
DSpace Institution

DSpace Repository http://dspace.org

Computer Science thesis

2024-07

IMPROVING INTRUSION DETECTION

SYSTEM USING HYBRID FEATURE

SELECTION APPROACH

Mebrahtu, Gebremedhin Gebreyohannes

http://ir.bdu.edu.et/handle/123456789/16276

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

SCHOOL OF RESEARCH AND POSTGRADUATE STUDIES

FACULTY OF COMPUTING

IMPROVING INTRUSION DETECTION SYSTEM USING HYBRID

FEATURE SELECTION APPROACH

By

Mebrahtu Gebremedhin Gebreyohannes

Bahir Dar, Ethiopia

July, 2024

i

IMPROVING INTRUSION DETECTION SYSTEM USING HYBRID FEATURE

SELECTION APPROACH

Mebrahtu Gebremedhin Gebreyohannes

A thesis submitted to the school of Graduate Bahirdar Institute of Technology, BDU in

partial fulfillment of requirements for the degree of Master of Science in Computer

Science Faculty of Computing.

Advisor: Mekuanint Agegnehu (PhD)

BahirDar, Ethiopia

July, 2024

ii

DECLARATION

This is to certify that the thesis entitled “IMPROVING INTRUSION DETECTION

SYSTEM USING HYBRID FEATURE SELECTION APPROACH”, submitted in

partial fulfillment of the requirements for the degree of Master of Science in Computer

Science under Computing Faculty, Bahir Dar Institute of Technology, is a record of

original work carried out by me and has never been submitted to this or any other

organization to get any other degree or certificates. The guidance and support I received

through this process have been properly recognized.

 Mebrahtu Gebremedhin Gebreyohannes July 30, 2024

Name of student Signature Date

iii

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Mekuanint Agegnehu for their unwavering support,

guidance, and encouragement throughout this research work. Their insightful feedback

and invaluable expertise were crucial to the completion of this thesis.

Finally, I must express my profound gratitude to my family for their unfailing support

and continuous encouragement throughout my years of study and through the process of

researching and writing this thesis. This completion would not have been possible

without their support.

v

ABSTRACT

With the rapid increase in intrusion attempts exhibiting nonlinear behavior,

network traffic behaves unpredictably, and there is a massive feature in the problem

domain, intrusion detection systems pose a complex challenge. Dealing with high-

dimensional and imbalanced datasets becomes an obstacle in real-world applications like

intrusion detection systems (IDS). To overcome this problem we adopted feature

selection considering the classification performance and computational efficiency. In this

research work, we propose MI-RFE, a hybrid feature selection method tasked with a

binary class intrusion detection system that exploits the qualities of both a filter method

chosen because of its speed and a wrapper method because of its relevance in search. In

the first phase of our approach, we utilize Mutual Information (MI) for its computational

efficiency and ability to handle nonlinear datasets to rank the features based on their

importance. In the second phase, we employ recursive feature elimination (RFE) which is

a machine learning-based wrapper method to further reduce the feature dimensions.

Additionally, we apply the Synthetic Minority Over-sampling Technique (SMOTE) to

address class imbalances in the dataset. The optimal features obtained from the proposed

method were evaluated using a Decision Tree (DT), K-nearest neighbors (KNN),

Random Forest (RF), and XGBOOST and these algorithms were then combined using

Stacking (DT + KNN + RF + XGBoost) techniques to improve their performance. Our

experimental results obtained based on the CICIDS 2017 dataset confirmed that the

proposed method improves the performance and computational time. The results show

that the feature is reduced from 78 to 25 while the accuracy of DT is improved from

93.94% to 99.34% and we achieve 99.92% by Stacking (DT + KNN + RF + XGBoost)

using the reduced features.

