the preservation of ethnobotanical and ethnopharmacological knowledge coexists with the conservation of therapeutic plants. Through market research and interviews, ethnobotanical studies can identify issues with the management of medicinal plants. In addition, they offer answers by supporting regional customs and traditions that have the potential to be conserved (Gadgil *et al.*, 1993; Turner, 2000).

2.6. Advantages and Disadvantages of traditional medicinal plants

2.6.1 Advantages of traditional medicinal plants

Almost all life on Earth depends on plants, and medicinal plants in particular are extremely valuable, essential, and helpful. One of the most important functions of plants is their phytomedicinal role or the advantages of medicinal plants. Many people rely on medicinal plants for their daily needs, including financial stability, health assistance, and the security of their future existence (Hamilton, 2003; Hamilton, 2004). Since the beginning of time, plants have been essential and the primary source of traditional preparation for cattle and humans that is both therapeutic and preventive.

There are several reasons why traditional medicine is better than modern medicine, including accessibility, therapeutic efficacy, and cost-effectiveness of medical services (MekonenWolditsadik, 2018). Because people, especially in rural areas, have a good awareness of popular medicinal herbs, traditional healers are not as commonly contacted (Acree, 2012).

2.6. 2 Disadvantages of traditional medicinal plants

The medical community and pharmaceutical industry do not view phytomedicine favorably because they feel that it lacks regulations and validation for safety and efficacy, as well as because of issues with inadequate standardization and quality control, mistakes in nomenclature, and challenges with identifying active ingredients and understanding their intricate mechanisms of action (Houghton, 1998). The key drawbacks of traditional medicines are inaccurate diagnosis and the potential for harm to health from combining various species of therapeutic plants without sufficient scientific evidence (Dawit Abebe, 1986).

The traditional healthcare system's recognition suffers from a lack of precision and standardization. Tolera *et al.* (2011) highlight another disadvantage of conventional treatment that could lead to toxicity due to the lack of exact doses. The measurements utilized to determine the dose are not standard and are based on the age and physical attributes of the patient, the diagnosis, the sociocultural explanation for the sickness, and the amount of experience of the herbalist (Tilahun Teklehaymanot and Mirutse Gday, 2007).

2.7 Antibacterial Properties of Medicinal Plants

The ability of plant extracts and their constituents to partition the lipids of bacterial cell membranes and mitochondria that disrupt cell structures and increase their porosity is a crucial property (Sikkema *et al.*, 1994). The lowest concentration of an antibacterial agent needed to create a sterile culture is known as the minimum bactericidal concentration (Cheesbrough, 1991).

Treatment of infectious diseases becomes difficult by the emergence of resistant strains, which are frequently the consequence of intensive antibiotic usage (Sydney *et al.*, 1980). Moreover, employing medicinal plants frequently results in fewer antibiotic adverse effects (Cunha, 2001). Compared to antibiotics, medicinal plants are more widely used, have a longer history of usage, renewable in nature, and have greater patient tolerance (Vermani and Garg, 2002). Secondary metabolites found in plants including alkaloids, flavonoids, terpenoids, tannins, coumarins, quinones, carotenoids, and steroids are sources of medicine and frequently great leads for therapeutic development (Bhatti *et al.*, 2022).

2.8 Antibacterial activity testing of medicinal plants

In the past, the main method used to produce new medications was to extract physiologically active chemicals from plants and identify them by various bioactivity screening programs or medicinal use (Hunter, 2001). Many studies have looked into the long-standing applications of medicinal plants, but only a small number of these investigations have produced ethnobotanical findings with laboratory work to confirm these plants' true antibacterial properties (Shandesh *et al.*, 2008; Mahmood *et al.*, 2012). Approximately 80% of people on the planet employ traditional medical practices, and the primary source of these treatments is plant life (Magrani, 2005). It is necessary to investigate the biological activities of ethnomedical plants in countries where access to medications is limited (Mahmood *et al.*, 2011).

The majority of pharmaceutical companies now invest time and energy in extracting natural compounds from plants. This procedure will result in the production of lower-cost medications that the general public may easily buy because some infectious bacteria develop resistance to synthetic medications regardless of the cost issue.

3. MATERIAL AND METHODS

3.1. Description of the study area

The study was conducted in the Telemt district, north Gondar zone, Amhara Region, Ethiopia (Figure 1). Telemt is one of the districts in the Amhara Regional State of Ethiopia. It is located about 273 km from Debark and 555 km from the capital city of the Amhara regional state, Bahir Dar. Telemt is bordered on the North by Dima, on the South by Beyeda, on the west by Adiarkay districts, and the East by Tigray Region. The administrative center of the district is Dejach Meda and encompasses 24 rural kebeles. Telemt district has a total population of 132,230, of which 65,242 are female and 67,669 are male, according to the Central Statistical Agency of Ethiopia's 2007 national census (CSA, 2007). The majority of the population practices Orthodox Christianity (97.9%), while 2.1% identify themselves as Muslims (CSA, 2007). Based on the 2007 national census conducted by the Central Statistical Agency of Ethiopia

Covering an area of 151,010.91 hectares, Telemt district has diverse ecological zones, including Weyna Dega (21%, or 5 kebeles), Dega (37%, or 9 kebeles), and Kolla (42%, or 10 kebeles) (TDAOD, 2023). Geographically, the district is located between 38°46′66.8′′ to 38°73′78′′ E longitude and 13°38′14′′ to 13°57′29′′ N Latitude with arrange of an altitude between 1335 to 1930 meters above sea level (Figure 1). The average temperature in the district is 32°C, and it receives an average annual rainfall of 1350 mm (TDAOD, 2023).

Figure 1: Map of the study area

Map of study area showing the different regions of Ethiopia (a), administrative zones of the Amhara region (b), North Gondar zone (c), Telemt district, and the study kebeles in Telemt district (d).

3.1.1. Soil type, land use, and agriculture

The primary soil types at the Telemt district include fertile soil, sandy soil, and clay soil. The land use in the study area is classified into five categories: construction (31,344 hectares), cultivated land (37,865 hectares), grazing land (325,478 hectares), bushes and forest land (36,787 hectares), and mountains (12,467.91 hectares) (TDAOD, 2023). Livestock production serves as a major economic activity in the district, accounting for approximately 70% of the economy, while crop production constitutes the remaining 30% (TDAOD, 2023). The total

livestock population in Telemt district is estimated to be 842,672, comprising 356,213 cattle, 425,648 sheep, 29,575 goats, 27,179 donkeys, 1,234 mules, and 1,367 horses. In terms of livestock, the most common domestic animals in Telemt District include cattle, sheep, goats, donkeys, mules, and horses. The district is also home to various wild animals, such as foxes, chalada baboons, tigers, monkeys, and apes.

3.1.2. Vegetation of the district

The vegetation of the Telemt District, is characterized by a number of species such as *Dodonaea* angustifolia, Euclea racemosa, Olea europaea, Ficus vasta, Acacia abyssinica, Croton macrostachyus, Cordia africana, Juniperus procera, Eucalyptus camaldulensis, and Eucalyptus globulus belongs to the montane forest and woodland vegetation type in Ethiopia (TDAOD, 2023). The major food crops cultivated in the district include teff (*Eragrostis tef*), Sorghum (*Sorghum bicolor*), nugget (*Guizotia abyssinica*), sesame (*Sesamum indicum*), telba (*Linum usitatissimum*), pea (*Pisum sativum*), bean (*Vicia faba*), and barley (*Hordeum vulgare*). Additionally, key vegetables and fruit crops are grown in the area consisting of banana (*Musa acuminata*), mango (Mangifera indica), papaya (*Carica papaya*), lomi (*Citrus aurantiifolia*), and orange (*Citrus sinensis*).

3.2. Ethnobotanical data collection

3.2.1. Reconnaissance Survey and study site selection

A reconnaissance survey was conducted from April 13 to April 20, 2024, to identify eight studied kebeles across different agro-ecological conditions. This selection was based on the availability of vegetation, the presence of traditional medicinal practitioners, and with the help of local authorities, kebele administration leaders, elders, religious leaders, and the district agricultural officers. The number of kebeles selected was determined proportionally according to the distribution of kebeles within each agro-ecological zone. The selected kebeles were Adi Selam, Terinasha, and Chinifera from the Dega (high altitude); Akuna and Tara from the Weyna Dega (mid altitude); and Ateba, Ageta, and Negade Meshageria from the Kolla zone (low altitude) agroecologies. These kebeles were purposively selected from a total of 24 kebeles following the reconnaissance survey.

3.2.2. Sample size and Sampling techniques

To determine a representative sample for selected kebeles (smallest administrative unit) Yamane formula was used (Yamane, 1973), which is calculated as follows:

 $n = \frac{N}{1+N(e)^2}$ Where n is the research sample size, N is the targeted population size (total population of eight kebele in the study area.), e: is the level of precision or sampling error = (0.05) and 1 is the probability of the event occurring.

 $n = \frac{44077}{1+44077(0.05)^2} = 396$ However, given that the population shares similar religion, language, culture, and traditions, the probability of obtaining unique information is lower. Therefore, the sample size was reduced by half, resulting in a final sample size of 198 (see Table 1). The numbers of samples from each kebele were calculated based on the proportion of households in each kebele relative to the total number of households across the eight kebeles (see Table 1). A total of 198 informants, above the age of 20 were selected, of which, 55 were key informants chosen through purposive sampling from the study kebeles, based on information gathered from residents. Additionally, 143 general informants (respondents) were randomly selected using a lottery method (Martin, 1995). Informed consent was obtained from each participant before the interviews, ensuring that they understood the purpose of the study and the responsible use of their information.

Kebeles	Total population	Sample size
Adi selam	5535	25
Terinasha	5446	25
Chinifera	5866	26
Akuna	5727	26
Tara	5367	24
Ageta	5412	24
Negade meshageria	5153	23
Ateba	5571	25
Total	44077	198

Table 1: Number of informants in each kebeles

3.2. 3. Ethnomedicinal data Collection techniques

Ethnobotanical data were collected from April 21 to June 21, 2024, following the methods outlined by Martin (1995). The data collection took place during visits to the eight kebeles selected for the presence of traditional medicinal practitioners and vegetation. The techniques employed in data collection were semi-structured interviews, guided field walks with key informants, market surveys, and group discussions. These methods were instrumental in gathering information about the knowledge and management of traditional medicinal plants used by local people to treat human and animal ailments in the district. Individual interviews with informants and discussions were conducted in the regional Amharic language, using a structured list of questions. The place and the time for discussion were settled based on the interests of the informants.

3.2.3.1. Semi-Structured Interview

Semi-structured interviews were conducted to obtain ethnobotanical data, following the methodology adopted by Martin (1995). The items in the questionnaire were initially prepared in English and then translated into Amharic. The semi-structured questionnaire consisted of two main categories: First, personal information about the respondents, such as name, age, address, gender, marital status, and education level. Secondly, detailed information on medicinal plants such as the diseases treated, local names of the plants, sources of the medicinal plants (whether wild or home garden), parts of the plant used, methods of preparation, routes of administration, dosage, side effects and antidotes, ingredients and solvents used, other applications of the plants, as well as threats to the plants and methods of conservation (see Appendix 5). The interviews were conducted conversationally, providing flexibility for in-depth discussions. After securing informed consent, the interviewer engaged participants using a prepared questionnaire as a guide, which facilitated the exploration of topics and encouraged respondents to share personal experiences related to medicinal plants. Ethnobotanical data were gathered through direct interactions with community members knowledgeable about these plants, allowing for both qualitative and quantitative insights.
To ensure the reliability of the information, each informant was contacted at least twice. If responses are different and are given at different times, they are considered to be unreliable and are rejected. Conversely, if multiple informants provided similar information on the same topic, the reliability of that data was confirmed (Akil Usmane, 2016).

3.2.3.2. Focus Group Discussion

After collecting ethnobotanical data through semi-structured interviews, focus group discussions were conducted in each kebele with key informants One focus group discussion was conducted in each selected kebele to gather additional information on community knowledge of medicinal plants and to cross-check the reliability of the data collected through Semi-Structured Interviews, following Martin's (1995).

The selection of participants for these discussions was based on recommendations from cultural leaders, elders, and kebele administrators. During these discussions, ethnomedical knowledge was collected from households, and insights from knowledgeable community members were carefully recorded to ensure through documentation of their expertise.

Each group typically included around 10 individuals, facilitating a balanced, interactive environment where diverse perspectives could be shared. Key topics addressed included the uses of specific medicinal plants, preparation methods, dosage and administration practices, cultural significance, conservation issues related to medicinal plants, threatening factors of medicinal plants, and personal experiences regarding their effectiveness in treating various ailments (Figure 2).

Figure 2: Focus group discussion

3.2.3.3. Guided Field Walk

Guided field walks were conducted with traditional practitioners to visit locations where medicinal plants are growing. These walks provided an opportunity for practitioners to demonstrate and explain their ethnomedicinal knowledge in the field. During these guided field interviews, on-site notes were taken regarding all relevant information about the plants, including their local names, growth habits, sources, parts used, soil types, and major threats to their survival, and some plant species were photographed. This hands-on approach enriched the data collection process by allowing direct observation and interaction with the plants in their natural environment (Figure 3).

Figure 3: Guided field observation

3.2.3.4. Market Survey

A market survey was conducted in Dejach Meda to gather information on medicinal plants sold in the local markets of the study area. During the survey, the names of medicinal plants and other aspects of herbal drugs available for sale were recorded. Semi-structured interviews and observations were carried out with both sellers and buyers of medicinal plants to identify commercially viable species, assess various attributes of the plants, and compile information on their different uses (Figure 4).

Figure 4: A market survey in Dejach Meda town

3.2.3.5. Plant specimen collection and identification

At the end of the interviews, images of the reported medicinal plants were captured using a camera, with the help of local field assistants, traditional healers, and knowledgeable community members. Identification of these specimens was conducted both in the field and at Bahir Dar University by using the flora of Ethiopia and Eritrea, available taxonomic literature, taxonomic keys, NDA software, and visual comparison with pictures.

3.2.4. Ethnobotanical Data analysis

3.2.4.1. Descriptive statistics

Descriptive statistical methods, including percentages, frequencies, tables, and graphs, were employed to analyze the medicinal plants used in the study. This analysis focused on identifying the number and percentage of species, genera, and families of medicinal plants, their growth forms, proportions of parts harvested, modes of remedy preparation, dosages, routes of administration, and associated threats (Alexiades, 1996) using Excel spreadsheet software. Additionally, Traditional knowledge regarding the the use of medicinal plants across different demographics including men and women, young and elderly groups, literate and illiterate, key and general informants as well as those married and single groups was computed using excel.

3.2.4.2. Preference Ranking

Preference ranking was conducted using ten selected key informants to identify the most important and effective medicinal plants to treat febrile illnesses and livestock leeches. Five and four medicinal plants were chosen to be ranked preferentially by key informants based on the curing potential of febrile illness and livestock leech respectively. The ranking system was based on assigning the highest value of 5 to the plant considered to be the best for treating febrile illness and livestock leech respectively, a value of 4 for the second-best plant, and the lowest value of 1 for plants that have lower healing power compared to the others (Martin, 1995).

3.2.4.3. Direct matrix ranking

Based on the information obtained from informants regarding the multipurpose uses of various plants, a direct matrix ranking exercise was conducted for seven selected medicinal plants. This method aimed to compare the multipurpose uses of each species and to assess the relative significance of the species compared to other species, following the recommendations of Martin (1995). In this exercise, seven multipurpose species were chosen from the total list of medicinal plants, and seven use categories (firewood, construction, medicine, charcoal, furniture, fencing, and forage) were listed for ten selected key informants to assign use values to each species. Each key informant was asked to assign use values to each species within these categories. The values assigned were as follows: 5 for "the best," 4 for "very good," 3 for "good," 2 for "less used," 1 for "least used," and 0 for "not used. Finally, the values for each use category were summed for each plant species and then ranked based on their multipurpose significance.

3.2.4.4. Informant Consensus Factor (ICF)

ICF was computed for each disease category to identify potentially effective medicinal plant species in the respective disease categories (the agreement of informants on the reported cures for the group of diseases). ICF was calculated by the number of use citations in each disease category minus the number of times a species was used divided by the number of use citations in each category minus one (Heinrich, 1998). ICF was calculated using the formula below:

$$ICF = \frac{(nur - nt)}{(nur - 1)}$$

.

Where nur is the number of use citations in each disease category, nt is the number of times a species is used.

3.2.4.5. Fidelity Level of Index (FL)

The Fidelity Level (FL) Index is used to evaluate the relative healing potential of the most frequently cited medicinal plants used to treat human and livestock ailments. FL is defined as the ratio of the number of informants who independently suggested the use of a particular species for a specific major purpose to the total number of informants who mentioned that plant for any use. FL was calculated for medicinal plants used against various human and livestock ailment categories. The formula for calculating FL is as follows:

 $FL\% = \frac{NP}{N} \times 100$ FL (%) where Np is the number of informants that reported the use of a plant species to treat a particular disease, and N is the number of informants that used the plants as a medicine to treat any given disease (Friedman *et al.*, 1986). Accordingly, the FL value was calculated for eleven medicinal plant species used for treating Gastrointestinal and intestinal parasite dermatological, blood pressure, ear disease, leech snake bite, Coccidiosis, hemmoriod, and Cough.

3.3. Evaluation of the antibacterial activity of medicinal plants

The selection of plants for antibacterial testing was based on ethnobotanical information gathered from local informants, as well as the availability of the plants at the time of collection. Three traditional medicinal plant species (*Brurcea antidysenterica, Verbascum sinaticum*, and *Withania somnifera*) were selected for further study due to their relatively high Informant Consensus Factor and Fidelity Level values for treating dermatological and gastrointestinal diseases (Figure 5 and table 13) (Trotter and Logan, 2019).

Figure 5: Picture of some selected medicinal plants for antibacterial test

The figure shows (a) a picture of *Brucea antidysenterica*, (b) a picture of *Verbasicum sinaticum*, and (c) a picture of *Withania somnifera*).

3.3.1. Plant material collection and Preparation of plant extracts

The fresh plant parts (leaf and root) with medicinal value were collected, identified, and carefully washed with running tap water, followed by distilled water to remove any contaminants. The cleaned plant materials were then dried under shade at room temperature to prevent the evaporation of volatile secondary metabolites. The procedure used for the preparation of the plant materials was adapted from Elof (2012). The dried leaf and root were ground to a fine powder using a mechanical grinder. The powder was sieved through a 0.6 mm wide mesh and the weight of each plant powder was measured using a precision electronic balance before extraction (Cheruiyot *et al.*, 2015).

Extraction was conducted using the maceration technique. A total of 30 grams of each plant powder was mixed with 300 ml of 99.9% methanol in conical flasks, following a ratio of 1:10 (w/v). The flasks were tightly closed, and the mixture was shaken for 72 hours using an orbital shaker set at 200 rpm at room temperature. After the shaking period, the extract was filtered first through cotton and then using Whatman No. 1 filter paper to obtain a clear extract.

After obtaining the clear plant extracts through filtration, the test concentrations were prepared by diluting the extracts in methanol. The concentrated extract, which had a volume of 275 ml and a concentration of 100 mg/ml, served as a stock solution. From this stock solution, three test concentrations were prepared: the first one was 100 mg/ml, taken directly from the stock. The second concentration, 50 mg/ml, was prepared by diluting the stock with 50% methanol. Finally, the third concentration was 25 mg/ml, prepared by diluting the stock with 75% methanol following the method adopted by Gebremedhin Romha, (2018).

3.3.2. Description of the tested bacterial strains

Two Gram-positive bacteria (Staphylococcus aureus and epidermidis) and two gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae), were selected for in vitro antibacterial activity test using. The pure cultures of these bacterial isolates were obtained from the Amhara Public Health Institute.

3.3.3. Preparation of test bacterial suspension/ Inoculum preparation

The pure cultures of each bacterial isolate were subcultured in nutrient broth and incubated at 37 °C for 24 hours to promote growth. Following incubation, the cultures were assessed for turbidity and subsequently diluted with distilled water to create a homogeneous suspension, which was thoroughly mixed using a vortex. The absorbance of the resulting suspension was measured at 600 nm using a spectrophotometer and adjusted to 0.132. The bacterial load is equivalent is 0.5 McFarland standard, approximately 1.5×10^{8} colony-forming units (CFU) per mL.

3.3.4. Antibacterial assays

The antibacterial activity of the three selected traditional medicinal plant extracts was evaluated using the agar well diffusion method (Perez, 1990). The Mueller-Hinton agar was prepared by autoclaving the medium at 121 °C for 15-20 minutes to ensure sterility. After cooling, the agar was poured into sterilized Petri dishes.

Standardized bacterial cultures were inoculated onto Mueller-Hinton agar plates using a sterilized cotton swab, providing a suitable medium for testing the efficacy of the plant extracts

against the selected Gram-positive and Gram-negative bacteria. Wells (6 mm) were created using a sterile cork borer and each well received 100 μ l of each plant extract along with positive (15 μ g/ml tetracycline) and negative (methanol without plant extract) controls, ensuring triplicate testing following the method adopted by Dereje Nigussie, *et al*,(2021).

The plates were incubated at 37 °C for 24 hours, and the antibacterial activity was assessed by measuring the diameter of the zones of inhibition in millimeters using a transparent ruler (Kindu Geta and Mulugeta Kibret, 2020). The mean of the replicates for each concentration was recorded.

3.3.5. Data Analysis of antibacterial test

The antibacterial activities of the selected plant extracts were expressed as mean values of the inhibition zones \pm standard error (SE). Data were analyzed using one way ANOVA with the aid of the SPSS software package, version 27, at a significance level of p = 0.05. This analysis aimed to determine whether or not the means of the selected plant extracts exhibited statistically significant differences in their effects on the test organisms.

3. 4. Ethical considerations

To conduct ethnobotanical research on medicinal plants and collect data appropriately, an ethical clearance was obtained from the ethical committee at Bahir Dar University's College of Science and an official support letter from the Department of Biology. Each local participant was informed about the study's objectives, methods, results, and potential benefits before being asked for their consent. The right to privacy and benefits of the participants were respected throughout the data collection process. Confidentiality of any information or sensitive details shared by the informants was strictly maintained. After explaining the purpose of the study, the informants agreed to participate, and each signed a consent form. Data were then gathered based on questionnaire items from both general and key informant interviews.

