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ABSTRACT  

With the rapid increase in intrusion attempts exhibiting nonlinear behavior, 

network traffic behaves unpredictably, and there is a massive feature in the problem 

domain, intrusion detection systems pose a complex challenge. Dealing with high-

dimensional and imbalanced datasets becomes an obstacle in real-world applications like 

intrusion detection systems (IDS). To overcome this problem we adopted feature 

selection considering the classification performance and computational efficiency. In this 

research work, we propose MI-RFE, a hybrid feature selection method tasked with a 

binary class intrusion detection system that exploits the qualities of both a filter method 

chosen because of its speed and a wrapper method because of its relevance in search. In 

the first phase of our approach, we utilize Mutual Information (MI) for its computational 

efficiency and ability to handle nonlinear datasets to rank the features based on their 

importance. In the second phase, we employ recursive feature elimination (RFE) which is 

a machine learning-based wrapper method to further reduce the feature dimensions. 

Additionally, we apply the Synthetic Minority Over-sampling Technique (SMOTE) to 

address class imbalances in the dataset. The optimal features obtained from the proposed 

method were evaluated using a Decision Tree (DT), K-nearest neighbors (KNN), 

Random Forest (RF), and XGBOOST and these algorithms were then combined using 

Stacking (DT + KNN + RF + XGBoost) techniques to improve their performance. Our 

experimental results obtained based on the CICIDS 2017 dataset confirmed that the 

proposed method improves the performance and computational time. The results show 

that the feature is reduced from 78 to 25 while the accuracy of DT is improved from 

93.94% to 99.34% and we achieve 99.92% by Stacking (DT + KNN + RF + XGBoost) 

using the reduced features.  

Keywords: MI, RFE, Stacking, SMOTE 
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CHAPTER ONE 

   INTRODUCTION 

1.1. Background  

In our modern world, the Internet has become an integral part of everyone's daily 

life, enabling individuals to carry out essential activities seamlessly. With the growing 

reliance on digitalization and the Internet of Things (IoT), there has been a significant 

rise in security incidents including unauthorized access, malware attacks, zero-day 

exploits, data breaches, denial-of-service (DoS) attacks, and social engineering or 

phishing attempts, among others, expanding at an exponential pace in recent times(Sarker 

et al., 2020). 

Cyber security is the proactive defense of systems, networks, and software against digital 

attacks. These cyber-attacks typically target sensitive information, aim to extort money or 

disrupt business operations. The evolving landscape, with more devices than people and 

increasingly sophisticated attackers, makes implementing effective cyber security 

measures a significant challenge. It entails safeguarding vital data and devices and 

ensuring confidentiality, integrity, and availability. While preventing breaches entirely 

may seem unattainable, security mechanisms aim to deter unauthorized access. Intrusion 

Detection, a field of research, focuses on identifying and responding to intrusion 

attempts, and mitigating potential damage(B. B. Gupta et al., 2020). 

Intrusion detection involves systematically observing the activities within a computer 

system or network, and examining them for indications of potential incidents. These 

incidents may include breaches or impending threats to computer security policies, 

acceptable use guidelines, or established security protocols(Thakkar & Lohiya, 2022). 

According to (Thakkar & Lohiya, 2022) intrusion detection systems (IDSs) are typically 

categorized into two primary types: anomaly detection systems and misuse detection 

systems, also known as signature-based systems. Anomaly detection systems operate by 

establishing rules that define normal behavior within a system. Any activity that 
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significantly deviates from these established norms is flagged as potentially suspicious or 

indicative of an attack. In contrast, misuse detection systems maintain a database of 

known attack signatures or patterns. When monitoring network traffic or system activity, 

the system compares this data against the stored signatures to identify known threats. 

However, this approach may be limited in detecting novel attacks that do not match 

existing signatures. 

According to (Thakkar & Lohiya, 2022) intrusion detection systems (IDSs) can also be 

categorized based on their installation method into Network Intrusion Detection Systems 

(NIDS) and Host Intrusion Detection Systems (HIDS). NIDS is strategically deployed at 

specific points within the network to monitor inbound and outbound traffic across all 

network devices. Conversely, HIDS operates directly on individual computers or devices 

within the network, providing monitoring capabilities for those systems with both internet 

and internal network access.  

IDS can't be perfect, primarily because network traffic is so complicated(Thakkar & 

Lohiya, 2022). According to those authors errors in IDS can be classified into two 

categories: false positives and false negatives. A false positive occurs when the IDS 

mistakenly identifies legitimate activity as malicious, generating a false alarm. On the 

other hand, a false negative represents a more severe scenario where the IDS fails to 

detect an actual attack, classifying malicious activity as acceptable. This failure to 

recognize an attack poses the most serious risk as security professionals remain unaware 

of the breach. While false positives are inconvenient and can lead to complications, false 

negatives present a significant security concern.  

Feature Selection (FS) is the act of identifying relevant features or a potential subset of 

features from a larger set of available features(Kumar, 2014). The utilization of 

evaluation criteria is essential in acquiring an optimal feature subset, a critical aspect for 

enhancing the efficiency of Intrusion Detection Systems (IDS). Given the extensive 

network connections and massive data flow on the Internet, IDS encounters challenges in 

accurately detecting attacks. Furthermore, the presence of irrelevant and redundant 

features significantly affects the quality of IDS, impacting both detection accuracy and 

processing costs. Consequently, Feature Selection (FS) emerges as a pivotal technique 

aimed at bolstering detection performance among these complexities(Sofiane Maza & 
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Mohamed Touahria, 2018). In this research work to reduce the irrelevant and redundant 

features, we use the FS approach. In general, two different approaches for FS can be 

distinguished(Jabali, 2017): filter and wrapper approaches. Using a filter approach, the 

selection of appropriate features is based on distance and information measures in the 

feature space and is carried out completely independently from the classifier deployed. In 

contrast, with a wrapper approach, the selection of features is based on the classifier's 

accuracy using a machine-learning classification or learning algorithm. Although a filter 

approach might be faster, we can apply a wrapper approach to achieve better 

classification results. To take advantage of both the filter and wrapper approach in this 

study we applied the Hybrid FS approach. 

1.2. Motivation and Statement of Problem  

In our modern world, the internet is a vital tool for work and everyday life, 

providing countless benefits. However, it also brings challenges, especially when it 

comes to security. With the internet expanding rapidly, we are seeing more and more 

cyber-attacks and intrusions. These attacks can cause serious harm to our computer 

systems and result in significant data loss. That's why it's crucial to develop effective 

ways to detect and prevent these harmful activities, ensuring the safety and reliability of 

our systems(B. B. Gupta et al., 2020). 

Because intrusion attempts exhibit nonlinear behavior, network traffic behaves 

unpredictably, and there is a massive feature in the problem domain, intrusion detection 

systems pose a complex challenge(Aghdam & Kabiri, 2016). Given the size and nature of 

intrusion detection datasets, intrusion detection systems (IDS) also often require high 

computational complexity to analyze data features and identify intrusive patterns (Umar 

et al., n.d.). Redundant and irrelevant features in IDS data have been a persistent issue in 

network traffic classification.  

Selecting effective and essential features is crucial in network IDS to enhance the 

detection rate of IDS models. While most IDSs employ a single-feature selection 

approach to categorize network traffic data as either normal behavior or anomalous, these 

single-feature selection approaches often fall short of achieving the optimal attack 

detection rate while maintaining a low false alarm rate(Panda et al., 2012). As other 

researchers start finding out different ways to increase accuracy and improve the model 
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of the intrusion detection system, there is still enough scope to increase the accuracy and 

efficiency of the model. In this area, the authors in(Khan et al., 2020) recommend future 

works to build a hybrid model to improve the accuracy of the model and to speed up the 

computation time of the model. In this study, we proposed a hybrid FS approach and 

stacking classification method.  

In the end, this study answers the following research questions:  

1. What are the features selected through the Hybrid Feature Selection method? 

2. Does implementing a Hybrid Feature Selection method improve the performance 

of the model? 

3. Does a combining classifier algorithm enhance the performance of the proposed 

model? 

1.3. Objective  

The objective of the study is described as general and specific objectives. 

1.3.1. General Objective  

The general objective of this thesis is to build a machine-learning intrusion detection 

model using a Hybrid feature selection approach.  

1.3.2. Specific Objectives  

 To propose an effective and efficient classifier model for the IDS using the 

Hybrid FS approach. 

 To explore features best suited for the IDS implementation. 

 To combine classifier algorithms to enhance the performance of the proposed 

model. 

 To compare the effectiveness of the proposed method with single Methods.  

1.4. Scope and Limitation  

This research paper focuses on building an intrusion detection model using a hybrid 

feature selection approach. The approach combines the strengths of both filter and 

wrapper methods to handle nonlinear datasets and reduce feature dimensions. Mutual 

Information (MI) from the filter method and Recursive Feature Elimination (RFE) from 

the wrapper method are selected for feature selection. Decision Tree (DT), K-nearest 
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neighbors (KNN), Random Forest (RF), and XGBoost are selected for classification and 

stacking techniques is used to combine those classifiers.  

Due to the challenge of obtaining a local dataset, the data used for this thesis work was 

obtained from publicly available data sources from the Canadian Institute of Cyber 

Security which is CICIDS 2017, and due to the lack of a high-performance computer, we 

used 20% of the data for our experiments.  

1.5. Significance of the Study 

This study addresses pressing issues in the field of cyber security, particularly in the 

realm of intrusion detection systems (IDS). By proposing a hybrid feature selection 

method (MI-RFE) and incorporating advanced machine learning techniques, the research 

offers substantial improvements in detecting cyber-attacks, which is of paramount 

importance in today's digital age where security threats are increasingly sophisticated and 

prevalent. The combination of MI from filter and RFE from wrapper methods for feature 

selection with ensemble learning techniques improves the performance, efficiency, and 

robustness of intrusion detection models, leading to better overall results. This approach 

leverages the strengths of each method, resulting in a highly effective IDS framework 

that can be adapted for various cyber security applications and improving cyber security 

measures across various sectors, by safeguarding critical digital infrastructure and 

sensitive information from malicious attacks. 

The following are the main contributions of this research work; 

 We build a hybrid feature selection method named MI-RFE for intrusion 

detection systems.  

 Our proposed model successfully reduces feature dimensionality from 78 to 25 

with accuracy of 99.34% for Decision Trees (DT), compared to 93.94% accuracy 

before feature selection. 

 By employing a stacking approach that combines Decision Trees (DT), K-Nearest 

Neighbors (KNN), Random Forest (RF), and XGBoost classifiers, we get an 

accuracy of 99.92% with reduced features and 99.75% with the full feature set. 
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 Our proposed feature selection method not only enhances model performance but 

also reduces computational overhead by decreasing the training and testing time 

of the classifier. 

1.6. Organization of the research 

The research is organized into five different chapters. 

Chapter One: This chapter presents an introduction to the study; including background, 

problem statement, objective, and significance of the study this provides sufficient 

information about the study to assist the reader to know the purpose of the study.  

Chapter Two: This chapter presents a literature review that explains cyber security, IDS, 

feature selection approaches, some machine learning algorithms, and related works that 

are discussed.  

Chapter Three: In this chapter, we discussed methods and methodology conducted for 

the model building including the dataset used, the preprocessing of the dataset, steps in 

feature selection, and the block diagram of the proposed model.  

Chapter Four: In this chapter, we discussed on results and discussion of the proposed 

model using the selected dataset. We conduct experiments using the Anaconda Navigator 

tool which has a Jupyter Notebook interface.  

 Chapter Five: In this chapter, we discussed the conclusions and recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Cyber Security  

The widespread adoption and usage of the Internet and mobile applications have 

expanded the realm of cyberspace. Consequently, cyberspace has become increasingly 

susceptible to automated and prolonged cyber-attacks. Cyber security techniques play a 

crucial role in bolstering security measures to detect and respond effectively to such 

cyber threats(Shaukat et al., 2020). 

According to (Humayun et al., 2020) cyber security encompasses a comprehensive 

collection of elements including strategies, policies, standards, procedures, guidelines, 

risk mitigation strategies, training, techniques, technologies, tools, and processes. These 

components work in concert to safeguard the confidentiality, integrity, and availability of 

computing resources, networks, software programs, and assets from potential attacks. 

Cyberspace represents a worldwide field within the realm of information, distinguished 

by its utilization of the electronic and electromagnetic spectrum. Its defining feature lies 

in the creation, updating, storage, sharing, and exploitation of information through 

interconnected and interdependent networks, facilitated by cutting-edge information and 

communication technologies(Humayun et al., 2020). Currently, cyber security stands as a 

pressing concern in the realm of cyberspace, demonstrating a marked escalation across 

diverse application domains, including finance, industry, healthcare, and other vital 

sectors(Alom & Taha, 2017). Cyber security defense mechanisms can be implemented at 

various levels, including application, network, host, and data. Examples of these defense 

mechanisms include access control, authentication methods, encryption techniques, 

firewalls, antivirus software, intrusion detection systems (IDSs), and intrusion prevention 

systems (IPSs). These measures work to both prevent attacks and detect security 

breaches(Berman et al., 2019). According to (Sarker et al., 2020) the primary objectives 
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of cyber security revolve around ensuring the confidentiality, availability, and integrity of 

information. 

 Confidentiality is a technique used to prevent the access and disclosure of 

information to unauthorized individuals, entities, or systems. 