Keywords: MI, RFE, Stacking, SMOTE

vi

TABLE OF CONTENTS

DECLARATION .. ii

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF ABBREVIATIONS .. ix

LIST OF FIGURES ... xi

LIST OF TABLES .. xii

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1. Background .. 1

1.2. Motivation and Statement of Problem ... 3

1.3. Objective .. 4

1.3.1. General Objective ... 4

1.3.2. Specific Objectives ... 4

1.4. Scope and Limitation ... 4

1.5. Significance of the Study ... 5

1.6. Organization of the research .. 6

CHAPTER TWO .. 7

LITERATURE REVIEW ... 7

2.1 Cyber Security .. 7

2.2 Intrusion detection system .. 8

2.2.1 IDS Classification by Detection Methods .. 9

2.2.1.1 Signature-based intrusion detection systems .. 9

2.2.1.2 Anomaly-based intrusion detection system (AIDS) 9

2.3 Machine learning .. 10

2.3.1 Supervised Learning ... 11

2.3.2 Unsupervised Learning ... 11

vii

2.3.3 Semi-Supervised Learning ... 11

2.3.4 Machine learning Algorithms ... 12

2.3.4.1 Decision Tree .. 12

2.3.4.2 Random Forest .. 13

2.3.4.3 K-Nearest Neighbors .. 14

2.3.4.4 XGBoost ... 15

2.3.4.5 Stacking... 16

2.4 Feature selection methods .. 16

2.4.1 Filter feature selection method ... 17

2.4.1.1 Mutual information ... 17

2.4.2 Wrapper feature selection Method ... 18

2.4.3 Hybrid feature selection method ... 18

2.5 Related work .. 19

2.5.1 Gap Analysis... 24

CHAPTER THREE .. 25

METHODOLOGY ... 25

3.1 Dataset collection and preparation ... 25

3.1.1 Dataset description ... 26

3.2 Data preprocessing ... 32

3.3 Feature Selection .. 34

3.3.1 Mutual Information Feature Selection .. 35

3.3.2 Recursive Feature Elimination Feature Selection .. 37

3.4 Synthetic Minority Oversampling Technique (SMOTE) 39

3.5 Tools used for Experiment ... 40

3.5.1 The Hardware Tools Used .. 40

3.5.2 The Software Tools Used ... 40

3.6 System Architecture of Proposed Method ... 42

CHAPTER FOUR ... 44

RESULTS AND DISCUSSION ... 44

4.1 Dataset used for Experiments ... 44

4.2 Handling Class Imbalance .. 44

4.3 Performance Evaluation Metrics .. 47

viii

4.4 Hyper-parameters ... 48

4.5 Experiments and Results .. 50

4.5.1 Experimental Results of Feature Selection Using Mutual Information 51

4.5.2 Experimental Results of Feature Selection Using RFE 52

4.5.3 Confusion Matrix Experiment Result ... 54

4.5.4 Experimental results without feature selection with full features 59

4.5.5 Experimental results of features selected by MI ... 62

4.5.6 Experimental results of hybrid feature selection (MI + RFE) 64

4.5.7 Sample Validation results ... 69

4.6 Answer to the research questions ... 71

CHAPTER FIVE .. 74

CONCLUSIONS AND RECOMMENDATIONS ... 74

5.1 Conclusions .. 74

5.2 Recommendations .. 75

REFERENCES ... 76

ix

LIST OF ABBREVIATIONS

AIDS Anomaly Intrusion Detection System

ANN Artificial Neural Network

CIC Canadian Institute for Cyber security

CVS Comma Separated Values

DDOS Distributed Denial of Service

DE Differential Evolution

DoS Denial-of-service

DT Decision Tree

ELM Extreme Learning Machine

FS Feature selection

HIDS Host Intrusion Detection Systems

IDS Intrusion detection system

IoT Internet of Things

IPS Intrusion Prevention System

KNN K-Nearest Neighbors

LDA Linear Discriminant Analysis

LR Logistic Regression

MI Mutual Information

ML Machine Learning

x

NIDS Network Intrusion Detection System

RF Random Forest

RFE Recursive Feature Elimination

SIDS Signature Intrusion Detection System

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

xi

LIST OF FIGURES

Figure 2. 1 Structure of DT algorithm. (Hafeez et al., 2021) 12

Figure 2. 2 How RF is working .. 14

Figure 2. 3 Classification of Feature selection approach .. 19

Figure 3. 1 Class distribution of the total CICIDC 2017 dataset 33

Figure 3. 2 Selecting 20% of CICIDS 2017 dataset ... 33

Figure 3. 3 Data cleaning output ... 34

Figure 3. 4 How SMOTE works .. 39

Figure 3. 5 System architecture for the proposed model .. 42

Figure 4. 1 Experiment result of SMOTE in Training dataset 45

Figure 4. 2 Mutual Information (MI) Score of all the features 51

Figure 4. 3 Selected features by MI ... 52

Figure 4. 4 Feature importance score of the selected features 52

Figure 4. 5 Selected features using Recursive feature elimination (RFE) 53

Figure 4. 6 Confusion matrix for DT .. 54

Figure 4. 7 Confusion matrix for KNN ... 55

Figure 4. 8 Confusion matrix for RF ... 56

Figure 4. 9 Confusion matrix for XGBoost .. 57

Figure 4. 10 Confusion matrix for Stacking (DT + KNN + RF + XGBoost) 58

Figure 4. 11 Accuracy Comparison of Full Features ... 61

Figure 4. 12 Accuracy Comparison of Reduced Features ... 66

Figure 4. 13 Accuracy Comparison of the 25 and 52 Features 67

Figure 4. 14 Accuracy Comparison of the 25, 52 and full (78) Features 68

Figure 4. 15 Cross-validation for DT .. 69

Figure 4. 16 Cross-validation for RF .. 69

Figure 4. 17 Cross-validation for stacking (DT+ KNN + RF + XGBoost) 70

xii

LIST OF TABLES

Table 2. 1 Comparison of IDS based on detection methods. 10

Table 2. 2 Summary of the related works ... 21

Table 3. 1 Victim and Attacker Network Information in the CICIDS 2017 Dataset 26

Table 3. 2 Description of files containing the CICIDS2017 dataset with attack found

 .. 27

Table 3. 3 The 78 features and the label class of the CICIDS 2017 dataset record .. 28

Table 4. 1 Distribution of label class in training and testing before applying SMOTE

 .. 45

Table 4. 2 Distribution of label class in training and testing after applying SMOTE

 .. 46

Table 4. 3 Confusion matrix for two class classification ... 47

Table 4. 4 Hyper-parameters for the classifier algorithm .. 49

Table 4. 5 Experiment results using full features .. 59

Table 4. 6 Experiment result of 52 feature selected by MI ... 62

Table 4. 7 Experiment results using reduced features .. 64

Table 4. 8 Comparison of training and testing time .. 70

1

CHAPTER ONE

 INTRODUCTION

1.1. Background

In our modern world, the Internet has become an integral part of everyone's daily

life, enabling individuals to carry out essential activities seamlessly. With the growing

reliance on digitalization and the Internet of Things (IoT), there has been a significant

rise in security incidents including unauthorized access, malware attacks, zero-day

exploits, data breaches, denial-of-service (DoS) attacks, and social engineering or

phishing attempts, among others, expanding at an exponential pace in recent times(Sarker

et al., 2020).

Cyber security is the proactive defense of systems, networks, and software against digital

attacks. These cyber-attacks typically target sensitive information, aim to extort money or

disrupt business operations. The evolving landscape, with more devices than people and

increasingly sophisticated attackers, makes implementing effective cyber security

measures a significant challenge. It entails safeguarding vital data and devices and

ensuring confidentiality, integrity, and availability. While preventing breaches entirely

may seem unattainable, security mechanisms aim to deter unauthorized access. Intrusion

Detection, a field of research, focuses on identifying and responding to intrusion

attempts, and mitigating potential damage(B. B. Gupta et al., 2020).

Intrusion detection involves systematically observing the activities within a computer

system or network, and examining them for indications of potential incidents. These

incidents may include breaches or impending threats to computer security policies,

acceptable use guidelines, or established security protocols(Thakkar & Lohiya, 2022).

According to (Thakkar & Lohiya, 2022) intrusion detection systems (IDSs) are typically

categorized into two primary types: anomaly detection systems and misuse detection

systems, also known as signature-based systems. Anomaly detection systems operate by

establishing rules that define normal behavior within a system. Any activity that

2

significantly deviates from these established norms is flagged as potentially suspicious or

indicative of an attack. In contrast, misuse detection systems maintain a database of

known attack signatures or patterns. When monitoring network traffic or system activity,

the system compares this data against the stored signatures to identify known threats.

However, this approach may be limited in detecting novel attacks that do not match

existing signatures.

According to (Thakkar & Lohiya, 2022) intrusion detection systems (IDSs) can also be

categorized based on their installation method into Network Intrusion Detection Systems

(NIDS) and Host Intrusion Detection Systems (HIDS). NIDS is strategically deployed at

specific points within the network to monitor inbound and outbound traffic across all

network devices. Conversely, HIDS operates directly on individual computers or devices

within the network, providing monitoring capabilities for those systems with both internet

and internal network access.

IDS can't be perfect, primarily because network traffic is so complicated(Thakkar &

Lohiya, 2022). According to those authors errors in IDS can be classified into two

categories: false positives and false negatives. A false positive occurs when the IDS

mistakenly identifies legitimate activity as malicious, generating a false alarm. On the

other hand, a false negative represents a more severe scenario where the IDS fails to

detect an actual attack, classifying malicious activity as acceptable. This failure to

recognize an attack poses the most serious risk as security professionals remain unaware

of the breach. While false positives are inconvenient and can lead to complications, false

negatives present a significant security concern.

Feature Selection (FS) is the act of identifying relevant features or a potential subset of

features from a larger set of available features(Kumar, 2014). The utilization of

evaluation criteria is essential in acquiring an optimal feature subset, a critical aspect for

enhancing the efficiency of Intrusion Detection Systems (IDS). Given the extensive

network connections and massive data flow on the Internet, IDS encounters challenges in

accurately detecting attacks. Furthermore, the presence of irrelevant and redundant

features significantly affects the quality of IDS, impacting both detection accuracy and

processing costs. Consequently, Feature Selection (FS) emerges as a pivotal technique

aimed at bolstering detection performance among these complexities(Sofiane Maza &

3

Mohamed Touahria, 2018). In this research work to reduce the irrelevant and redundant

features, we use the FS approach. In general, two different approaches for FS can be

distinguished(Jabali, 2017): filter and wrapper approaches. Using a filter approach, the

selection of appropriate features is based on distance and information measures in the

feature space and is carried out completely independently from the classifier deployed. In

contrast, with a wrapper approach, the selection of features is based on the classifier's

accuracy using a machine-learning classification or learning algorithm. Although a filter

approach might be faster, we can apply a wrapper approach to achieve better

classification results. To take advantage of both the filter and wrapper approach in this

study we applied the Hybrid FS approach.