4. RESULTS

4.1. Ethnobotanical study of medicinal Plants

4.1.1. Informant background information

A total of 198 informants participated in this study to investigate the information related to traditional medicinal plants to treat human and livestock ailments. Of these, 69.2 % and 30.8 % of the informants were males and females, respectively. According to the age class category, 20.71 33.33, and 45.96 % were found to be young (21-30 years), middle-aged (31-45 years), and elderly (>35 years), respectively (Figure 5). Similarly, 61.1% of the informants were illiterate (cannot read and write) and 38.9% of them were literate/read and write. In terms of informant type, 72.2 and 27.8% of the informants were general and key informants, respectively. 20.71

Large numbers of medicinal plants were reported by men than women, elder informants than younger, by illiterate informants than literate once, and by key informants than general. This indicates younger generations have less interest in educating traditional medicinal knowledge from elder people; this may be due to the effect of modern education and urbanization (see table 2)

Informant background	1	Number of plants cited	Percentage
Age group	21-30	31	24.78
	31-45	35	30.97
	Above 45	47	44.25
Sex	Male	82	72.57
	Female	31	27.43
Educational status	Litrate	83	73.45
	Illiterate	30	26.55
Informant type	Key	69	61.06
	General	44	38.94

Table 2: Indigenous knowledge of medicinal plants compared by informant background

4.1.2. Medicinal plants used to treat human and livestock ailments

A total of 113 medicinal plant species belonging to 57 genera and 59 families were identified for treating human and livestock ailments. Among these, 77 (68.14%), 20 (17.69%), and 16 (14.16%) species were used for treating human, human livestock, and livestock ailments, respectively. In terms of species diversity, the *Fabaceae* family was the most prominent, comprising eight species (7.08%). This was followed by the *Asteraceae, Lamiaceae,* and *Solanaceae families*, each contributing six species (5.31%). The *Cucurbitaceae* and *Euphorbiaceae* families, each had five species (4.42%), while the *Moraceae* family had four species (3.54%). Further, several families *Apiaceae, Malvaceae, Myrtaceae, Ranunculaceae, Rosaceae, Rutaceae,* and *Vitaceae* each contributed three species (2.65%). Additionally, seven families, including *Asclepiadaceae, Apocynaceae, Poaceae, Polygonaceae, Rhamnaceae, Tiliaceae,* and *Verbenaceae,* were represented by two species each (1.77%). The remaining 38 families were represented by one species each (0.88%) (see Appendix -4).

4.1.3 Habit of medicinal plants

Among the 113 species of medicinal plants identified, 46 species (40.71%) were shrubs, 37 species (32.74%) were herbs, 19 species (16.8%) were trees, and 11 species (9.7%) were climbers.

4.1.4 Sources of medicinal plants

According to the informants, medicinal plants were obtained from different sources. In this regard, about 60.18%, 29.2%, and 10.62 % of the medicinal plants were collected from the wild, home gardens, and both wild and home gardens, respectively.

4.1.5 Parts of medicinal plants used

The inhabitants in the study district gathered various plant parts to prepare traditional medications/remedies. The findings indicated that the most commonly used plant parts for preparing remedies were the leaves, which accounted for 43.93% of the reported uses. This was followed by roots (24.61%) and seeds (8.9%) (Figure 6). Remedies can be made from single plant parts or a combination of many parts, depending on the condition being treated. For

instance, some remedies utilize only the leaves, roots, seeds, fruits, latex, twig, root bark, stem bark, rhizome, flower, and stem resin while others combine leaves with roots or seeds, and fruit with seed or stem bark to enhance efficacy. This diversity in preparation methods indicates the traditional knowledge in selecting specific parts based on their perceived healing properties and the desired therapeutic effects (Figure 6).

Figure 6: Parts of medicinal plants used

4.1.6. Condition of preparation

According to informants, herbal remedies were prepared mostly using fresh plant materials (64.4%) followed by dried plant materials (29.31%), the remaining were either in fresh or dried forms (Figure 7).

Figure 7: Condition of plant parts used in remedy preparation

4.1.7. Method of preparation, solvents and ingredients required in herbal medicine

Informants indicated that the preparation of remedies varies significantly based on the type and stage of the disease. The most common methods of remedial preparations were crushing (35.6%), followed by grinding (20.42%), boiling (11), chewing (8.38%), and burning (5.76%) (Figure 8). Each method serves a distinct purpose; for example, crushing and grinding are essential for breaking down plant materials to release their active compounds, while boiling is commonly employed to extract these compounds into a liquid form suitable for consumption.

The preparation of traditional herbal medicine involves a diverse array of ingredients and solvents that are crucial for the formulation of effective remedies. Common ingredients used by informants were enjera, honey, and butter, which can improve the palatability of the remedies and may carry their health benefits. The solvents utilized in these preparations also play vital roles. The most commonly used solvents were water, tela, oil, tea, milk, and coffee. Among these solvents water is the most common solvent, for its universal availability and ability to extract water-soluble compounds.

Figure 8: Method of preparation of herbal remedy

4.1.8 Routes of administration and ways of application for medicinal plant preparations

Various routes of administration and ways of application for medicinal plant preparations were documented for treating both human and livestock ailments. The routes of administration varied significantly based on the affected body part and the specific ailment reported by the individual patient. Oral administration was the most prevalent route, accounting for 109 preparations (57.07%). This was followed by dermal administration, with 50 preparations (26.18%), and nasal administration with 11 preparations (5.76%). Additionally, remedies were administered through the ear (6 preparations, 3.14%), oral/nasal (8 preparations, 4.19%), and eye (7 preparations, 3.66%)

Several methods were employed to apply these traditional remedies, with drinking being the most common application method, representing 40.43% of cases. This was followed by painting the skin with herbal preparations (23.96%) and eating the remedies (8.85%) (Figure 9). Internal health problems like stomachache, gastritis, abdominal cramps, and diarrhea were treated by

drinking herbal extraction. On the other hand, an external health problem like wounds, dandruff, and scabies were treated by painting herbal extraction.

Figure 9: Way of application of herbal remedy

4.1.9 Dosages and antidotes of herbal remedies

Traditional healers use various measuring materials to administer herbal remedies. The dosage of herbal remedies varies based on factors such as the patient's age, gender, pregnancy status, and overall physical condition. Finger lengths for bark, roots, and stems, pinches for powdered materials, and various measuring tools like spoons, coffee cups, tea cups, and glass cups were found to be the most common dosage estimating methods in the study area. Additionally, counts were also used for administering drops of sap or extracts, as well as leaves, seeds, fruits, bulbs, rhizomes, and flowers. However, the respondents realized that the accuracy of these measurements is insufficient to pinpoint the exact amount and thus cause side effects.

The informants reported the existence of side effects due to the intake of some herbal remedies. These include diarrhea, vomiting, and stomach discomfort, particularly with plants such as *Euphorbia abyssinica, Acokanthera schimperi, Hagenia abyssinica, and Phytolacca dodecandra.* In response to these adverse effects, informants suggested antidotes, eating cooked hen liver, and drinking milk, aguat, and yogurt immediately following the intake of medicinal plant remedies.

4.1.1.10. Diseases and their diagnosing methods

In the Telemt District, a total of 46 types of human ailments were identified, which are treated using 82 traditional medicinal plant species. The most commonly reported human health problems were stomachache, abdominal cramps, gastritis, dandruff, hemorrhoids, ear diseases, and the evil eye. A total of 9 livestock ailments were identified and treated using 15 traditional medicinal plants. The most frequently reported livestock ailments were leeches, coccidiosis, black leg, anthrax, and external parasites. A total of 10 common ailments affecting both humans and livestock were identified in the study area. The most frequently reported health problems included swelling, snake bites, cough, febrilillnes, eye diseases, rabies, diarrhea, bleeding, wounds, and retained placentas. These ailments were treated using 48 different medicinal plants. One ailment can be treated by multiple plant species and one plant species can be effective for treating one or more diseases.

All traditional healers in the study area reported visual observation, hand touching, and interviews as frequent techniques for diagnosing human diseases before prescribing any herbal medicine. Traditional healers examined patients by asking about their symptoms and then observing various body parts such as the tongue, throat, eyes, skin color, and body temperature with their bare hands. On the other hand, the primary means of diagnosing livestock diseases were simple observation of symptoms in the mouth, eyes, nose, ears, and skin of the animals, touching the affected areas, and asking livestock owners about the main symptoms shown by the sick animals.

4.1.11. Marketability of medicinal plants

The results of the market assessment conducted at Dejach Meda town showed that many medicinal plants are traded not only for their medicinal properties but also for a variety of other uses. The marketable medicinal plants identified include those sold as spices, such as *Allium sativum, Coriandrum sativum, Nigella sativa, Ruta chalepensis, Thymus schimperi, Trigonella foenum-graecum, Ocimum basilicum*, and *Zingiber officinale*. Additionally, several plants were marketed as oil seeds, including *Carthamus tinctorius, Guizotia abyssinica, Ricinus communis,*

Brassica carinata, and *Linum usitatissimum*. Plants commonly used as food items were also prominent in the market, with plants like *Hordeum vulgare*, *Cucurbita pepo*, *Carica papaya*, *Citrus aurantiifolia*, *Saccharum officinarum*, *Persea Americana* (avocado), *Prunus persica* (kok), *Rhamnus prinoides* (gesho), and *Coffea arabica* being sold.

Furthermore, *Phytolacca dodecandra* is utilized for cleaning, while other plants such as *Echinops, Olea europaea subspp. Cuspidata* and *Silene macrosolen* are used as fumigants. Additionally, species like *Cordia africana* and *Eucalyptus globulus* are valued for their applications in firewood, construction, and other material needs. This diverse market reflects the multifaceted roles that medicinal plants play in the local economy.

4.1.12 Threating factor of medicinal plant

According to the informants' responses in the study area, different types of anthropogenic and natural factors affected traditional medicinal plants. Informants mentioned that the impact of the major anthropogenic factors and natural factors on medicinal plants varied. In connection with this, agricultural expansion was found to be the number one threatening factor, followed by firewood and charcoal production, overgrazing by domestic animals, drought, timber, and construction materials (Table 3). Approximately, 43.9 and 29.8 % of the informants reported agricultural expansion and firewood and charcoal production, respectively as the major threatening factors for medicinal plants.

SN	Threatening Factor	Citation of informat		
		In number	In percent	rank
1	Agricultural Expansion	87	43.94	1
2	Overgrazing by domestic animals	22	11.1	3
3	Firewood and charcoal	59	29.8	2
4	Timber and construction material	13	6.57	6
6	Drought	17	8.59	5
Total		198	100	

Table 3 : Threating factors of medicinal plant species at the Telemt district

4.1.13. Conservation of medicinal plants

The results regarding the conservation of medicinal plants demonstrate that local communities are aware of the importance of both in-situ and ex-situ conservation techniques for preserving their flora. Some individuals started participating in conservation activities of medicinal plants such as cultivation in their home garden, around places of worship (such as churches and mosques), in agricultural fields, and along the margins of crop fields for various purposes, environmental protection, Construction of check dams, isolation of grazing land (see table 4). According to the data collected from respondents, 72 informants (36.36%) reported that they have begun conserving medicinal plants for various purposes. In contrast, a significant majority, 126 informants (63.64%), indicated that they do not engage in the conservation of medicinal plants.

They also revealed that there are medicinal plants that were cultivated in their home gardens like *Hagenia abyssinica*, *Ocimum urticifolium*, and *Ruta chalepensis*, either for medicinal purposes or for other purposes such as food, fodder, spice, live fence, and shade in their agricultural field plants like *Cordia africana* and *Acacia abyssinica* Due to their use as firewood and construction materials *and in their* field margin plants like *Ziziphus spina-christi* and *Rosa abyssincia* for windbreak and other protective purposes. Local people of the Telemt district cultivated plants in their churches like *Juniperus procera*, *Ficus vasta*, *Euphorbia abyssinica*, and *Euphorbia tirucalli*. Since harvesting plant resources from churches is culturally prohibited, they had a wider variety of plants, perhaps preserving local ethnobotanical knowledge.

Table 4. Major Conservation activities for medicinal plants in the referit district	Table 4	: Major	Conservation	activities	for medicinal	plants in th	e Telemt distric
---	---------	---------	--------------	------------	---------------	--------------	------------------

Conservation Activity	Citation of infor		
	Number	Percent	Rank
Cultivation In their Home Gardens	37	18.69	2
Cultivation in place of worship	36	18.18	3
Environmental Protection	58	29.29	1
Cultivation in Agricultural land	28	14.14	4
Construction Of Check Dams	18	9.09	5
Isolation of grazing land	12	6.06	6
Reforestation	9	4.55	7
Total	198		

4.1.14. Informant consensus factor (ICF) of medicinal plants

Based on data gathered from the local community, diseases such as kusl (wound), forefer (dandruff),ekek(scabies),chife(eczema),bgur(acne),Yekoda shifta (skin rash), Bugnj(boils) and aguagote (*tinea versicolor*) were the most reported health problems under the "dermatological/skin category, with the highest ICF value of 0.65. Yehod beshta(Stomachache), Yehodkurtet(abdominal cramp), Tekmat(diarrhea),Yehodtlatl (intestinal parasite), wesfat(Ascaris), Koso(tapeworm), and cheguara (gastritis) were commonly reported human diseases under the "gastrointestinal diseases" category, ranked second with an ICF value of 0.63. Leech, black leg, anthrax, and coccidiosis, were commonly reported livestock health problems under the Parasitic and Infectious livestock diseases category, ranked 3rd with an ICF value of 0.61 (Table 5).

For the gastrointestinal diseases category, *Verbascum, sinaiticum, Withania somnifera,* and *Zingiber officinale*, showed the highest Informant Consensus Factor (ICF) values, and each plant used for treating 6, 2, and 3 disease categories, respectively. For the dermatological disease category, *Brucea antidysenterica, Datura stramonium,* and *Aloe Vera* also demonstrated high ICF values, each plant being utilized for 1, 3, and 2 disease categories, respectively. Additionally, for the parasitic and infectious livestock disease category, *Nicotiana tabacum, Maytenus senegalensis,* and *Justicia schimperiana* showed high ICF values, each plant used for treating, 3,2, and 2 disease categories, respectively.

SN	Categories of ailments	No of use	No of	% of all	% of all	ICF
		citations	species	species	use	
		(nur)			citations	
1	Sudden sickness (febrilillnes, headache)	14	7	6.19	3.45	0.53
2	Sensorial problem (eye, ear, and tongue disease,	28	14	12.4	7	0.51
	etc)					
3	Dermatological disease	101	36	31.86	24.88	0.65
4	Blood and circulatory problems	21	10	8.85	5.17	0.55
5	Gastro-intestinal and Intestinal parasites	105	39	34.51	25.86	0.63
6	Respiratory	30	13	11.5	7.4	0.58
7	Oral, dental, and pharyngeal	8	5	4.42	1.97	0.43
8	Rabies, scorpion bite, snake bite and malaria	20	10	8.85	4.93	0.52
9	Urogenital and venereal	7	5	4.42	1.72	0.33
10	Body swelling disease, arthritis hemmoriod and	29	13	11.5	7.14	0.57
	bone fracture, chest pain, abdominal pain					
11	Evil eye and devil	11	7	6.19	2.71	0.4
12	Parasitic and Infectious livestock diseases	32	13	11.5	7.88	0.61

Table 5: ICF of medicinal plants used to treat human and livestock ailments

4.1.15. Fidelity level of medicinal plants

Fidelity level values were calculated for 11 commonly used medicinal plants in the Telemt District, focusing on their effectiveness against specific human and livestock ailments (Table 6). The highest fidelity level was recorded for *Brucea antidysenterica* (94%), followed by *Verbascum sinaiticum* (88%), *Withania somnifera* (83%), and *Nicotiana tabacum* (73%). *B. antidysenterica* was reported for use against dermatological/skin disease categories. Whereas V. sinaiticum and W. somnifera were used against gastrointestinal and parasitic diseases, *N. tabacum* was against leech.

		Botanical name of					FL%
SN	Local Name	medicinal plants	Ailment treated	NP	Ν	FL	
			Gastro-intestinal and intestinal		2		
1	Ketetina	Verbascum sinaiticum	parasite	22	5	0.88	88
			Gastro-intestinal and intestinal		2		
2	Gzawa	Withania somnifera	parasite	19	3	0.83	83
					2		
3	Astenagr	Datura stramonium	Dermatological	16	3	0.69	69
	Avalo(Waginos				1		
4)	Brucea antidysenterica	Dermatological	18	9	0.94	94
5	Azamr	Bersama abyssinica	Blood pressure	5	7	0.71	71
6	Gulo	Ricinus communis	ear disease	6	9	0.67	67
					1		
7	Tmbaho	Nicotiana tabacum	Leech	8	1	0.73	73
		Ampelocissus			1		
8	Haregtemen	schimperiana	snake bite	8	2	0.66	66
					1		
9	Atat	Maytenus senegalensis	Coccidiosis	6	1	0.55	55
10	Kulkual	Euphorbia abyssinica	hemmoriod	5	8	0.63	63
11	Amira	Plumbago zeylanica	Cough	5	9	0.56	56

Table 6: Fidelity level values of medicinal plants used to treat human and livestock ailments

4.1.16. Direct matrix ranking of multipurpose medicinal plants

The results from the direct matrix ranking analysis showed that *Dodonaea angustifolia*, *Euclea racemosa*, *Syzygium guineense*, *Eucalyptus globulus*, *Ficus sur*, and *Croton macrostachyus* were plants with multiple uses in that order by the local people of the study area (Table 7). This finding indicated that these medicinal plants were overharvested in the research area due to their multiple uses. *D. angustifolia* ranked first (the most threatened) followed by, *Euclea racemosa*, and *S. guineense*. They were exploited for construction, firewood, charcoal, and medicine for their home consumption, and need further conservation actions. The results indicated that these plants were primarily used for firewood followed by construction and medicine.

SN	Use Diversity	Plant Speci	Plant Species							
		S. guineense	F. sur	C. africana	E. globulus	C. macrostachyus	D. angustifolia	E. racemosa	Total	Rank
1	Fire wood	4	2	2	5	4	5	5	27	1
2	Construction	4	3	4	5	1	3	2	22	2
3	Medicine	4	2	3	1	5	3	4	22	2
4	Charcoal	3	2	0	2	2	4	5	18	3
5	Furniture	3	3	5	3	1	2	1	18	3
6	Fence	0	1	1	2	1	5	4	14	4
7	Forage	1	0	1	0	0	2	0	4	5
Total		19	13	16	18	14	24	21		
Rank		3	7	5	4	6	1	2		

Table 7: Direct matrix ranking of seven medicinal plants

4.1.17. Preference ranking of medicinal plants

A preference ranking exercise helps to determine whether the local people prefer specific medicinal plants or not for treating particular ailments. The species most frequently used for a specific disease often indicates high efficacy among the community. According to the results of the preference ranking analysis, *Zehneria scabra* was the most preferred species to treat febrile illness followed by *Echinops kebericho, Opimum lamiifolium*, and *Eucalyptus globulus* (Table 8).

Table 8: Preference ranking of five medicinal plants used to treat febrile illness

SN	Medicinal plants	Key in	Key informants coded (A to J)									Total score	Rank
		А	В	C	D	Е	F	G	Н	Ι	J		
1	E. kebericho	4	5	4	4	5	3	4	3	4	4	40	2
2	E. globulus	3	2	3	3	3	2	3	3	4	3	29	4
3	Ladoensis	3	3	2	3	2	2	3	2	2	2	24	5
4	O. lamiifolium	3	4	3	4	4	4	3	3	4	4	36	3
5	Z.scabra	5	4	5	4	4	5	5	4	4	5	45	1

According to the results of the preference ranking analysis, *Nicotiana tabacum* was the most preferred species for treating livestock leeches followed by *Millettia ferruginea*, and *Satureja punctate* (Table 9).

SN	N Medicinal plants Key informants coded (A to J)						Total score	Rank					
		А	В	С	D	E	F	G	Η	Ι	J		
1	Rhus glutinosa	4	2	2	4	2	3	2	3	2	3	27	4
2	Millettia ferruginea	3	5	3	4	4	4	5	4	4	3	39	2
3	Nicotiana tabacum	4	4	5	5	5	5	4	4	4	4	44	1
4	Satureja punctata	2	4	3	4	4	3	3	4	4	3	33	3

Table 9 : Preference ranking of five medicinal plants used to treat livestock leeches

4.1.18.Ways of indigenous knowledge transfer on medicinal plants

The traditional healers in the study area were not willing to share their knowledge with everybody. The local people mostly transferred their knowledge of medicinal plants and conceptions of traditional diagnosis techniques by word-of-mouth to family members, particularly to elder sons. The local people in the Telemt district mostly learned indigenous knowledge about medicinal plants from their family members (44.44%) and grandparents (24.24%) (Table 10).

Source of Knowledge	No of informants	% of informants
Family members	88	44.44
Grandfather/mother	48	24.24
Uncle/ Aunt	26	13.13
Husband/wife	21	10.61
Neighbor	6	3.03
Friends	9	4.55
Total	198	100

Table 10: Source of indigenous knowledge about medicinal plants in Telemt district

4.2. Antibacterial Activities of some selected Medicinal Plants

In this study, three medicinal plants were selected for extraction and antibacterial activity testing based on their high healing potential. Accordingly, the leaves of *B. antidysenterica*, *W. somnifera*, and the roots of *V. sinaticum* were gathered and biologically active ingredients were extracted using methanol as the solvent. The antibacterial activities of the crude extracts at different concentrations (100 mg/ml, 50 mg/ml, and 25 mg/ml) were evaluated against two Gram-positive and two Gram-negative bacteria (Table 11).

The negative control did not exhibit any antibacterial activity, while the positive control showed a significant growth inhibition zone of 25 mm against *Klebsiella pneumonia*. Significant differences were observed between the plant species at the different test concentrations against the tested pathogens and with positive control (Table 11)

The extract *B. antidysenterica* demonstrated zones of inhibition ranging from 8 mm to 21 mm. The maximum zone of inhibition was observed against *K. pneumonia* $(21 \pm 0.47 \text{ mm})$ at the highest test concentration of 100 mg/ml, while the minimum zone of inhibition was recorded against *S. epidermidis* (8 ± 0.558 mm) at the lowest concentration of 25 mg/ml (Table 11). Among the examined bacterial strains, *K. pneumoniae* was the most susceptible, whereas *S. epidermidis* exhibited lower susceptibility. The extracts of *B. antidysenterica* were the only ones that showed an inhibitory effect against *S. aureus*.

The root extract of *Verbasicum sinaiticum* was tested against four bacterial pathogens: *Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus,* and *Staphylococcus epidermis* at various concentrations. The root extract of *Verbasicum sinaiticum* showed a zone of inhibition ranging from 0 mm to 20 mm. The extract showed the maximum zone of inhibition against *E. coli* (20mm \pm 0.385) and the minimum zone of inhibition against *Staphylococcus aureus* (0.00) (Table 11).*V.sinaiticum* did not show any inhibitory effect against *Staphylococcus aureus*.