 Integrity is a technique used to prevent any modification or destruction of 

information in an unauthorized manner. 

 Availability is a technique used to ensure timely and reliable access to 

information assets and systems to an authorized entity. 

2.2   Intrusion detection system 

The rapid growth of technology has certainly made life easier, yet it has also 

brought forth an excess of security concerns. With the evolution of the internet, the 

frequency of cyber-attacks has surged over the years. Intrusion Detection Systems (IDS) 

play a vital role in maintaining a secure environment for businesses by safeguarding 

against suspicious network activities. 

According to (Khraisat et al., 2019) intrusion is characterized as any unauthorized 

activity that results in harm to an information system. This encompasses any attack that 

could potentially endanger the confidentiality, integrity, or availability of information, 

thus qualifying as an intrusion. 

An Intrusion Detection System (IDS) is a software or hardware mechanism designed to 

detect and identify malicious or unauthorized activities on computer systems. Its primary 

function is to uphold system security by promptly identifying and responding to potential 

threats(Khraisat et al., 2019). The internet's growing impact on modern life underscores 

the significance of cyber security as a crucial area of research. Cyber security protection 

strategies primarily encompass anti-virus software, firewalls, access control, endpoint 

security, intrusion prevention systems, and intrusion detection systems (IDSs). These 

techniques are instrumental in safeguarding networks from both internal and external 

threats. Specifically, an IDS serves as a pivotal detection system, monitoring the 

operational states of software and hardware within a network to bolster cyber 

security(Liu & Lang, 2019a). 

An IDS is a computer security application designed to identify various security breaches, 

spanning from attempted external break-ins to system intrusions and misuse by internal 
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users (Liu & Lang, 2019a). The primary functions of IDSs include monitoring hosts and 

networks, analyzing the behaviors of computer systems, generating alerts, and responding 

to suspicious activities. Due to their role in monitoring connected hosts and networks, 

IDSs are commonly deployed in proximity to protected network nodes, such as switches 

within major network segments. 

Based on (Liu & Lang, 2019a) IDSs are classified into two main categories: detection-

based methods and data source-based methods. Detection methods further categorize 

IDSs into misuse detection and anomaly detection. Data source methods classify IDSs 

into host-based and network-based methods. 

2.2.1 IDS Classification by Detection Methods 

2.2.1.1  Signature-based intrusion detection systems 

Signature Intrusion Detection Systems (SIDS) rely on pattern-matching 

techniques to identify known attacks. These systems are also referred to as Knowledge-

based Detection or Misuse Detection(Khraisat et al., 2019). In SIDS, matching methods 

are employed to identify a past intrusion. Simply, when an intrusion signature aligns with 

the signature of a previous intrusion stored in the signature database, an alarm signal is 

activated. 

One of the primary advantages of SIDS is its ease of development and comprehension, 

particularly when there is a clear understanding of network traffic behavior and system 

activity(Jose et al., 2018). SIDS also excels in combating attacks with fixed behavioral 

patterns. 

The primary disadvantages of SIDS include the constant need for updating and 

maintaining the collection of signatures, which can fail to detect unique attacks. 

Additionally, they struggle to effectively handle self-modifying behavioral 

characteristics(Jose et al., 2018). 

2.2.1.2  Anomaly-based intrusion detection system (AIDS) 

AIDS establishes a baseline or learned pattern of typical system activity to discern 

active intrusion attempts. When deviations from this baseline or pattern occur, an alarm is 

triggered. In an anomaly detection engine, events are generated by any behaviors that 

deviate from the predefined or accepted model of behavior(Jose et al., 2018).  

In AIDS, a computer system's normal behavior model is established using machine 

learning, statistical-based, or knowledge-based techniques. Any substantial deviation 
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between observed behavior and the model is classified as an anomaly, potentially 

indicating an intrusion. The development of AIDS typically involves two phases: the 

training phase and the testing phase. During the training phase, the normal traffic profile 

is utilized to construct a model of typical behavior. Following this, during the testing 

phase, a new dataset is utilized to evaluate the system's capability to generalize to 

intrusions that it has not encountered before(Khraisat et al., 2019). 

The primary advantage of AIDS lies in its capability to detect zero-day attacks, as it 

doesn't depend on a signature database for recognizing abnormal user activity (Khraisat 

et al., 2019). The primary drawback of an anomaly detection system is the challenge of 

defining rules. It requires precise definition, implementation, and difficult testing of all 

protocols being analyzed to ensure accuracy (Jose et al., 2018). 

 Table 2. 1 Comparison of IDS based on detection methods. 

Anomaly-based Misuse or Signature-based 

Detects unknown attacks and 

vulnerabilities along with known 

attacks. 

Effective in identifying known attacks by 

performing contextual analysis 

It is less dependent on the operating 

system and rather examines the network 

patterns for identifying attacks. 

It depends on its software and operating 

system to identify both attacks and 

vulnerabilities 

It builds profiles of the observed 

network communication for identifying 

the attack patterns. 

The attack signature database should be 

updated regularly. 

The anomaly-based IDS conducts protocol 

analysis to examine the specifics of packets. 

The signature-based IDS have a minimum 

knowledge of protocols. 

Low missed alarm rate; High false alarm 

rate 

Low false alarm rate; High missed alarm rate 

2.3 Machine learning  

Machine learning (ML) is defined as the scientific exploration of algorithms and 

statistical models that empower computer systems to accomplish specific tasks without 

the need for explicit programming, as stated (Mahesh, 2018). Machine learning (ML) is 

employed to instruct machines on handling data more efficiently. In the context of 
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Intrusion Detection Systems (IDS), ML algorithms enable more accurate detection of 

attacks within large volumes of data in shorter timeframes(Saranya et al., 2020). ML 

algorithms can be classified into three categories(Saranya et al., 2020). 

 Supervised 

 Unsupervised 

 Semi-supervised 

2.3.1 Supervised Learning 

Supervised learning is a machine learning task focused on learning a function that 

links an input to an output, guided by example input-output pairs. It deduces a function 

from labeled training data, which comprises a collection of training examples(Mahesh, 

2018). Supervised learning pertains to fully class-labeled data, establishing the 

relationship between data and its respective class. This can be achieved through either 

classification or regression. Classification involves two key steps: training and testing. 

During training, the model learns from the labeled data with the assistance of the 

response variable(Saranya et al., 2020).  

2.3.2 Unsupervised Learning 

Unsupervised learning extracts valuable feature information from unlabeled data, 

simplifying the process of acquiring training data. However, the detection performance of 

unsupervised learning methods typically falls short of that achieved by supervised 

learning methods(Liu & Lang, 2019b). In intrusion detection, unsupervised learning 

algorithms aim to uncover hidden structures within unlabeled data. Unsupervised 

learning, unlike supervised learning, operates independently of any training data. This 

can be accomplished through methods such as clustering, association analysis, or 

dimensionality reduction(Saranya et al., 2020). In unsupervised learning, we lack 

knowledge of the correct output for a given input. Clustering stands out as one of the 

most widely used unsupervised approaches for detecting intrusion(A. R. bhai Gupta & 

Agrawal, 2020). 

2.3.3 Semi-Supervised Learning 

The semi-supervised machine learning (ML) algorithm resides between 

unsupervised learning and supervised learning. These techniques leverage both unlabeled 

data for training and a small portion of labeled data, especially in scenarios involving a 

large set of unlabeled data(Saranya et al., 2020). These algorithms are employed when we 
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possess a portion of data where the output is known for the corresponding input, while 

the output remains unknown for the rest of the data (A. R. bhai Gupta & Agrawal, 2020). 

2.3.4 Machine learning Algorithms 

2.3.4.1  Decision Tree 

Decision Tree (DT) serves as a supervised ML technique utilized for 

classification and regression tasks. The resultant model from the decision-making process 

resembles a tree structure, making DT relatively straightforward for users to interpret. 

Additionally, many ML tools offer the capability to visualize the resulting trees, further 

aiding in comprehension(Kasongo & Sun, 2020a). 

A decision tree is a graphical representation of choices and their outcomes in the form of 

a tree structure. Nodes in the graph depict events or decisions, while edges represent 

decision rules or conditions. Each tree comprises nodes and branches, with each node 

representing attributes grouped for classification and each branch indicating a possible 

value the node can assume(Mahesh, 2018). 

 

Figure 2. 1 Structure of DT algorithm. (Hafeez et al., 2021) 
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Advantages: 

The interpretation of a Decision Tree (DT) classifier is straightforward and can be easily 

grasped with a concise explanation. Inferences can be drawn from various probability 

estimations and costs, enabling the generation of precise outputs. Furthermore, it 

seamlessly integrates with other classification models, enhancing accuracy. DT classifiers 

excel in scenarios where the model is familiar with existing intrusion methods and 

scenarios, showcasing superior performance(Thakkar & Lohiya, 2021). 

Disadvantages: 

The DT classifier lacks adaptability to minor data alterations, often leading to unstable 

decision tree structures even with slight changes. When handling similar datasets, its 

accuracy tends to be relatively lower. Complexity arises when deriving nodes, especially 

with interconnected or uncertain data. Consequently, it's ill-suited for problems with 

limited information availability(Thakkar & Lohiya, 2021). 

2.3.4.2  Random Forest 

Random Forest is a prominent machine learning algorithm that employs a bagging 

approach to generate multiple decision trees, each trained on a random subset of the data. 

Through repeated training on random samples of the dataset, the Random Forest 

algorithm aims to achieve robust prediction performance. In this ensemble learning 

technique, the output of all decision trees within the Random Forest is aggregated to form 

the final prediction. This can be accomplished either by polling the results of each 

decision tree or by selecting the prediction that occurs most frequently across the decision 

trees. RF constructs many decision trees based on the instances of class and the root of a 

random forest tree is selected by suitable voting from each class of the tree 

constructed(Thakkar & Lohiya, 2021). RF works by creating a forest of decision trees 

and merges them to form a more accurate model that can be used for both classification 

and regression(Jhaveri et al., 2019). 



14 

 

 

Figure 2. 2 How RF is working 

Advantages: 

Random Forest (RF) applies even to large datasets with numerous features. It evaluates 

the significance of each feature individually, ensuring balanced model performance. 

Notably, RF mitigates over-fitting issues and adeptly manages unbalanced 

datasets(Thakkar & Lohiya, 2021). 

Disadvantages:  

RF model isn't straightforward due to the numerous trees it generates. These complexities 

can difficult real-time classification, predictions, especially with a large number of trees. 

Consequently, the model's speed decreases as the number of trees increases(Thakkar & 

Lohiya, 2021). 

2.3.4.3  K-Nearest Neighbors 

K-nearest neighbor (KNN) is a supervised classification technique that assigns a 

class to data based on the class of its nearest neighbor. The algorithm determines the 

classes by considering the value of k, which represents the number of nearest neighbors 

to consider. It predicts the class of a data sample by assessing consistency and distance 
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with its closest neighbor. Distance metrics such as Euclidean and Manhattan distances are 

commonly used to measure the distances between data points and their nearest neighbors. 

Since all data points are stored in memory, KNN is often referred to as a memory-based 

technique. To enhance algorithm performance, weights can be assigned to training points 

based on their distances from the data points. However, managing computational 

complexity and memory requirements are significant concerns for this technique. These 

challenges can be addressed by reducing the dataset size or eliminating data points that 

do not contribute to recurring patterns(Thakkar & Lohiya, 2021). 

Advantages: 

It is a cost-effective algorithm as no computational time is required to learn the data. 

Even with large datasets, it performs effectively by employing simple methods to assume 

local approximation. 

Disadvantages:  

The interpretation of the model is very complex due to the absence of any description of 

the training data. The learning process can be costly, given the laborious task of 

identifying the k-nearest neighbors, particularly when dealing with extensive datasets 

stored in memory. It might require a very large dataset. The performance of the algorithm 

is completely dependent upon the attributes selected for computation and hence, it results 

in a curse of dimensionality for the dataset considered(Thakkar & Lohiya, 2021). 

2.3.4.4  XGBoost 

XGBoost stands for Extreme Gradient Boosting, which implements a gradient 

boosting technique using decision trees. It constructs small, simple decision trees 

iteratively, with each tree acting as a weak learner due to its high bias. XGBoost starts by 

building an initial basic tree that performs poorly. The next tree is trained to predict the 

errors of the first tree, improving upon what the initial weak learner couldn't capture. This 

process continues, with each new tree correcting the mistakes of the previous ones until a 

stopping condition is met, such as the predetermined number of trees (estimators) to be 

created. XGBoost also offers significant advantages: it trains quickly and can be 

parallelized or distributed across clusters for enhanced performance(Arif Ali et al., 2023). 

XGBoost combines weak classifiers to create a strong model. It incorporates feedback 

from previously constructed decision trees. Each iteration of gradient boosting optimizes 
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the loss function, aiming to minimize the residuals from the previous step. These 

residuals represent the difference between the predicted values and the true values. By 

iteratively refining these predictions, XGBoost enhances the overall model 

accuracy(Faysal et al., 2022). 

2.3.4.5 Stacking  

Stacking is an ensemble machine learning method that permits the mixture of two 

or more classifier algorithms and prepares a final model with accurate prediction. The 

best thing about the stacking ensemble is that it often used the benefits of the various 

algorithms at the identical time and therefore the capabilities of well-performing models 

to solve classification and regression problems. 

Stacking is an effective strategy as it serves as a useful framework that integrates various 

ensemble methods. It operates on two levels of learning: base learning and meta-learning. 