1.2. Motivation and Statement of Problem

In our modern world, the internet is a vital tool for work and everyday life,

providing countless benefits. However, it also brings challenges, especially when it

comes to security. With the internet expanding rapidly, we are seeing more and more

cyber-attacks and intrusions. These attacks can cause serious harm to our computer

systems and result in significant data loss. That's why it's crucial to develop effective

ways to detect and prevent these harmful activities, ensuring the safety and reliability of

our systems(B. B. Gupta et al., 2020).

Because intrusion attempts exhibit nonlinear behavior, network traffic behaves

unpredictably, and there is a massive feature in the problem domain, intrusion detection

systems pose a complex challenge(Aghdam & Kabiri, 2016). Given the size and nature of

intrusion detection datasets, intrusion detection systems (IDS) also often require high

computational complexity to analyze data features and identify intrusive patterns (Umar

et al., n.d.). Redundant and irrelevant features in IDS data have been a persistent issue in

network traffic classification.

Selecting effective and essential features is crucial in network IDS to enhance the

detection rate of IDS models. While most IDSs employ a single-feature selection

approach to categorize network traffic data as either normal behavior or anomalous, these

single-feature selection approaches often fall short of achieving the optimal attack

detection rate while maintaining a low false alarm rate(Panda et al., 2012). As other

researchers start finding out different ways to increase accuracy and improve the model

4

of the intrusion detection system, there is still enough scope to increase the accuracy and

efficiency of the model. In this area, the authors in(Khan et al., 2020) recommend future

works to build a hybrid model to improve the accuracy of the model and to speed up the

computation time of the model. In this study, we proposed a hybrid FS approach and

stacking classification method.

In the end, this study answers the following research questions:

1. What are the features selected through the Hybrid Feature Selection method?

2. Does implementing a Hybrid Feature Selection method improve the performance

of the model?

3. Does a combining classifier algorithm enhance the performance of the proposed

model?

1.3. Objective

The objective of the study is described as general and specific objectives.

1.3.1. General Objective

The general objective of this thesis is to build a machine-learning intrusion detection

model using a Hybrid feature selection approach.

1.3.2. Specific Objectives

 To propose an effective and efficient classifier model for the IDS using the

Hybrid FS approach.

 To explore features best suited for the IDS implementation.

 To combine classifier algorithms to enhance the performance of the proposed

model.

 To compare the effectiveness of the proposed method with single Methods.

1.4. Scope and Limitation

This research paper focuses on building an intrusion detection model using a hybrid

feature selection approach. The approach combines the strengths of both filter and

wrapper methods to handle nonlinear datasets and reduce feature dimensions. Mutual

Information (MI) from the filter method and Recursive Feature Elimination (RFE) from

the wrapper method are selected for feature selection. Decision Tree (DT), K-nearest

5

neighbors (KNN), Random Forest (RF), and XGBoost are selected for classification and

stacking techniques is used to combine those classifiers.

Due to the challenge of obtaining a local dataset, the data used for this thesis work was

obtained from publicly available data sources from the Canadian Institute of Cyber

Security which is CICIDS 2017, and due to the lack of a high-performance computer, we

used 20% of the data for our experiments.

1.5. Significance of the Study

This study addresses pressing issues in the field of cyber security, particularly in the

realm of intrusion detection systems (IDS). By proposing a hybrid feature selection

method (MI-RFE) and incorporating advanced machine learning techniques, the research

offers substantial improvements in detecting cyber-attacks, which is of paramount

importance in today's digital age where security threats are increasingly sophisticated and

prevalent. The combination of MI from filter and RFE from wrapper methods for feature

selection with ensemble learning techniques improves the performance, efficiency, and

robustness of intrusion detection models, leading to better overall results. This approach

leverages the strengths of each method, resulting in a highly effective IDS framework

that can be adapted for various cyber security applications and improving cyber security

measures across various sectors, by safeguarding critical digital infrastructure and

sensitive information from malicious attacks.

The following are the main contributions of this research work;

 We build a hybrid feature selection method named MI-RFE for intrusion

detection systems.

 Our proposed model successfully reduces feature dimensionality from 78 to 25

with accuracy of 99.34% for Decision Trees (DT), compared to 93.94% accuracy

before feature selection.

 By employing a stacking approach that combines Decision Trees (DT), K-Nearest

Neighbors (KNN), Random Forest (RF), and XGBoost classifiers, we get an

accuracy of 99.92% with reduced features and 99.75% with the full feature set.

6

 Our proposed feature selection method not only enhances model performance but

also reduces computational overhead by decreasing the training and testing time

of the classifier.

1.6. Organization of the research

The research is organized into five different chapters.

Chapter One: This chapter presents an introduction to the study; including background,

problem statement, objective, and significance of the study this provides sufficient

information about the study to assist the reader to know the purpose of the study.

Chapter Two: This chapter presents a literature review that explains cyber security, IDS,

feature selection approaches, some machine learning algorithms, and related works that

are discussed.

Chapter Three: In this chapter, we discussed methods and methodology conducted for

the model building including the dataset used, the preprocessing of the dataset, steps in

feature selection, and the block diagram of the proposed model.

Chapter Four: In this chapter, we discussed on results and discussion of the proposed

model using the selected dataset. We conduct experiments using the Anaconda Navigator

tool which has a Jupyter Notebook interface.

 Chapter Five: In this chapter, we discussed the conclusions and recommendations.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Cyber Security

The widespread adoption and usage of the Internet and mobile applications have

expanded the realm of cyberspace. Consequently, cyberspace has become increasingly

susceptible to automated and prolonged cyber-attacks. Cyber security techniques play a

crucial role in bolstering security measures to detect and respond effectively to such

cyber threats(Shaukat et al., 2020).

According to (Humayun et al., 2020) cyber security encompasses a comprehensive

collection of elements including strategies, policies, standards, procedures, guidelines,

risk mitigation strategies, training, techniques, technologies, tools, and processes. These

components work in concert to safeguard the confidentiality, integrity, and availability of

computing resources, networks, software programs, and assets from potential attacks.

Cyberspace represents a worldwide field within the realm of information, distinguished

by its utilization of the electronic and electromagnetic spectrum. Its defining feature lies

in the creation, updating, storage, sharing, and exploitation of information through

interconnected and interdependent networks, facilitated by cutting-edge information and

communication technologies(Humayun et al., 2020). Currently, cyber security stands as a

pressing concern in the realm of cyberspace, demonstrating a marked escalation across

diverse application domains, including finance, industry, healthcare, and other vital

sectors(Alom & Taha, 2017). Cyber security defense mechanisms can be implemented at

various levels, including application, network, host, and data. Examples of these defense

mechanisms include access control, authentication methods, encryption techniques,

firewalls, antivirus software, intrusion detection systems (IDSs), and intrusion prevention

systems (IPSs). These measures work to both prevent attacks and detect security

breaches(Berman et al., 2019). According to (Sarker et al., 2020) the primary objectives

8

of cyber security revolve around ensuring the confidentiality, availability, and integrity of

information.