The leaf extract of *Withania somnifera* was tested against four bacterial pathogens: *Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus,* and *Staphylococcus epidermidis* at various concentrations. The zones of inhibition for the methanol leaf extract ranged from 00 mm to 19.67 mm. The extract exhibited the maximum zone of inhibition against *E. coli* (19.67 \pm 0 mm), while the minimum zone of inhibition was recorded against *Staphylococcus aureus* (0.00 mm) (Table 11). The leaf extracts of *Withania somnifera* did not demonstrate any inhibitory effect against *Staphylococcus aureus*.

Test concentration at 100mg/ml

Test concentration at 50mg/ml

Test concentration at 25mg/ml

Figure 10: Inhibition Zones of B.antidysenterica V.sinaticum and W.somnifera against E.coli.

Test concentration at 100mg/ml

Test concentration at 50mg/ml

Test concentration at 25mg/ml

Figure 11: Inhibition Zones of B.antidysenterica V.sinaticum and W.somnifera against K. pneumonia.

Test concentration at 100mg/ml

Test concentration at 50mg/ml

Test concentration at 25mg/ml

Figure 12: Inhibition Zones of B.antidysenterica V.sinaticum and W.somnifera against *S.epidermidis*

Figure 13: Inhibition Zones of B.antidysenterica S.aureus at three different test concentrations

Figure 14: Inhibition Zones of negative control against four bacteria

Klebsiella pneumoniae, Staphylococcus aureus, and Staphylococcus epidermidis.

Figure 15: Inhibition Zones of positive control against four bacteria

	Test				
Plant species	concentrations	E.coli	S.epidermidis	K.pneumoniae	S.aureus
	(mg/mL)				
R	100	16.33±0.33 aA	15.00±0.58aA	21.00±0.58aA	18.33±0.33aA
D. antidysentrica	50	13.33±0.33bB	11.00±0.58bB	16.67±0.33bA	10.67±0.33bB
annaysenniea	25	11.00±0.58cB	8.00±0.58cC	12.00±0.58cB	8.67±0.33cC
V. sinaticum	100	20.00±0.58aA	15.00±0.58aA	17.33±0.33aA	0.00±0.00aA
	50	15.00±0.5bB	10.67±0.33bB	12.00±0.58bB	0.00±0.00aA
	25	13.00±0.58bC	8.33±0.33bC	9.00±0.58cC	0.00±0.00aA
	100	19.67±0.33aA	11.00±0.58aA	14.33±0.33aA	0.00±0.00aA
W. somnifera	50	14.33±0.33bA	8.00±0.58bA	10.00±0.58bB	0.00±0.00aA
	25	5.33±0.33cB	4.33±0.33bA	7.00±0.58cC	0.00±0.00aA
Controls	Tetracycline	23.67±0.33	7.67±0.88	25.00±0.58	19.67±0.00
Controls	Methanol	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00

Table 11: Antibacterial activities of three selected plant extracts against tested bacterial strains

NB: Mean values in a column indicated by similar small letters and similar capital letters represent there is no significant difference between the test concentration of each plant species and between plant species for each tested bacterial strain (p > 0.05) respectively. Mean values in a column indicated by a similar capital letter and different capital letter represent there is a significant difference between the test concentration of each plant species each against tested each bacterial strain (p < 0.05) respectively.

5. DISCUSSION

5.1. Ethnobotanical study of medicinal Plants

5.1.1. Informant background information

This ethnobotanical study showed differences in indigenous knowledge of medicinal plants among various age groups. The investigation revealed that older individuals (aged over 45 years) mention more medicinal plants than those younger ages (21-30 years). The decline of indigenous knowledge among the younger generation can be attributed to several factors, including modernization, urbanization, and the start of modern education. Similarly, in Maale and Ari ethnic communities (Berhane Kidane *et al.*, 2014,) reported that older members of the community (>40 years) knew more medicinal plants than youngers.

More male informants than female informants have participated in this study and about 72.57 percent and 27.43 percent of medicinal plants were mentioned by male and female informants respectively. This finding showed that male informants are more knowledgeable about the use of medicinal plants than female informants, which may be related to the community's custom of information flowing in a male line. This could be due to the close and tight attachment of indigenous knowledge with orthodox churches and related religious books, to which local priests may have access. Similarly, in Wolaita Zone, (Takele Bassa, 2017) reported that about 90 percent of medicinal plants were mentioned by males and 10 percent of medicinal plants were mentioned by females.

Illiterate informants in the study area had more knowledge about medicinal plants and mentioned more medicinal plants than literate ones. This might be due to the impact of modern education that decreases the interest of literate people to know this knowledge. This study is lined with a previous study conducted in Sheka Zone of Southern Nations,(Zewdie Kassa *et al.*, 2020) reported that more medicinal plants were reported by illiterate informants.

5.1.2. Medicinal plants used to treat human and livestock ailments.

The inhabitants of Telemt district had a rich tradition of utilizing a diverse array of medicinal plant species within their herbal medicine system to address both human and livestock ailments. Among the recorded 113 medicinal plants, 77 species were specifically used for human ailments,

while 16 were for livestock ailments. Additionally, 20 species are used for both human and livestock ailments. The predominance of plants used for human health reflects a likely greater focus and concern for human health issues compared to livestock health problems. This study aligns with the findings of Ermias Lulekal *et al.* (2008), Fisseha Mesfin *et al.* (2009), and Ashenafi Osman *et al.* (2020), who have reported a higher number of species employed for the treatment of human ailments than for livestock.

In terms of diversity, the Fabaceae family ranked highest, with 8 species (7.08%), followed by Asteraceae, Lamiaceae, and Solanaceae, each contributing 6 species. This trend can be attributed to the broader distribution and abundance of these families in the local flora. This family was also reported to have the largest percentage of ethnomedicinal species in previous studies, in the Ganta Afeshum district (Leul Kidane *et al.*, 2018), in Yilmana densa and Quarit districts (Derebe Alemneh, 2021), in Metema District (Getinet Masresha *et al.*, 2021).

5.1.3. Habit of medicinal plants

In the research area, shrubs were found to be the most commonly used medicinal plants, accounting for 40.71% of the identified species. This prevalence can be attributed to their greater abundance compared to trees and climbers, as well as their ability to be harvested year-round, unlike herbs that may have seasonal availability. This finding is consistent with other studies in Ethiopia, which have highlighted a higher usage of shrubs in traditional medicine (Awal Hussien *et al.*, 2023; Ermias Lulekal *et al.*, 2008). In contrast to this finding (Abraha Teklay *et al.*, 2013) reported that the most used plants were herbs followed by shrubs.

5.1.4. Sources of medicinal plants

The major source of medicinal plant species at the Telemt district was the wild habitats, with approximately 60.18% of all reported medicinal plants derived from these areas. This finding indicates the minimum contribution of home gardens to the overall supply of medicinal plants. These results align with other studies conducted in Ethiopia, which have found that traditional medicinal plants are predominantly collected from wild habitats rather than home gardens (Yimer Assen *et al.*, 2021; Asmera Amde *et al.*, 2020; Muhidin Tahir *et al.*, 2021). This reliance

on wild sources indicates the need for conservation efforts to protect these valuable ecosystems and ensure the sustainability of medicinal plant resources.

5.1.5. Parts of medicinal plants used

The result of this study showed that leaves were found to be the most widely and frequently used part of medicinal plants for remedy preparation (43.93%) followed by roots (24.61% and seeds (8.9%). This preference can be attributed to the ease of finding and collecting leaves compared to other plant parts. Additionally, harvesting leaves does not negatively impact the survival of medicinal plants, in contrast to the harvesting of roots and whole plants, which can threaten their sustainability. This finding is consistent with other ethnomedicinal studies conducted in Ethiopia, which also identified leaves as the most frequently utilized part of plants (Abraham Teklay *et al.*, 2013; Fisseha Mesfin *et al.*, 2014).

In contrast to this study, (Fisseha Mesfin *et al.*, (2009) in Wonago Woreda,(Ermias Lulekal *et al.*,2013), in Ankober District, Tilahun Tolossa and Moa Megersa (2018) in Berbere District reported that roots were the most frequently used plant parts. This may be because roots remain in the soil and are available even during the long dry seasons.

5.1.6. Condition of preparation

The preparation of herbal remedies in the study area predominantly relies on fresh plant material, accounting for 61.27% of all reported preparations. This preference might be due to the widely spread of traditional belief that fresh remedies possess higher efficacy, attributed to the presence of volatile active ingredients in the form of secondary metabolites that are more abundant in fresh plant parts. These compounds may diminish or evaporate during the drying process, potentially reducing the effectiveness of the remedies. The results of similar studies (Getnet Chekole *et al.*, 2015 in Libo Kemkem District; Getnet Chekole, 2017 in Gubalafto District; Tadesse Birhanu *et al.*, 2015 in Horro Gudurru Districts) support this finding, reporting a consistent preference for fresh materials over dried ones for various health conditions. This emphasis on using fresh plant material highlights the community's deep-rooted knowledge of the medicinal properties of plants and indicates the importance of maintaining access to these resources for effective traditional healing practices.

5.1.7. Method of preparation, Ingredients, and solvents required in traditional medicines

The major method of preparing herbal remedies in the study area was crushing accounting for (35.6%), followed by grinding accounting for (20.42%) of preparations. These techniques are favored due to their effectiveness in extracting the active compounds from the plants, which enhances their curative potential and provides an immediate response to health issues. This finding aligns with previous studies that reported crushing as the predominant method of preparation (Fitsumbirhan Tewelde *et al.*, 2017 in LaelayAdi Yabo District; Tilahun Tolossa and Moa Megersa, 2018 in Berbere District, Gemedi Abdela *et al.*, 2022 in Nensebo District). In contrast to this in the report of (Kalayu Mesfin *et al.*, 2013) in Gemad District, the predominant method of preparation was grinding followed by crushing.

The most commonly used solvents were water, tela, oil, tea, milk, and coffee, and ingredients were enjera, honey, and butter in the preparation of traditional medicines. These components play essential roles in enhancing the efficacy and palatability of the remedies. Notably, many of these ingredients honey, butter, and solvents have been documented in other regions of the country, further supporting their widespread use (Leul Kidane *et al.*, 2018; Muhidin Tahir *et al.*, 2021; Mohammed Yimam *et al.*, 2022).

5.1.8. Routes of administration and ways of applications of herbal medicine

The routes of administration for herbal remedies in the study area were determined by the affected body part and the specific ailment reported by individual patients. Oral administration was the most widely utilized route, accounting for 57.07% of the total preparations (109 preparations), followed by dermal 26.18% (50 preparations). These routes are favored because they facilitate rapid physiological reactions of the administered medicines with the pathogens and enhance their curative power (Getu Alemayehu., *et al* 2015). This observation is consistent with the findings of various ethnomedicinal studies, that reported oral administration as the predominant route, followed by dermal application (Moa Megersa and Nigussie Tamrat, 2022; Banchiamlak Nigussie and Young, 2019; Tamru Temam and Asalfew Dillo, 2016; Mohammed Yimam *et al.*, 2022; Gidey Yirga and Samuel Zeraburk, 2011).

Several methods of application were identified for the prepared traditional medicines, among which drinking was the most common, accounting for 40.43% of preparation. The prevalence of

this application method indicates the community's preference for liquid forms of herbal remedies, which may enhance absorption and efficacy. This finding aligns with the research results reported by Asmera Amde *et al.* (2020) in debark and Mekonen Wolditsadik (2018) in Dugda District, who have found drinking as the predominant method of remedy administration.

5.1.9. Dosage and antidotes of herbal remedies

In the Telemt district, traditional medicine practitioners employ various methods to measure the dosages of herbal remedies. However, almost all herbal medicine practitioners administer remedies based on estimation for their patient treatments. They use coffee cups, spoons, the palm of a hand, glassware, and teacups, and even counting plant parts, dropping and using finger sizes. Those measuring materials are reported by other ethnobotanical studies conducted in Ethiopia (Moa Megersa *et al.*, 2023; Amare Bitew *et al.*, 2022). In terms of antidotes, the most commonly used antidotes in the study area were cooked hen liver, aguat, yogurt, and milk. These antidotes are also documented in other studies across Ethiopia, highlighting their significance in traditional healing practices (Zewdie Kassa *et al.*, 2020; Derbe Alemneh, 2021). This reliance on specific measurement methods and antidotes reflects the traditional knowledge and practices that have been passed down through generations within the community.

5.1.10. Diseases and their diagnosing methods

The findings of this study highlight the significant role that traditional medicine plays in the healthcare practices of the local population. The high patient turnout for traditional healing services suggests that this practice is deeply rooted in the community's cultural heritage. Factors such as accessibility, perceived efficacy, cultural acceptance, and affordability likely contribute to the preference for traditional healers over modern medical facilities.

Traditional healers employ a variety of diagnostic techniques, including visual observation, tactile examination, and patient interviews. This holistic approach enables them to gather comprehensive information about the patient's condition. By assessing visible signs such as changes in tongue, throat, eye, or skin color, as well as variations in body temperature traditional healers can make informed decisions regarding the appropriate herbal treatment. Those

diagnosis methods were reported in previous studies in Ethiopia (Ermias Lulekal *et al.*, 2013; Derbe Alemneh, 2021).

5.1.11. Marketability of medicinal plants

The market assessments conducted in Dejach Meda town reveal the multifaceted roles of medicinal plants in the local economy, indicating their value beyond traditional medicinal uses. The identification of various plants traded as spices, oil seeds, and food items showed the significant cultural and economic importance of these species in the community. For instance, spices like *Allium sativum* (garlic) and *Coriandrum sativum* (coriander) are not only integral to local culinary practices but also contribute to health, as many spices are known for their medicinal properties.

The presence of oil seed plants such as *Carthamus tinctorius* (safflower) and *Ricinus communis* (castor bean) indicates a market demand for products that extend beyond food, showcasing the versatility of these plants in various industries, including cosmetics and pharmaceuticals. The inclusion of food items like *Hordeum vulgare* (barley) and *Carica papaya* (papaya) illustrates the essential role that these plants play in local diets, which is crucial for nutrition and food security.

Moreover, the use of plants like Phytolacca dodecandra for cleaning and other species for fumigation reflects the community's innovative approaches to utilizing natural resources for everyday needs. This diversity in usage not only enhances the marketability of medicinal plants but also promotes sustainable practices by reducing reliance on synthetic products. This finding is consistent with previous studies conducted in Ethiopia, which have documented the marketability of these plants (Getu Alemayehu, 2015; Getnet Chekole *et al.*, 2021; Temesgen Tadesse and Alemtshay Teka, 2023).

5.1.12. Threats to medicinal plants

According to the informants, agricultural expansion was the major threatening factor to medicinal plants, accounting for 44% of the respondents. This finding aligns with previous research conducted in various parts of the country, which has shown that the need for agricultural land and other purposes severely threatened plant species, particularly medicinal plants (Gemedi

Abdela and Mustefa Sultan, 2018; Melesse Maryo *et al.*, 2015; Moa Megersa *et al.*, 2013; Fisseha Mesfin *et al.*, 2009). The ongoing need for agricultural land poses significant risks to the sustainability of these vital resources. Therefore, it is crucial to enhance conservation awareness within the community to protect medicinal plants and ensure their availability for future generations. Promoting sustainable practices and educating the public about the ecological and cultural importance of medicinal plants can help mitigate these threats. In contrast to this Artuma Fursi district (Mohammed Yimam *et al.*, 2022) reported charcoal production as the major threatening factor to medicinal plants.

5.1.13. Conservation method of medicinal plants

The study reveals a growing awareness among local communities regarding the conservation of medicinal plants, with 36.36% of respondents actively engaged in various conservation efforts but, the majority (63.64%) who do not participate in conservation efforts highlight the need for increased education on the benefits of preserving these vital resources. The major conservation activities reported by informants were cultivating plants in home gardens, agricultural fields, and places of worship, isolating grazing areas, reforestation, environmental protection, and constructing check dams. Reflecting a holistic approach to plant use that addresses multiple needs such as food, fodder, and shade. Similarly, most of the conservation efforts were reported by Ashenafi Osman *et al* (2020), in Raya Kobo District.

The cultural prohibition against harvesting plants from churches, which allows for a wider variety of species to thrive, further enriches local ethnobotanical knowledge. Similarly, Previous studies conducted by Getu Alemayehu *et al.* (2015) and Netsanet Gonfa *et al.* (2020) reported that places of worship are crucial for conserving remnant vegetation, particularly medicinal plants. These efforts reflect a growing recognition of the importance of preserving biodiversity within local ecosystems and the cultural practices that support it.

5.1.14. Informant consensus factor of medicinal plants

The Informant Consensus Factor (ICF) analysis provides valuable insights into the traditional medicinal practices of the local community, highlighting the most prevalent health problems and their associated medicinal plants. The highest ICF value of 0.65 for dermatological conditions,

which includes wounds, dandruff, and tinea versicolor, indicates a strong consensus among informants regarding the effectiveness of specific plants in treating these ailments.

The gastrointestinal disease category, with an ICF value of 0.63, emphasizes the commonality of digestive issues such as stomachaches, abdominal cramps, and gastritis. This indicates the high level of agreement among informants regarding the effectiveness of specific plants in treating these ailments.

For livestock, the third category, which includes leech, black leg, and coccidiosis, has an ICF value of 0.61. This indicates a notable consensus on the use of specific plants for treating these significant health challenges in animals. The community's recognition of these livestock ailments highlights the intertwined nature of human and animal health, as effective management of livestock diseases is essential for the overall well-being and economic stability of the community. Similarly Zewdie Kassa *et al.*, 2020) in the sheka zone reported the highest ICF value of 0.96 for dermatological conditions.

In contrast to this study, Ermias Lulekal, *et al.*, (2013) in Ankober District reported the highest ICF value of 0.70 for Gastrointestinal and parasitic.

5.1.15. The fidelity level value of most cited medicinal plants

The Fidelity Level (FL) analysis in the Telemt District highlights the effectiveness of commonly used medicinal plants, revealing that *Brucea antidysenterica* has the highest fidelity level value of 94%, primarily for treating dermatological conditions. Following closely are *Verbascum sinaiticum* value of 88% and *Withania somnifera* at 83%, both recognized for their roles in managing gastrointestinal and parasitic diseases. *Nicotiana tabacum*, with a fidelity level value of 73 % for treating leech infestations.

In contrast to this study Yimer Assen *et al.*, (2021) in Kelala District reported that *Impatiens rothii* has the highest fidelity level value of 92.5%, for dermatological conditions and *Otostegia tomentosa* has the highest fidelity level value of 80 %, for Gastrointestinal and parasitic infections.

Similarly, Feyisa, Megersa *et al.*, (2021). Adea Berga in District reported *Nicotiana tabacum* has the highest fidelity level value of % 100 for Leech infestation
5.1.16. Direct matrix ranking of multipurpose medicinal plants

The direct matrix ranking exercise highlights the significance of several multipurpose medicinal plants, particularly *D. angustifolia, E. racemosa, and S. guineense*, which are highly preferred by the local community. These plants serve multiple functions, including medicinal uses, construction materials, firewood, and charcoal, reflecting their integral role in the daily lives of the residents. Among those firewood was the major threat to those multipurpose medicinal plants.

However, the high demand for these versatile species raises concerns about their sustainability. The overharvesting of *Dodonaea angustifolia, Euclea racemosa,* and *Syzygium guineense* for construction and fuel, alongside their medicinal applications, poses a significant threat to their populations in the district. This increased exploitation could lead to a decline in their availability, jeopardizing both ecological balance and the traditional practices that depend on these plants. Previous studies in Ethiopia have also utilized direct matrix analysis to identify the most used and threatened plant species, reinforcing the importance of sustainable practices to ensure the continued availability of these essential medicinal plants (Ermias Lulekal *et al.*, 2008; Abraha Teklay *et al.*, 2013).

5.1.17. Preference ranking of medicinal plants

The preference ranking results showed that Zehneria scabra was the most preferred species for treating febrile illnesses, followed by Echinops kebericho, Ocimum lamiifolium, and Eucalyptus globulus. Whereas Nicotiana tabacum was the most preferred species for treating livestock leeches. This finding is consistent with previous ethnobotanical research conducted in central Ethiopia, which reported the medicinal uses of Zehneria scabra and Eucalyptus globulus for treating febrile illnesses (Ashenafi Osman et al., 2020). Additionally, Nigussie Amsalu (2018) documented the use of Nicotiana tabacum for treating leeches.

5.1.18. Ways of Indigenous Knowledge Transfer on medicinal plants

In the present study, the primary sources of indigenous medicinal knowledge were predominantly family members and grandparents. This aligns with findings from other studies (Guluma Kitata *et al.*, 2017) that have indicated the importance of familial relationships in

knowledge transmission. Typically, this knowledge is passed down to the eldest son or trusted family members, emphasizing the role of the immediate family in maintaining traditional practices. The oldest son and reliable family members have often been the recipients of this knowledge transfer. It was passed down orally from generation to generation and maintained a secret because it was communicated only among family members. Similar findings have been found in other studies carried out in other parts of Ethiopia (Moa Megersa, 2010; Getnet Chekole, 2017; Mathewos Agize *et al.*, 2022; Tensay Ayalw, and Edeget Merawi, 2021).

5.2. Antibacterial Activities of some selected Medicinal Plants

Significant differences were observed between the three plant extracts and the test concentrations against four bacterial pathogens: *Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus,* and *Staphylococcus epidermidis.*

The leaf extract of *Brucea antidysenterica* possesses significant antibacterial properties, particularly against *K. pneumoniae*, with the highest zone of inhibition recorded at (21 mm \pm 0.471) when tested at a concentration of 100 mg/ml. This suggests that the phytochemicals present in *B. antidysenterica* are particularly effective in disrupting the cellular integrity or metabolic functions of *K. pneumonia* (Table 10).In contrast, *S. epidermidis* showed the least susceptibility to the extract, with a minimum zone of inhibition of (8 mm \pm 0.558) when tested at a concentration of 25 mg/ml. This finding indicates that *S. epidermidis* may possess inherent resistance mechanisms or that the specific compounds in *B. antidysenterica* are less effective against *S. epidermidis*.

In contrast to this finding, Hideru Adugna *et al.* (2024) reported that the methanol leaf extract of *Brucea antidysenterica* inhibited the growth of *Klebsiella pneumonia* with a lower zone of inhibition of 7.5 ± 0.2 mm. This variation might be due to the difference in environment, bioactive compounds present, the solvent used, and the extraction method applied.