During base learning, initial (base) learners are trained using the training dataset. 

Subsequently, these base learners generate a new dataset for the meta-learner. The meta-

learner is then trained using this new dataset. Once trained, the meta-learner is utilized to 

classify the test set. A critical aspect of stacking lies in selecting the best base learner. 

Instead of relying on a single base learner, employing multiple base learners enhances 

performance on the training dataset(Rajadurai & Gandhi, 2022). 

2.4  Feature selection methods  

Feature selection involves the elimination of irrelevant and redundant features 

from a dataset, aiming to enhance the performance of machine learning algorithms in 

terms of accuracy and the time required to build the model (Asir et al., 2016). Feature 

selection methods are crucial in enhancing the performance and accuracy of machine 

learning algorithms. Feature selection (FS) serves as an essential preprocessing 

technique, enabling the selection of an optimal subset of relevant features from the 

original feature set for constructing machine learning models(Umar et al., 2021). This is 

accomplished by reducing the number of features through the removal of irrelevant, 

redundant, or noisy data, which directly impacts the performance of the subsequent 

model built.  

According to (Umar et al., 2021), The typical feature selection procedures encompass the 

following steps. 
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1. Subset generation: produces candidate feature subsets for evaluation based on 

search starting point, direction, and strategy. 

2. Subset evaluation: evaluates and compares candidate subset with the preceding 

best subset based on certain evaluation criteria. If the new subset happens to 

outperform the previous best subset, it will be replaced. The evaluation criteria 

can be independent (used in filter methods) or dependent (used in wrapper 

methods). 

3. Stopping criterion: controls the stoppage of the feature selection process. The 

iteration of subset generation and evaluation continues until a predetermined 

stopping criterion is met. 

4. Result validation: The selected best subset is validated through prior knowledge 

or various tests using synthetic and/or real-world datasets. 

According to (Asir et al., 2016) feature selection approaches are categorized into three 

main categories: wrapper, filter, and hybrid methods. 

2.4.1 Filter feature selection method  

Filters aim to select an optimal feature subset based on the inherent characteristics 

of the data rather than a specific learning algorithm. Generally, filters compute the score 

of a feature (subset) using certain evaluation criteria and then select features with the 

highest scores (Hancer et al., 2020). Within the filter method, the model initially 

incorporates all features and subsequently identifies the optimal feature subset using 

statistical measures like Pearson’s correlation, Linear Discriminant Analysis (LDA), Chi-

square, and Mutual Information (MI). These statistical techniques rely on both the 

response and feature variables within the dataset(Hancer et al., 2020). 

2.4.1.1  Mutual information 

MI feature selection is a commonly used filter method for improving the 

performance of intrusion detection systems (IDS) (Alalhareth & Hong, 2023). This 

method evaluates the relationship between each feature and the class label or the target 

variable, choosing features with the highest mutual information scores. One of the 

primary benefits of using mutual information is its ability to consider nonlinear 

relationships between features and class labels. This characteristic renders mutual 

information making it suitable for handling complex and nonlinear data patterns in IDS. 

By selecting the most relevant and informative features, mutual information feature 
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selection can effectively reduce the dimensionality of the data and improve the degree of 

mutual dependence between two variables (x, y). MI assesses the amount of information 

acquired about one arbitrary variable through the other random variable(Venkatesh & 

Anuradha, 2019).  

Mutual Information (MI) serves as a statistical method employed in feature selection. It 

quantifies the two discrete variables, the mutual information MI criterion is the amount of 

information these variables share about each other (Al-rimy et al., 2021). Based on those 

authors the criterion is calculated according to (1) as follows. 

MI(X;Y)= ∑ ∑ P(x,y)

x£Xy£Y

log
p(x,y)

p(x)p(y)
                                                                             1 

 p(x) and p(y) represent the marginal distributions of x and y, while p(x, y) denotes their 

joint distribution. 

2.4.2 Wrapper feature selection Method 

Wrapper-based feature selection methods rely on the predictive power of the 

learning algorithm used to assess the qualitative attributes of selected features. In these 

methods, feature selection occurs in two primary steps for a specific learning model: i) 

identifying an optimal feature subset from the dataset, and ii) evaluating the chosen 

features. This iterative process continues until certain termination criteria are satisfied. 

The feature set search component generates subsets of features, and subsequently, the 

machine learning technique is employed to gauge the effectiveness of the selected feature 

set based on performance metrics(Thakkar & Lohiya, 2022). 

Wrappers necessitate a learner to assess the quality of potential feature subsets. 

Consequently, wrappers can achieve superior feature subsets to improve the performance 

of the predefined learning algorithm. However, they often entail higher computational 

intensity compared to filters. Firstly, wrappers obtain a feature subset utilizing search 

strategies. Subsequently, the selected feature subset's quality is evaluated through a 

learning algorithm. This iterative process continues until the stopping criterion is 

satisfied(Hancer et al., 2020). 

2.4.3 Hybrid feature selection method  

Hybrid approaches strive to leverage the benefits of both wrappers and filters. 

Two common hybridization methods are typically employed to combine wrappers and 
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filters. One approach involves a two-stage process wherein a filter method is first applied 

to reduce the feature set, followed by a wrapper method on the reduced set to obtain the 

final subset. Alternatively, a filter (wrapper) method can serve as a local search 

mechanism within a wrapper (filter) method. The latter method is anticipated to yield 

superior performance in terms of both learning outcomes and feature subset size (Hancer 

et al., 2020). In this study, we apply the hybrid method to obtain the advantages of both 

the wrapper and filter methods.  

                                                                                   

Figure 2. 3 Classification of Feature selection approach  

2.5 Related work  

The authors (Kasongo & Sun, 2020b) proposed a filter-based feature reduction 

technique using the XGBoost algorithm to score the feature importance of each feature of 

the dataset. They evaluated several ML algorithms including SVM, KNN, LR, ANN, and 

DT classifiers using the UNSW-NB15 dataset. Finally, their experiment achieved an 

accuracy of 90.85% by DT. The authors trained their proposed method on highly 

imbalanced datasets without employing any techniques to address this imbalance, which 

can lead to a high false positive rate and low detection accuracy.  

 The author (Almasoudy et al., 2020) proposed wrapper feature selection for an Intrusion 

Detection system using Differential Evolution (DE) for feature selection and they applied 

an Extreme Learning Machine (ELM) algorithm for classification, their experimental 

showed that this technique achieved an accuracy of 80.15 % using NSL_KDD  datasets. 

The author uses only the Differential Evolution (DE) which is the wrapper feature 

selection method without reducing the features which leads to high computational time. 
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The author (Khan et al., 2020) introduced a wrapper-based feature selection approach 

using the Feature Importance model with an RF classifier for intrusion detection systems. 

They used KNN, DT, RF, Bagging Meta Estimator, and XGBoost ML algorithms for 

classification. Their experimental results have shown that RF achieved the highest 

accuracy of 74.87% using UNSW-NB 15 datasets. The authors in this paper recommend 

building a hybrid architecture of the method to further improve the accuracy of the model 

as well as speed up the computation time of the model. The author uses ensemble feature 

selection methods which require higher computational costs particularly challenging 

when handling large-scale datasets.  

In this (Nazir & Khan, 2021) paper the authors introduce a wrapper-based feature 

selection technique Tabu Search - Random Forest (TS-RF). Tabu search serves as the 

search method, while RF acts as the learning algorithm for NIDS. They achieved an 

accuracy of 83.12% using UNSW-NB 15 datasets. The authors use only a Tabu search 

wrapper feature selection approach without reducing the feature which leads to high 

computational time and they have not used any technique to solve the imbalance problem 

in the dataset because this has an impact on the classifier accuracy and also increases 

misclassification rate and false positives.  

The authors (Mebawondu et al., 2020) proposed IDS using a filter-based information gain 

to rank the features as feature selection and ANN as classification, and finally their 

experiment result achieved 76.96% accuracy using UNSW-NB 15 datasets. The author 

uses only information gain for feature selection without evaluated using machine learning 

based techniques whether those features are relevant or not. Using hybrid feature 

selection algorithms, the system's performance can be further enhanced. 

The author (Taher et al., 2019) proposes an intrusion detection system to detect malicious 

attacks using ANN and SVM algorithms for classification, the applied  Chi-Square filter 

method, and the Correlation-based wrapper feature selection techniques. Their 

Experimental results showed that achieved the highest accuracy of 94.02% using the 

NSL-KDD dataset by ANN. 
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The authors (Jing & Chen, 2019)  proposed network intrusion detection without a feature 

selection approach using an SVM classifier, and finally, their experiment achieved an 

accuracy of 85.99% using UNSW-NB 15. The proposed method was evaluated using 

only a single classifier and SVM unsuitable for large datasets, not considering 

computational efficiency.  

The author (Ahmim et al., 2018) proposes an intrusion detection system (IDS) that 

combines different classifier approaches that are based on decision tree and rules-based 

concepts, namely, REP Tree, JRip algorithm, and Forest PA without applying any feature 

selection method using CICIDS 2017 datasets and he achieved an accuracy of 96.6% by 

Forest PA. The author does not apply any feature selection method which may lead to 

overfitting, decreased model performance, longer training and prediction times, and he 

does not use any technique for handling the imbalance classes in the datasets. 

The authors (Ambikavathi & Srivatsa, 2020) propose an intrusion detection system (IDS) 

using the Random forest’s variable importance function VarImp() to obtain the optimal 

features, RF is also used for classification and they achieved an accuracy of 97.34% 

utilized CICIDS 2017 datasets. The authors focus on the Random Forest algorithm for 

both feature selection and classification this single-algorithm focus might restrict the 

ability to handle various types of data patterns and attack behaviors optimally. 

Incorporating and comparing multiple algorithms could provide a more comprehensive 

evaluation and possibly better performance for intrusion detection systems. They do not 

apply any techniques for solving imbalance classes in the dataset.  

Table 2. 2 Summary of the related works 

Proposed by Feature 

Selection 

Technique 

Classifier 

Algorithm  

Dataset 

used 

Limitation  

(Kasongo & 

Sun, 2020b) 

XGBoost  SVM, 

KNN, LR, 

ANN, and 

DT 

UNSW-

NB15 

The authors trained their 

proposed method on 

highly imbalanced datasets 

without employing any 
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techniques to address this 

imbalance class, which 

can lead to a high false 

positive rate and low 

detection accuracy. 

(Almasoudy 

et al., 2020) 

Differential 

Evolution (DE) 

Extreme 

Learning 

Machine 

(ELM) 

NSL_KDD   The author uses only the 

Differential Evolution 

(DE) which is the wrapper 

feature selection method 

without reducing the 

features which leads to 

high computational time. 

(Khan et al., 

2020) 

Feature 

Importance(RF) 

KNN, DT, 

RF,  

Bagging 

Meta 

Estimator,  

and 

XGBoost 

UNSW-NB 

15 

The author uses ensemble 

feature selection methods 

which require higher 

computational costs 

particularly challenging 

when handling large-scale 

datasets. 

(Nazir & 

Khan, 2021) 

Tabu Search RF UNSW-NB 

15 

The authors use only a 

Tabu search wrapper 

feature selection approach 

without reducing the 

feature which leads to high 

computational time and 

they have not used any 

technique to solve the 

imbalance problem in the 

dataset because this has an 

impact on the classifier 

accuracy and also 
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increases misclassification 

rate and false positives 

(Mebawondu 

et al., 2020) 

Information 

Gain 

ANN UNSW-NB 

15 

The author uses 

information gain for 

feature selection without 

using advanced feature 

selection techniques to 

evaluate whether those 

features are relevant or not  

(Jing & 

Chen, 2019)   

Not applied  SVM KDDCUP99 The proposed method was 

evaluated using only a 

single classifier and SVM 

unsuitable for large 

datasets, not considering 

computational efficiency. 

(Ahmim et 

al., 2018) 

Not applied  REP Tree, 

JRip, and 

Forest PA   

CICIDS 

2017 

The author does not apply 

any feature selection 

method which may lead to 

overfitting, decreased 

model performance, 

longer training and 

prediction times, and he 

does not use any technique 

for handling the imbalance 

classes in the datasets. 

(Ambikavathi 

& Srivatsa, 

2020) 

Random 

forest’s 

variable 

importance 

function 

VarImp() 

RF  CICIDS 

2017 

The authors focus on the 

Random Forest algorithm 

for both feature selection 

and classification this 

single-algorithm focus 

might restrict the ability to 
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handle various types of 

data patterns and attack 

behaviors optimally 

2.5.1 Gap Analysis  

The previous existing works have several limitations in feature selection, 

classification, class imbalance handling, and computational time. Those using the filter 

approach often fail to identify the most relevant features accurately, as this method 

assesses features statically without incorporating a machine learning algorithm. 

Conversely, studies employing the wrapper method face high computational costs due to 

the iterative nature of using a machine-learning algorithm for feature selection. A 

combined approach, where the filter method initially reduces the feature set and the 

wrapper method subsequently evaluates the reduced set, can mitigate these issues. 

Additionally, some studies neglect feature selection entirely, resulting in over fitting, 

reduced model performance, and longer training and prediction times. Furthermore, many 

of these works do not employ resampling techniques to address class imbalance in the 

datasets. To address the limitations identified in the literature we reviewed, we propose a 

Hybrid Feature Selection approach and combine classifiers using Stacking (DT + KNN + 

RF + XGBoost). Additionally, we apply resampling techniques to address the class 

imbalance in the dataset. 
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CHAPTER THREE 

METHODOLOGY 

In this section, we outline the dataset used, the experimental setup, the feature 

selection methodology employed, the classification algorithms utilized, the tools 

employed for experimentation, and the block diagram of the proposed model. 