 Confidentiality is a technique used to prevent the access and disclosure of

information to unauthorized individuals, entities, or systems.

 Integrity is a technique used to prevent any modification or destruction of

information in an unauthorized manner.

 Availability is a technique used to ensure timely and reliable access to

information assets and systems to an authorized entity.

2.2 Intrusion detection system

The rapid growth of technology has certainly made life easier, yet it has also

brought forth an excess of security concerns. With the evolution of the internet, the

frequency of cyber-attacks has surged over the years. Intrusion Detection Systems (IDS)

play a vital role in maintaining a secure environment for businesses by safeguarding

against suspicious network activities.

According to (Khraisat et al., 2019) intrusion is characterized as any unauthorized

activity that results in harm to an information system. This encompasses any attack that

could potentially endanger the confidentiality, integrity, or availability of information,

thus qualifying as an intrusion.

An Intrusion Detection System (IDS) is a software or hardware mechanism designed to

detect and identify malicious or unauthorized activities on computer systems. Its primary

function is to uphold system security by promptly identifying and responding to potential

threats(Khraisat et al., 2019). The internet's growing impact on modern life underscores

the significance of cyber security as a crucial area of research. Cyber security protection

strategies primarily encompass anti-virus software, firewalls, access control, endpoint

security, intrusion prevention systems, and intrusion detection systems (IDSs). These

techniques are instrumental in safeguarding networks from both internal and external

threats. Specifically, an IDS serves as a pivotal detection system, monitoring the

operational states of software and hardware within a network to bolster cyber

security(Liu & Lang, 2019a).

An IDS is a computer security application designed to identify various security breaches,

spanning from attempted external break-ins to system intrusions and misuse by internal

9

users (Liu & Lang, 2019a). The primary functions of IDSs include monitoring hosts and

networks, analyzing the behaviors of computer systems, generating alerts, and responding

to suspicious activities. Due to their role in monitoring connected hosts and networks,

IDSs are commonly deployed in proximity to protected network nodes, such as switches

within major network segments.

Based on (Liu & Lang, 2019a) IDSs are classified into two main categories: detection-

based methods and data source-based methods. Detection methods further categorize

IDSs into misuse detection and anomaly detection. Data source methods classify IDSs

into host-based and network-based methods.

2.2.1 IDS Classification by Detection Methods

2.2.1.1 Signature-based intrusion detection systems

Signature Intrusion Detection Systems (SIDS) rely on pattern-matching

techniques to identify known attacks. These systems are also referred to as Knowledge-

based Detection or Misuse Detection(Khraisat et al., 2019). In SIDS, matching methods

are employed to identify a past intrusion. Simply, when an intrusion signature aligns with

the signature of a previous intrusion stored in the signature database, an alarm signal is

activated.

One of the primary advantages of SIDS is its ease of development and comprehension,

particularly when there is a clear understanding of network traffic behavior and system

activity(Jose et al., 2018). SIDS also excels in combating attacks with fixed behavioral

patterns.

The primary disadvantages of SIDS include the constant need for updating and

maintaining the collection of signatures, which can fail to detect unique attacks.

Additionally, they struggle to effectively handle self-modifying behavioral

characteristics(Jose et al., 2018).

2.2.1.2 Anomaly-based intrusion detection system (AIDS)

AIDS establishes a baseline or learned pattern of typical system activity to discern

active intrusion attempts. When deviations from this baseline or pattern occur, an alarm is

triggered. In an anomaly detection engine, events are generated by any behaviors that

deviate from the predefined or accepted model of behavior(Jose et al., 2018).

In AIDS, a computer system's normal behavior model is established using machine

learning, statistical-based, or knowledge-based techniques. Any substantial deviation

10

between observed behavior and the model is classified as an anomaly, potentially

indicating an intrusion. The development of AIDS typically involves two phases: the

training phase and the testing phase. During the training phase, the normal traffic profile

is utilized to construct a model of typical behavior. Following this, during the testing

phase, a new dataset is utilized to evaluate the system's capability to generalize to

intrusions that it has not encountered before(Khraisat et al., 2019).

The primary advantage of AIDS lies in its capability to detect zero-day attacks, as it

doesn't depend on a signature database for recognizing abnormal user activity (Khraisat

et al., 2019). The primary drawback of an anomaly detection system is the challenge of

defining rules. It requires precise definition, implementation, and difficult testing of all

protocols being analyzed to ensure accuracy (Jose et al., 2018).

 Table 2. 1 Comparison of IDS based on detection methods.

Anomaly-based Misuse or Signature-based

Detects unknown attacks and

vulnerabilities along with known

attacks.

Effective in identifying known attacks by

performing contextual analysis

It is less dependent on the operating

system and rather examines the network

patterns for identifying attacks.

It depends on its software and operating

system to identify both attacks and

vulnerabilities

It builds profiles of the observed

network communication for identifying

the attack patterns.

The attack signature database should be

updated regularly.

The anomaly-based IDS conducts protocol

analysis to examine the specifics of packets.

The signature-based IDS have a minimum

knowledge of protocols.

Low missed alarm rate; High false alarm

rate

Low false alarm rate; High missed alarm rate

2.3 Machine learning

Machine learning (ML) is defined as the scientific exploration of algorithms and

statistical models that empower computer systems to accomplish specific tasks without

the need for explicit programming, as stated (Mahesh, 2018). Machine learning (ML) is

employed to instruct machines on handling data more efficiently. In the context of

11

Intrusion Detection Systems (IDS), ML algorithms enable more accurate detection of

attacks within large volumes of data in shorter timeframes(Saranya et al., 2020). ML

algorithms can be classified into three categories(Saranya et al., 2020).

 Supervised

 Unsupervised

 Semi-supervised

2.3.1 Supervised Learning

Supervised learning is a machine learning task focused on learning a function that

links an input to an output, guided by example input-output pairs. It deduces a function

from labeled training data, which comprises a collection of training examples(Mahesh,

2018). Supervised learning pertains to fully class-labeled data, establishing the

relationship between data and its respective class. This can be achieved through either

classification or regression. Classification involves two key steps: training and testing.

During training, the model learns from the labeled data with the assistance of the

response variable(Saranya et al., 2020).

2.3.2 Unsupervised Learning

Unsupervised learning extracts valuable feature information from unlabeled data,

simplifying the process of acquiring training data. However, the detection performance of

unsupervised learning methods typically falls short of that achieved by supervised

learning methods(Liu & Lang, 2019b). In intrusion detection, unsupervised learning

algorithms aim to uncover hidden structures within unlabeled data. Unsupervised

learning, unlike supervised learning, operates independently of any training data. This

can be accomplished through methods such as clustering, association analysis, or

dimensionality reduction(Saranya et al., 2020). In unsupervised learning, we lack

knowledge of the correct output for a given input. Clustering stands out as one of the

most widely used unsupervised approaches for detecting intrusion(A. R. bhai Gupta &

Agrawal, 2020).