The root extract of *Verbasicum sinaiticum* showed the zones of inhibition ranged from 0.00 mm to 20 mm. The results demonstrate that *V. sinaiticum* exhibits significant antibacterial properties, particularly against *E. coli*, where the maximum zone of inhibition measured (20mm \pm 0.385) when tested at a concentration of 100 mg/ml. This suggests that the extract contains bioactive compounds that effectively target the growth or survival mechanisms of *E. coli*, making it a

potential candidate for further exploration in the development of natural antibacterial agents. Conversely, the extract showed minimal activity against *Staphylococcus aureus* with a zone of inhibition of 0.00mm, when tested at three concentrations.

In contrast to this finding, Solomon Yeabyo *et al.* (2018) reported that the root extracts of *Verbascum sinaiticum* displayed no antibacterial activity against *E. coli*. This variation may be attributed to differences in environmental conditions, bioactive compounds present, the solvent used, and the extraction method applied.

The leaf extract of *Withania somnifera* possesses varying levels of antibacterial efficacy, with the maximum zone of inhibition against *E. coli* (16.33 \pm 0 mm), and the minimum against *S.aureus* (0.00 mm) when tested at three concentrations. Notably, *W. somnifera* showed no inhibitory effect against *S. aureus*. The pronounced activity against *E. coli* suggests that the phytochemicals present in *W. somnifera* may effectively target mechanisms involved in the growth or survival of this Gram-negative bacterium. The ability to inhibit *E. coli* is particularly important, given its association with various gastrointestinal infections and the increasing incidence of antibiotic resistance.

In contrast, the complete lack of activity against *S. aureus* indicates that *W. somnifera* may not possess the necessary compounds or concentration levels to combat these Gram-positive bacteria effectively. This disparity may be due to the structural differences in the cell walls of Grampositive bacteria, which can make them more resistant to certain phytochemicals. Similarly; Gebremedhin Romha (2018) reported that the methanol leaf extract of *Withania somnifera* inhibited the growth of *E. coli* with a high zone of inhibition.

6. CONCLUSION

In the present study, a total of 113 medicinal plant species belonging to 57 genera and 59 families were recorded, demonstrating the rich plant resources and the reliance of the community on these for their primary healthcare. Of these, 77 species (68.14%) were used to treat human ailments, 16 species (14.16%) for livestock ailments, and 20 species (17.69%) for both human and livestock ailments.

The majority of the medicinal plant species were collected from the wild (60.18%), indicating the reliance of the local community on natural plant resources for their healthcare needs. Shrubs were the main source of traditional remedies, followed by herbs and tree species. Fresh plant material was the most commonly used (64.4%) followed by dried plant material (29.31%). Leaves were the most frequently utilized plant part (42.93%) followed by roots (24.61%) for the preparation of human and livestock remedies. The major method of preparation was crushing followed by grinding, with ingredients like honey, butter, and solvents like water, oil, tea, milk, and coffee frequently utilized. Oral administration (57.07%) was the predominant route of herbal remedy administration, followed by dermal (26.18%). Drinking (40.43%) was the major mode of application.

The study identified 46 human ailments, 10 ailments affecting both humans and livestock, and 9 livestock ailments treated using the traditional medicinal plants in the study area. Visual observation, hand-touching, and interviews were the major methods for diagnosing human ailments gathering information from livestock owners about symptoms present in livestock and direct observation were the major methods for diagnosing livestock ailments. Finger lengths for bark, roots, and stems, pinches for powdered materials, and various measuring tools like spoons, coffee cups, tea cups, and glass cups were found to be the most common dosage estimating methods in the study area. Cooked hen liver, milk, aguat, and yogurt were the most commonly used antidotes when taking plant remedies with side effects.

Market assessments revealed that many medicinal plants are traded not only for health benefits but also for other uses, including spices and food items. Agricultural expansion was a major threat to medicinal plants in the study area. Some local communities are engaging in conservation efforts, mostly focusing on environmental protection activities. Differences in medicinal plant knowledge were observed among genders, age groups, and informant types, educational backgrounds.

Among 12 disease categories, the dermatological/skin category accounts for the highest ICF value of 0.65. *Brucea antidysenterica* showed the highest fidelity level value (94%) was reported for use against dermatological/skin disease categories. The results of direct matrix ranking showed that *D. angustifolia*, *Euclea racemosa*, and *S. guineense* were the most threatened species due to their multiple uses. Preference ranking revealed that *Zehneria scabra* was favored for treating febrile illnesses, while *Nicotiana tabacum* was preferred for livestock leeches. Family members and grandparents were the major sources of indigenous knowledge about medicinal plants. Among three selected medicinal plants the highest antibacterial activity was recorded from leaf extract of *B. antidysenterica* against *K. pneumoniae* (21 ± 0.471 mm).

7. RECOMMENDATION

- Local people need to be educated on the methods of cultivating medicinal plants in their home gardens around home as fences and in the margin of farmlands.
- Increasing public understanding on the importance of maintaining wild plant populations in their natural environment.
- To popularize indigenous knowledge, to improve the use of traditional medicine and the value of medicinal plants, the government should recognize and encourage local herbal medicine practitioners through licensing, certification, and other incentives.
- Training for the local peoples to prioritize medicinal plants and multipurpose tree species.
- Establish medicinal plant gardens or conservation areas within the community to cultivate and propagate the most valuable and threatened species.
- Organize awareness-raising campaigns and educational programs to engage the local community, especially the youth, in the importance of preserving medicinal plant resources and traditional knowledge.
- Provide training and support to traditional healers and local practitioners to enhance their skills in sustainable harvesting, preparation, and administration of medicinal plants.

8. REFERENCES

- Abebe Demisse (2001). Biodiversity conservation of medicinal plants: problems and prospects. Conservation and sustainable use of medicinal plants in Ethiopia. Proceedings of the national workshop on biodiversity conservation and sustainable use of medicinal plants in Ethiopia. Addis Ababa: IBCR,
- Abiyu Enyew , Zemede Asfaw, Ensermu Kelbessa, and Nagappan, R. (2014). Ethnobotanical study of traditional medicinal plants in and around Fiche District, Central Ethiopia. *Current Research Journal of Biological Sciences*, 6(4), 154-167.
- Abraha Teklay, Balcha Abera and Mirutse Giday. (2013). An ethnobotanical study of medicinal plants used in Kilte Awulaelo District, Tigray Region of Ethiopia. *Journal of ethnobiology and ethnomedicine*, 9, 1-23.
- Abrham Belachew and Muluken Wubetu Muluye (2020). Medicinal plants utilized for hepatic disorders in Ethiopian traditional medical practices: a review. *Clinical Phytoscience*, 6, 1-11.
- Akil Usmane, Tadesse Birhanu, Mohammed Redwan, Edao Sado, and Dereje Abera. (2016).
 Survey of ethno-veterinary medicinal plants at selected districts of Harari Regional State,
 Eastern Ethiopia. *Ethiopian Veterinary Journal*, 20(1), 1-22.
- Alexiades, M. N. (1996). Collecting ethnobotanical data: an introduction to basic concepts and techniques. *Advances in economic botany*, *10*, 53-94.
- Amare Bitew , Ali Seid , and Abeba Kassa Tefera (2022). Ethnobotanical study of traditional medicinal plants used to treat human and animal diseases in Sedie Muja District, South Gondar, Ethiopia. Evidence- Based Complementary and Alternative Medicine, 2022(1), 7328613.
- Aryal, P. S. (2009). Ethnobotany of Tharu: Incorporation of culture and biodiversity conservation (A case study of Jayanagar VDC of Kapilvastu District) (Doctoral dissertation, Thesis]. Tribhuvan University, Kathmandu, Nepal).
- Asfaw Debela, Dawit Abebe, and Kelbessa Urga. (1999). An over view of traditional medicine in Ethiopia: perspective and developmental efforts. *Ethiopian Pharmaceutical Association*, 72, 45-52.

- Ashenafi Osman, Desta Berhe, Mirutse Giday (2020). Medicinal plants used to manage human and livestock ailments in Raya Kobo District of Amhara Regional State, Ethiopia. Evidence- Based Complementary and Alternative Medicine, 2020(1), 1329170.
- Asmera Amde, Getinet Masresha, Hamer Hansha, Obsa Asafa. (2020). Ethnobotanical study of traditional medicinal plants in Debark District, North Gondar, Ethiopia. *Int. J. Sci. Res. in Multidisciplinary Studies*, 6(11).
- Awal Hussien, Habte Telila, and Sufian Abdo. (2023). Ethnobotanical study of medicinal plants used to treat livestock ailments in Dallo Manna District, Oromia State, Ethiopia. Asian Journal of Ethnobiology, 6(2).
- Balcha Abera. (2014). Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. *Journal of ethnobiology and ethnomedicine*, *10*, 1-15.
- Balick, M. J., and Cox, P. A. (2020). *Plants, people, and culture: the science of ethnobotany*. Garland Science.
- Banchiamlak Nigussie and Young. D. (2019). Ethnobotanical study of medicinal plants in the Hawassa Zuria District, Sidama zone, Southern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 15, 1-21.
- Berhan Mengiste, Yohannes Hagos, Fetene Moges, HabtamuTassew, G/hiwotTadesse, and Awet Teklu (2014). Invitro antibacterial screening of extracts from selected Ethiopian medicinal plants. *Momona Ethiopian Journal of Science*, 6(1), 102-110.
- Berhane Kidane ,van Andel, T., van der Maesen, L. J. G., and Zemede Asfaw. (2014). Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia. *Journal of ethnobiology and ethnomedicine*, *10*, 1-15.
- Bhatti, M. Z., Ismail, H., and Kayani, W. K. (2022). Plant secondary metabolites: therapeutic potential and pharmacological properties. In Secondary Metabolites-Trends and Reviews. IntechOpen.
- Bussmann, R. W., Malca-García, G., Glenn, A., Sharon, D., Chait, G., Díaz, D., Pourmand, K., Jonat, B., Somogy, S., and Guardado, G. (2010). Minimum inhibitory concentrations of

medicinal plants used in Northern Peru as antibacterial remedies. *Journal of ethnopharmacology*, **132**(1), 101-108.

- Cheesbrough, M. (1984). *Medical Laboratory Manual for Tropical Countries, Vol. 2: Microbiology*. Tropical Health Technology.
- Cheruiyot, N. K., Lee, W.-J., Mwangi, J. K., Wang, L.-C., Lin, N.-H., Lin, Y.-C., Cao, J., Zhang,
 R., and Chang-Chien, G.-P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. *Aerosol and Air Quality Research*, 15(7), 2730-2762.
- Cotton, C. M. (1996). *Ethnobotany: principles and applications*. John Wiley and Sons.
- Cunha, B. A. (2001). Antibiotic side effects. Medical Clinics of North America, 85(1), 149-185.
- Cunningham, A. (1993). African medicinal plants. United Nations Educational, Scientific and Cultural Organization: Paris, France.
- Cunningham, A. B. (1996). People, park, and plant use: recommendations for multiple-use zones and development alternatives around Bwindi Impenetrable National Park, Uganda. *People, park, and plant use: Recommendations for multiple-use zones and development alternatives around Bwindi Impenetrable National Park, Uganda.* (4).
- Cunningham, A. B. (2014). Applied ethnobotany: people, wild plant use and conservation. Routledge.
- Dawit Abebe (2001). The role of medicinal plants in health care coverage of Ethiopia: the possible benefits of integration.
- Dawit Abebe, and Ahadu Ayehu . (1993). Medicinal plants and enigmatic health practices of Northern Ethiopia.
- Dawit Abebe, Mehdin Zewdu, and Abebe Demissie. (2001). Biodiversity conservation of medicinal plants: Problem and prospects. Conservation and sustainable use of medicinal plants in Ethiopia Proceeding of the National Workshop on Biodiversity Conservation and Sustainable Use of Medicinal Plants in Ethiopia,
- Dawit Abebe. (1986). Traditional medicine in Ethiopia: the attempts being made to promote it for effective and better utilization. *Sinet*, **9**(Suppl.), 61-69.

- Derbe Alemneh.(2021). Ethnobotanical study of plants used for human ailments in Yilmana densa and Quarit districts of west Gojjam Zone, Amhara region, Ethiopia. *BioMed Research International*, 2021(1), 6615666.
- Dereje Nigussie, Davey, G., Belete Adefris, Abebaw Fekadu, and Eyasu Makonnen.(2021). Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. *BMC Complementary Medicine and Therapies*, 21, 1-10.
- Dery, B. B. (1999). Indigenous knowledge of medicinal trees and setting priorities for their domestication in Shinyanga Region, Tanzania. World Agroforestry Centre.
- Desalegn Desissa, and Binggeli, P. (2000). Uses and conservation status of medicinal plants used by the Shinasha people. *EWNHS*, *Addis Ababa*.147.
- Edwards, S. (2001). The ecology and conservation status of medicinal plants in Ethiopia: what do we know?
- Endalew Amenu. (2007). Use and management of medicinal plants by indigenous people of Ejaji area (Chelya woreda) West Shoa, Ethiopia: An Ethnobotanical Approach A Thesis submitted to the school of graduate studies, Addis Ababa, Ethiopia, 104 p. June 2007.
- Ensermu Kelbessa, Sebsebe Demissew, Zerihun Woldu, and Sue Edwards. (1992). Some threatened endemic plants of Ethiopia. *The status of some plants in parts of tropical Africa*, 35, 55.
- Ermias Luleka, Ensermu Kelbessa, Tamrat Bekele and Haile Yineger. (2008). An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 4, 1–10.
- Ermias Lulekal ,Zemede Asfaw , Ensermu Kelbessa and Van Damme, P. (2013). Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara region, Ethiopia. *Journal of ethnobiology and ethnomedicine*, *9*, 1-13.
- Ermias Lulekal, Rondevaldova, J., Bernaskova, E., Cepkova, J., Zemede Asfaw, Ensermu Kelbessa, and Van Damme, P. (2014). Antimicrobial activity of traditional medicinal

plants from Ankober district, north Shewa Zone, Amhara region, Ethiopia. *Pharmaceutical biology*, *52*(5), 614-620.

- Farnsworth, N. (1985). Plants and modern medicine: where science and folklore Meet. World Health Forum,
- Fassil Kibebew and Getachew Addis. (1996). Utilization and conservation of medicinal plants in Ethiopia. Proceedings of the workshop on Development and Utilization of Herbal Remedies in Ethiopia: Addis Ababa,
- Fassil Kibebew. (2001). The status and availability of oral and written knowledge on traditional health care on traditional health care in Ethiopia. Conservation and sustainable use of medicinal plants in Ethiopia, Proceedings of the National workshop.

Fekadu Fullas. (2001). Ethiopian traditional medicine: common medicinal plants in perspective.

- Fekadu Gurmessa (2015). Forest loss and climate change in Ethiopia. *Research Journal of Agriculture and Environmental Management*, **4**(5), 216-224.
- Fekadu, Fullas. (2007). The role of indigenous medicinal plants in Ethiopian healthcare. *African Renaissance*, *4*(1), 76-80.
- Feyisa, Megersa, Addis Kassahun, and Mirutse Giday. (2021). Medicinal plants used in ethnoveterinary practices in Adea Berga District, Oromia Region of Ethiopia. Evidence-Based Complementary and Alternative Medicine, 2021(1), 5641479.
- Fisseha Mesfin Sebsebe Demissew and Tilahun Teklehaymanot (2009). An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. *Journal of Ethnobiology and Ethnomedicine*, *5*, 1-18.
- Fisseha Mesfin, Talemos Seta, and Abreham Assefa (2014). An ethnobotanical study of medicinal plants in Amaro Woreda, Ethiopia. Ethnobotany Research and Applications, 12, 341-354.
- Fitsumbirhan Tewelde, Mebrahtom Mesfin, and Semere Tsewene. (2017). Ethnobotanical survey of traditional medicinal practices in LaelayAdi-Yabo District, Northern Ethiopia. *Int J Ophthalmol Visual Sci*, **2**(4), 80-7.
- FR, W. C. (2012). Performance standards for antimicrobial susceptibility testing; twenty-second informational supplements. *Clinical and Laboratory Standards Institute*, *32*, M100.

- Friedman, J. H. (1989). Regularized discriminant analysis. *Journal of the American statistical* association, **84**(405), 165-175.
- Gadgil, M., Berkes, F., and Folke, C. (1993). Indigenous knowledge for biodiversity conservation. *Ambio*, 151-156.
- Gari, A., Yarlagadda, R., and Wolde-Mariam, M. (2015). Knowledge, attitude, practice, and management of traditional medicine among people of Burka Jato Kebele, West Ethiopia. *Journal of Pharmacy and Bioallied Sciences*, 7(2), 136-144.
- Gebremedhin Romha, Birhanu Admasu, Tsegaye Hiwot Gebrekidan, Hailelule Aleme, and Gebreyohans Gebru. (2018). Antibacterial activities of five medicinal plants in Ethiopia against some human and animal pathogens. *Evidence-Based Complementary and Alternative Medicine*, 2018
- Gemedi Abdela and Mustefa Sultan. (2018). Indigenous knowledge, major threats, and conservation practices of medicinal plants by the local community in Heban Arsi District, Oromia, South Eastern Ethiopia. *Adv. Life Sci. Technol*, 68(10), 8-26.
- Gemedi Abdela, Zerihun Girma and Tesfaye Awas. (2022). Ethnobotanical study of medicinal plant species in Nensebo District, south-eastern Ethiopia. *Ethnobotany Research and Applications*, 24, 1-25.
- Getachew Addis, Dawit Abebe, and Kelbessa Urga. (2001). A survey of traditional medicinal plants in Shirka District, Arsi Zone, Ethiopia.
- Getinet Masresha Yirgalem Melkamu and Getnet Chekole. (2021). Ethnobotanical Study of Traditional Medicinal Trees and Shrubs Used to Treat Human and Livestock Aliments in Metema District, Amhara Regional State, Ethiopia. *Ethiopian Journal of Natural and Computational Sciences*, 1(2), 122-147.
- Getnet Chekole Zemede Asfaw and Ensermu Kelbessa. (2015). Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. *Journal of ethnobiology and ethnomedicine*, 11, 1-38.

- Getnet Chekole, G. (2017). Ethnobotanical study of medicinal plants used against human ailments in Gubalafto District, Northern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 13, 1-29.
- Getu Alemayehu, Zemede Asfaw and Ensermu Kelbessa. (2015). Ethnobotanical study of medicinal plants used by local communities of Minjar-Shenkora District, North Shewa Zone of Amhara Region, Ethiopia. *Journal of Medicinal Plants Studies*, 3(6), 1-11.
- Gidey Yirga and Samuel Zeraburk. (2011). Ethnobotanical study of traditional medicinal plants in Gindeberet District, western Ethiopia. *Mediterr J Soc Sci*, **2**(4), 49-54.
- Gidey Yirga, Mekonen Teferi, and Mezgebe Kasaye (2011). Survey of medicinal plants used to treat human ailments in Hawzen district, Northern Ethiopia. *International Journal of Biodiversity and Conservation*, **3**(13), 709-714.
- Gidey Yirga. (2010). Assessment of indigenous knowledge of medicinal plants in Central Zone of Tigray, Northern Ethiopia. *African Journal of Plant Science*, **4**(1), 006-011.
- Gidey Yirga. (2010). Ethnobotanical study of medicinal plants in and around Alamata, Southern Tigray, Northern Ethiopia. *Curr Res J Biol Sci*, **2**(5), 338-344.
- Guluma Kitata, Debela Abdeta and Morka Amante (2017). Ethnoknowledge of plants used in veterinary practices in Midakegn district, west showa of Oromia region, Ethiopia. *Population (Tadeg et al., 2005; Giday et al., 2009), 26, 7.*
- Haile Yineger , Delenasaw Yewhalaw, and Demel Teketay. (2008). Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 4(1), 1-10.
- Haile Yineger .(2005). A study of ethno botany of medicinal plants and floristic composition of the dry Afromontane forest at Bale Mountains National Park. *Ethiopia, A thesis of Master* of Science in Biology (Botanical Sciences), Addis Ababa.
- Haile Yineger and Delenasaw Yewhalaw. (2007). Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma Zone, Southwestern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 3(1), 1-7.

- Haimanot Reta.(2010). An ethnobotanical study of useful plants of the farming site in GozamenWereda, East Gojjam Zone of Amhara Region, Ethiopia. Addis Ababa University,Ethiopia.
- Hamilton, A. (2003). Medicinal plants and conservation: issues and approaches. *International Plants Conservation Unit, WWF-UK, 51.*
- Hamilton, A. C. (2004). Medicinal plants, conservation, and livelihoods. *Biodiversity and Conservation*, *13*, 1477-1517.
- Heinrich, M., Ankli, A., Frei, B., Weimann, C., and Sticher, O. (1998). Medicinal plants in Mexico: Healers' consensus and cultural importance. *Social science and medicine*, 47(11), 1859-1871.
- Hideru Adugna, Dessie Ezez, Atnafu Guadie, and Molla Tefera. (2024). Phytochemical profiling, evaluation of heavy metal load, antioxidant and antibacterial activity of various medicinal plants. *Journal of Agriculture and Food Research*, *16*, 101190.
- Himalayas and its role in the sustainability of livelihoods and socioeconomic development. *International journal of environmental research and public health*, *18*(4), 1509.
- Hostettmann, K., and Marston, A. (2002). Twenty years of research into medicinal plants: results and perspectives. *Phytochemistry Reviews*, *1*, 275-285.
- Houghton, P. J. (1998). Establishing identification criteria for botanicals. *Drug Information Journal*, **32**(2), 461-469.
- Hunde, D., Asfaw, Z., and Kelbessa, E. (2006). Use of traditional medicinal plants by people of 'Boosat'sub district, Central Eastern Ethiopia. *Ethiopian Journal of Health Sciences*, *16*(2).
- Hunter, D. (2001). Life in the fast lane: High throughput chemistry for lead generation and optimization. *Journal of Cellular Biochemistry*, **84**(S37), 22-27.
- Izzo, A. A., and Ernst, E. (2009). Interactions between herbal medicines and prescribed drugs: an updated systematic review. *Drugs*, *69*, 1777-1798.
- Jain, S. K. (2019). The widening panorama of ethnobotany in India. The Journal of Indian Botanical Society, 98(3and4), 98-102

- Jansen, P. C. M. (1981). Spices, condiments, and medicinal plants in Ethiopia, their taxonomy and agricultural significance. Wageningen University and Research.
- Javid, T., Adnan, M., Tariq, A., Akhtar, B., Ullah, R., and Abd El Salam, N. M. (2015). Antimicrobial activity of three medicinal plants (Artemisia indica, Medicago falcate, and Tecoma stans). African Journal of Traditional, Complementary and Alternative Medicines, 12(3), 91-96.
- Kalayu Mesfin , Gebru Tekle , Teklemichael Tesfay. (2013). Ethnobotanical study of traditional medicinal plants used by indigenous people of Gemad District, Northern Ethiopia. *Journal* of Medicinal Plants Studies, 1(4), 32-37.
- Karunamoorthi, K., Jegajeevanram, K., Vijayalakshmi, J., and Mengistie, E. (2013). Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. *Journal of Evidence-Based Complementary and Alternative Medicine*, 18(1), 67-74.
- Kebede Deribe, Alemayehu Amberbir, Binyam Getachew, and Yunis Mussema (2006). A historical overview of traditional medicine practices and policy in Ethiopia.
- Kebu Balemie, Ensermu Kelbessa and Zemede Asfaw.(2004). Indigenous medicinal plant utilization, management and threats in Fentalle area, Eastern Shewa, Ethiopia. *Ethiopian Journal of Biological Sciences*, **3**(1), 37-58.
- Ketema Tolossa, , Etana Debela, Athanasiadou .s , Adugna Tolera, Gebeyehu Ganga, and Houdijk, J. G. (2013). Ethno-medicinal study of plants used for the treatment of human and livestock ailments by traditional healers in South Omo, Southern Ethiopia. *Journal of ethnobiology and ethnomedicine*, *9*, 1-15.
- Khan, M. A., Agize, M., Shonga, A., and Tora, A. (2018). The utilization and conservation of plants of medicinal value by local traditional medicinal practitioners and the associated indigenous knowledge in Dawuro Zone of Ethiopia: Northeast Africa—an ethnobotanical approach. *Plant and Human Health, Volume 1: Ethnobotany and Physiology*, 267-321.
- Khan, N., Abbasi, A. M., Dastagir, G., Nazir, A., Shah, G. M., Shah, M. M., and Shah, M. H. (2014). Ethnobotanical and antimicrobial study of some selected medicinal plants used in Khyber Pakhtunkhwa (KPK) as a potential source to cure infectious diseases. *BMC complementary and alternative medicine*, 14, 1-10.