3.1 Dataset collection and preparation 

Due to the lack of an adequate dataset, anomaly-based approaches in intrusion 

detection systems are suffering from accurate deployment, analysis, and 

evaluation(Sharafaldin et al., 2018). Privacy concerns make it difficult to obtain private 

local datasets for Intrusion Detection Systems (IDS). As a result, many researchers rely 

on public datasets to evaluate their machine-learning models. Datasets like DARPA98, 

KDD99, ISC2012, and ADFA13 are commonly used benchmarks in IDS research for 

assessing the performance of proposed intrusion detection and prevention 

approaches(Sharafaldin et al., 2018).  

Several of the above-mentioned datasets are outdated and deemed unreliable due to 

various shortcomings. Some lack traffic diversity and volume, while others fail to 

encompass a wide range of attacks. Additionally, certain datasets contain payloads that 

do not reflect current trends, or they lack comprehensive feature sets and 

metadata(Sharafaldin et al., 2018). Assessing datasets is crucial in validating IDS 

approaches, as it enables us to evaluate the effectiveness of proposed methods in 

detecting intrusive behavior (Khraisat et al., 2019). 

(Gharib et al., 2016) proposed evaluation framework for Intrusion Detection datasets 

outlines 11 criteria for evaluation. The criteria include Complete Network Configuration, 

Complete Traffic Representation, Labeled Dataset, Comprehensive Interaction Coverage, 

Complete Capture, Availability of Protocols, Attack Diversity, Anonymity, 

Heterogeneity, Feature Set, and Metadata.  
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According to (Sharafaldin et al., 2018) the CICIDS 2017 dataset meets all 11 criteria 

outlined in the intrusion detection dataset evaluation framework. Hence, for this study, 

we chose the CIC-IDS 2017 dataset, prepared by the University of New Brunswick 

Institute Of Cyber Security (Canada). This dataset comprises both benign traffic and the 

latest common attacks, closely resembling real-world data. Additionally, it provides 

results of network traffic analysis using the CIC Flow Meter, with labeled flows 

categorized by timestamp, source and destination IPs, source and destination ports, 

protocols, and attacks in Comma Separated Values (CSV) files. 

3.1.1 Dataset description  

The CICIDS2017 dataset consists of both benign traffic and the latest common 

attacks, mirroring real-world data (PCAPs). Additionally, it offers results from network 

traffic analysis conducted using CICFlowMeter, with labeled flows including 

timestamps, source and destination IPs, source and destination ports, protocols, and 

attacks (stored in CSV files). Table 4 provides details on the victim and attacker network 

information, including their IP addresses. 

Table 3. 1 Victim and Attacker Network Information in the CICIDS 2017 Dataset 

Network device  IP Address  

Firewall 205.174.165.80, 172.16.0.1 

DNS+DC Server 192.168.10.3 

Outsiders (Attackers network)  

Kali 205.174.165.73 

Win 205.174.165.69, 70, 71 

Insiders (Victim network)  

Web server 16 Public 192.168.10.50, 205.174.165.68 

Ubuntu Server 12 Public 192.168.10.51, 205.174.165.66 

Ubuntu 14.4, 32B 192.168.10.19 

Ubuntu 14.4, 64B 192.168.10.17 

Ubuntu 16.4, 32B 192.168.10.16 

Ubuntu 16.4, 64B 192.168.10.12 

Win 7 Pro, 64B 192.168.10.9 
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Win 8.1, 64B 192.168.10.5 

Win Vista, 64B 192.168.10.8 

Win 10, pro 32B 192.168.10.14 

Win 10, 64B 192.168.10.15 

MAC 192.168.10.25 

The data capture period spanned from 9 a.m. on Monday, July 3, 2017, to 5 p.m. on 

Friday, July 7, 2017, totaling 5 days. Monday's data comprises normal benign traffic 

only. The attacks including Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web 

Attack, Infiltration, Botnet, and DDoS, happened both in the morning and afternoon on 

Tuesday, Wednesday, Thursday, and Friday. Table 4 details the types of attacks observed 

on each of the five days. 

Table 3. 2 Description of files containing the CICIDS2017 dataset with attack found 

No  Name of the file  Day 

Activity  

Attacks Found Total 

attack  

1.  Monday-

WorkingHours.pcap_ISCX.csv 

Monday  Benign (Normal 

human activities) 

0 

2.  Tuesday-

WorkingHours.pcap_ISCX.csv 

Tuesday  Benign, FTP-Patator, 

SSH-Patator  

2 

3.  Wednesday-

workingHours.pcap_ISCX.csv 

Wednesday  Benign, DoS 

GoldenEye,  

DoSHulk, 

DoSSlowhttptest, 

DoS slow loris, 

Heartbleed  

5 

4.  Thursday-WorkingHours-

Morning-WebAttacks.pcap_ 

ISCX.csv 

Thursday  Benign, Web Attack 

– Brute Force, Web 

Attack – SQL 

Injection, Web 

Attack – XSS  

3 

5.  Thursday-WorkingHours-

Afternoon-Infiltration.pcap_ 

ISCX.csv 

Thursday Benign, Infiltration  1 

6.  Friday-WorkingHours-

Morning.pcap_ISCX.csv 

Friday  Benign, Bot  1 
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7.  Friday-WorkingHours-

Afternoon-

PortScan.pcap_ISCX.csv 

Friday Benign, PortScan  1 

8.  Friday-WorkingHours-

Afternoon-

DDos.pcap_ISCX.csv 

Friday Benign, DDoS  1 

Total  8 fillies  5 days  15  (1 normal + 14 

Attack) 

14  

The CICIDS2017 dataset closely mimics real-world network data (PCAPs) and employs 

CICFlowmeter-V3.0 to extract 78 features and 1 label. It encompasses the behavioral 

profiles of 25 users across HTTP, HTTPS, FTP, SSH, and email protocols(Maseer et al., 

2021). Table 6 lists the 78 features and 1 label class with their descriptions. 

Table 3. 3 The 78 features and the label class of the CICIDS 2017 dataset record 

Future 

no.    

Feature Name Description 

1.  Destination Port  The port number on the destination host 

2.  Flow Duration Duration of the flow in Microseconds 

3.  Total Fwd Packets Total packets in the forward direction 

4.  Total Backward Packets Total packets in the backward direction 

5.  Total Length of Fwd 

Packets 

The total size of the packet in a forward direction 

6.  Total Length of Bwd 

Packets 

The total size of the packet in a backward direction  

7.  Fwd Packet Length Max Maximum size of the packet in a forward direction 

8.  Fwd Packet Length Min Minimum size of the packet in a forward direction 

9.  Fwd Packet Length Mean The mean size of the packet in a forward direction 

10.  Fwd Packet Length Std Standard deviation size of the packet in a forward 

direction 

11.  Bwd Packet Length Max Maximum size of the packet in a backward 

direction 



29 

 

12.  Bwd Packet Length Min The minimum size of the packet in a backward 

direction 

13.  Bwd Packet Length Mean The mean size of the packet in a backward 

direction 

14.  Bwd Packet Length Std Standard deviation size of the packet in a backward 

direction 

15.  Flow Bytes/s Number of flow bytes per second 

16.  Flow Packets/s Number of flow packets per second 

17.  Flow IAT Mean Mean time between two packets sent in the flow 

18.  Flow IAT Std Standard deviation time between two packets sent 

in the flow 

19.  Flow IAT Max, Maximum time between two packets sent in the 

flow 

20.  Flow IAT Min Minimum time between two packets sent in the 

flow 

21.  Fwd IAT Total Total time between two packets sent in the forward 

direction 

22.  Fwd IAT Mean Mean time between two packets sent in the 

forward direction 

23.  Fwd IAT Std Standard deviation time between two packets sent 

in the forward direction 

24.  Fwd IAT Max Maximum time between two packets sent in the 

forward direction 

25.  Fwd IAT Min Minimum time between two packets sent in the 

forward direction 

26.  Bwd IAT Total Total time between two packets sent in the 

backward direction 

27.  Bwd IAT Mean Mean time between two packets sent in the 

backward direction 

28.  Bwd IAT Std  Standard deviation time between two packets sent 
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in the backward direction 

29.  Bwd IAT Max Maximum time between two packets sent in the 

backward direction 

30.  Bwd IAT Min Minimum time between two packets sent in the 

backward direction 

31.  Fwd PSH Flags Number of times the PSH flag was set in packets 

traveling in the forward direction (0 for UDP) 

32.  Bwd PSH Flags Number of times the PSH flag was set in packets 

traveling in the backward direction (0 for UDP) 

33.  Fwd URG Flags Number of times the URG flag was set in packets 

traveling in the forward direction (0 for UDP) 

34.  Bwd URG Flags Number of times the URG flag was set in packets 

traveling in the backward direction (0 for UDP) 

35.  Fwd Header Length Total bytes used for headers in the forward 

direction 

36.  Bwd Header Length Total bytes used for headers in the backward 

direction 

37.  Fwd Packets/s Number of forwarding packets per second 

38.  Bwd Packets/s Number of backward packets per second 

39.  Min Packet Length Minimum length of a packet 

40.  Max Packet Length Maximum length of a packet 

41.  Packet Length Mean The mean length of a packet 

42.  Packet Length Std Standard deviation length of a packet 

43.  Packet Length Variance Variance length of a packet 

44.  FIN Flag Count Number of packets with FIN 

45.  SYN Flag Count Number of packets with SYN 

46.  RST Flag Count Number of packets with RST 

47.  PSH Flag Count Number of packets with PUSH 

48.  ACK Flag Count Number of packets with ACK 

49.  URG Flag Count Number of packets with URG 
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50.  CWE Flag Count Number of packets with CWE 

51.  ECE Flag Count Number of packets with ECE 

52.  Down/Up Ratio Download and upload ratio 

53.  Average Packet Size The average size of a packet 

54.  Avg Fwd Segment Size Average size observed in the forward direction 

55.  Avg Bwd Segment Size Average number of bytes bulk rate in the backward 

direction 

56.  Fwd Header Length Total bytes used for headers in the forward 

direction 

57.  Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward 

direction 

58.  Fwd Avg Packets/Bulk Average number of packets bulk rate in the 

forward direction 

59.  Fwd Avg Bulk Rate Average number of bulk rates in the forward 

direction 

60.  Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward 

direction 

61.  BwdAvg Packets/Bulk Average number of packets bulk rate in the 

backward direction 

62.  Bwd Avg Bulk Rate  Average number of bulk rates in the backward 

direction 

63.  Subflow Fwd Packets  The average number of packets in a sub-flow in the 

forward direction 

64.  Subflow Fwd Bytes  The average number of bytes in a sub-flow in the 

forward direction 

65.  Subflow Bwd Packets  The average number of packets in a sub-flow in the 

backward direction 

66.  Subflow Bwd Bytes  The average number of bytes in a sub-flow in the 

backward direction 

67.  Init_Win_bytes_forward  The total number of bytes sent in an initial window 
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in the forward direction 

68.  Init_Win_bytes_backward  The total number of bytes sent in an initial window 

in the backward direction 

69.  act_data_pkt_fwd  Count of packets with at least 1 byte of TCP data 

payload in the forward direction 

70.  min_seg_size_forward Minimum segment size observed in the forward 

direction 

71.  Active Mean  Meantime a flow was active before becoming idle 

72.  Active Std  Standard deviation time a flow was active before 

becoming idle 

73.  Active Max  The maximum time a flow was active before 

becoming idle 

74.  Active Min  The minimum time a flow was active before 

becoming idle 

75.  Idle Mean  Meantime a flow was idle before becoming active 

76.  Idle Std Standard deviation time a flow was idle before 

becoming active 

77.  Idle Max The maximum time a flow was idle before 

becoming active 

78.  Idle Min  The minimum time a flow was idle before 

becoming active 

79.  Label Target class 

3.2 Data preprocessing 

The primary objective of preprocessing in machine learning is to optimize the 

training and testing process by effectively transforming and scaling the dataset. This 

critical step in the ML workflow involves preparing the data before applying it to an ML 

algorithm. Preprocessing scales features to a consistent range, enhancing accuracy, 

reducing the time and resources needed for model training, preventing over fitting, and 

improving the model's interpretability(Al Lail et al., 2023). 

In our research, we used the MachineLearning.CSV data subset from the CICIDS-2017 

dataset. This file comprises eight (8) traffic monitoring sessions, each presented in a 
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comma-separated value (CSV) format(Maseer et al., 2021).  This file encompasses both 

normal traffic labeled as BENIGN and anomaly traffic labeled as ATTACKS. The 

specific attack types are further detailed in the fourth column of Table 4. Apart from 

benign traffic, this dataset includes 14 types of attacks. As outlined in Table 4, the label 

class indicates whether the traffic is normal or an attack, where normal corresponds to 

Benign and the listed attacks.  

The dataset used have a total of 2,830,743 records out of the total 2,273,097 records are 

benign and 557,646 are attacks.  

 

Figure 3. 1 Class distribution of the total CICIDC 2017 dataset 

In the preprocessing phase, we first concatenate the eight files into one containing all 

files. Then we applied random sampling to select 20% of the dataset for our 

preprocessing because of a shortage of resources out of 2,830,743 records, we selected 

566,149 records and 79 columns.  