2.3.3 Semi-Supervised Learning

The semi-supervised machine learning (ML) algorithm resides between

unsupervised learning and supervised learning. These techniques leverage both unlabeled

data for training and a small portion of labeled data, especially in scenarios involving a

large set of unlabeled data(Saranya et al., 2020). These algorithms are employed when we

12

possess a portion of data where the output is known for the corresponding input, while

the output remains unknown for the rest of the data (A. R. bhai Gupta & Agrawal, 2020).

2.3.4 Machine learning Algorithms

2.3.4.1 Decision Tree

Decision Tree (DT) serves as a supervised ML technique utilized for

classification and regression tasks. The resultant model from the decision-making process

resembles a tree structure, making DT relatively straightforward for users to interpret.

Additionally, many ML tools offer the capability to visualize the resulting trees, further

aiding in comprehension(Kasongo & Sun, 2020a).

A decision tree is a graphical representation of choices and their outcomes in the form of

a tree structure. Nodes in the graph depict events or decisions, while edges represent

decision rules or conditions. Each tree comprises nodes and branches, with each node

representing attributes grouped for classification and each branch indicating a possible

value the node can assume(Mahesh, 2018).

Figure 2. 1 Structure of DT algorithm. (Hafeez et al., 2021)

13

Advantages:

The interpretation of a Decision Tree (DT) classifier is straightforward and can be easily

grasped with a concise explanation. Inferences can be drawn from various probability

estimations and costs, enabling the generation of precise outputs. Furthermore, it

seamlessly integrates with other classification models, enhancing accuracy. DT classifiers

excel in scenarios where the model is familiar with existing intrusion methods and

scenarios, showcasing superior performance(Thakkar & Lohiya, 2021).

Disadvantages:

The DT classifier lacks adaptability to minor data alterations, often leading to unstable

decision tree structures even with slight changes. When handling similar datasets, its

accuracy tends to be relatively lower. Complexity arises when deriving nodes, especially

with interconnected or uncertain data. Consequently, it's ill-suited for problems with

limited information availability(Thakkar & Lohiya, 2021).

2.3.4.2 Random Forest

Random Forest is a prominent machine learning algorithm that employs a bagging

approach to generate multiple decision trees, each trained on a random subset of the data.

Through repeated training on random samples of the dataset, the Random Forest

algorithm aims to achieve robust prediction performance. In this ensemble learning

technique, the output of all decision trees within the Random Forest is aggregated to form

the final prediction. This can be accomplished either by polling the results of each

decision tree or by selecting the prediction that occurs most frequently across the decision

trees. RF constructs many decision trees based on the instances of class and the root of a

random forest tree is selected by suitable voting from each class of the tree

constructed(Thakkar & Lohiya, 2021). RF works by creating a forest of decision trees

and merges them to form a more accurate model that can be used for both classification

and regression(Jhaveri et al., 2019).

14

Figure 2. 2 How RF is working

Advantages:

Random Forest (RF) applies even to large datasets with numerous features. It evaluates

the significance of each feature individually, ensuring balanced model performance.

Notably, RF mitigates over-fitting issues and adeptly manages unbalanced

datasets(Thakkar & Lohiya, 2021).

Disadvantages:

RF model isn't straightforward due to the numerous trees it generates. These complexities

can difficult real-time classification, predictions, especially with a large number of trees.

Consequently, the model's speed decreases as the number of trees increases(Thakkar &

Lohiya, 2021).

2.3.4.3 K-Nearest Neighbors

K-nearest neighbor (KNN) is a supervised classification technique that assigns a

class to data based on the class of its nearest neighbor. The algorithm determines the

classes by considering the value of k, which represents the number of nearest neighbors

to consider. It predicts the class of a data sample by assessing consistency and distance

15

with its closest neighbor. Distance metrics such as Euclidean and Manhattan distances are

commonly used to measure the distances between data points and their nearest neighbors.

Since all data points are stored in memory, KNN is often referred to as a memory-based

technique. To enhance algorithm performance, weights can be assigned to training points

based on their distances from the data points. However, managing computational

complexity and memory requirements are significant concerns for this technique. These

challenges can be addressed by reducing the dataset size or eliminating data points that

do not contribute to recurring patterns(Thakkar & Lohiya, 2021).

Advantages:

It is a cost-effective algorithm as no computational time is required to learn the data.

Even with large datasets, it performs effectively by employing simple methods to assume

local approximation.

Disadvantages:

The interpretation of the model is very complex due to the absence of any description of

the training data. The learning process can be costly, given the laborious task of

identifying the k-nearest neighbors, particularly when dealing with extensive datasets

stored in memory. It might require a very large dataset. The performance of the algorithm

is completely dependent upon the attributes selected for computation and hence, it results

in a curse of dimensionality for the dataset considered(Thakkar & Lohiya, 2021).

2.3.4.4 XGBoost

XGBoost stands for Extreme Gradient Boosting, which implements a gradient

boosting technique using decision trees. It constructs small, simple decision trees

iteratively, with each tree acting as a weak learner due to its high bias. XGBoost starts by

building an initial basic tree that performs poorly. The next tree is trained to predict the

errors of the first tree, improving upon what the initial weak learner couldn't capture. This

process continues, with each new tree correcting the mistakes of the previous ones until a

stopping condition is met, such as the predetermined number of trees (estimators) to be

created. XGBoost also offers significant advantages: it trains quickly and can be

parallelized or distributed across clusters for enhanced performance(Arif Ali et al., 2023).

XGBoost combines weak classifiers to create a strong model. It incorporates feedback

from previously constructed decision trees. Each iteration of gradient boosting optimizes

16

the loss function, aiming to minimize the residuals from the previous step. These

residuals represent the difference between the predicted values and the true values. By

iteratively refining these predictions, XGBoost enhances the overall model

accuracy(Faysal et al., 2022).

2.3.4.5 Stacking

Stacking is an ensemble machine learning method that permits the mixture of two

or more classifier algorithms and prepares a final model with accurate prediction. The

best thing about the stacking ensemble is that it often used the benefits of the various

algorithms at the identical time and therefore the capabilities of well-performing models

to solve classification and regression problems.

Stacking is an effective strategy as it serves as a useful framework that integrates various

ensemble methods. It operates on two levels of learning: base learning and meta-learning.

During base learning, initial (base) learners are trained using the training dataset.

Subsequently, these base learners generate a new dataset for the meta-learner. The meta-

learner is then trained using this new dataset. Once trained, the meta-learner is utilized to

classify the test set. A critical aspect of stacking lies in selecting the best base learner.

Instead of relying on a single base learner, employing multiple base learners enhances

performance on the training dataset(Rajadurai & Gandhi, 2022).

2.4 Feature selection methods

Feature selection involves the elimination of irrelevant and redundant features

from a dataset, aiming to enhance the performance of machine learning algorithms in

terms of accuracy and the time required to build the model (Asir et al., 2016). Feature

selection methods are crucial in enhancing the performance and accuracy of machine

learning algorithms. Feature selection (FS) serves as an essential preprocessing

technique, enabling the selection of an optimal subset of relevant features from the

original feature set for constructing machine learning models(Umar et al., 2021). This is

accomplished by reducing the number of features through the removal of irrelevant,

redundant, or noisy data, which directly impacts the performance of the subsequent

model built.

According to (Umar et al., 2021), The typical feature selection procedures encompass the

following steps.

17

1. Subset generation: produces candidate feature subsets for evaluation based on

search starting point, direction, and strategy.