- Kindu Geta, and Mulugeta Kibret. (2020). Antibacterial activity of Acanthus sennii extracts against Staphylococcus aureus and Escherichia coli pathogens. *Ethiopian Journal of Science and Technology*, **13**(2), 99-113.
- Kloos, H. (2023). Challenges and Prospects of Medicinal Plant Sustainability in Ethiopia. Journal of Pharmacy and Pharmacology Research, 7, 233-242.
- Kotrlik, J., and Higgins, C. (2001). Organizational research: Determining the appropriate sample size in survey research appropriate sample size in survey research. *Information technology, learning, and performance journal*, **19**(1), 43.
- Leul Kidane, Gebrecherkos Gebremedhin and Tadesse Beyene. (2018). Ethnobotanical study of medicinal plants in ganta afeshum district, eastern zone of Tigray, northern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 14, 1-19.
- Maghrani, M., Zeggwagh, N.-A., Michel, J.-B., and Eddouks, M. (2005). The antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats. *Journal of ethnopharmacology*, **100**(1-2), 193-197.
- Mahmood, A., Mahmood, A., and Mahmood, M. (2012). In vitro biological activities of most common medicinal plants of family Solanaceae. *World Appl Sci J*, **17**(8), 1026-1032.
- Mahmood, A., Mahmood, A., and Tabassum, A. (2011). Ethnomedicinal Survey of Plants From District Sialkot, Pakistan. *Journal of Applied Pharmacy*, *3*, 212-220.
- Martin, G. (1995). Ethnobotany: a methods manual, Chapman y Hall. Nowy Jork.
- Martin, G. J. (2010). Ethnobotany: a methods manual. Routledge.
- Mathewos Agize, Zemede Asfaw, Sileshi Nemomissa, and Tizazu Gebre. (2022). Ethnobotany of traditional medicinal plants and associated indigenous knowledge in Dawuro Zone of Southwestern Ethiopia. *Journal of Ethnobiology and Ethnomedicine*, *18*(1), 48.
- Medhin Zewdu, , Tsige Gebremariam, and Kaleab Asres (2001). Global perspectives of medicinal plants.
- Mekonen Wolditsadik. (2018). Ethnobotanical investigation of traditional medicinal plants in Dugda District, Oromia Regio. *SM J Med Plant Stud*, 2(1), 1007.

- Melesse Maryo, Sileshi Nemomissa, and Tamirat Bekele. (2015). An ethnobotanical study of medicinal plants of the Kembatta ethnic group in the Enset-based agricultural landscape of Kembatta Tembaro (KT) Zone, Southern Ethiopia. *Asian J Plant Sci Res*, 5(7), 42-61.
- Migissa Kaba. (1996). Utilization of plant medicine for the treatment of health problems: the case of the Oromo of Chora District, Illubabor Zone, western Ethiopia. *Ethiopian Journal of Health Development*, **10**(3).
- Mirutse Giday, and Gobena Ameni. (2003). An ethnobotanical survey on plants of veterinary importance in two woredas of Southern Tigray, Northern Ethiopia.
- Mirutse Giday, Zemede Asfaw, and Zerihun Woldu. (2010). Ethnomedicinal study of plants used by the Sheko ethnic group of Ethiopia. *Journal of Ethnopharmacology*, **132**(1), 75-85.
- Mirutse Giday, Zemede Asfaw, Elmqvist, T., and Zerihun Woldu. (2003). An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. *Journal of Ethnopharmacology*, **85**(1), 43-52.
- Mirutse Giday, Zemede Asfaw, Zerihun Woldu and Tilahun Teklehaymanot. (2009). Medicinal plant knowledge of the Bench ethnic group of Ethiopia: an ethnobotanical investigation. *Journal of Ethnobiology and Ethnomedicine*, *5*, 1-10.
- Mirutse Gidaya, Zemede Asfaw, Zerihun Woldu. (2009). Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. *Journal of Ethnopharmacology*, *124*(3), 513 521.
- Moa Megersa , Tesfaye Nedi, and Shiferaw Belachew. (2023). Ethnobotanical study of medicinal plants used against human diseases in Zuway Dugda District, Ethiopia. Evidence- Based Complementary and Alternative Medicine, 2023(1), 5545294.
- Moa Megersa and Nigussie Tamrat. (2022). Medicinal plants used to treat human and livestock ailments in Basona Werana district, north Shewa zone, Amhara region, Ethiopia. *Evidence-Based Complementary and Alternative Medicine*, 2022(1), 5242033.
- Moa Megersa, Zemede Asfaw, Ensermu Kelbessa, Abebe Beyene and BizunehWoldeab .(2013). An ethnobotanical study of medicinal plants in Wayu Tuka district, east Welega zone of

Oromia regional state, West Ethiopia. *Journal of ethnobiology and ethnomedicine*, 9(1), 1-18.

- Moa Megersa.(2010). Ethnobotanical study of medicinal plants in Wayu Tuka Wereda, East Wollega zone of Oromia region, Ethiopia. *Addis Ababa University*.
- Mohammed Adefa and Berhanu Abraha.(2011) .Ethnobotanical survey of traditional medicinal plants in Tehuledere district, South Wollo, Ethiopia. *Journal of Medicinal Plants Research*, **5**(26), 6233-6242.
- Mohammed Yimam , Siraj Mammo and Tamirat Bekele . (2022). Ethnobotanical study of medicinal plants used in Artuma Fursi district, Amhara Regional State, Ethiopia. *Tropical Medicine and Health*, 50(1), 85.
- Muhidin Tahir , Letebrhan Gebremichael Tadesse Beyene and, Van Damme, P. (2021). Ethnobotanical study of medicinal plants in Adwa district, central zone of Tigray regional state, northern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 17, 1-13.
- Muhidin Tahir, Hiwot Asnake, Tadesse Beyene, Van Damme, P and Amin. (2023).
 Ethnobotanical study of medicinal plants in Asagirt District, Northeastern Ethiopia. *Tropical Medicine and Health*, 51(1), 1.
- Muhidin Tahir, Letebrhan Gebremichael Tadesse Beyene and, Van Damme, P. (2021). Ethnobotanical study of medicinal plants in Adwa district, central zone of Tigray regional state, northern Ethiopia. *Journal of ethnobiology and ethnomedicine*, *17*, 1-13.
- Netsanet Gonfa, Dereje Tulu, Kitessa Hundera and Dasalegn Raga . (2020). Ethnobotanical study of medicinal plants, its utilization, and conservation by indigenous people of Gera district, Ethiopia. *Cogent Food and Agriculture*, 6(1), 1852716.
- Nigussie Amsalu, Yilkal Bezie, Mulugeta Fentahun, Addisu Alemayehu, and Gashaw Amsalu.
 (2018). Use and conservation of medicinal plants by indigenous people of Gozamin Wereda, East Gojjam Zone of Amhara region, Ethiopia: an ethnobotanical approach. *Evidence-Based Complementary and Alternative Medicine*, 2018(1), 2973513.

- Nolan, J. M., and Turner, N. J. (2011). Ethnobotany: the study of people-plant relationships. *Ethnobiology*, *9*,133-
- Ohigashi, H. (2008). Utilization and production of medicinal plants. *Medicinal crops in Ethiopia Current status and future potential. (Makiu ed.). JAICAF (Japan Association for International Collaboration of Agriculture and Forestry)*, 4-6.
- Pandey, A. K., and Tripathi, Y. (2017). Ethnobotany and its relevance in contemporary research. *J Med Plants Stud*, 5(3), 123-129.
- Pankhurst, R. (1966). Some factors influencing the health of traditional Ethiopia. *Journal of Ethiopian Studies*, **4**(1), 31-70.
- Payyappallimana, U. (2010a). Role of traditional medicine in primary health care: an overview of perspectives and challenges. *Yokohama journal of social sciences*, **14**(6), 57-77.
- Perez, C. (1990). Antibiotic assay by agar-well diffusion method. *Acta Biol Med Exp*, 15, 113-115.
- Perumal Samy, R., and Gopalakrishnakone, P. (2010). Therapeutic potential of plants as antimicrobials for drug discovery. *Evidence-Based Complementary and Alternative Medicine*, 7, 283-294.
- Pham, H. N. T., Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., and Scarlett, C. J. (2015). Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. Leaves. *Technologies*, 3(4), 285-301.
- Phillips, O. L. (1996). Some quantitative methods for analyzing ethnobotanical knowledge. *Advances in economic botany*, *10*, 171-197.
- Rakotoarivelo, N. H., Rakotoarivony, F., Ramarosandratana, A. V., Jeannoda, V. H., Kuhlman,
 A. R., Randrianasolo, A., and Bussmann, R. W. (2015). Medicinal plants are used to treat the most frequent diseases encountered in Ambalabe rural community, in Eastern Madagascar. *Journal of Ethnobiology and Ethnomedicine*, 11, 1-16
- Raskin, I., and Ripoll, C. (2004). Can an apple a day keep the doctor away? *Current pharmaceutical design*, **10**(27), 3419-3429.

- Reta Regassa, Tesfaye Bekele and Moa Megersa. (2017). Ethnobotanical study of traditional medicinal plants used to treat human ailments by Halaba people, southern Ethiopia. *Journal of medicinal plants studies*, 5(4), 36-47.
- Russell, A. D., and Furr, J. R. (1977). The antibacterial activity of a new chloroxylenol preparation containing ethylenediamine tetraacetic acid. *Journal of Applied Bacteriology*, 43(2), 253-260.
- Seyoum Getaneh and Zerihun Girma. (2014). An ethnobotanical study of medicinal plants in Debre Libanos Wereda, Central Ethiopia. *Afr J Plant Sci*, **8**(7), 366-379.
- Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. *International journal of herbal medicine*, **4**(4), 59-64.
- Shandesh Bhattarai, S. B., Chaudhary, R., and Taylor, R. (2008). Screening of selected ethnomedicinal plants of Manang District, Central Nepal for antibacterial activity.
- Sikkema, J., de Bont, J. A., and Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. *Journal of Biological Chemistry*, **269**(11), 8022-8028.
- Singh, A. (2016). An ethnobotanical study of medicinal plants in Bhiwani district of Haryana, India. *Journal of Medicinal Plants Studies*, **4**(2), 212-215.
- Solomon Yeabyo, Zenebe Teka, Gopalakrishnan, V. K., Zenebe Hagos and Krishna Chaithanya, K. (2018). Antibacterial activity of root extracts of Verbascum sinaiticum against multidrug-resistant Enterobacteriaceae family Gram-negative and two Gram-positive bacteria. *Drug Invention Today*, **10**(8), 1.
- Sydney, S., Lacy, R., and Bakhtiar, M. (1980). The betalactam antibiotics penicillin and cephalosporin are in perspective. *Hodder and Stongton, London*, 224.
- Tadesse Birhanu Dereje Abera and Eyasu Ejeta. (2015). Ethnobotanical study of medicinal plants in selected Horro Gudurru Woredas, Western Ethiopia. *Journal of Biology, Agriculture and Healthcare*, 5(1), 83-93.
- Tafesse Mesfine and Mekonnen Lemma. (2001). The role of traditional veterinary herbal medicine and its constraints in the animal health care system in Ethiopia.
- Takele Bassa. (2017). Ethnobotanical study of medicinal plants in Wolaita zone, Southern Ethiopia. *Journal of Health, Medicine, and Nursing*, 48(4).

- Tamru Temam and Asalfew Dillo. (2016). Ethnobotanical study of medicinal plants of Mirab-Badwacho district, Ethiopia. *Journal of BioScience and Biotechnology*, 5(2), 151-158.
- Temesgen Tadesse and Alemtshay Teka. (2023). Ethnobotanical Study on Medicinal Plants Used by the Local Communities of Ameya District, Oromia Regional State, Ethiopia. Evidence-Based Complementary and Alternative Medicine, 2023(1), 5961067.
- Tensay Ayalw, and Edeget Merawi.(2021). Assessment of traditional knowledge associated with medicinal plants in North Achfer District, Amhara Region, North Ethiopia. *Journal of Diseases and Medicinal Plants*, 7(2), 35.
- Tesfaye Awas and Zemede Asfaw. (1999). Report on Ethnobotanical Study of Nations, Nationalities and People in Gambella and Benishangul Gumuz Regional States. *Progress Report to Research and Publication Office, Addis Ababa University*.
- Tesfaye Hailemariam Bekalo, Sebsebe Demissew Woodmatas ,and Zemede Asfaw. (2009). An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities, and peoples regional state, Ethiopia. *Journal of ethnobiology and ethnomedicine*, *5*, 1-15.
- Teshale Sori, Merga Bekana, Girma Adugna, and Ensermu Kelbessa. (2004). Medicinal plants in the ethnoveterinary practices of Borana Pastoralists, Southern Ethiopia.
- Thomas, H. (1995). Indigenous knowledge, emancipation, and alienation. *Journal of knowledge transfer and utilization*, **8**(1), 63-73.
- Tilahun Tolossa and Moa Megersa .(2018). Ethnobotanical study of medicinal plants used to treat human diseases in Berbere District, Bale Zone of Oromia Regional State, South East Ethiopia. *Evidence-Based Complementary and Alternative Medicine*, 2018(1), 8602945.
- Tilahun, Teklehaymanot and Mirutse Giday. (2007). Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. *Journal of ethnobiology and ethnomedicine*, 3(1), 1-11.
- Tolera, G. F., Wabe, N., Angamo, M., Wega, S., Dekama, N., Abdella, S. H., Mohammed, M. A., and Ali, A. H. (2011). The attitude of modern medical practitioners towards the integration of modern and traditional medical practices in Ethiopia. *Spatula DD*, 1(4), 199-205.

- Trotter, R. T., and Logan, M. H. (2019). Informant consensus: a new approach for identifying potentially effective medicinal plants. In *Plants and indigenous medicine and diet* (pp. 91-112). Routledge.
- Turner, N. (2000). Ethnobotany: Future direction for the new millennium. *Manitoba Anthropology Student's Journal*, 16, 15-18.
- Vermani, K., and Garg, S. (2002). Herbal medicines for sexually transmitted diseases and AIDS. *Journal of Ethnopharmacology*, **80**(1), 49-66.
- Warren, D. (1991). The role of indigenous knowledge in facilitating the agricultural extension process. International workshop on agricultural knowledge systems and the role of extension. Bad Boll, Germany,
- WHO. (1998). The regulatory situation of herbal medicines: a worldwide review.
- WHO. (2002). Traditional medicine: growing needs and potential.
- WHO. (2002). *Traditional medicine strategy* 2002-2005. WHO Publication. WHO/EDM/2002.1.Geneva: Switzerland.
- WHO. (2010). Guidelines for registration of traditional medicines in the WHO African Region

WHO. (2013). WHO traditional medicine strategy: 2014-2023. World Health Organization.

- WHO.(2002). The WHO strategy for traditional medicine: Review of the global situation and strategy implementation in the Eastern Mediterranean Region.
- Wondwosen Teshome. (2006). Impacts of urbanization on the traditional medicine of Ethiopia. *The Anthropologist*, 8(1), 43-52.
- Wubet Birhan, , Mirutse Giday, and Tilahun Teklehaymanot . (2011). The contribution of traditional healers' clinics to public health care system in Addis Ababa, Ethiopia: a cross-sectional study. *Journal of ethnobiology and ethnomedicine*, *7*, 1-7.
- Yamane. (1973). Statistics: An introductory analysis. Second ed., Harper and Row, New York, London: John Weather Hill, Inc.

Yayesh Limenih, Shemsu Umer, and Messay Wolde-Mariam. (2015). Ethnobotanical study on

Yemane Tilahun. (2018). Ethnobotanical study of traditional medicinal plants used in and around Adigrat town, eastern Tigray, Ethiopia. *Journal of Medicinal Plants Studies*, 6(4), 11-19.

- Yeneayehu Fenetahun , and Girma Eshetu. (2017). A review of ethnobotanical studies of medicinal plants used by agro-pastoral communities in, Ethiopia. J Med Plants, 5(1), 33-44.
- Yihenew Simegniew, Sintayehu Leshe , Yihalem Abebe , Nakachew Minuye. (2017).
 Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga district, East Gojjam zone, Amhara region, Ethiopia. SM J Med Plant Stud, 1(1), 1-20.
- Yimer Assen, Mesfin Woldearegay, and Abeba Haile. (2021). An ethnobotanical study of medicinal plants in Kelala District, South Wollo zone of Amhara region, Northeastern Ethiopia. *Evidence- based Complementary and Alternative Medicine*, 2021(1), 6651922.
- Zemede Asfaw. (2001). The role of home gardens in the production and conservation of medicinal plants.
- Zewdie Kassa, Zemede Asfaw and Sebsebe Demissew. (2020). An ethnobotanical study of medicinal plants in the sheka zone of southern nations nationalities and peoples regional state, Ethiopia. *Journal of ethnobiology and ethnomedicine*, *16*, 1-15.

9. APPENDICES

9. 1. APPENDIX - 1 : List of medicinal plants used for treating human ailments

In the study area, there are many plants used for treating human ailments recorded with their scientific name, family, local name, growth form, Source: disease treated, use, plant parts used; condition of plant part uses; methods of preparation, way of application, and route of administration.

Key for Appendix,1 2, and 3: Growth form (Tree, T; Shrub, Sh; Herb, H; Climber, C), Source: Wild/W, Home garden/Hm wild and home garden/W+Hm).(use human/hu, livestock/li, both human and livestock/ hl), Condition of plant part uses; (CP); (fresh/Fr, dry/Dr and fresh or dry/FD), Parts used (Leaf, L; Root, R; Fruit, Fr; Root bark, RB; Stem bark, SB; Flower, Fl; Bulb, Bu; Rhizome, Rh; Seed, S; Latex, Lx; Twing; TW, Tuber; Tu; Resin, Re; Seed and fruit; S+F, Fruit and stem bark; F+SB, Leaf, and seed; L+S, Leaf, and root; L+R), Methods of preparations(Crushing, Grinding, Boiling, Chewing, Burnning, Cutting and bleeding, Crushing and Squeezing, Squeezing and boiling, Roasting and grinding, Splicing and squeezing, Crushing and boiling, Roasting grinding and boiling. Grinding and boiling. Cutting), wayof application (Drinking, Painting, Eating, Dropping, Fumigating, Swallowing, Washing, Shooting, Rubbing, Sniffing, Smelling) and route of administration (Oral, Nasal, Dermal, Oral/Nasal, Ear, Eye).

SN	Scientific	Family	Local	Growth	Sour	Disease	Parts	CP	Mode of	Ro
	Name		Name	Form	ce	Treated	used		Preparation	ute
1	Acacia	Fabaceae	Bazra	Т	W	Stomachac	R	Fr	The fresh root is	0
	abyssinica		Girar			he			crushed and	
									mixed with tela	
									and the solution	
									is drunk one	
									cup before food	
									until treated.	
2	Agave	Agavaceae	Beska	Н	hm	Ear disease	L	Fr	The fresh leaf is	Er
	sisalana								crushed,	
									squeeze the	
									juice then enter	

a dr	of juice
into	ie ear.
3 Allium Alliaceae Nech H hm Common Bu Fr The	esh bulb O
sativum Shinkurt cold is B	led with
hon	and then
drin	filtered
liqu	
4 Aloe vera Aloaceae Eret H W Scorpion R Fr The	resh Root O
bite is cl	wed then
swa	owing the
juic	part.
Wound Lx Fr Cut	g the leaf D
to h	vest the
jell	atex then
pair	on the
wou	d.
Snakebite R Fr Th	fresh root O
is cl	wed then
swa	owing the
juic	part.
Dandruff Lx Fr Cut	g the leaf D
to h	vest latex
is p	nted on the
affe	ed part.
5 Ampelociss Vitaceae Hareg C W Snakebite R FD The	esh/dry O
us Temen root	S Chewed
schimperia there	wallowing
na the	icy part.
Scorpion R FD The	esh/dry O
bite root	s chewed
ther	wallowing
the	icy part.
6 Artemisia Asteraceae Chikugn H W+ Evileye L Fr Cut	ig The N
afra Hm fres	
	leaf
imn	leaf Jiately

									the nose.	
7	Asparagus africanus	Asparagacea e	Yeset Kest	Sh	W	Wound	L	Dr	The dry leaves are ground, mix the powder with the latex of Calotropis procera then paint on the	D
8	Bersama abyssinica	Melianthace ae	Azamr	Sh	W	Ascaris	L	FD	The leaves are boiled in water and eaten decoction with porridge.	0
						Blood pressure	L+R	Fr	The leaves and roots are crushed and mixed with water and then drink decoction when cool in a cup.	0
9	Cadaba farinosa	Capparidace ae	Dngay Seber	Sh	W	Stomachac he	R	Fr	The fresh root is crushed and mixed with water and drink a juicy part.	0
10	Calotropis procera	Asclepiadace ae	Tobia	Sh	W	External Hemorrhoi ds	Lx	Fr	Cutting the leaf to harvest the latex then paint on the affected part.	D
						Tonsil	R	Fr	The fresh Root is crushed mixed with	0

									water then	
									drunk.	
11	Carica	Caricaceae	Papaya	Т	Hm	Gastrist	L	Fr	The fresh	0
	рарауа								leaves are	
									boiled in water	
									and drink the	
									decoction when	
									cold.	
						Malaria	F	Fr	The Fresh fruit	0
									is crushed and	
									mixed with	
									water to then	
									drink the filtred	
									part.	
12	Carissa	Apocynacea	Agam	Sh	w	Wound	R	Fr	The root is	0
	edulis	e							crushed and	
									mixed with	
									water then drink	
									the juice in a	
									cup.	
						Eye	TW	Fr	The twigs are	EY
						disease			crushed mix	
									water then wash	
									the eye.	
						Evil eye	R	Dr	The dried root	0
									is burnt in a fire	and
									and then	Ν
									fumigated the	
									smoke.	
13	Carthamus	Asteraceae	Suf	Н	hm	Heart	s	Dr	The dry seed is	0
	tinctorius					disease			Roasted, ground	
									mix the powder	
									with water then	
									drunk.	