 

Figure 3. 2 Selecting 20% of CICIDS 2017 dataset 

A crucial step in preprocessing is cleaning the dataset(Al Lail et al., 2023). The cleaning 

of the data includes finding incomplete, improper, inaccurate, or unnecessary data, by 

replacing, modifying, or deleting these data from the dataset. In our preprocessing rows 

with null values, duplicates, and empty cells, such as infinity (Inf) and not a number 

(NaN) are dropped. To improve quality the dataset we have remove total of 1,172 infinity 

(Inf) values and 38,255 duplicate rows using python code.  
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Figure 3. 3 Data cleaning output 

The initial CICIDS-2017 dataset also contains categorical features (e.g., labels) that need 

to be converted into numerical values to prepare them for the ML algorithms. We have 

converted the categorical values in the label class to numeric values by designating the 

normal class as “0” and the attack class as “1”.   

We employed the MinMaxScaler to normalize the data, ensuring algorithms sensitive to 

feature magnitudes are not biased towards features with larger values. Without scaling, 

such algorithms may prioritize these larger numerical values, skewing the results. By 

applying MinMaxScaler, we transform all feature values in the cleaned data to a uniform 

range between zero and one, enabling the models to learn more effectively and improving 

their performance. 

Finally, the cleaned 20% of the dataset is split into two sub-datasets: training (80%), and 

testing (20%). The split is performed randomly meaning that the class distribution 

percentage of the 20% of the dataset is retained in the training and testing sets. The split 

is created in this way to ensure that there are sufficient samples to train the models, while 

also ensuring sufficient samples for the testing of the results. The training sub-datasets 

are used for model training while the testing dataset is used for the final evaluation of the 

models. 

3.3 Feature Selection  

In Machine Learning (ML), Feature Selection (FS) holds significant importance 

by diminishing data dimensionality and amplifying the efficiency of proposed 

frameworks. Nonetheless, in practical scenarios, FS endeavors encounter obstacles such 
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as daunting dimensionality, computational and storage intricacies, noisy or ambiguous 

attributes, and the demand for high performance. The domain of FS presents a vast and 

formidable landscape, fraught with challenges(Dhal & Azad, 2022). In this study, we 

proposed a hybrid feature selection method that combines Mutual Information (MI) from 

the filter feature selection approach with Recursive Feature Elimination using a Random 

Forest Classifier from the wrapper feature selection approach.  

3.3.1 Mutual Information Feature Selection  

Mutual information feature selection stands as a widely used filter method to 

enhance the efficiency of intrusion detection systems (IDS). It measures the dependence 

between individual features and the target variables and selects the features with the 

highest mutual information scores. Mutual information yields a non-negative value, 

where a value of zero indicates that the two observed variables are statistically 

independent(Ambusaidi et al., 2016).  

Based on (Dhal & Azad, 2022),(Valenzuela et al., n.d.),(Kou et al., 2020),(Priscilla & 

Prabha, 2021) the following are Advantages of MI feature selection.  

Non-linearity data handling: MI, being a non-parametric measure can capture complex 

non-linear dependencies between features and the target variable. It assesses the amount 

of information shared between variables, making it suitable for identifying non-linear 

associations. 

Efficiency: The MI feature selection method was computationally efficient, especially 

when dealing with high-dimensional datasets, by focusing on the information content of 

features rather than exhaustive search.  

Model Agnostic: MI feature selection can be used with any machine learning algorithm 

without requiring any changes because it is model agnostic.  

Feature Independence: MI accounts for the independence between features but also 

takes into account the mutual dependence between features and the target variable. It 

finds features that have distinct and important information for target prediction, resulting 

in a more effective and comprehensible feature set.  

No Assumptions about Data Distribution: MI doesn't require data transformation or 

preprocessing and can handle discrete and continuous data, making it appropriate for a 

variety of datasets. 
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Feature Ranking: Features can be prioritized or their relative importance in the context 

of the problem domain can be understood by using the feature importance ranking that 

MI provides, which is based on how relevant each feature is to the target variable. 

Given that the dataset used was large and showed nonlinear relationships between the 

features and the target variable, a straight-line model would not suffice to describe the 

input-output relationships. This means that changes in the output are not directly 

proportional to changes in the input features. The choice of Mutual Information (MI) 

feature selection was made because of its computational efficiency for high-dimensional 

data and its ability to handle nonlinear datasets. Furthermore, MI feature selection is 

adaptable and does not require modification for a wide range of machine learning 

algorithms. It considers the mutual dependence between features and the target variable 

and can handle both continuous and discrete data types. Furthermore, MI assigns a 

ranking to features, which is helpful in order to prioritize features or determine their 

relative importance. These factors led to the selection of the MI feature selection method 

over the filter feature selection techniques. 

The following feature selection steps are followed by the Mutual Information algorithm: 

Compute MI Scores: First, the mutual information scores between every feature and the 

target variable are computed by the algorithm.  

Rank Features: The algorithm ranks the features according to their scores after 

calculating the mutual information scores for each feature. Higher mutual information 

scores indicate that a feature is more relevant or informative about the target variable.  

Choose the Best Features: The top 'k' features with the highest mutual information 

scores are chosen by the algorithm. One can predetermine the value of 'k' or use 

optimization criteria to determine it.  

Feature Subset Selection: The selected feature subset consists of the identified top 

features. While features that are superfluous or less useful are eliminated.  

In our proposed model, we first compute mutual information scores for each feature and 

rank the features according to their scores to ascertain the relationship between individual 

features and the class label. Next, we have selected features that have Mutual Information 
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(MI) values of at least 0.10. Out of the 78 features in total, 52 features were chosen based 

on this criterion. 

3.3.2    Recursive Feature Elimination Feature Selection  

Recursive Feature Elimination (RFE) constitutes the second phase of our feature 

selection approach. Operating as a wrapper method, RFE iteratively assesses feature 

importance by eliminating them based on machine learning performance. It progressively 

discards the least significant features until optimal performance is achieved or a 

predetermined number of features are attained(Thakkar & Lohiya, 2021). RFE is a 

wrapper feature selection approach that fits a learning model and eliminates the less 

important features. Based on the scores obtained by the learning model, features are 

ranked and recursively eliminated through iterations. RFE removes the dependency and 

collinearity among features(Priscilla & Prabha, 2021). 

Advantages of RFE (Priscilla & Prabha, 2021), (Assistant Professor, Department of 

Information Technology, Bishop Heber College, Affiliated to Bharathidasan University, 

Tiruchirappalli, 620 024, Tamil Nadu, India, et al., 2023), (Habeeb & Babu, 2024), (Yin 

et al., 2023).  

Model Agnosticism: RFE is model agnostic because it works with a variety of machine 

learning techniques. Without any changes, it can be used with clustering, regression, or 

classification techniques. 

Scalability: RFE's iterative operation on subsets of features makes it scalable to huge 

datasets. Because of its ability to manage datasets with tens of thousands or even millions 

of characteristics, it is appropriate for big data applications where effective modeling 

requires dimensionality reduction.  

Diminishes Dimensionality: By removing unimportant characteristics, RFE successfully 

lowers the dimensionality of the feature space.  

Feature Ranking: RFE offers a feature priority ranking according to how much each 

feature improves model performance. This score can direct feature engineering efforts or 

assist in prioritizing features for more study. 
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As previously indicated, there were nonlinear relationships between each feature and the 

target variable in our large dataset. Because it is capable of handling datasets with 

thousands or even millions of features, Recursive Feature Elimination (RFE) was 

selected. It decreases dimensionality, ranks feature to prioritize them for additional 

examination, and works with a variety of machine-learning algorithms. RFE was chosen 

from the wrapper feature selection techniques for the aforementioned reasons. 

The RFE algorithm works through the following steps in feature selection: 

1. Initialization: Begin by deciding on a machine learning algorithm that can be used 

for importance or feature ranking.  

2. Feature Ranking: Utilizing the full dataset, train the selected model to determine the 

features' relative importance or coefficients. In this step, each feature is given a 

weight that represents its contribution to the predictive performance of the model.  

3. Feature Elimination: Extract the dataset's least significant feature or features.  

4. Model Training: Utilizing the smaller feature set that was acquired in step 3, train 

the model. A subset of features that are judged most relevant based on the previously 

acquired feature ranking is used to train this model. 

5. Performance Evaluation: Employing a suitable assessment metric, assess the 

model's performance.  

6. Stopping Criterion: Determine if the specified stopping criterion has been satisfied.  

7. Iteration: Up until the stopping requirement is met, recursively repeat steps 2 

through 5. The model is retrained on the smaller feature set after the least significant 

features are eliminated in each iteration. 

8.  Final Model Selection: Using performance metrics gathered from the iterations, 

select the final model. 

The input dataset for our RFE FS algorithm only includes the 52 features that have been 

reduced using the mutual information algorithm from the first stage. The significance of 

the features is then graphically displayed by the RFE algorithm, and we have chosen the 

top 25 features from a total of 52 features for the assessment of the suggested model. 
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3.4 Synthetic Minority Oversampling Technique (SMOTE) 

One of the most significant challenges in classification problems is the prevalence 

of majority classes compared to minority ones. When minority and majority classes 

coexist in the same dataset, they create an imbalanced class distribution. In binary (two-

class) classification problems, it is common to designate class 0 as the majority class and 

class 1 as the minority class. To address this imbalance, an oversampling technique was 

adopted to balance the data before training the prediction models. The Synthetic Minority 

Over-sampling Technique (SMOTE) was employed to oversample the minority class, 

effectively mitigating the over fitting problem associated with the majority class, SMOTE 

generates new samples, reducing the likelihood of over fitting compared to simply 

duplicating minority class samples,  avoids potential loss of valuable majority class 

information by not discarding any samples, and effective for High-Dimensional 

Data(Ahsan et al., 2022),(Fan et al., 2024). 

SMOTE works first by randomly selecting a minority class instance, denoted as a. The 

algorithm then searches for the k nearest neighbors of a, which are also minority class 

instances. One of these neighbors, b is randomly chosen. A synthetic instance is created 

by forming a line segment between a and b in the feature space. This new synthetic 

instance is a convex combination of the two chosen instances, a and b(Fan et al., 2024).  

 

Figure 3. 4 How SMOTE works  
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3.5 Tools used for Experiment  

3.5.1 The Hardware Tools Used 

The proposed model implemented on the hardware with the specification of 

model: Toshiba satellite L855, operating system: Microsoft Windows 10 Enterprise, 

system type: 64-bit operating system, x64-based processor core i7 CPU @ 2.4GHz, 

installed memory (RAM): 8.00 GB, hard disk: 500 GB. 

3.5.2 The Software Tools Used 

Python, a high-level programming language, stands out as a powerful, object-

oriented, and general-purpose tool that has seen widespread adoption in recent years. Its 

design focuses on readability, and its syntax enables programmers to convey concepts 

with fewer lines of code compared to languages like C(Python_for_Data_Analysis.Pdf, 

n.d.). 

Based on the above-mentioned reasons and other advantages as a high-level 

programming language, Python is rapidly growing, platform-independent, powerful, easy 

to understand, and open-source with an object-oriented approach we choose Python for 

implementing the proposed methodology.  

The following are some Python libraries: 

 Math: The math library offers mathematical functions and constants essential for 

numerical computations. It encompasses operations like basic arithmetic, 

trigonometry, exponentiation, logarithms, and more. 

 Random: The random library serves for generating random numbers and 

conducting random sampling. It facilitates the creation of random integers, 

floating-point numbers, and the selection of random elements from sequences. 

 NumPy (np): NumPy is a robust library for numerical computing in Python. It 

enables support for large, multi-dimensional arrays and matrices, alongside a suite 

of mathematical functions tailored for efficient array operations. 

 matplotlib.pyplot (plt): Matplotlib is a widely-used plotting library in Python, 

instrumental in crafting static, interactive, and animated visualizations. The pyplot 

module furnishes a MATLAB-like interface, simplifying the creation of various 

plots and visualizations. 



41 

 

 Pandas (Pd): Pandas is a potent library for data manipulation and analysis in 

Python. It furnishes data structures and functions for the seamless handling of 

structured data, such as tabular data and time series data. 

 Seaborn (sb): Seaborn stands as a statistical data visualization library, built upon 

Matplotlib. It delivers a high-level interface for crafting informative and visually 

appealing statistical graphics. 
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3.6  System Architecture of Proposed Method 

The following diagram shows our proposed Hybrid feature selection intrusion detection 

system to classify as normal or attack based on the dataset.   

CICIDS 

2017 

Dataset

Feature Selection

SMOTE

Feature selection using MI

Feature selection using RFE

Classifiers

Stacking

Meta-Model (Logistic 

Regression)

Normal/Attack

XGBoostDT KNN RF

Pre-processing

Converting categorical to 

numeric value

Data cleaning

Normalization

 

Figure 3. 5 System architecture for the proposed model  

As shown in Figure 3.5 our proposed model begins by acquiring the Intrusion Detection 

System (IDS) dataset namely CICIDS 2017 and proceeds with preprocessing techniques. 
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We remove the duplicates, infinity values, and NaN values from the dataset to ensure 

data integrity. 

We have converted the categorical value in the label class to a numeric value by 

assigning the normal class as 0 and the attack class as 1.  