2. Subset evaluation: evaluates and compares candidate subset with the preceding

best subset based on certain evaluation criteria. If the new subset happens to

outperform the previous best subset, it will be replaced. The evaluation criteria

can be independent (used in filter methods) or dependent (used in wrapper

methods).

3. Stopping criterion: controls the stoppage of the feature selection process. The

iteration of subset generation and evaluation continues until a predetermined

stopping criterion is met.

4. Result validation: The selected best subset is validated through prior knowledge

or various tests using synthetic and/or real-world datasets.

According to (Asir et al., 2016) feature selection approaches are categorized into three

main categories: wrapper, filter, and hybrid methods.

2.4.1 Filter feature selection method

Filters aim to select an optimal feature subset based on the inherent characteristics

of the data rather than a specific learning algorithm. Generally, filters compute the score

of a feature (subset) using certain evaluation criteria and then select features with the

highest scores (Hancer et al., 2020). Within the filter method, the model initially

incorporates all features and subsequently identifies the optimal feature subset using

statistical measures like Pearson’s correlation, Linear Discriminant Analysis (LDA), Chi-

square, and Mutual Information (MI). These statistical techniques rely on both the

response and feature variables within the dataset(Hancer et al., 2020).

2.4.1.1 Mutual information

MI feature selection is a commonly used filter method for improving the

performance of intrusion detection systems (IDS) (Alalhareth & Hong, 2023). This

method evaluates the relationship between each feature and the class label or the target

variable, choosing features with the highest mutual information scores. One of the

primary benefits of using mutual information is its ability to consider nonlinear

relationships between features and class labels. This characteristic renders mutual

information making it suitable for handling complex and nonlinear data patterns in IDS.

By selecting the most relevant and informative features, mutual information feature

18

selection can effectively reduce the dimensionality of the data and improve the degree of

mutual dependence between two variables (x, y). MI assesses the amount of information

acquired about one arbitrary variable through the other random variable(Venkatesh &

Anuradha, 2019).

Mutual Information (MI) serves as a statistical method employed in feature selection. It

quantifies the two discrete variables, the mutual information MI criterion is the amount of

information these variables share about each other (Al-rimy et al., 2021). Based on those

authors the criterion is calculated according to (1) as follows.

MI(X;Y)= ∑ ∑ P(x,y)

x£Xy£Y

log
p(x,y)

p(x)p(y)
 1

 p(x) and p(y) represent the marginal distributions of x and y, while p(x, y) denotes their

joint distribution.

2.4.2 Wrapper feature selection Method

Wrapper-based feature selection methods rely on the predictive power of the

learning algorithm used to assess the qualitative attributes of selected features. In these

methods, feature selection occurs in two primary steps for a specific learning model: i)

identifying an optimal feature subset from the dataset, and ii) evaluating the chosen

features. This iterative process continues until certain termination criteria are satisfied.

The feature set search component generates subsets of features, and subsequently, the

machine learning technique is employed to gauge the effectiveness of the selected feature

set based on performance metrics(Thakkar & Lohiya, 2022).

Wrappers necessitate a learner to assess the quality of potential feature subsets.

Consequently, wrappers can achieve superior feature subsets to improve the performance

of the predefined learning algorithm. However, they often entail higher computational

intensity compared to filters. Firstly, wrappers obtain a feature subset utilizing search

strategies. Subsequently, the selected feature subset's quality is evaluated through a

learning algorithm. This iterative process continues until the stopping criterion is

satisfied(Hancer et al., 2020).

2.4.3 Hybrid feature selection method

Hybrid approaches strive to leverage the benefits of both wrappers and filters.

Two common hybridization methods are typically employed to combine wrappers and

19

filters. One approach involves a two-stage process wherein a filter method is first applied

to reduce the feature set, followed by a wrapper method on the reduced set to obtain the

final subset. Alternatively, a filter (wrapper) method can serve as a local search

mechanism within a wrapper (filter) method. The latter method is anticipated to yield

superior performance in terms of both learning outcomes and feature subset size (Hancer

et al., 2020). In this study, we apply the hybrid method to obtain the advantages of both

the wrapper and filter methods.

Figure 2. 3 Classification of Feature selection approach

2.5 Related work

The authors (Kasongo & Sun, 2020b) proposed a filter-based feature reduction

technique using the XGBoost algorithm to score the feature importance of each feature of

the dataset. They evaluated several ML algorithms including SVM, KNN, LR, ANN, and

DT classifiers using the UNSW-NB15 dataset. Finally, their experiment achieved an

accuracy of 90.85% by DT. The authors trained their proposed method on highly

imbalanced datasets without employing any techniques to address this imbalance, which

can lead to a high false positive rate and low detection accuracy.

 The author (Almasoudy et al., 2020) proposed wrapper feature selection for an Intrusion

Detection system using Differential Evolution (DE) for feature selection and they applied

an Extreme Learning Machine (ELM) algorithm for classification, their experimental

showed that this technique achieved an accuracy of 80.15 % using NSL_KDD datasets.

The author uses only the Differential Evolution (DE) which is the wrapper feature

selection method without reducing the features which leads to high computational time.

20

The author (Khan et al., 2020) introduced a wrapper-based feature selection approach

using the Feature Importance model with an RF classifier for intrusion detection systems.

They used KNN, DT, RF, Bagging Meta Estimator, and XGBoost ML algorithms for

classification. Their experimental results have shown that RF achieved the highest

accuracy of 74.87% using UNSW-NB 15 datasets. The authors in this paper recommend

building a hybrid architecture of the method to further improve the accuracy of the model

as well as speed up the computation time of the model. The author uses ensemble feature

selection methods which require higher computational costs particularly challenging

when handling large-scale datasets.

In this (Nazir & Khan, 2021) paper the authors introduce a wrapper-based feature

selection technique Tabu Search - Random Forest (TS-RF). Tabu search serves as the

search method, while RF acts as the learning algorithm for NIDS. They achieved an

accuracy of 83.12% using UNSW-NB 15 datasets. The authors use only a Tabu search

wrapper feature selection approach without reducing the feature which leads to high

computational time and they have not used any technique to solve the imbalance problem

in the dataset because this has an impact on the classifier accuracy and also increases

misclassification rate and false positives.

The authors (Mebawondu et al., 2020) proposed IDS using a filter-based information gain

to rank the features as feature selection and ANN as classification, and finally their

experiment result achieved 76.96% accuracy using UNSW-NB 15 datasets. The author

uses only information gain for feature selection without evaluated using machine learning

based techniques whether those features are relevant or not. Using hybrid feature

selection algorithms, the system's performance can be further enhanced.

The author (Taher et al., 2019) proposes an intrusion detection system to detect malicious

attacks using ANN and SVM algorithms for classification, the applied Chi-Square filter

method, and the Correlation-based wrapper feature selection techniques. Their

Experimental results showed that achieved the highest accuracy of 94.02% using the

NSL-KDD dataset by ANN.

21

The authors (Jing & Chen, 2019) proposed network intrusion detection without a feature

selection approach using an SVM classifier, and finally, their experiment achieved an

accuracy of 85.99% using UNSW-NB 15. The proposed method was evaluated using

only a single classifier and SVM unsuitable for large datasets, not considering

computational efficiency.