14	Chenopodi	Chenopodiac	Amedmad	Н	Hm	Face	L	Fr	The fresh	D
	um murale	eae	0			fungus/Tin			leaves are	
						ea faciei			crushed and	
									then painted on	
									the affected	
									part.	
15	Citrus	Rutaceae	Lomi	Sh	hm	Headache	F	Fr	The fresh fruit	0
	aurantiifoli								is Squeezed the	
	а								juice is boiled	
									with black	
									cumin seeds in	
									coffee then	
									drunk.	
						Cough	F	Fr	The fresh fruit	0
									is Squeezed the	
									juice is boiled	
									with Allium	
									sativum in	
									water and then	
									drink decoction.	
						Scabies/itc	F	Fr	The fresh fruit	D
						hy			is squeezed and	
									painted on the	
									affected part	
16	Clematis	Ranunculace	Azo Hareg	С	W	External	L	Fr	The fresh leaves	D
	simensis	ae				Hemmorio			are Crushed and	
						d			then painted on	
									the affected part	
									of the body.	
17	Clerodendr	Lamiaceae	Msrich	Sh	w	Wart/chirt	L	Fr	The fresh leaves	D
	ит								are crushed and	
	myricoides								painted on the	
									affected part.	
18	Coffea	Rubiaceae	Buna	Sh	Hm	Diarrhea	S	Dr	Seeds are	0
	Arabica								roasted and	
									ground then the	
									powder is	

									mixed with	
									butter then	
									eaten before	
									breakfast.	
						Wound	s	Dr	Dry seed	D
									roasted,	
									grounds mix the	
									powder with	
									water then paint	
									on the wound.	
19	Cordia	Boraginacea	Wanza	Т	W+h	scorpion	L	Fr	Cut The fresh	D
	africana	e			m	bites			leaf	
									immediately	
									Rub on the	
									bitten part of	
									the body.	
						tinea	L	Fr	The fresh	D
						versicolor			leaves are	
									crushed and	
									then painted on	
									the affected part	
									of the body.	
20	Coriandrm	Apiaceae	Dinblal	Н	hm	Swelling	F	Dr	The dried fruit	0
	sativum								is ground mix a	
									teaspoon of	
									powder with	
									honey then	
									drink.	
21	Croton	Euphorbiace	Bisana	Т	W+h	liver	L	Dr	The dry leaves	0
	macrostach	ae			m	problem			are ground then	
	yus								eat a teaspoon	
									of powder by	
									mulching on	
									enjera.	
						Intestinal	RB	Dr	The bark of the	0
						parasite			root is ground	
						/helmit			mix a teaspoon	

									of powder with	
									honey then	
									drink it in a cup.	
						Wart/Chirt	TW	fr	Cut The fresh	D
									twing	
									immediately	
									Rub on the	
									affected part.	
22	Cucurbita	Cucurbit	Duba	С	hm	Tapewor	F	Dr	Dry seed is	0
	реро	Aceae				m			crushed boiled	
									with milk then	
									drunk.	
23	Datura	Solanaceae	Astenagr	Н	W+h	Dandruff	L	Fr	The leaves	D
	stramonium				m				crushed paint	
									on the affected	
									part.	
						wound	S	Dr	Dry seed is	D
									roasted, ground,	
									and mixed with	
									butter paint on	
									the wound.	
						Ear disease	L	Fr	The fresh	Er
									leaves are	
									crushed and the	
									squeeze enters a	
									drop of juice	
									into the ear.	
						Asma	L	dr	The dry leaves	0
									are burned in	and
									fire fumigating	Ν
									the smoke.	
24	Dichrostac	Fabaceae	Ader	Sh	W	Tonsil	R	Fr	The fresh roots	0
	hys cinerea								are chewed and	
									swallow the	
									juicy part.	

25	Dodonaea angustiroli	Sapindaceae	Ktikta	Sh	W	Skin	L	Fr	The fresh leaves	D
	angustitoti					Tash/enine			paint on the	
	u								affected part	
									anceded part.	
							-	_		
26	Dorstenia	Moraceae	Werk	Н	W	Oral	L	Dr	The dry leaves	0
	barnimiana		Bemeda			disease			are ground mix	
									the powder with	
									butter then eat.	
27	Dovyalis	Flacourtiace	Koshm	Т	W	Fruncles	L	Fr	The fresh leaves	D
	abyssinica	ae				/boils			are crushed and	
									painted on the	
									affected part.	
28	Eucalyptus	Myrtaceae	Nech	Т	hm	Febirril	L	fr	The leaves are	Oa
	globulus		Bahirzaf			illness/mic			boiled in water	nd
						h			and then	Ν
									fumigated the	
									steam.	
						Common	TW	fr	The twings are	Oa
						cold			boiled with	nd
									water then	Ν
									fugimate the	
									steam through	
									mouth and nose.	
29	Euclea	Ebenaceae	Dedeho	Sh	W	toothache	R	Fr	The fresh roots	0
	racemosa								are chewed then	
									swallowing	
									juicy part.	
30	Euphorbia	Euphorbiace	Kulkal	Т	W	Hommorio	Lx	Fr	Cutting the	D
	abyssinica	ae				ds			stem to harvest	
									the latex then	
									paint on the	
									affected part.	
						Leishmani	Lx	Fr	Cutting the	D
						asis			stem to harvest	
									the latex and	
1	1	1	1		1	1	1	1		1

									paint on the	
									affected part.	
						Malaria	RB	Dr	The dried root	0
									bark is ground	-
									and mixed with	
									porridge then	
									eaten finally a	
									lot of aguat is	
									drunk as the	
									antidote.	
						Rabies	RB	Dr	The dry root	0
									bark is ground	
									the powder is	
									mixed with	
									aguat then	
									drunk, and	
									finally eat	
									Cooked hen	
									liver as the	
									antidote.	
31	Euphorbia	Euphorbiace	Knchb	Sh	Hm	Hemorrhoi	Lx	Fr	Cutting the	D
	tirucalli	ae				d			stem harvest the	
									latex and then	
									paint on the	
									affected part.	
32	Ferula	Apiaceae	Dog	Н	W	Bleeding	R	Fr	The fresh root	0
	communis					after birth			is ground mix	
									the powder with	
									water then drink	
									in a cup of tea.	
33	Ficus	Moraceae	Beles	Sh	W	ТВ	L	Fr	The leaves are	D
	capreaefoli								crushed and	
	а								then painted on	
									the affected	
									part.	

34	Ficus sur	Moraceae	Shola	Т	W		L	Fr	The fruit is	0
						constipatio			boiled with	
						n			milk and drink	
									the decoction.	
35	Foeniculum	Apiaceae	Enslal	Н	w	Eye	L	Fr	The fresh leaves	EY
	vulgare					disease			are crushed and	
									mixed with	
									water then wash	
									the eye with a	
									solution.	
						Dysuria	L	FD	The leaves are	0
									boiled with	
									Thymus	
									vulgaris leaves	
									in water then	
									Drink the	
									decoction.	
36	Gomphocar	Asclepiadace	Tfrna	Sh	W	External	L	Fr	Cut the leaf to	D
	pus	ae				Hemorrhoi			harvest the latex	
	fruticosus					d			then paint on	
									the affected	
									part.	
						Leishmani	L	Fr	Cut the leaf to	D
						asis 1			latex and paint	
									on the affected	
									part.	
37	Guizotia	Asteraceae	Nug	Н	hm	Constipati	S	Dr	Dry Seed is	0
	abyssinica					on			roasted, ground,	
									and boiled with	
									water then	
									drunk.	
38	Hagenia	Rosaceae	Kosso	Т	Hm	Tapeworm	S	Dr	The dry seeds	0
	abyssinica								are ground,	
									mixed with	
									milk then	
									drunk.	

						Gastritis	S	Dr	The dry seeds	0
									are ground in a	
									teaspoon of	
									powder mixed	
									with water and	
									then drunk on	
									an empty	
									stomach finally	
									drink yoghurt as	
									an antidote.	
39	Hordeum	Poaceae	Gebs	Sh	Hm	Dandruff	L	Fr	The fresh	D
	vulgare								leaves are	
									Crushed and	
									then painted on	
									the affected	
									part.	
40	Jasminum	Oleaceae	Tembelel	Sh	w	blood	R	Fr	The fresh root is	0
	abyssinicu					pressure			Crushed, with	
	m								Cyphostemma	
									adenocaule	
									roots soaked in	
									water, and	
									drank a cup of	
									tea.	
						abdominal	R	Fr	The fresh roots	0
						cramp			are chewed and	
									swallowing the	
									juicy part.	
41	Juniperus	Cupressacea	Yeabesha	Т	W+	Diarrhea	Re	fr	The resin is	0
	procera	e	Tsid		Hm				chewed	
									swallowing the	
									liquid part.	
]

42	lepidium	Brassicaceae	Feto	Н	HM	Acne	S	Dr	The dry seeds	D
	sativum								are ground mix	
									the powder with	
									water paint on	
									the affected	
									part.	
						Devil	S	dr	The dry seeds	D
									are ground and	
									mixed with	
									water to paint	
									the body.	
43	lippia	Verbenaceae	Kese	Sh	W	Febrile	L	Fr	The leaves are	Oa
	adoensis					illness			boiled with	nd
									water then	Ν
									fumigate the	
									steam.	
44	Lobelia	Lobeliaceae	Jibara	Т	W	Evil eye	R	Dr	The dry root is	N
	rhynchopet								burned in the	
	alum								fire and then	
									fumigates the	
									smoke.	
						Chest pain	S	fr	The fruit is	0
									Boiled with	
									honey and drink	
									filtered part.	
45	Moringa	Moringaceae	Shiferaw	Sh	Hm	Gastrist	L	Dr	The dry leaves	0
	oleifera								are ground and	
									eat the powder	
									with enjera.	
46	Mukia	Cucurbitacea	Yamora	С	W	Syphilis	L	fr	The leaves are	0
	maderaspat	e	Misa						crushed with	
	ana								leaves of	
									Brucea	
									antidysenterica	
									and then	
									painted on the	
									affected part.	

47	Myrtus	Myrtacea E	Ades	Н	hm	Dandruff	L	D	Dry leaves are	D
	communis							R	ground mixed	
									with butter	
									paint on the	
									affected part.	
						Scabies(itc	L	dr	Dried leaves are	D
						hes)			ground and	
									mixed with	
									butter and paint	
									on the affected	
									part.	
48	Nigella	Ranunculace	Tikur	Н	hm	Stomachac	S	dr	The dry seeds	0
	sativa	ae	Azmud			he			are ground with	
									Allium Sativum	
									and Ruta	
									chalepensis,	
									then mixed with	
									lemon juice and	
									finally drunk.	
49	Ocimum	Lamiaceae	Damakese	Sh	Hm	Febirilillne	L	Fr	The leaves are	0
	lamiifolium					S			boiled with tea	
									and then drink	
									filtered part.	
						Ear	L	Fr	The fresh leaves	Er
						moth/ear			are crushed and	
						mice			Squeezed then	
									enter a drop of	
									juice into the	
									ear with a	
									cotton ball.	
50	Osyris	Santalaceae	Keret	Sh	W	Swelling	TW	FR	The twinges are	D
	quadriparti								burned in the	
	ta								fire and then	
									shot on the	
									affected part by	
									heating the	
									twigs.	
51	Otostegia	Lamiaceae	Tnjut	Sh	W	Abdominal	L	FR	The fresh leaves	0
----	--------------	-------------	---------	----	----	-------------	----	----	-------------------	----
	integrifolia					cramp			are chewed and	
									then swallowing	
									the juice.	
52	Persea	Lauraceae	Avocado	Т	HM	Diabetes	L	dr	The dry leaves	0
	americana.								are ground and	
									mix teaspoon	
									powder with	
									honey then eat	
									it on an empty	
									stomach.	
53	Pterolobiu	Fabaceae	Kentafa	Sh	w	Hemorrhoi	TW	dr	The twings are	D
	m stellatum					d			ground with	
									Aframomum	
									corrorima and	
									mixed with	
									butter then paint	
									on the affected	
									part.	
54	Rhamnus	Rhamnaceae	Gesho	Sh	Hm	Tinea	F	Dr	The dry fruits	D
	prinoides					versicolor			are ground and	
									mix the powder	
									with water then	
									paint it on the	
									affected part of	
									the body.	
55	Ricinus	Euphorbiace	Gulo	Sh	Hm	Ear disease	L	Fr	The leaves are	Er
	communis	ae							crushed and	
									squeezed with	
									the juice then	
									enter a drop of	
									it to ear.	
						Dandruff	S	Dr	The seeds are	D
									ground and then	
									painted on the	
									affected part of	
									the body.	

56	Rosa	Rosaceae	Kega	Sh	W	Devil	R	Dr	The dry roots of	Ν
	abyssinica								Rosa abyssinica	
									are burned in	
									the fire and then	
									fumigated the	
									smoke through	
									the nose.	
						Cough	F	Dr	The dried fruits	0
									ground with	
									Allium sativum	
									boil in water	
									then drink the	
									filtered part.	
57	Ruta	Rutaceae	Tene	Н	hm	Stomachac	L	Fr	The fresh leaves	0
	chalepensis		Adam			he			are boiled with	
									coffee and then	
									drunk in the	
									filtered part.	
58	Saccharum	Poaceae	Shenkora	Н	hm	Cough	St	Fr	The stems are	0
	officinarum								crushed and	
									boiled in the	
									water finally	
									drinking the	
									filtered part.	
59	Schefflera	Araliaceae	Qustya/Ge	Т	W	syphilis	RB	Fr	The bark of the	0
	abyssinica		tem						root is chewed	
									then swallowing	
									juicy part.	
60	Securidaca	Polygalaceae	Este	Sh	w	Ear disease	L	Fr	The fresh leaves	Er
	longepedun		Menahe						are crushed	
	culata								with leaves of	
									Dorstenia	
									barnimiana then	
									enter a drop of	
									juicy parts into	
									the ear.	

61	senna	Fabaceae	Bibisha	Sh	W	scorpion	R	Fr	The roots are	0
	multigland					bites			chewed then the	
	ulosa								juicy part.	
						Oral	FL	Dr	The dry flowers	0
						disease			are ground with	
									one teaspoon of	
									powder mixed	
									with honey and	
									then eaten.	
62	Sida	Malvaceae	Gorjejite	Н	W	Wound/life	L	Fr	The leaves are	D
	rhombifolia								crushed and	
									then painted on	
									the affected	
									part.	
63	Silene	Caryophylla	Wogert	Н	w	Stomachac	R	Fd	The roots are	0
	macrosolen	ceae				he			boiled with	
									honey and then	
									drinking filtered	
									part.	
64	Solanum	Solanaceae	Zerech	С	W	Abdominal	R	Fr	The roots are	0
	anguivi		Embuay			cramp			chewed and	
									then swallowing	
									the juicy part.	
65	Solanum	Solanaceae	Tkur Awitt	Н	W	Wound/	L	Fr	The Fresh	D
	nigrum					Lifie'			leaves are	
									crushed and	
									then painted on	
									the affected	
									part.	
66	Sparmanni	Tiliaceae	Wulkfa;	Sh	W	Fire burn	L	Fr	The fresh	D
	а								Leaves are	
	ricinocarpa								crushed and	
									painted on the	
									affected part.	
67	Syzygium	Myrtaceae	Dokma	Т	w	Stomachac	F	dr	The dry fruits	0
	guineense					he	+SB		and the stem	
									bark are ground	

									mix the powder	
									with honey then	
									eat.	
68	Thalictrum	Ranunculace	Srebzu	Н	w	Blood	R	dr	The roots are	0
	rhynchocar	ae				pressure			ground mixed	
	рит								with honey and	
									eaten for seven	
									days.	
69	Thymus	Lamiaceae	Tosgn	Н	W	Pneumonia	L	Dr	Dry leaves are	0
	schimperi								ground mix the	
									powder with	
									honey then eat.	
						Blood	L	FD	The leaves are	0
						pressure			boiled with tea	
									then drink the	
									filtered part.	
70	Trigonella	Fabaceae	Abish	Н	hm	Gastric	S	Fr	The seeds are	0
	foenum-					problem			ground and	
	graecum								boiled with	
									water then drink	
									in the morning.	
71	urtica	Urticaceae	Sama	Н	W+h	Blood	L	Fr	The fresh leaves	0
	simensis				m	cancer			are crushed and	
									mixed in water	
									then drink in a	
									cup on an	
									empty stomach.	
72	Verbascum	Scrophularia	Ketetina	Sh	W	Abdominal	R	FD	The roots are	0
	sinaiticum	ceae				cramp			chewed then	
									swallowing the	
									juicy part.	
						Gastritis	R	Fr	The roots are	0
									crushed with	
									water and drink	
									the filtered part.	

			kidney	R	Dr	The roots are	0
			disease			ground and	
						boiled with a	
						teaspoon of	
						powder with	
						honey then	
						drink the	
						filtered part.	
			abdominal	R	Fr	The roots are	0
			pain			crushed mixed	
			-			with water then	
						drank.	
			headache	Fl	Fr	The flower with	N
						the flower of	
						Bidens	
						prestinaria is	
						crushed and	
						squeezed then	
						sniff the juice	
						through the	
						nose.	
			Ear	F	Dr	The fruits are	Er
			disease/De			ground with a	
			afness			teaspoon of	
						powder mixed	
						with Sesamum	
						orientale oil,	
						then enter drop	
						of it in the ear	
						and wiped with	
						cotton.	
			heart	R	Fr	The roots are	0
			disease			crushed and	
						boiled with tea	
						then drink the	
						filtered liquid	
						part when cold.	

73	Verbena	Verbenaceae	Atuch	Н	W	Tongue	L	Fr	The leaves are	0
	Officinalis					disease			boiled with,	
									gargle	
									Spilanthes	
									costata in water	
									then washed the	
									mouth with	
									boiled water	
									after cold	
									finally spit out.	
74	withnia	Solanaceae	Gzawa	Sh	w	Gastrist	L	Dr	The dry leaves	0
	somnifera								are ground mix	
									a teaspoon of	
									powder with	
									honey then eat.	
						Heart	L	Dr	The leaves are	Ν
						disease			Burned with	
									fire and then	
									fumigate the	
									smoke through	
									the nose.	
						bloating	R	Dr	The dry roots	0
									are ground with	
									cotton seed	
									boiled in water	
									and drunk it	
75	Xantium	Asteraceae	Gidzemedi	Н	W	Tinea	L	Fr	The fresh leaves	D
	strumarium		e			versicolor			are Crushed	
									paint on the	
									affected part.	
						Dandruff	L	Fr	The fresh leaves	D
									are crushed	
									paint on the	
									head.	
76	Zehneria	Cucurbitacea	Haregresa	С	W+	Febrile	L	Fr	The fresh leaves	Na
	scabra	e			Hm	illness			are boiled in	nd
									water to	0

									fumigate the	
									steam through	
									the nose and	
									mouth.	
77	Ziziphus	Rhamnaceae	Gaba	Sh	W+h	Dandruff	L	Dr	The dry leaves	D
	spina-				m				are ground and	
	christi								mixed with	
									butter then	
									painted on the	
									affected part.	

9.2. APPENDIX - 2 : List of medicinal plants used for treating livestock ailments

In the study area, there are many plants used for treating livestock ailments recorded with their scientific name, family, local name, growth form, Source: disease treated, plant parts; condition of plant part uses; methods of preparation, way of application, and route of administration.

SN	Scientific Name	Family	Local Name	Growth Form	Source	Disease Treated	Part used	СР	Mode of preparation	Route
1	Brassica	Cabombaceae	Gomen	Н	Hm	Diarrhea	S	Dr	The dry Seeds are	0
	carinata								ground and mixed with	
									water then given to	
									cattle to drink.	
2	Cissus petiolata	Vitaceae	Alke	С	W	cough	St	Fr	The stems are crushed	0
									and mixed with water	
									then give the filtered	
									part to the sheep to	
									drink.	
3	Clausena	Rutaceae	Lmch	Sh	W	Coccidio	L	Fr	The fresh leaves are	0
	anisata					sis			crushed and mixed with	
									water then the filtered	
									liquid is given to	
									chicken pox to drink.	