Normalization is then performed using MinMaxScaler, which rescales the features to a 

fixed range, typically within [0, 1]. This transformation standardizes the feature values, 

aiding in uniformity across the dataset. 

Following preprocessing, feature selection is conducted. Initially, Mutual Information 

(MI) is employed as a filter feature selection approach to identify relevant features. 

Subsequently, Recursive Feature Elimination (RFE) from the wrapper feature selection 

approach is utilized to further refine the feature set.  

After selecting the top-importance features through RFE, the model is evaluated using 

various machine learning algorithms including DT, KNN, RF, and XGBoost, and these 

algorithms are then combined using stacking a technique that merges the predictions of 

multiple models to enhance overall performance and robustness. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter focuses on the experimentation of our proposed method using the 

CICIDS 2017 dataset, employing Python programming language for implementation. We 

detail the simulation and analysis process, including the steps involved in simulating and 

analyzing the dataset. Following the analysis conducted using Python tools; we 

thoroughly discuss and interpret the findings and results. 

The experiment was conducted using the Anaconda Navigator tool which has a Jupyter 

Notebook interface. The algorithms chosen for our analysis are, DT, KNN, RF, and 

XGBoost, and we combined those using stacking concepts. 

4.1  Dataset used for Experiments  

As described in Chapter Three, our experiment utilized the CICIDS 2017 dataset. 

This dataset comprises a total of 2,830,743 records. Due to resource constraints, 

specifically a lack of high-performance computing resources, we used 20% (566,149) 

records of the CICIDS 2017 dataset for our experiment.  

Following preprocessing of the 20% we divided the dataset into training and testing sets. 

Specifically, 80% (422,086) records were allocated for training purposes, while the 

remaining 20% (105,522) records were reserved for testing. 

4.2 Handling Class Imbalance  

As mentioned in chapter three to balance the distribution of class in the dataset we 

applied SMOTE and we trained the model using balanced class.    

Table 4.1 and Table 4.2 shows the distribution of the class before and after applying 

SMOTE.  
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Table 4. 1 Distribution of label class in training and testing before applying SMOTE 

class Training Testing Total  

0 346, 464 86,603 433,067 

1 75, 622 18,919 94,541 

Total  422,086 105,522 527,608 

The above table 4.1 shows the distribution of label classes in the training and testing 

datasets before applying SMOTE (Synthetic Minority Over-sampling Technique). In the 

training dataset, there are a total of 422,086 instances. Out of these, 346,464 instances 

belong to class 0 (normal), and 75,622 instances belong to class 1 (attack). In the testing 

dataset, there are a total of 105,522 instances. Out of these, 86,603 instances belong to 

class 0 (normal), and 18,919 instances belong to class 1 (attack). The total number of 

instances across both the training and testing datasets is 527,608, with 433,067 instances 

belonging to class 0 (normal) and 94,541 instances belonging to class 1 (attack). The data 

suggests an imbalance in the class distribution, with a significantly higher number of 

instances in class 0 (normal) compared to class 1(attack).   

 

Figure 4. 1 Experiment result of SMOTE in Training dataset  

The above Figure 4.1 illustrates the class distribution in the dataset before and after the 

applying of SMOTE (Synthetic Minority Over-sampling Technique). SMOTE is 



46 

 

employed to address class imbalance, a common issue where one class is significantly 

underrepresented compared to another. Before applying SMOTE, our dataset shows a 

considerable imbalance the training set contains 346,464 instances of Class 0 (majority 

class) and only 75,622 instances of Class 1 (minority class).  

After applying SMOTE, the training set is balanced, with both Class 0 and Class 1 having 

346,464 instances each. This adjustment ensures that the proposed model receives an 

equal representation of both classes during the training process, which can significantly 

enhance its ability to correctly predict the minority class.  

Table 4. 2 Distribution of label class in training and testing after applying SMOTE 

class Training Testing Total  

0 346,464 86,603 433,067 

1 346,464 18,919 365,383 

Total  692,928 105,522 798,450 

The above table 4.2 shows the distribution of label classes in the training and testing 

datasets after applying the Synthetic Minority Over-sampling Technique (SMOTE). In 

the training dataset, there are a total of 692,928 instances. Out of these, 346,464 instances 

belong to class 0 (normal), and the same number, 346,464, belong to class 1 (attack). In 

the testing dataset, there are a total of 105,522 instances. Out of these, 86,603 instances 

belong to class 0 (normal), and 18,919 instances belong to class 1 (attack). The total 

number of instances across both the training and testing datasets is 798,450, with 433,067 

instances belonging to class 0 (normal) and 365,383 instances belonging to class 1 

(attack). 

After applying SMOTE, the class distribution in the training dataset has been balanced, 

with an equal number of instances in both class 0 (normal) and class 1 (attack). This is a 

common technique used to address the problem of class imbalance, where one class 

significantly outnumbers the other. By oversampling the minority class (class 1 in this 

case), the model can learn more effectively from both classes, potentially improving its 

overall performance. The testing set remains unchanged, retaining its original class 
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distribution. This decision allows for an unbiased evaluation of the model's performance 

on the natural, imbalanced data. 

4.3 Performance Evaluation Metrics 

 In our proposed model we have evaluated the model using the confusion matrix, 

accuracy, precision, recall, f1-score, and computational times.  

Confusion matrix: 

A confusion matrix is a square matrix where the rows represent the actual classes of 

instances, and the columns represent the predicted classes. The confusion matrix is a 2 X 

2 matrix when dealing with a binary classification task.  

The confusion matrix for binary class classification has 2 outputs, the inputs for this 

classification will fall in either of the 2 outputs or classes. The confusion matrix for two-

class and is shown in Tables 4.3. The attack class is taken as a positive and the normal 

class as a negative. 

Table 4. 3 Confusion matrix for two class classification  

 Predicted Class 

 

Actual class 

 Normal Attack 

Normal TN FP 

Attack FN TP 

Where: 

True Positive (TP): classified as an attack by the model and that is an attack. 

True Negative (TN): classified a normal by the model and that is normal. 

False Positive (FP): the model classified as an attack but that is normal.  

False Negative (FN): the model classified as normal but that is an attack.  

Accuracy, Precision, Recall, and F1-Score are then defined as follows(Krstinić et al., 

2020). 
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Accuracy: is one of the evaluation metrics that calculate how many correct predictions 

your classification model made for the whole test dataset, and it is a good basic metric to 

measure the performance of the model. It is calculated as follows: 

Accuracy=
TP+TN

TP+TN+FP+FN
                                                                                             2 

Precision: is a form of performance evaluation that determines what number of the 

correctly predicted cases turned out to be positive. This can determine whether our model 

is reliable or not and it is a valuable metric in cases where a false positive is a higher 

concern than a false negative. It is calculated as follows: 

Precision           =
TP

TP+FP
                                                                                                  3  

Recall: Recall is a type of performance evaluation metric that measures how many actual 

positive cases our model correctly predicted. It is particularly important in situations 

where false negatives are more critical than false positives. It is calculated as follows: 

Recall=
TP

TP+FN
                                                                                                                 4 

F1-Score: is a type of performance evaluation that has a harmonic mean of precision and 

recall and so it gives a combined idea about these two metrics and it will be maximum 

when the precision is equal to recall. It is calculated as follows: 

F1-Score=
2* Precision * Recall

Precision + Recall
                                                                                     5 

Computational time: The computation time represents the duration required for an 

algorithm to finish its operations. In our study, we evaluate each classifier by training and 

prediction time in seconds. 

Cross validation:  

To check whether the proposed model is efficient enough to predict the outcome of an 

unseen data point and performance we used k-fold cross-validation with k=3.  

4.4 Hyper-parameters 

The distributions of all the optimal hyper-parameters that were used in this experiment 

are described in Table 4.4. 
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We determined the optimal hyper-parameter for each classifier through a manual trial-

and-error process using different hyper-parameters. We experiment with different hyper-

parameter combinations, training the model, and evaluating its performance until to 

identify the best results.  

Table 4. 4 Hyper-parameters for the classifier algorithm  

Model  Optimal Hyper-parameters Description  

DT max_depth=10, 

random_state=42 

max_depth: Hyper-parameter that 

limits the maximum depth of the 

tree. 

random_state: Hyper-parameter 

that ensures reproducibility. 

KNN n_neighbors=5 n_neighbors: Hyper-parameter that 

specifies the number of neighbors 

to use 

RF n_estimators=100 

max_depth=10 

random_state=42 

n_estimators: Hyper-parameter 

that specifies the number of trees in 

the forest. 

max_depth: Hyper-parameter that 

limits the maximum depth of the 

trees. 

random_state: Hyper-parameter 

that ensures reproducibility. 

XGBoost params = { 

    'objective': 'binary:logistic', 

    'eval_metric': ['error', 'logloss'], 

    'max_depth': 12, 

    'eta': 0.3, 

    'subsample': 0.7, 

    'colsample_bytree': 0.7, 

    'seed': 42 

Objective: Hyper-parameter that 

defines the learning task and the 

corresponding learning objective. 

eval_metric: Hyper-parameter that 

specifies evaluation metrics for 

validation data. 

max_depth: Hyper-parameter that 

limits the maximum depth of a tree. 
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} 

bst = xgb.XGBClassifier(**params) 

eta: Hyper-parameter for step size 

shrinkage to prevent over fitting. 

subsample: Hyper-parameter that 

specifies the fraction of samples to 

be used for each tree. 

colsample_bytree: Hyper-

parameter that specifies the fraction 

of features to be used for each tree. 

seed: Hyper-parameter that ensures 

reproducibility. 

Stacking 

(DT+ 

KNN+RF 

+XGBoost) 

estimators = [ 

    ('dt', clf_dt), 

    ('knn', clf_knn), 

    ('rf', clf_rf), 

    ('xgb', bst) 

] 

stacking_clf = StackingClassifier( 

    estimators=estimators, 

    

final_estimator=LogisticRegression() 

) 

Estimators: Hyper parameter that 

lists the base classifiers used in the 

stacking ensemble. 

final_estimator: Hyper-parameter 

that specifies the classifier used to 

aggregate the predictions of the 

base classifiers. 

4.5 Experiments and Results 

Our experimental design was categorized into three main processes by 

considering DT, KNN, RF, XGBOOST, and Stacking (DT + KNN + RF + XGBoost) ML 

classification techniques. In the first step of our experiments, we employed the full 

features (78 features) of the CICIDS 2017 dataset for classification. In the second of our 

experiment we evaluated using 52 features which selected by MI. In the third phase, we 

evaluated those classifies using the 25 features selected using the RFE. The results of our 

experimental processes are listed in Tables 4.5, 4.6, and 4.7 whereby Table 4.5 provides 

the results obtained by the ML methods for the classification technique using the full 

features of the CICIDS 2017 dataset. Table 4.6 provides the result using 52 features, and 
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Table 4.7 lists the results obtain by the ML algorithms for the classification scheme using 

the reduced 25 features.   

4.5.1 Experimental Results of Feature Selection Using Mutual Information  

 

Figure 4. 2 Mutual Information (MI) Score of all the features 

Figure 4.2 displays the mutual information scores for features indexed from 0 to 77, with 

the scores ranging from 0.00 to 0.36 on the y-axis and the feature indices on the x-axis. 

The highest mutual information score observed is approximately 0.36, indicating 

significant variability across different features. Notably, features indexed at 5, 40, 41, 42, 

52, and 65 show the highest mutual information scores, exceeding 0.30, suggesting their 

strong relevance to the target variable. 

Many features show moderate mutual information scores ranging between 0.10 and 0.30, 

including indices such as 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 

22, 23, 25, 26, 28, 29, 34, 35, 36, 37, 38, 39, 53, 54, 55, 62, 63, 64, 66, 67, 70, 72, 73, 74, 

76, and 77. In contrast, features indexed at 19, 24, 27, 30, 31, 32, 33, 43, 44, 45, 46, 47, 

48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 68, 69, 71, and 75 have low mutual information 
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scores, often below 0.10, indicating minimal influence on the target variable and potential 

candidates for exclusion during feature selection. 

Based on these observations, it is advisable to focus on features with higher mutual 

information scores for the second feature selection process. Evaluating the impact of 

removing low-scoring features could simplify models and improve computational 

efficiency. Out of a total of 78 features we selected only the top 52 features that are MI 

scores greater or equal to 0.10 for the second stage of feature selection.  

Figure 4. 3 Selected features by MI 

 

4.5.2 Experimental Results of Feature Selection Using RFE 

 

Figure 4. 4 Feature importance score of the selected features  

Figure 4.4 illustrates the importance scores for 52 features, with the scores ranging from 

0.00 to 0.08 using RFE with RF classifier. The highest importance scores are observed 

for features indexed at 41 and 42, each scoring around 0.07 to 0.08, indicating their 

significant relevance. Other features with high importance scores include indices 13, 12, 

54, 39, 40, 52 and 10, with scores ranging from 0.04 to 0.06. Several features show 

moderate importance scores between 0.02 and 0.04, such as those indexed at 0, 4, 63, 5, 
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and 17. While these features are not as critical as the top-scoring ones, they still 

contribute significantly to the model. 

In contrast, features indexed at 65, 8, 6, 2, 67, 35, 34, 53, 66, 62, 55, 22 23, 37, 64, 3, 21, 

36, 18, 20, 16, 15, 74, 76, 38, 14, and 11 have lower importance scores, generally below 

0.02. The lowest importance scores are observed for features indexed at 17, 1, 26, 28, 25, 

9, 7, 29, 73, 70, and 72, all scoring near 0.00. The figure shows a steep decline in 

importance scores from the highest-ranked feature to those ranked lower, with a 

noticeable drop after the top ten features.  