The author (Ahmim et al., 2018) proposes an intrusion detection system (IDS) that

combines different classifier approaches that are based on decision tree and rules-based

concepts, namely, REP Tree, JRip algorithm, and Forest PA without applying any feature

selection method using CICIDS 2017 datasets and he achieved an accuracy of 96.6% by

Forest PA. The author does not apply any feature selection method which may lead to

overfitting, decreased model performance, longer training and prediction times, and he

does not use any technique for handling the imbalance classes in the datasets.

The authors (Ambikavathi & Srivatsa, 2020) propose an intrusion detection system (IDS)

using the Random forest’s variable importance function VarImp() to obtain the optimal

features, RF is also used for classification and they achieved an accuracy of 97.34%

utilized CICIDS 2017 datasets. The authors focus on the Random Forest algorithm for

both feature selection and classification this single-algorithm focus might restrict the

ability to handle various types of data patterns and attack behaviors optimally.

Incorporating and comparing multiple algorithms could provide a more comprehensive

evaluation and possibly better performance for intrusion detection systems. They do not

apply any techniques for solving imbalance classes in the dataset.

Table 2. 2 Summary of the related works

Proposed by Feature

Selection

Technique

Classifier

Algorithm

Dataset

used

Limitation

(Kasongo &

Sun, 2020b)

XGBoost SVM,

KNN, LR,

ANN, and

DT

UNSW-

NB15

The authors trained their

proposed method on

highly imbalanced datasets

without employing any

22

techniques to address this

imbalance class, which

can lead to a high false

positive rate and low

detection accuracy.

(Almasoudy

et al., 2020)

Differential

Evolution (DE)

Extreme

Learning

Machine

(ELM)

NSL_KDD The author uses only the

Differential Evolution

(DE) which is the wrapper

feature selection method

without reducing the

features which leads to

high computational time.

(Khan et al.,

2020)

Feature

Importance(RF)

KNN, DT,

RF,

Bagging

Meta

Estimator,

and

XGBoost

UNSW-NB

15

The author uses ensemble

feature selection methods

which require higher

computational costs

particularly challenging

when handling large-scale

datasets.

(Nazir &

Khan, 2021)

Tabu Search RF UNSW-NB

15

The authors use only a

Tabu search wrapper

feature selection approach

without reducing the

feature which leads to high

computational time and

they have not used any

technique to solve the

imbalance problem in the

dataset because this has an

impact on the classifier

accuracy and also

23

increases misclassification

rate and false positives

(Mebawondu

et al., 2020)

Information

Gain

ANN UNSW-NB

15

The author uses

information gain for

feature selection without

using advanced feature

selection techniques to

evaluate whether those

features are relevant or not

(Jing &

Chen, 2019)

Not applied SVM KDDCUP99 The proposed method was

evaluated using only a

single classifier and SVM

unsuitable for large

datasets, not considering

computational efficiency.

(Ahmim et

al., 2018)

Not applied REP Tree,

JRip, and

Forest PA

CICIDS

2017

The author does not apply

any feature selection

method which may lead to

overfitting, decreased

model performance,

longer training and

prediction times, and he

does not use any technique

for handling the imbalance

classes in the datasets.

(Ambikavathi

& Srivatsa,

2020)

Random

forest’s

variable

importance

function

VarImp()

RF CICIDS

2017

The authors focus on the

Random Forest algorithm

for both feature selection

and classification this

single-algorithm focus

might restrict the ability to

24

handle various types of

data patterns and attack

behaviors optimally

2.5.1 Gap Analysis

The previous existing works have several limitations in feature selection,

classification, class imbalance handling, and computational time. Those using the filter

approach often fail to identify the most relevant features accurately, as this method

assesses features statically without incorporating a machine learning algorithm.

Conversely, studies employing the wrapper method face high computational costs due to

the iterative nature of using a machine-learning algorithm for feature selection. A

combined approach, where the filter method initially reduces the feature set and the

wrapper method subsequently evaluates the reduced set, can mitigate these issues.

Additionally, some studies neglect feature selection entirely, resulting in over fitting,

reduced model performance, and longer training and prediction times. Furthermore, many

of these works do not employ resampling techniques to address class imbalance in the

datasets. To address the limitations identified in the literature we reviewed, we propose a

Hybrid Feature Selection approach and combine classifiers using Stacking (DT + KNN +

RF + XGBoost). Additionally, we apply resampling techniques to address the class

imbalance in the dataset.

25

CHAPTER THREE

METHODOLOGY

In this section, we outline the dataset used, the experimental setup, the feature

selection methodology employed, the classification algorithms utilized, the tools

employed for experimentation, and the block diagram of the proposed model.

3.1 Dataset collection and preparation

Due to the lack of an adequate dataset, anomaly-based approaches in intrusion

detection systems are suffering from accurate deployment, analysis, and

evaluation(Sharafaldin et al., 2018). Privacy concerns make it difficult to obtain private

local datasets for Intrusion Detection Systems (IDS). As a result, many researchers rely

on public datasets to evaluate their machine-learning models. Datasets like DARPA98,

KDD99, ISC2012, and ADFA13 are commonly used benchmarks in IDS research for

assessing the performance of proposed intrusion detection and prevention

approaches(Sharafaldin et al., 2018).

Several of the above-mentioned datasets are outdated and deemed unreliable due to

various shortcomings. Some lack traffic diversity and volume, while others fail to

encompass a wide range of attacks. Additionally, certain datasets contain payloads that

do not reflect current trends, or they lack comprehensive feature sets and

metadata(Sharafaldin et al., 2018). Assessing datasets is crucial in validating IDS

approaches, as it enables us to evaluate the effectiveness of proposed methods in

detecting intrusive behavior (Khraisat et al., 2019).

(Gharib et al., 2016) proposed evaluation framework for Intrusion Detection datasets

outlines 11 criteria for evaluation. The criteria include Complete Network Configuration,

Complete Traffic Representation, Labeled Dataset, Comprehensive Interaction Coverage,

Complete Capture, Availability of Protocols, Attack Diversity, Anonymity,

Heterogeneity, Feature Set, and Metadata.

26

According to (Sharafaldin et al., 2018) the CICIDS 2017 dataset meets all 11 criteria

outlined in the intrusion detection dataset evaluation framework. Hence, for this study,

we chose the CIC-IDS 2017 dataset, prepared by the University of New Brunswick

Institute Of Cyber Security (Canada). This dataset comprises both benign traffic and the

latest common attacks, closely resembling real-world data. Additionally, it provides

results of network traffic analysis using the CIC Flow Meter, with labeled flows

categorized by timestamp, source and destination IPs, source and destination ports,

protocols, and attacks in Comma Separated Values (CSV) files.

3.1.1 Dataset description

The CICIDS2017 dataset consists of both benign traffic and the latest common

attacks, mirroring real-world data (PCAPs). Additionally, it offers results from network

traffic analysis conducted using CICFlowMeter, with labeled flows including

timestamps, source and destination IPs, source and destination ports, protocols, and

attacks (stored in CSV files). Table 4 provides details on the victim and attacker network

information, including their IP addresses.