4	Cyphostemmaa	Vitaceae	Aserkus	C	W	Rabies	R	FD	The roots are boiled	0
	denocaule		h						with milk then drink the	
									decoction to a dog.	
						Snakebit	R	Dr	The dried roots are	0
						e			ground and a teaspoon	
									of powder is mixed	
									with water drank by	
									cattle.	
5	Discopodium	Solanaceae	Almit	Т	W	Blackleg	L	Fr	The fresh leaves are	0
	penninervum								crushed and mixed with	
									water then drunk by	
									cattle.	
6	Erythrina	Fabaceae	Kuara	Т	W	Anthrax	L	Fr	The leaves are crushed	0
	abyssinica								and mixed with water	
									then drunk.	
						Snakebit	S	Dr	The seeds are ground	0
						e			mixed with water and	
									then drunk by cattle.	
7	Ficus vasta	Moraceae	Warka	Т	W	Wound	L	Fr	The leaves are crushed,	D
									then paint the affected	
									part.	
8	Maytenus	Celastraceae	Atat	Sh	W	Coccidio	L	Fr	The fresh leaves are	0
	senegalensis					sis			crushed and mixed with	
									water then drunk to	
									hen.	
						Eye	L	Fr	The fresh leaves are	Ey
						disease			crushed and filtered	
									using cotton cloth	
									adding three drops of	
									filtrate to the eyes of	
									cattle.	
9	Millettia	Fabaceae	Birbra	Т	W	Tick	F	Fr	The fruits are crushed	D
	ferruginea								mix with water painted	
									on the affected part.	
1	1	1	1	1	1	1	1	1		1

						Leech	L	Fr	The leaves are crushed	0
									and mixed with water	
									then drunk by cattle.	
10	Nicotiana	Solanaceae	Tnbuha	Н	W/Hm	leech	L	Fr	The leaves are leaves	N
	tabacum								are crushed mix with	
									water drop the juicy	
									part into the cattle's	
									nostril.	
						cough	L	Fr	The leaves are crushed	0
									and mixed with water	
									then drink the filtered	
									part to cattle.	
						Internal	L	Fr	The leaves are crushed	0
						parasites			and mixed with water to	
									drink the filtered part to	
									cattle.	
11	Ocimum	Lamiaceae	Zikakib	Н	Hm	Bloating	L	Fr	The leaves are crushed	0
	basilicum		e						with the bulb of Allium	
									sativum and salt	
									together little of the	
									solution is to drink to	
									cattle.	
12	Prunus persica	Rosaceae	Kok	Sh	W/hm	Diarrhea	L	Fr	The leaves are crushed	0
									and mix water for a few	
									minutes and then drunk	
									by cattle.	
13	Rumex	Polygonaceae	Tult	Н	W	Anthrax	R	Fr	The roots are crushed	0
	nepalensis								mixed with water then	
									drank by cattle.	
14	Rumex nervosus	Polygonaceae	Enbuac	Sh	W	Eye	L	Dr	The dry leaves are	Ey
			ho			disease			crushed with the fruit of	
									Ruta chalepensis and	
									mix the powder with	
									tella then drop the	
									solution into the cattle	
									eye.	

15	Satureja	Lamiaceae	Yenbos	Sh	W	Leech	L	Fr	The leaves are crushed,	Ν
	punctata		a						and mixed with water,	
			chenger						and a drop solution is	
									entered into the cattle	
									nose.	
16	Tragia brevipes	Euphorbiace	Abelbal	Н	W	Coccidio	R/L	Fr	The leaves are crushed	0
		ae	it			sis			and mixed with water	
									then drunk to hen.	

9.3. APPENDIX – 3 : List of medicinal plants used for treating both human and livestock ailments

In the study area, there are many plants used for treating both human and livestock ailments recorded with their, scientific name, family, local name, growth form, Source: disease treated, plant parts; condition of plant part uses; methods of preparation, way of application, and route of administration.

SN	Scientific	Family	Local	Growth	Source	Use	Disease	Part	СР	Mode of preparation	Route
	Name		name	form			Treated	used			
1	Achyranthe	Amarantha	Telenj	Н	w	Hu	Fire	L	Dr	The dry leaves are ground	D
	s aspera	ceae					burn			and the powder mixes with	
										butter paint on the burned	
										part.	
						Li	Eye	R	Fr	The fresh and mixed with	Ey
							disease			water then enter a drop of	
										the juice into the cattle eye.	
						hu	Ascaris	R	Fr	The fresh root is crushed	0
										and mixed with water then	
										drunk.	
2	Acokanther	Apocynace	Merez	Sh	w	Hu	Liver	L	Dr	The leaves are ground	0
	a schimperi	ae					Problem			then eat one teaspoon of	
										powder with honey finally	
										drink milk as an antidote.	

		1	1	1	1	1	1		r	n	
						Li	Rabies	R	Fr	The fresh roots are crushed	0
										mixed with cold water and	
										then drunk.	
3	Brucea	Simarouba	Wagin	Sh	w/hm	Hl	Wound	L	Fr	The fresh leaves are	D
	antidysenter	ceae	os							crushed and then painted	
	ica									on the wound.	
						Hu	Scabies/	L	Dr	The leaves are ground and	D
							itch			mix the powder with butter	
										then paint on the affected	
										part.	
						Li	External	L	Fr	The leaves are crushed and	D
							parasite			mixed with water then	
							s (lice)			paint on the affected part.	
4	Buddleja	Loganiacea	Anfar	Sh	w	Hu	Abdomi	SB	FD	The stem barks are boiled	0
	polystachya	e					nal			in water then drink the	
							cramp			solution.	
						Li	Eye	L	Fr	The fresh Leaves are	Ey
							disease			crushed and squeezed enter	
										a drop of the juicy part in	
										to cattle eye.	
						hu	Tonsil	L	Fr	The fresh leaves are	0
										chewed and swallow the	
										juicy part	
5	Calpurnia	Fabaceae	Dgta	Sh	W	Hu		L+s	Dr	The dry leaves and seeds	0
	aurea						Diarrhe			are ground and mixed with	
							а			water then drink.	
						Li	External	L	Fr	The fresh leaves are	D
							parasite/			crushed and painted on the	
							lice			skin.	
6	Cucumis	Cucurbitac	Yemdi	С	W	HL	Swellin	R	Fr	The fresh roots are crushed	D
	ficifolius	eae	r				g			paint on the swollen part.	
			enbuay			Hu	Toothac	R	Fr	The fresh roots are boiled	0
							he			with Capsicum annuum	
										then wash the mouth with	
										decoction and spit out the	
										water.	
1 1		1	1	1	1	1	1	1	1	1	1

						Hu	Liver	R	Dr	The roots are burned in the	Oand
							problem			fire and fumigate the	Ν
										smoke.	
7	Echinops	Asteraceae	Keberc	Н	W	HL	Febiril	R	Dr	The dry roots are burned	Oand
	kebericho		ho				illness			in the fire and then	Ν
										fumigate the smoke.	
						HU	Devil	R	Dr	The dry roots are burned	Nand
										in a fire to fumigate the	0
										smoke.	
8	Gossypium	Malvaceae	Titt	Sh	Hm	Hu	Bronchi	S	Dr	The dry seeds are ground	0
	herbaceum						tis			and the powder is mixed	
										with honey and eaten.	
						Li	Diarrhe	L	Fr	The fresh leaves are	0
							a			crushed mixed with water	
										and given to cattle to drink.	
9	Grewia	Tiliaceae	ALenk	Sh	W	Li		SB	Fr	The fresh barks are boiled	0
	ferruginea		oza				Bloatin			in water then drink the	
							g			decoction.	
						Li	Retaine	SB	Fr	The fresh barks are boiled	0
							d			in water to drink the	
							placenta			decoction.	
						hu	Dandruf	SB	Fr	The fresh barks are	D
							f			crushed and mixed with	
										water and wash the hair	
										with the filtered part when	
										cool.	
10	Justicia	Acanthacea	Smiza	Sh	Hm	Hu	abdomi	R	Fr	The roots are crushed and	0
	schimperian	e					nal			mixed with tela then drunk.	
	a						cramp				
						Li	Cococo	L	Fr	The leaves are crushed,	0
							dis			mixed with water, and	
										given to the hen to drink	
						Li	Blackle	L	Fr	The leaves are crushed	0
							g			with dried fruit of Ricinus	
										communi drink solution to	
										cattle.	
							1				1

11	Kalanchoe	Crassulace	Yekola	Н	w/hm	Hu	Eczema	R	Fr	The fresh roots are crushed	D
	petitiana	ae	Endah				/chfe			and then painted on the	
			ula							affected part.	
						Hu	Toothac	R	Fr	The roots are chewed and	0
							he			then swallowing the juicy	
										part.	
						hL	Swellin	L	Fr	The fresh leaves are placed	D
							g			on fire and shoot on the	
										affected part.	
0.1	Lagenaria	Cucurbitac	kil	С	hm	Li	Leech	F	Fr	The fresh fruit sap is	Ν
2	siceraria	eae								crushed and mixed with	
										water to drop the solution	
										to the cattle through the	
										nose.	
						hu	Evil eye	S + f	Dr	The Seeds and fruit saps	N
										are burned in fire then	
										fumigating the smoke	
										through the nose.	
13	Linum	Linaceae	telba	Н	Hm	Hl	Retaine	S	Dr	The dry seeds are ground	0
	usitatissimu						d			and the powder is boiled	
	т						placenta			with water then drink the	
										solution after cooling.	
14	Malva	Malvaceae	Lutt	Н	W	HL	Cough	L	Fr	The fresh leaves are	0
	verticillata									crushed and mixed with	
										water then drink the juicy	
										part.	
15	Phytolacca	Phytolacca	Endod	Sh	w	HU	Malaria	R	Fr	The fresh root was	0
	dodecandra	ceae								crushed and mixed with a	
										teacup of water then the	
										drink finally ate cooked	
										hen liver as an antidote.	
						Hl	Rabies	R	Fr	The fresh root is crushed	0
										and mixed with water then	
										drunk and finally eat	
										cooked hen liver as an	
						1				antidote.	

						Hu	Miscarr	F	Dr	The dry Fruit is ground	0
							У			and a teaspoon of powder	
							/abortio			is mixed with a cup of	
							n			water then drink finally eat	
										the cooked hen liver as an	
										antidote.	
16	Plumbago	Plumbagin	Amira	Sh	W	Hl4	Swellin	R	Fr	The fresh roots are crushed	0
	zeylanica	aceae					g			and mixed with water then	
										drunk by humans or cattle.	
						HU	Cough	L	Fd	The leaves are boiled with	0
										butter then drink the	
										filtered part	
						hu	Asma	R	Fr	The root is crushed and	0
										mixed with water then	
										drink	
17	Rhus	Anacardia	Emeb	Т	W	Н	Wound	RB	Fr	The bark of Rhus	D
	glutinosa	cea	sa			U				glutinosa is crushed,	
										powdered, and painted on	
										wounded areas.	
						Li	Leech	L	Fr	The fresh leaves are	Ν
										crushed and squeezed then	
										drop a few solutions	
										through the nose.	
18	Ipomoea	Convolvula	Yeayit	С	W	Hu	Wound	L	Fr	The fresh Leaves are	D
	tenuirostris	ceae	hareg							crushed and a small	
										amount is painted on the	
										wound.	
						Li	Anthrax	R	Fr	The roots are crushed,	0
										mixed with water, and	
										given to the animal (cattle,	
										goat, or sheep) to drink.	
19	Vernonia	Asteraceae	Grawa	Sh	Hm	Hu	Syphilis	L	Dr	The dry leaves are ground	0
	amygdalina									mix the powder with honey	
										then eat.	
						Li	Bloatin	L	Fr	The fresh leaves are	0
							g			Crushed mixed with water	
										then drunk to animals.	

20	Zingiber	Zingiberac	Zinjibl	Н	HM	HU	Commo	Rh	Fd	The fresh/dry rhizome is	0
	officinale	eae	e				n cold			crushed then boiled in	
										water and drank in a cup of	
										tea.	
						HU	Abdomi	Rh	Fd	The fresh/dry rhizome is	0
							nal			crushed then boiled in	
							cramp			water and drank in a cup of	
										tea.	
						Li	Eye	Rh	Fr	The root/ rhizome is	Ey
							disease			crushed and mixed with	
										water the juice part is	
										dropped on the cattle eye.	
	1		•		•						

9.4. APPENDIX - 4 : Number of species in each family

Family name	Number of	Percent
	species	of
		species
Asclepiadaceae	2	1.77
Apocynaceae	2	1.77
Poaceae	2	1.77
Polygonaceae	2	1.77
Rhamnaceae	2	1.77
Tiliaceae	2	1.77
Verbenaceae	2	1.77
Apiaceae	3	2.65
Malvaceae	3	2.65
Myrtaceae	3	2.65
Ranunculaceae	3	2.65
Rosaceae	3	2.65
Rutaceae	3	2.65
Vitaceae	3	2.65
Moraceae	4	3.54
Cucurbitaceae	5	4.42
Euphorbiaceae	5	4.42
Asteraceae	6	5.31

6	5.31
6	5.31
8	7.08
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
1	0.88
	6 8 1 <td< td=""></td<>

Sapindaceae	1	0.88
Scrophulariaceae	1	0.88
Simaroubaceae	1	0.88
Urticaceae	1	0.88
Zingiberaceae	1	0.88

9.5 APPENDIX - 5 : English version of consent form and questionnaire

Consent form

I, the undersigned information provider, understand the purpose of the study titled Medicinal Plants Used to Treat Human and Animal Diseases and Evaluating the Anti-bacterial Properties of Selected Medicinal Plants in Telemt Woreda ". I agree to provide information about plant species that are used to treat human and livestock diseases and to provide information on their preparation methods. I confirm my agreement by signing in front of my name.

Signature of informants: _____

Date: _____

Code no._____

Checklist of interview questions for Collecting Personal and Ethnobotanical data from Key informants and non-traditional medicinal practitioners in the Telemt district.

Dear Respondents, these interview questions are meant to elicit information on the use of traditional medicines of plants. You will be giving information only based on your willingness after reaching a consensus. The aim of this study is only for educational purposes, but not for any other uses.

I. General Information on respondents:

- 1. Name of the respondent
- 2. Respondent's gender: Male / Female
- 3. Marital status of the respondent: Married/widowed/divorced/single (Underline)
- 4. Age of the respondent
- 5. Educational status: Read and write? (Yes/No) Underline

Indicate level/grade completed.

- 6. Occupations
- 7. Residence (1. Urban 2. Rural) Underline
- 8. For how long have you lived in the area?

II. Ethnobotanical Data

1. What are the main human health problems/diseases in your locality?

2. What are the main livestock health problems/diseases in your locality?

- 3. How do you diagnose each disease/health problem?
- 4. What are the symptom(s) of the disease/health problem?

5. List the medicinal plants used to treat human, livestock, and both human and livestock disease with:

- Local name
- Disease treated
- Source of medicinal plant (wild, cultivated, and wild/cultivated).
- ➢ Growth form (tree, shrub, climber, herb, and epiphyte).
- Plant parts used in medicine (Root, leaf, stem, root bark, stem bark, small twigs With leaves, seeds, flowers, fruit whole, and others) underline.
- > Ingredients added: Used alone, mixed with water or other materials (Underline) other.
- Form of the medicinal plant used: Fresh only dried only, fresh or dried (Underline) Other.
- Method of preparation (crushing, pounding, concoction, decoction, unprocessed, heating, roasting, and others) underline.
- Route of administration (Oral, Nasal, Optical, and Dermal).
- > Way of application (drinking, eating, put on, and others).
- ➢ Dose.
- > Any noticeable adverse/side effect(s) (Yes, No, and mention if yes.
- Any antidotes for adverse/side effect(s) (yes, No, and mention if yes.

7 Does the dose vary among age groups (children, pregnant women, and elders), and sex (males/ females)? If you say yes why?

8. Are there any taboos associated with medicinal plant use and utilization of medicinal plants? (Method of collection, time of collection, sex, age, storage, etc.)

What is the implication of the taboo? If any, state

9. Are medicinal plants marketable?

10. For what other purposes do you use traditional medicinal plants Food/firewood/charcoal/house construction/forage/etc.

11. Which medicinal plants are used for multiple uses and mention the use?

12. Are there any threats to the medicinal plants? List out the main threats, starting with the most serious threat.

13. Which medicinal plant species is commonly threatened in your local area?

14. How do you conserve traditional medicinal plants?

15. How is the knowledge of traditional medicine passed to the next generation in the community?

16. How does modernization interfere with traditional medicinal knowledge?

IDENTIFICATION:

Name of: Survey Woreda Telemt

Kebele_____

Interviewer Emebet Teka

Date/Month/Year: _____

Time: From_____Am. /P.m. to _____A.m./P.m.

9.6. APPENDIX — 6 : Amharic version of consent form and questionnaire

የፍቃድ ፎርም

እኔ፣ በስሩ የፈረምኩት መረጃ ሰጭ በጠለምት ወረዳ ውስዋ የሰዉ እና የእንስሳት በሽታዎችን ለማከም የሚያገለግሉ የመድኃኒት ዕፅዋቶች እና የተመረጡ ዕፅዋቶችን ፀረ-ባክቴሪያ ባህሪ መገምገም በሚል ርዕስ የሚደረገውን ዋናት ዓላማ ተረድቻለሁ። ስለ ተክሎች ዝርያዎች የትኞቹን በሽታዎችን ለማከም ዋቅም ላይ እንደሚውሉ እና የአዘገጃጀት ዘዴዎች ላይ መረጃ ለመስጠት ተስማምቻለሁ። ስምምነቴን በስሜ ፊት በመፈረም በፊረማየ አረጋግጫለሁ።

ፌርማ: _____

ቀን: _____

በጠለምት ወረዳ ውስ**ጥ ላሉ መረጃ ሰ**ሞዎች የግላዊ እና የኢትኖቦታኒካል መረጃዎችን ለመሰብሰብ የቃለ መጠይቅ ዋያቄዎች ማረጋገጫ ዝርዝር፡፡

ውድ ምላሽ ሰጪዎች፣ እንዚህ የቃለ መጠይቅ ዋያቄዎች የዕፅዋቶች ባህላዊ መድሃኒትንት እና አጠቃቀም በተመለከተ መረጃ ለማግኘት ነው። መረጃን የምትሰጡት በስምምንት ላይ ከደረሱ በኋላ በፍላንትዎ በመመስረት ብቻ ነው።

|. ስለ መሳሾች አጠቃሳይ መረጃ፡-

1. ስም

2. ጸታ፡ (ወንድ ፣ ሴት)

3. የ.ጋብቻ ሁኔታ፡ (ይገባ/ዥ፣ይላገባ/ ፣የሞተችበት/ባት፣የተፋታ/ዥ (አስምሩ)

4. ዕድሜ

5.የትምህርት ደረጃ: ማንበብ እና መጻፍ የሚችል ፣ማንበብ እና መጻፍ የማይችል፣ዲፕሎማ፣ዲግሪ ወዘተ (አስምፉ)

6. ስራ

7. የመኖሪያ ቦታ (1.ከተማ 2. ገጠር) (አስምሩ)

8. በአካባቢው ለምን ያህል ጊዜ ኖረዋል?

||. የኢትኖቦታኒካል መረጃ

1. በአካባቢዎ ያሉ ዋና ዋና የሰዎች የጤና ችግሮች/በሽታዎች ምንድን ናቸው?

2. በአካባቢዎ ያሉ ዋና ዋና የእንስሳት ጤና ችግሮች/በሽታዎች ምንድን ናቸው?

3. እያንዳንዱን በሽታ እንዴት ነው የሚመረመረው?

4. የበሽታው ምልክቶች?

5. በአካባቢዎ ውስጥ ለሰው፣ለእንሰሳትን፣ እና ለሁለቱም የሰው እና የእንስሳት በሽታን ለማከም ዮቅም ላይ የሚውሉ የዕፅዋት ዝርያዎችን ዘርዝሩ፣

- ▶ የዕቆዋቱ አካባቢያዊ ስም
- ▶ የሚያድነው በሽታ
- የዕፅዋቱ የዕድገት ሁኔታ (ዛፍ፣ቁቋጦ፣አረም፣ሀሪግ ፣ተቀጥያ ወ.ዘ.ተ
- > የዕቆዋቱ መገኛ (ዱር፣ የሚለማ ወይም ሁለቱም)
- እመድኃኒትነት የሚውለው የዕፅዋት ክፍል (ሥር፣ ቅጠል፣ ግንድ፣ የሥሩ ቅርፊት፣ የግንዱ ቅርፊት፣ ትናንሽ ቀንበጦች እስከ ቅጠላቸው፣ ዘር፣ አበባ፣ ፍሬ) (አስምሩ)
- > የሚጨመሩ ንጥረ ነገሮች፡- ብቻውን ጥቅም ላይ ይውላል፣ ከውሃ ወይም ከሌሎች ነገሮች ጋር ተቀሳቅሎ ፣ ሌሳ (አስምሩ)
- የአዘባጃጀት ሁኔታ (ያልደረቀ፣የደረቀ፣ያልደረቀ ወይም የደረቀ (አስምሩ)
- የአዘገጃጀት ዘዴ (መቀጥቀጥ ፣ማፍላት ፣መፍጨት ፣ማቃጠል)
- > የሚሰጥበት መንገድ፡(በአፍ፣ በቆዳ ፣በአፍንጫ ፣በጆሮ፣ በዓይን ፣በጥርስ ወዘተ የሚወስድበት ዘዴ (በመጠጣት፣በመብላት ፣በማንክ ፣በመቀባት፡ በመታጠን፣ በመታጠብ፣በማሽት ፣በመቦረሽ ሌሎች)አስምሩ)
- ማንኛውም የሚታይ የጎንዮሽ ጉዳት አለ ? (አይ፣አይደለም ፣ አይ ከሆነ ይኖቀሱ)።
- ▶ የጎንዮሽ ጉዳቱን ለማስወገድ ምን ይወስዳሉ ? ይዋቀሱ
- መጠን (ግምታዊ፣የታወቀ).

7. መጠኑ በእድሜ ቡድኖች(ለልጆች ለወጣት እና ለሽማግሌዎች)፣ በጸታ (ወንዶች፣ ሴቶች፣ ፣ለነፍሰ ጡር ሴቶች? ይለያያል? አዎ ካልክ ለምን?

8. የመድኃኒት እፅዋት አጠቃቀም ጋር የተያያዙ የተከለከሉ ነገሮች አሉ? (የመሰብሰቢያ ዝዴ፣ የመሰብሰቢያ ጊዜ፣ ያታ፣ ዕድሜ፣ ማከማቻ፣ ወዘተ) የገደቡ ጥቅም ምንድን ነው? ዘርዝሩ

9. የትኞቹ የመድኃኒት ዕፅዋቶች ለገበይ ይቀርባሉ? ይኖቀሱ

10. ለየትኛው ዓላማ ባፀላዊ መድኃኒት ዕፅዋቶች ይጠቀማሉ (ለምግብ ፣ለማገዶ ፣ለእንጨት ፣ለከሰል ፣ለቤት ፣ ለማንባታ እና ለመኖ / ወዘተ).

11. የትኞቹ የመድኃኒት ዕፅዋቶች ለብዙ ጥቅም ይውሳሉ እና ጥቅማቸውን ይጠቅሳሉ?