Based on the figure features with high importance scores, such as indexed 41, 42, 13, and 

12, should be prioritized in model evaluation. Moderate-importance features should be 

evaluated for their potential contributions and considered for inclusion based on their 

impact on the model's performance. Low-importance features might be candidates for 

exclusion to simplify the model and reduce complexity. Overall, emphasizing high-

importance features could enhance model accuracy and efficiency. Out of the 52 features 

based on their importance we have selected 25 features to evaluate our proposed model. 

 

Figure 4. 5 Selected features using Recursive feature elimination (RFE) 

The above figure 4.5 displays a list of feature indices, which represent the most important 

features selected by the RFE algorithm. The feature indices are [0, 2, 4, 5, 6, 8, 12, 13, 

18, 23, 34, 35, 37, 39, 40, 41, 42, 52, 54, 55, 62, 63, 65, 66, and 67].The selected features 

shown in this figure are likely the top-ranked features based on the RFE algorithm's 

evaluation. These features are considered the most important as they provide the most 

relevant information for the model to make accurate predictions. 
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4.5.3 Confusion Matrix Experiment Result 

The list below figures 4.6 to 4.10 shows the confusion matrices for the DT, KNN, 

RF, XGBoost, and Stacking (DT + KNN + RF + XGBoost) classifiers using the reduced 

set 25 features.  

 

Figure 4. 6 Confusion matrix for DT 

Figure 4.6 shows the confusion matrix for the DT classifier and reveals the distribution of 

actual versus predicted classifications. In the matrix, 86,006 instances were correctly 

predicted as class 0, while 18,822 instances were correctly predicted as class 1. However, 

there were also 597 instances where the model incorrectly predicted class 1 but the actual 

class was 0, and 97 instances where the model incorrectly predicted class 0 but the actual 

class was 1. 
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Figure 4. 7 Confusion matrix for KNN 

Figure 4.7 shows the confusion matrix for the KNN classifier and demonstrates the 

model's performance in predicting class labels. It shows that 83,767 instances were 

correctly identified as class 0, while 18,444 instances were correctly identified as class 1. 

However, the model also made some errors, with 2,836 instances incorrectly predicted as 

class 1 when they were actual class 0, and 475 instances incorrectly predicted as class 0 

when they were actual class 1. 
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Figure 4. 8 Confusion matrix for RF 

Figure 4.8 shows the confusion matrix for the RF classifier and reveals the model's 

performance in classifying instances. In this matrix, 86,293 instances were correctly 

predicted as class 0, and 18,830 instances were correctly predicted as class 1. However, 

the model also made some errors, with 310 instances incorrectly predicted as class 1 

when they were actual class 0, and 89 instances incorrectly predicted as class 0 when they 

were actual class 1.  
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Figure 4. 9 Confusion matrix for XGBoost  

Figure 4.9 shows the confusion matrix for the XGBoost classifier and reveals the model's 

performance in classifying instances. In this matrix, 86,338 instances were correctly 

predicted as class 0, and 18,900 instances were correctly predicted as class 1. However, 

the model also made some errors, with 265 instances incorrectly predicted as class 1 

when they were actual class 0, and 19 instances incorrectly predicted as class 0 when they 

were actual class 1.  
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Figure 4. 10 Confusion matrix for Stacking (DT + KNN + RF + XGBoost) 

Figure 4.10 shows the confusion matrix for the Stacking (DT + KNN + RF + XGBoost) 

classifier and reveals the model's performance in classifying instances. In this matrix, 

86,380 instances were correctly predicted as class 0, and 18,888 instances were correctly 

predicted as class 1. However, the model also made some errors, with 223 instances 

incorrectly predicted as class 1 when they were actual class 0, and 31 instances 

incorrectly predicted as class 0 when they were actual class 1.  
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4.5.4 Experimental results without feature selection with full features 

Table 4. 5 Experiment results using full features 

Algorithms Classes Precision Recall 

F1-

score 
Accuracy 

Training 

Time (s) 

Testing 

Time(s) 

DT 
0 0.9885 0.9371 0.9621 

0.9394 
12.5006 

 

0.0312 

 1 0.7676 0.9503 0.8492 

KNN 

0 0.9979 0.9890 0.9934 

0.9772 131.8696 

 

40.0321 

 1 0.9518 0.9905 0.9708 

RF 

0 0.9980 0.9980 0.980 

0.9941 488.2859 

 

1.3570 

 1 0.9907 0.9910 0.9908 

XGBoost 

0 0.9997 0.9991 0.9994 

0.9954 22.2843 

 

0.1269 

 1 0.9957 0.9988 0.9973 

Staking 

(DT+KNN+ 

RF+ 

XGBoost) 

0 0.9997 0.9991 0.9994 

0.9975 595.9680 

 

302.612

3 

 1 0.9958 0.9987 0.9973 

The above table 4.5 shows the results of the performance of Decision Tree (DT), K-

Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking (DT + KNN + 

RF + XGBoost) algorithms without applying the feature selection method with full 

features. We evaluate those algorithms using precision, recall, F1-score, accuracy, 

training time, and testing time evaluation metrics for each algorithm for both classes (0 

and 1). 

In DT we conducted experiments using different models based on the tree's maximum 

depth using maximum_depth_values = {3, 5, 10, and 11} and we got better results with 

maximum_depth values 10. Its performance for class 0, with a precision of 98.85% for 

class 0 and 76.76% for class 1, recall of 93.71% for class 0 and 95.03% for class 1, F1-

score of 96.21% for class 0 and 84.92% for class 1.. The overall accuracy is 93.94%. The 

key advantage of DT is its fast training of 12.5006 seconds and testing 0.0312 seconds 
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times, making it suitable for real-time applications or scenarios with limited 

computational resources. 

In KNN we trained the models with multiple number_of _neighours = {3, 5, 7, and 10}, 

and the results show that a KNN classifier with 5 neighbors achieved better results. KNN 

performs with precision of 99.79% for class 0 and 95.18% for class 1, recall 98.90% for 

class 0 and 99.05% for class 1, and F1-scores 99.34% for class 0 and 97.08% for class 1. 

This leads to an overall accuracy of 97.72%. However, KNN requires significantly more 

time for training 131.8696 seconds and testing 40.0321 seconds compared to DT, which 

may limit its applicability in time-sensitive or resource-constrained environments. 

RF performed precision 99.80% for class 0 and 99.07% for class 1, recall 99.80% for 

class 0 and 99.10% for class 1, and F1-scores 99.80% for class 0 and 99.08% for class 1. 

It performs an overall accuracy of 99.41%. The high precision, recall, and F1 scores 

indicate that RF is highly effective at correctly classifying instances. However, its long 

training time of 488.2859 seconds is a drawback, making this RF less suitable for 

applications requiring rapid model updates. The testing time of 1.3570 seconds is 

relatively short making RF a good choice for scenarios where model inference needs to 

be fast, but training time is less of a concern. 

XGBoost performed precision of 99.97% for class 0 and 99.57% for class 1, recall 

99.91% for class 0 and 99.88% for class 1, and F1-scores 99.94% for class 0 and 99.73% 

for class 1, its overall accuracy of 99.54%. It also offers a good balance between training 

at 22.2843 seconds and testing at 0.1269 seconds times. The relatively short training time 

compared to RF makes XGBoost suitable for scenarios requiring frequent model 

retraining, while its quick testing time supports fast inference. XGBoost is a strong 

candidate for a wide range of applications where both performance and computational 

efficiency are important. 

Stacking (DT + KNN + RF + XGBoost) performs a precision of 99.97% for class 0 and 

99.58% for class 1, recall of  99.91% for class 0 and 99.87% for class 1, and F1-scores 

99.94% for class 0 and 99.73% for class 1, resulting in an overall accuracy of 99.75%. 

Despite its superior performance, the computational cost is substantial, with the longest 

training of 595.9680 seconds, and testing 302.6123 seconds times among all algorithms 
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evaluated. Stacking (DT + KNN + RF + XGBoost) is best suited for applications where 

the highest possible accuracy is critical and computational resources are not a limiting 

factor. Its extensive training and testing times make it less practical for real-time 

applications or environments with limited computational capacity.  

 

Figure 4. 11 Accuracy Comparison of Full Features  

Figure 4.11 histogram charts compare the accuracy of DT, KNN, RF, XGBoost, and 

Stacking (DT + KNN + RF + XGBoost) using the full features of the dataset. As shown 

in the figure when we combined the algorithm using stacking the model improved its 

accuracy than the individual classifier's accuracy.  
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4.5.5 Experimental results of features selected by MI   

Table 4. 6 Experiment result of 52 feature selected by MI 

Algorithm Classes Precision Recall F1-

score 

Accuracy Training 

Time (s) 

Testing 

Time(s) 

DT 0 0.9887 0.9373 0.9623 
0.9396 11.9254 

0.0284 

 1 0.7666 0.9507 0.8488 

KNN 0 0.9978 0.9881 0.9929 

0.9887 120.0365 33.0215 

 1 0.9473 0.9899 0.9681 

RF 0 0.9976 0.9981 0.9979 

0.9950 327.6088 1.3535 

 1 0.9913 0.9892 0.9902 

XGBoost 0 0.9997 0.9987 0.9992 

0.9961 14.1059 0.1086 

 1 0.9940 0.9988 0.9964 

Staking 

(DT+KNN+ 

RF 

+XGBoost) 

0 0.9997 0.9990 0.9993 

0.9980 

 

540.5462 

 

250.8457 

 1 0.9953 0.9985 0.9969 

Table 4.6 shows the performance metrics of the Decision Tree (DT), K-Nearest 

Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking (DT +KNN +RF + 

XGBoost) using the 52 features for both 0 and 1 classes. The evaluation metrics include 

precision, recall, F1-score, accuracy, training time, and testing time for each class (0 and 

1).   

The DT model shows moderate performance with class 0 achieving a precision of 98.87 

%, recall of 93.73 %, and F1-score of 96.23%. For class 1, the precision is 76.66%, with 

a recall of 95.07% and F1-score of 84.88%. The overall accuracy of the DT model is 

93.96%. In terms of computational efficiency, it has a training time of 11.9254 seconds 

and a very quick testing time of 0.0284 seconds, making it suitable for real-time. 
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The KNN model shows class 0 with a precision of 99.78%, recall of 98.81%, and F1-

score of 99.29%. For class 1, it achieves a precision of 94.73%, recall of 98.99%, and F1-

score of 96.81%. The overall accuracy stands at 98.87%. However, the model is 

computationally intensive, with a training time of 120.0365 seconds and a testing time of 

33.0215 seconds. Despite its high accuracy, the substantial computational cost may limit 

its usability in time-sensitive applications. 

The RF model performs for class 0 with a precision of 99.76%, recall of 99.81%, and F1-

score of 99.79%. For class 1, a precision of 99.13%, recall of 98.92%, and F1-score of 

99.02%. The overall accuracy of the RF model is 99.50%. In terms of computational 

resources, it has a training time of 327.6088 seconds and a testing time of 1.3535 

seconds, making it a robust choice with a good balance of accuracy and computational 

efficiency. 

The XGBoost model shows performance for class 0 a precision of 99.97%, recall of 

99.87%, and F1-score of 99.95%. For class 1, the precision is 99.40%, recall is 99.88%, 

and F1-score is 99.64%. The overall accuracy of the XGBoost model is 99.61%. It is 

relatively efficient, with a training time of 14.1059 seconds and a testing time of 0.1086 

seconds, offering a strong balance between high performance and computational 

efficiency. 

The Stacking (DT + KNN + RF + XGBoost) model, which combines DT, KNN, RF, and 

XGBoost, achieves the highest performance metrics across all categories. For class 0, it 

attains a precision of 99.97%, recall of 99.90%, and F1-score of 99.93%. For class 1, the 

precision is 99.53%, recall is 99.85%, and F1-score is 99.69%. The overall accuracy of 

the Stacking model is 99.80%, the highest among all models tested. However, it has the 

longest training time at 540.5462 seconds and a significant testing time of 250.8457 

seconds, indicating a high computational cost which may limit its practical application 

despite its superior accuracy. 
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4.5.6 Experimental results of hybrid feature selection (MI + RFE)  

Table 4. 7 Experiment results using reduced features  

Algorithm Classes Precision Recall F1-

score 

Accura

cy 

Training 

Time (s) 

Testing 

Time(s) 

DT 0 0.9989 

 

0.9931 

 

0.9969 

0.9934 

 

11.8113 

 
0.0200 

1 0.9693 

 

0.9949 

 

0.9819 

 

KNN 0 0.9944 

 

0.9673 

 

0.9806 

 0.9945 

 

115.2157 

 

29.8378 

 1 0.8667 

 

0.9749 

 

0.9176 

 

RF 0 0.9990 

 

0.9964 

 

0.9977 

 0.9962 

 

309.3665 

 

1.3832 

 1 0.9838 

 

0.9953 

 

0.9895 

 

XGBoost 0 0.9998 

 

0.9969 

 

0.9984 

 0.9973 

 

12.7620 

 

0.1042 

 1 0.9862 

 

0.9990 

 

0.9925 

 

Staking 

(DT+KNN

+ 

RF 

+XGBoost) 

0 0.9996 

 

0.9974 

 

0.9985 

 
0.9992 

 

515.8013 

 

188.504

8 

 1 
0.9956 

 

0.9982 

 

0.9969 

 

Table 4.7 shows the performance metrics of the Decision Tree (DT), K-Nearest 

Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking (DT +KNN +RF + 

XGBoost) using the reduced features for both 0 and 1 classes. The evaluation metrics 
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include precision, recall, F1-score, accuracy, training time, and testing time for each class 

(0 and 1).   

DT performs an overall accuracy of 99.34%, with a precision of 99.89% for class 0 and 

96.93% for class 1, and a recall of 99.31% for class 0 and 99.49% for class 1. The F1 

scores are also 99.69% for class 0 and 98.19% for class 1, indicating a balanced 

performance. The model benefits from very short training and testing times, making it 

computationally efficient. This makes DT a feasible option when interpretability and 

speed are prioritized. 

KNN achieves an accuracy of 96.86%. The precision 99.44% for class 0 and 86.67% for 

class 1, recall 96.73% for class 0 and 97.47% for class 1, and F1-scores 98.06% for class 

0 and 91.76% for class 1. The training and testing times are significantly higher, 

suggesting that KNN may not be suitable for large datasets or real-time applications due 

to its computational inefficiency. 

RF performs an accuracy of 99.62% and balanced high precision 99.90% for class 0 and 

98.38% for class 1, recall 99.64% for class 0 and 99.53% for class 1, and F1-scores 

99.77% for class 0 and 98.95% for class 1. However, the training time is significantly 

longer than DT and XGBoost. RF's robustness and high accuracy make it suitable for 

applications where performance is critical, but the computational cost must be 

considered. 

XGBoost performs an accuracy of 99.62% with relatively low training of 12.7620 

seconds and testing times of 0.1042 seconds, important to its efficiency. The precision 

99.98% for class 0 and 98.38% for class 1, recall 99.69% for class 0 and 99.90% for class 

1, and F1-scores 99.84% for class 0 and 99.25% for class 1. XGBoost provides a good 

balance between performance and computational efficiency, making it a practical choice 

for many applications in intrusion detection. 

The Stacking (DT + KNN + RF + XGBoost) method achieves an accuracy of 99.76% and 

excellent performance metrics for both classes. Precision 99.96% for class 0 and 99.56% 

for class 1, recall 99.74% for class 0 and 99.82% for class 1, and F1-scores 99.85% for 

class 0 and 99.69% for class 1 are very high, indicating superior performance. However, 
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it has the highest training 515.8013 seconds, and testing times 188.5048 seconds, 

indicating significant computational costs. Stacking (DT + KNN + RF + XGBoost) is 

ideal for scenarios where the utmost accuracy is required, and computational resources 

and time are not limiting factors. 

In conclusion, while Stacking (DT + KNN + RF + XGBoost) and Random Forest offer 

the best performance metrics, their high computational cost should be considered. 

XGBoost stands out for its balance of high accuracy and efficiency, making it suitable for 

practical applications. Decision Tree provides a good trade-off between simplicity and 

performance, whereas KNN, due to its inefficiency, might be less suitable for large-scale 

or real-time tasks.  

 

Figure 4. 12 Accuracy Comparison of Reduced Features 

In the histogram chart in Figure 4.12 above, we present an analysis of the performance of 

DT, KNN, RF, XGBoost, and Stacking (DT + KNN + RF + XGBoost) algorithms in 

terms of accuracy when the number of features is reduced. From the chart, it is evident 

that all the algorithms performed exceptionally well with reduced features, achieving 

accuracy above 99%. 
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Figure 4. 13 Accuracy Comparison of the 25 and 52 Features 

Figure 4.13 shows a comparison of classifier accuracies using 52 Features and 25 

Features for DT, KNN, RF, XGBoost, and a Stacking (DT+ KNN +RF + XGBoost). 

The results indicate that reducing the number of features can lead to an improvement in 

classifier performance, particularly for the DT and KNN classifiers. This improvement 

could be attributed to the reduction of noise and the simplification of the model, which 

allows the classifiers to generalize better to the test data. 
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Figure 4. 14 Accuracy Comparison of the 25, 52 and full (78) Features  

Figure 4.14 shows a comparison of classifier accuracies using Full Features (78), 52 

Features, and 25 Features for DT, KNN, RF, XGBoost, and a Stacking (DT+ KNN +RF 

+ XGBoost). 

The results indicate that reducing the number of features can lead to an improvement in 

classifier performance, particularly for the DT and KNN classifiers. This improvement 

could be attributed to the reduction of noise and the simplification of the model, which 

allows the classifiers to generalize better to the test data. 

For the RF and XGBoost classifiers, the accuracy remains consistently high across all 

feature sets, suggesting that these ensemble methods are robust to changes in the number 

of features. However, they still show slight improvements with feature reduction, 

indicating that even these models benefit from feature selection. 

The Stacking ((DT+ KNN +RF + XGBoost)) ensemble method outperforms all 

individual classifiers, demonstrating the effectiveness of combining multiple models to 
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leverage their strengths. The highest accuracy of 0.9992 is achieved with 25 features, 

which underscores the importance of feature selection in improving the performance of 

complex models. 

In conclusion, our study highlights the critical role of feature selection in intrusion 

detection systems demonstrating that reducing the feature set to the most informative 

ones can significantly enhance the performance of various algorithms, particularly DT 

and KNN, while still benefiting robust RF, XGBoost, and Stacking (DT + KNN + RF + 

XGBoost). 

4.5.7 Sample Validation results 

The following figures 4.15, 4.16 and 4.17 display sample cross-validation for our 

experiments using 3 folds. 

 

Figure 4. 15 Cross-validation for DT 

Figure 4.15 shows DT classifier has been assessed through a three-fold cross-validation 

procedure, where the dataset is divided into three equally sized folds. The model is 

trained on two folds and validated on the remaining fold, and this process is repeated 

three times, each time with a different fold as the validation set. The scores across the 

three folds indicate high and consistent performance, with an average accuracy of 

approximately 99.43%. This suggests that the DT model is performing well on the given 

dataset and is likely to generalize effectively to unseen data. 

 

Figure 4. 16 Cross-validation for RF 

Figure 4.16 shows the RF classifier has undergone a three-fold cross-validation 

evaluation, ensuring that each fold of the dataset is used once as a validation set while the 

remaining folds serve as the training set. The mean cross-validation score of 99.53% is 

an average of the accuracy scores across all folds. This high average accuracy suggests 
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that the RF classifier is highly effective and performs consistently well across different 

partitions of the data. 

 

Figure 4. 17 Cross-validation for stacking (DT+ KNN + RF + XGBoost) 

Figure 4.17 shows stacking (DT + KNN + RF + XGBoost) classifier has undergone a 

three-fold cross-validation evaluation, ensuring that each fold of the dataset is used once 

as a validation set while the remaining folds serve as the training set. The mean cross-

validation score of 99.88% is an average of the accuracy scores across all folds. This high 

average accuracy suggests that the stacking classifier is highly effective and performs 

consistently well across different partitions of the data. 

Table 4. 8 Comparison of training and testing time  

Algorithm 

Full Features(78) Reduced Features(25) 

Training 

Time(s) 

Testing 

Time(s) 

Training 

Time(s) 

Testing 

Time(s) 

DT 12.5006 0.0312 11.8113 0.02 

KNN 131.8696 40.0321 115.2157 29.8378 

RF 488.2859 1.357 309.3665 1.1232 

XGBoost 22.2843 0.1269 12.762 0.1042 

Stacking (DT + KNN 

+ RF + XGBoost) 

595.968 302.6123 515.8013 188.5048 

The above table 4.8 compares the training and testing times (in seconds) for Decision 

Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking 

(DT + KNN + RF + XGBoost) algorithms using both full features and reduced features.  

For the Decision Tree algorithm, the training time decreased from 12.5006 seconds with 

full features to 11.8113 seconds with reduced features, while the testing time reduced 

from 0.0312 seconds to 0.02 seconds. The K-Nearest Neighbors (KNN) algorithm 

exhibited a significant reduction in both training and testing times, with training time 
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decreasing from 131.8696 seconds to 115.2157 seconds, and testing time decreasing from 

40.0321 seconds to 29.8378 seconds when using reduced features. 

The Random Forest algorithm showed a substantial decrease in training time, from 

488.2859 seconds with full features to 309.3665 seconds with reduced features, along 

with a modest reduction in testing time, from 1.357 seconds to 1.1232 seconds. XGBoost 

demonstrated a noticeable reduction in both training and testing times, with training time 

decreasing from 22.2843 seconds to 12.762 seconds and testing time from 0.1269 

seconds to 0.1042 seconds when the number of features was reduced. 

The Stacking (DT + KNN + RF + XGBoost) method saw a significant decrease in both 

training and testing times, with training time reducing from 595.968 seconds to 515.8013 

seconds, and testing time from 302.6123 seconds to 188.5048 seconds with reduced 

features. 

Overall, reducing the number of features from 78 to 25 resulted in lower training and 

testing times across all evaluated algorithms. The impact was most pronounced in the K-

Nearest Neighbors and Stacking (DT + KNN + RF + XGBoost) algorithms, where the 

reduction in the number of features led to substantial time savings. Decision Tree and 

XGBoost also benefited from reduced feature sets, but the changes were less dramatic 

compared to KNN and Stacking (DT + KNN + RF + XGBoost). Random Forest showed 

a significant decrease in training time, though the reduction in testing time was relatively 

modest. In summary, feature reduction improves computational efficiency for all 

algorithms, making it a valuable technique for optimizing model performance and 

resource utilization.  

4.6 Answer to the research questions 

RQ#1: What are the features selected through the Hybrid Feature Selection 

method? 

Through the Hybrid Feature Selection method, the following features were identified as 

the most relevant for the model: 

 Destination Port, Total Fwd Packets, Total Length of Fwd Packets, Total Length 

of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Mean, Bwd Packet 
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Length Mean, Bwd Packet Length Std, Flow IAT Max, Fwd IAT Max, Fwd 

Header Length, Bwd Header Length, Bwd Packets/s, Max Packet Length, Packet 

Length Mean, Packet Length Std, Packet Length Variance, Average Packet Size, 

Avg Bwd Segment Size, Fwd Header Length, Subflow Fwd Packets, SubflowFwd 

Bytes, Subflow Bwd Bytes, Init_Win_bytes_forward, Init_Win_bytes_backward 

RQ#2: Does implementing a Hybrid Feature Selection method improve the 

performance of the model? 

Based on our experiments implementation of a Hybrid Feature Selection method 

improves the performance of the model in accuracy as well as computational time. 

 DT: Accuracy increased from 93.94% to 99.34%. 

 KNN: Accuracy increased from 97.72% to 99.45%. 

 RF: Accuracy increased from 99.41% to 99.62%. 

 XGBoost: Accuracy increased from 99.54% to 99.73%. 

 Stacking (DT + KNN + RF + XGBoost): Accuracy increased from 99.75% to 

99.92%. 

The Hybrid Feature Selection method significantly improves the performance of intrusion 

detection models by enhancing both their accuracy and computational efficiency. By 

selecting the most relevant features, the method ensures that models are not only more 

accurate but also faster to train and test, making them more practical for real-world 

applications. 

RQ#3: Does a combining classifier algorithm enhance the performance of the 

proposed model? 

The combining classifier algorithm using Stacking (DT + KNN + RF + XGBoost) 

demonstrates a significant enhancement in the performance of our proposed model 

 The Stacking (DT + KNN + RF + XGBoost) classifier achieves an accuracy of 

99.75% with the full feature set, improving the performance of all individual base 

classifiers (DT, KNN, RF, and XGBoost). 
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 With the reduced features, the Stacking (DT + KNN + RF + XGBoost) classifier 

further improves its accuracy to 99.92%, indicating that combining classifiers 

enhances performance even with fewer features. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study proposed both Hybrid Feature Selection methods by combining Mutual 

Information (MI) and RFE, and combining classifier algorithms using Stacking (DT + 

KNN + RF + XGBoost) for intrusion detection systems significantly enhances the 

performance of the proposed model. This feature selection approach successfully solves 

the problem which is raised by the high dimensional dataset in IDS; the experiment was 

conducted using the CICIDS 2017 dataset, which contains 78 features. These 78 features 

were reduced to 25 features by the proposed feature selection technique. Initially, we 

carried out the experiments using the proposed ML approaches over the full features of 

the CICIDS 2017 dataset. Then we conduct the experiments using the reduced features 

that were generated by the MI-RFE feature selection algorithm proposed in this work. 

The experimental results demonstrated that using reduced (optimal) features has 

improved the accuracy and computation time of the proposed method. The proposed 

method improved the accuracy of Decision Trees (DT), K-nearest neighbors (KNN), 

Random Forests (RF), and XGBoost, with accuracy increases ranging from moderate to 

substantial. In particular, 99.75% accuracy with full features was achieved by the 

Stacking (DT + KNN + RF + XGBoost) classifier, which combines base classifiers, and 

99.92% accuracy with reduced features. By combining classifiers and choosing the most 

pertinent features, this dual approach makes the most of each method's advantages and 

produces an intrusion detection model that is both more accurate and effective. 
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5.2 Recommendations  

 The dataset used for this thesis was from publicly available data. For future 

research, we recommend testing the proposed model using local datasets.  

 We recommend testing the proposed method using other intrusion detection 

datasets. 
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