12. በአካባቢዎ ውስጥ ለመድኃኒት ዕፅዋት ተጽእኖ የሚያደርሱ ነገሮች አሉ? በጣም ከባድ ከሆነው ተጽእኖ ጀምሮ ዋና ዋናዎቹን ዘርዝሩ። 13. በአከባቢዎ የበለጠ የትኞቹ የመድኃኒት ዕዕዋት ዝርያዎች ችግር/ተጽእኖ ውስጥ ናቸው? ይጥቀሱ? 14. ባህላዊ መድኃኒት ዕዕዋቶች እንዴት ይጠበቃሉ? የመትከል፣ የማሳዴግ ሁኔታ አለ? 15. በባህላዊ ሕክምና ላይ ያለው እውቀት ለቀጣዩ ትውልድ በማህበረሰቡ ውስጥ እንዴት ይተላለፋል? 16. ዘመናዊነት በባህላዊ መድኃኒት ስርዓት ላይ ያለው ጣልቃ ተብነት እንዴት ነው ? ካለ ይጥቀሱ የጥናቱ ወረዳ ጠለምት። ቀበሊ_____ ጠያቂ እመቤት ተካ ቀን/ወር/ዓመት:_____

ሰዓት፥ ከ____

9.7. APPENDIX – 7 : List of the informants participated in the ethnobotanical study

SN	Name	Sex	Age	Marital	Education	Informant	Occupation	Duration of	Kebele
				status	status	type		time	
1	Abebe Tegegne	М	56	Married	Illiterate	Key	Farmer	Since Birth	Adi Selam
2	Dejen Alelgn	М	35	Single	Illiterate	General	Farmer	Since Birth	Adi Selam
3	Meselu Cherkos	F	41	Married	Illiterate	General	House Wife	Since Birth	Adi Selam
4	Abraham Asmare	М	62	Married	Illiterate	General	Farmer	Since Birth	Adi Selam
5	Dawit Kebede	М	32	Single	Illiterate	General	Farmer	Since Birth	Adi Selam
6	Tiftu Birhanu	М	45	Married	12th Drop	General	Farmer	Since Birth	Adi Selam
7	Worknesh Mulaw	F	28	Single	Illiterate	General	Merchant	Since Birth	Adi Selam
8	Wuditu Fentie	F	58	Single	8th Drop	General	Merchant	Since Birth	Adi Selam
9	Aschalew Adugna	М	39	Married	Illiterate	Key	Farmer	Since Birth	Adi Selam
10	Yemsrach Tsegaw	F	43	Married	Illiterate	General	House Wife	Since Birth	Adi Selam
11	Adisu Tesfaye	М	29	Single	11th	General	Student	Since Birth	Adi Selam
12	Zewuditu Adugna	F	67	Married	10th Drop	General	House Wife	Since Birth	Adi Selam
13	Molalgn Birhane	М	43	Married	Illiterate	Key	Farmer	> 24 years	Adi Selam
14	Azanaw Kasahun	М	38	Married	Illiterate	General	Farmer	Since Birth	Adi Selam
15	Zenebe G/Silasie	М	37	Married	Illiterate	General	Farmer	Since Birth	Adi Selam
16	Melshw Mengista	F	55	Married	Illiterate	Key	House Wife	Since Birth	Adi Selam
17	Genet Mengesha	F	31	Single	Illiterate	General	House Wife	Since Birth	Adi Selam
18	Desie Tilahun	М	65	Married	Illiterate	General	Farmer	Since Birth	Adi Selam
19	Ayalnesh Abebe	F	61	Married	Illiterate	Key	House Wife	Since Birth	Adi Selam
20	Alemtsehay Birhane	F	28	Married	Illiterate	General	House Wife	Since Birth	Adi Selam
21	Solomon Gobeza	М	39	Married	Diploma	General	Government	Since Birth	Adi Selam
							Employee		
22	Yeshhareg Dagnew	F	27	Single	10th	General	Student	Since Birth	Adi Selam
23	Mulat Asefa	М	82	Married	Illiterate	Key	Farmer	Since Birth	Adi Selam
24	Mequanit Teklie	М	73	Married	Illiterate	General	Farmer	Since Birth	Adi Selam

25	Ljalem Temerto	М	66	Married	Illiterate	General	Farmer	Since Birth	Adi Selam
26	Misanesh Andualem	F	68	Married	Illiterate	General	House Wife	Since Birth	Terinasha
27	Shambel Miretie	М	33	Single	12th Drop	General	Merchant	Since Birth	Terinasha
28	Moges Wubetu	М	45	Married	Illiterate	General	Farmer	Since Birth	Terinasha
29	Menber Amare	F	29	Single	10th Drop	General	Merchant	Since Birth	Terinasha
30	Betelhem Aschalew	F	48	Married	Illiterate	Key	House Wife	Since Birth	Terinasha
31	Maru Aragie	М	30	Single	10th Drop	General	Merchant	Since Birth	Terinasha
32	Aklilu Mulusew	М	34	Single	Illiterate	Key	Farmer	Since Birth	Terinasha
33	Getu Getahun	М	37	Married	Illiterate	General	Farmer	Since Birth	Terinasha
34	G/Egziabher Lakew	М	65	Married	Illiterate	General	Farmer	Since Birth	Terinasha
35	Moges Fentie	М	83	Married	Illiterate	General	Farmer	Since Birth	Terinasha
36	Ambaw Maru	М	78	Married	Illiterate	General	Farmer	Since Birth	Terinasha
37	Beyene Zegeye	М	53	Married	Illiterate	General	Merchant	Since Birth	Terinasha
38	Zenawit Desalegn	F	76	Married	Illiterate	General	Merchant	Since Birth	Terinasha
39	Wagaye Abera	F	56	Married	Illiterate	General	House Wife	Since Birth	Terinasha
40	Mitku G/Medin	М	74	Single	Illiterate	General	Farmer	Since Birth	Terinasha
41	Trunesh Asresie	F	51	Married	Illiterate	General	House Wife	Since Birth	Terinasha
42	Belete Bezabh	М	39	Married	5 Th Drop	Key	Farmer	Since Birth	Terinasha
43	Worku Mamuye	М	24	Single	12th	General	Student	Since Birth	Terinasha
44	Meseret Mulugeta	М	27	Single	Illiterate	General	Farmer	Since Birth	Terinasha
45	Mesele Truneh	М	26	Divorce	Illiterate	Key	Farmer	Since Birth	Terinasha
46	Getachew Haile	М	56	Married	Illiterate	General	Farmer	Since Birth	Terinasha
47	Kefialew Zewale	М	22	Single	12th	General	Student	Since Birth	Terinasha
48	Alemu Mulaw	М	25	Divorce	Illiterate	Key	Farmer	Since Birth	Terinasha
49	Tobia Tesfaye	F	27	Single	10th	General	Student	Since Birth	Terinasha
50	Fentanesh Shiferaw	F	63	Divorce	Illiterate	General	House Wife	Since Birth	Terinasha
51	Maru Beyene	М	36	Married	Diploma	General	Government	Since Birth	Chinifera
							Employee		
52	Tadele Wubie	M	41	Married	Illiterate	Key	Farmer	Since Birth	Chinifera

53	Sisaynesh Chekole	F	53	Divorce	Illiterate	General	House Wife	Since Birth	Chinifera
54	Werku Ayalew	М	82	Married	Illiterate	Кеу	Merchant	Since Birth	Chinifera
55	Alemu Demsie	М	29	Single	7 Th Drop	Key	Farmer	Since Birth	Chinifera
56	Cherkos Embiale	М	68	Divorce	Illiterate	General	Farmer	Since Birth	Chinifera
57	Destaw Mengesha	М	63	Married	Illiterate	General	Merchant	Since Birth	Chinifera
58	Bayush Chekole	F	53	Married	Illiterate	Key	House Wife	Since Birth	Chinifera
59	Alemitu Lakew	F	34	Divorce	Illiterate	General	House Wife	Since Birth	Chinifera
60	Tigist Wondmeneh	F	46	Married	5th Drop	Key	Merchant	Since Birth	Chinifera
61	Tamiru Aguade	М	47	Divorce	Diploma	General	Government Employee	Since Birth	Chinifera
62	Yeshwas Kebede	М	73	Married	Illiterate	Кеу	Merchant	Since Birth	Chinifera
63	Wendie Zewudu	М	28	Married	Illiterate	General	Merchant	Since Birth	Chinifera
64	Serkalem Demsie	F	25	Married	10th	General	Student	Since Birth	Chinifera
65	Tewabech Dres	F	28	Married	7 Th Drop	General	House Wife	Since Birth	Chinifera
66	Kidan Legese	F	66	Married	Illiterate	Key	Merchant	Since Birth	Chinifera
67	Asmare Setegn	М	43	Married	Diploma	General	Merchant	Since Birth	Chinifera
68	Arega Getie	М	42	Married	10th Drop	Key	Farmer	Since Birth	Chinifera
69	Tasew Godadaw	М	34	Married	Illiterate	General	Farmer	> 31 years	Chinifera
70	Mequannt Alemu	М	55	Married	Illiterate	Key	Merchant	Since Birth	Chinifera
71	Amarech Azanaw	F	48	Widowed	8th Drop	General	Merchant	Since Birth	Chinifera
72	Asefa Werku	М	32	Married	12th Drop	General	Farmer	Since Birth	Chinifera
73	Turusew Asmamaw	F	55	Married	Illiterate	General	House Wife	Since Birth	Chinifera
74	Wendie Alemu	М	67	Married	8th Drop	Key	Merchant	Since Birth	Chinifera
75	Alemneh Ayanaw	М	57	Divorced	Illiterate	General	Farmer	Since Birth	Chinifera
76	Degu Ayenew	М	33	Married	Illiterate	General	Farmer	Since Birth	Chinifera
77	Moges Nebse	М	32	Married	Illiterate	General	Farmer	Since Birth	Akuna
78	Yeshalem Abebe	F	37	Married	Illiterate	General	House Wife	Since Birth	Akuna
79	Endalew Mersha	М	29	Single	12th	General	Student	Since Birth	Akuna
80	Endeshaw Mersha	М	33	Married	Illiterate	General	Farmer	Since Birth	Akuna

81	Wubrst Ayele	F	44	Married	Illiterate	General	House Wife	Since Birth	Akuna
82	Tringo Getu	F	63	Married	Illiterate	General	House Wife	Since Birth	Akuna
83	Mahlet Shgutie	F	67	Married	Illiterate	Key	House Wife	Since Birth	Akuna
84	Addis Amare	М	73	Married	Illiterate	Key	Farmer	Since Birth	Akuna
85	Anlegn Mola	М	76	Divorce	Illiterate	General	Farmer	Since Birth	Akuna
86	Chalachew	М	28	Single	Diploma	General	Government	Since Birth	Akuna
	Alebachew						Employee		
87	Tesfaye Ewunetu	М	45	Married	Illiterate	Key	Farmer	Since Birth	Akuna
88	Birhanu Desalegn	М	56	Married	7 Th Drop	General	Farmer	Since Birth	Akuna
89	Birhanu Mesfin	М	36	Married	12th Drop	General	Farmer	Since Birth	Akuna
90	Tiwures Zelalem	F	27	Married	Illiterate	General	Merchant	Since Birth	Akuna
91	Tigistu Werkye	М	36	Single	Illiterate	Key	Merchant	> 22 years	Akuna
92	Fikadu Teka	М	24	Married	11th	Key	Student	Since Birth	Akuna
93	Zerihun Abyu	М	43	Married	Degree	Key	Government	Since Birth	Akuna
							Employee		
94	Werkneh Eshetie	М	65	Married	Diploma	General	Farmer	Since Birth	Akuna
95	Zenebu	F	52	Married	Illiterate	Key	House Wife	Since Birth	Akuna
	Kidanemariam								
96	Eshetu Zemene	М	28	Single	Diploma	General	Government	Since Birth	Akuna
							Employee		
97	Eshetu Getaneh	М	56	Married	Diploma	General	Self	Since Birth	Akuna
							Employed		
98	Alebel Getnet	М	39	Married	Degree	Key	Merchant	Since Birth	Akuna
99	Alehegn Asmamawu	М	41	Married	10th Drop	General	Merchant	Since Birth	Akuna
100	Shumetachew Adane	М	29	Married	Illiterate	Key	Farmer	Since Birth	Akuna
101	Bedlu Zewudu	М	49	Widowed	Illiterate	General	Farmer	Since Birth	Akuna
102	Amare Baye	М	21	Single	9th	General	Student	Since Birth	Akuna
103	Dejene Asmamawu	М	56	Widowed	Illiterate	Key	Merchant	> 35 years	Tara
104	Tizta Tamru	F	67	Married	Illiterate	General	House Wife	Since Birth	Tara
105	Etenesh Zewudu	F	43	Married	12th Drop	General	House Wife	Since Birth	Tara
106	Shwaye Demlew	F	59	Widowed	Illiterate	General	House Wife	Since Birth	Tara

107	Nardos Ngusie	F	29	Single	Degree	General	Government Employee	Since Birth	Tara
108	Tadele Tigab	М	30	Single	11th Drop	General	Farmer	Since Birth	Tara
109	Marshet Bayu	М	36	Married	Illiterate	Кеу	Farmer	Since Birth	Tara
110	Mulat Demoz	М	37	Widowed	Illiterate	General	Farmer	Since Birth	Tara
111	Azanaw Adugna	М	66	Married	Illiterate	General	Farmer	Since Birth	Tara
112	Misganaw Mret	М	31	Married	8th Drop	Key	Farmer	Since Birth	Tara
113	Esubalew Dereje	М	45	Married	Diploma	General	Merchant	Since Birth	Tara
114	Mebratu Asmare	М	59	Married	Degree	General	Self Employed	Since Birth	Tara
115	Bantenew Zewudu	М	67	Widowed	11th Drop	Кеу	Farmer	Since Birth	Tara
116	Baynesagn Amare	М	61	Married	Degree	General	Government Employee	Since Birth	Tara
117	Megabiyaw Tezera	М	56	Married	12th Drop	General	Merchant	Since Birth	Tara
118	Gzachew Beyene	М	34	Married	Illiterate	General	Farmer	Since Birth	Tara
119	Birku Biresaw	М	37	Married	Illiterate	General	Farmer	Since Birth	Tara
120	Mantegbosh Adisu	F	68	Married	Illiterate	General	House Wife	Since Birth	Tara
121	Mulatie Alebel	М	53	Married	Illiterate	Key	Farmer	Since Birth	Tara
122	Direje Mersha	М	36	Married	Illiterate	General	Merchant	Since Birth	Tara
123	Habtamu Asmare	М	42	Divorce	Illiterate	General	Farmer	Since Birth	Tara
124	Azmeraw Getahun	М	65	Married	Illiterate	General	Farmer	Since Birth	Tara
125	Debaka Ascheneke	F	45	Married	Illiterate	General	House Wife	Since Birth	Tara
126	Marie Ngusie	F	31	Married	7th Drop	Key	House Wife	Since Birth	Tara
127	Sisay Tiruneh	М	48	Married	12th Drop	Кеу	Self Employed	Since Birth	Ageta
128	Samrawit Aychew	F	57	Divorce	Illiterate	General	House Wife	Since Birth	Ageta
129	Debre Fikadu	F	22	Single	12 Th	Key	Student	Since Birth	Ageta
130	Anteneh Shferaw	М	38	Married	Illiterate	General	Merchant	Since Birth	Ageta
131	Belete Mamao	M	49	Divorce	Diploma	General	Merchant	Since Birth	Ageta
132	Fkadu Haile	М	62	Married	Illiterate	General	Farmer	Since Birth	Ageta

133	Dereje Alemneh	М	56	Married	10th Drop	Key	Merchant	Since Birth	Ageta
134	Marew Gebru	М	23	Single	Illiterate	General	Farmer	Since Birth	Ageta
135	Yalew Tajebe	М	47	Married	12th Drop	General	Farmer	Since Birth	Ageta
136	Degu Marew	М	67	Married	Diploma	General	Self	Since Birth	Ageta
							Employed		
137	Getaneh Asmare	М	68	Married	Illiterate	General	Farmer	Since Birth	Ageta
138	Wubetu Chane	М	47	Married	Illiterate	General	Farmer	Since Birth	Ageta
139	Zeleke Alamrew	М	69	Married	4 Th Drop	General	Farmer	Since Birth	Ageta
140	Mesafint Mulaw	М	46	Divorce	Illiterate	General	Farmer	Since Birth	Ageta
141	Bewuket Abera	М	24	Married	Illiterate	General	Farmer	Since Birth	Ageta
142	Nibret Asfaw	М	22	Married	Illiterate	General	Farmer	Since Birth	Ageta
143	Nguse Fkadie	М	22	Single	Degree	Key	Student	Since Birth	Ageta
144	Alebachew Setargew	М	46	Married	8 Th Drop	General	Farmer	Since Birth	Ageta
145	Tiftie Getu	F	68	Married	Illiterate	General	House Wife	Since Birth	Ageta
146	Demeku Gebre	F	64	Married	Illiterate	General	House Wife	Since Birth	Ageta
147	Mulunesh Nebsie	F	46	Married	8th Drop	General	House Wife	Since Birth	Ageta
148	Aynadis Chekole	F	40	Married	Illiterate	General	House Wife	Since Birth	Ageta
149	Tamrat Asrat	М	35	Married	6th Drop	General	Farmer	Since Birth	Ageta
150	Ayalew Stotaw	М	63	Married	Illiterate	General	Farmer	Since Birth	Ageta
151	Wondie Tarekegn	М	34	Married	Diploma	General	Merchant	Since Birth	Negade
									Meshageria
152	Ayenat Tefera	F	46	Married	10th Drop	General	House Wife	Since Birth	Negade
									Meshageria
153	Adane Tewachew	М	45	Married	Illiterate	Key	Farmer	Since Birth	Negade
									Meshageria
154	Godada Smegnew	F	38	Married	Illiterate	General	House Wife	Since Birth	Negade
									Meshageria
155	Truken Asres	F	69	Married	Illiterate	General	House Wife	Since Birth	Negade
									Meshageria
156	Trefe Tsegaye	Μ	35	Married	12th Drop	General	Farmer	Since Birth	Negade
									Meshageria
157	Adugna Hailemeskel	М	46	Married	Illiterate	General	Farmer	Since Birth	Negade

									Meshageria
158	Demsie Biru	М	73	Married	8th Drop	Key	Farmer	> 21 years	Negade
									Meshageria
159	Dagnaw Walelgn	М	45	Married	Diploma	General	Merchant	Since Birth	Negade
									Meshageria
160	Delelegn Wasie	М	37	Married	Illiterate	General	Farmer	Since Birth	Negade
									Meshageria
161	Berihun Zemene	М	46	Widowed	11th Drop	General	Farmer	Since Birth	Negade
									Meshageria
162	Chekole Berihun	М	58	Married	10th Drop	General	Farmer	Since Birth	Negade
									Meshageria
163	Endager Demoz	М	64	Married	Diploma	Key	Government	Since Birth	Negade
							Employee		Meshageria
164	Asres Tarekegn	М	25	Single	Illiterate	General	Self	Since Birth	Negade
							Employed		Meshageria
165	Netsanet	F	21	Married	Illiterate	Key	House Wife	Since Birth	Negade
	Weldegebrel								Meshageria
166	Tilanesh Admasu	F	46	Single	Illiterate	General	Self	Since Birth	Negade
							Employed		Meshageria
167	Atrsawgebeyew	М	58	Married	Illiterate	Key	Farmer	Since Birth	Negade
									Meshageria
168	Tigetu Ashenafi	М	64	Married	Illiterate	General	Farmer	Since Birth	Negade
									Meshageria
169	Demoz Asfaw	М	58	Married	Illiterate	Key	Merchant	Since Birth	Negade
									Meshageria
170	Habtam Sewagen	F	68	Married	Illiterate	Key	House Wife	Since Birth	Negade
									Meshageria
171	Hailemariew Goadie	М	63	Married	Illiterate	General	Farmer	Since Birth	Negade
									Meshageria
172	Girmay Addisu	М	52	Divorce	7th Drop	Key	Farmer	Since Birth	Negade
									Meshageria
173	Begosew Dagnaw	F	45	Widowed	12th Drop	General	Government	Since Birth	Negade
							Employer		Meshageria
174	Tigabu Ambachew	Μ	42	Married	Illiterate	General	Farmer	Since Birth	Ateba
175	Genetu Geremaw	М	38	Married	Degree	General	Government	Since Birth	Ateba
							Employee		

176	Alene Mewsha	М	64	Married	Illiterate	Key	Farmer	Since Birth	Ateba
177	Sifrash Berie	F	26	Married	Diploma	General	Government	Since Birth	Ateba
							Employee		
178	Yemsrach	F	38	Married	10th Drop	Key	House Wife	Since Birth	Ateba
	Wendmagegn								
179	Habtie Kiflu	М	27	Married	Illiterate	General	Self	Since Birth	Ateba
							Employed		
180	Habtie Weres	М	67	Married	Illiterate	Key	Farmer	Since Birth	Ateba
181	Wubnesh Ayalew	F	35	Married	Illiterate	General	House Wife	Since Birth	Ateba
182	Atrsaw Tsehayu	М	48	Married	Illiterate	General	Farmer	Since Birth	Ateba
183	Ayenew Sisay	М	32	Married	Diploma	General	Teacher	Since Birth	Ateba
184	Wudadis Fentie	М	45	Married	Illiterate	Кеу	Farmer	Since Birth	Ateba
185	Tilahun Zewale	М	25	Single	Illiterate	General	Farmer	Since Birth	Ateba
186	Aschalew Tajebe	М	38	Married	9 Th Drop	General	Merchant	Since Birth	Ateba
187	Azanaw Wubsera	М	43	Married	Diploma	Key	Government	Since Birth	Ateba
							Employee		
188	Syum Teshale	М	24	Single	10th	General	Student	Since Birth	Ateba
189	Mehabaw Chane	М	47	Married	12th Drop	Key	Merchant	Since Birth	Ateba
190	Degie Bayeh	F	38	Married	Illiterate	General	House Wife	Since Birth	Ateba
191	Adanu Tadese	F	43	Married	Illiterate	General	House Wife	> 25 years	Ateba
192	Alemsra Endalew	F	27	Single	11th Drop	General	Merchant	Since Birth	Ateba
193	Marye Getu	М	23	Married	Illiterate	General	Farmer	Since Birth	Ateba
194	Birhanu Molla	М	25	Married	Illiterate	General	Farmer	Since Birth	Ateba
195	Tsehayu Zewdie	М	26	Single	Illiterate	General	Farmer	Since Birth	Ateba
196	Genet Mewesha	F	36	Married	8th Drop	Key	Merchant	Since Birth	Ateba
197	Melaku Werkneh	М	24	Single	Illiterate	General	Farmer	Since Birth	Ateba
198	Fetlework Shetie	F	48	Married	Illiterate	General	House Wife	Since Birth	Ateba