Table 3. 1 Victim and Attacker Network Information in the CICIDS 2017 Dataset

Network device IP Address

Firewall 205.174.165.80, 172.16.0.1

DNS+DC Server 192.168.10.3

Outsiders (Attackers network)

Kali 205.174.165.73

Win 205.174.165.69, 70, 71

Insiders (Victim network)

Web server 16 Public 192.168.10.50, 205.174.165.68

Ubuntu Server 12 Public 192.168.10.51, 205.174.165.66

Ubuntu 14.4, 32B 192.168.10.19

Ubuntu 14.4, 64B 192.168.10.17

Ubuntu 16.4, 32B 192.168.10.16

Ubuntu 16.4, 64B 192.168.10.12

Win 7 Pro, 64B 192.168.10.9

27

Win 8.1, 64B 192.168.10.5

Win Vista, 64B 192.168.10.8

Win 10, pro 32B 192.168.10.14

Win 10, 64B 192.168.10.15

MAC 192.168.10.25

The data capture period spanned from 9 a.m. on Monday, July 3, 2017, to 5 p.m. on

Friday, July 7, 2017, totaling 5 days. Monday's data comprises normal benign traffic

only. The attacks including Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web

Attack, Infiltration, Botnet, and DDoS, happened both in the morning and afternoon on

Tuesday, Wednesday, Thursday, and Friday. Table 4 details the types of attacks observed

on each of the five days.

Table 3. 2 Description of files containing the CICIDS2017 dataset with attack found

No Name of the file Day

Activity

Attacks Found Total

attack

1. Monday-

WorkingHours.pcap_ISCX.csv

Monday Benign (Normal

human activities)

0

2. Tuesday-

WorkingHours.pcap_ISCX.csv

Tuesday Benign, FTP-Patator,

SSH-Patator

2

3. Wednesday-

workingHours.pcap_ISCX.csv

Wednesday Benign, DoS

GoldenEye,

DoSHulk,

DoSSlowhttptest,

DoS slow loris,

Heartbleed

5

4. Thursday-WorkingHours-

Morning-WebAttacks.pcap_

ISCX.csv

Thursday Benign, Web Attack

– Brute Force, Web

Attack – SQL

Injection, Web

Attack – XSS

3

5. Thursday-WorkingHours-

Afternoon-Infiltration.pcap_

ISCX.csv

Thursday Benign, Infiltration 1

6. Friday-WorkingHours-

Morning.pcap_ISCX.csv

Friday Benign, Bot 1

28

7. Friday-WorkingHours-

Afternoon-

PortScan.pcap_ISCX.csv

Friday Benign, PortScan 1

8. Friday-WorkingHours-

Afternoon-

DDos.pcap_ISCX.csv

Friday Benign, DDoS 1

Total 8 fillies 5 days 15 (1 normal + 14

Attack)

14

The CICIDS2017 dataset closely mimics real-world network data (PCAPs) and employs

CICFlowmeter-V3.0 to extract 78 features and 1 label. It encompasses the behavioral

profiles of 25 users across HTTP, HTTPS, FTP, SSH, and email protocols(Maseer et al.,

2021). Table 6 lists the 78 features and 1 label class with their descriptions.

Table 3. 3 The 78 features and the label class of the CICIDS 2017 dataset record

Future

no.

Feature Name Description

1. Destination Port The port number on the destination host

2. Flow Duration Duration of the flow in Microseconds

3. Total Fwd Packets Total packets in the forward direction

4. Total Backward Packets Total packets in the backward direction

5. Total Length of Fwd

Packets

The total size of the packet in a forward direction

6. Total Length of Bwd

Packets

The total size of the packet in a backward direction

7. Fwd Packet Length Max Maximum size of the packet in a forward direction

8. Fwd Packet Length Min Minimum size of the packet in a forward direction

9. Fwd Packet Length Mean The mean size of the packet in a forward direction

10. Fwd Packet Length Std Standard deviation size of the packet in a forward

direction

11. Bwd Packet Length Max Maximum size of the packet in a backward

direction

29

12. Bwd Packet Length Min The minimum size of the packet in a backward

direction

13. Bwd Packet Length Mean The mean size of the packet in a backward

direction

14. Bwd Packet Length Std Standard deviation size of the packet in a backward

direction

15. Flow Bytes/s Number of flow bytes per second

16. Flow Packets/s Number of flow packets per second

17. Flow IAT Mean Mean time between two packets sent in the flow

18. Flow IAT Std Standard deviation time between two packets sent

in the flow

19. Flow IAT Max, Maximum time between two packets sent in the

flow

20. Flow IAT Min Minimum time between two packets sent in the

flow

21. Fwd IAT Total Total time between two packets sent in the forward

direction

22. Fwd IAT Mean Mean time between two packets sent in the

forward direction

23. Fwd IAT Std Standard deviation time between two packets sent

in the forward direction

24. Fwd IAT Max Maximum time between two packets sent in the

forward direction

25. Fwd IAT Min Minimum time between two packets sent in the

forward direction

26. Bwd IAT Total Total time between two packets sent in the

backward direction

27. Bwd IAT Mean Mean time between two packets sent in the

backward direction

28. Bwd IAT Std Standard deviation time between two packets sent

30

in the backward direction

29. Bwd IAT Max Maximum time between two packets sent in the

backward direction

30. Bwd IAT Min Minimum time between two packets sent in the

backward direction

31. Fwd PSH Flags Number of times the PSH flag was set in packets

traveling in the forward direction (0 for UDP)

32. Bwd PSH Flags Number of times the PSH flag was set in packets

traveling in the backward direction (0 for UDP)

33. Fwd URG Flags Number of times the URG flag was set in packets

traveling in the forward direction (0 for UDP)

34. Bwd URG Flags Number of times the URG flag was set in packets

traveling in the backward direction (0 for UDP)

35. Fwd Header Length Total bytes used for headers in the forward

direction

36. Bwd Header Length Total bytes used for headers in the backward

direction

37. Fwd Packets/s Number of forwarding packets per second

38. Bwd Packets/s Number of backward packets per second

39. Min Packet Length Minimum length of a packet

40. Max Packet Length Maximum length of a packet

41. Packet Length Mean The mean length of a packet

42. Packet Length Std Standard deviation length of a packet

43. Packet Length Variance Variance length of a packet

44. FIN Flag Count Number of packets with FIN

45. SYN Flag Count Number of packets with SYN

46. RST Flag Count Number of packets with RST

47. PSH Flag Count Number of packets with PUSH

48. ACK Flag Count Number of packets with ACK

49. URG Flag Count Number of packets with URG

31

50. CWE Flag Count Number of packets with CWE

51. ECE Flag Count Number of packets with ECE

52. Down/Up Ratio Download and upload ratio

53. Average Packet Size The average size of a packet

54. Avg Fwd Segment Size Average size observed in the forward direction

55. Avg Bwd Segment Size Average number of bytes bulk rate in the backward

direction

56. Fwd Header Length Total bytes used for headers in the forward

direction

57. Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward

direction

58. Fwd Avg Packets/Bulk Average number of packets bulk rate in the

forward direction

59. Fwd Avg Bulk Rate Average number of bulk rates in the forward

direction

60. Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward

direction

61. BwdAvg Packets/Bulk Average number of packets bulk rate in the

backward direction

62. Bwd Avg Bulk Rate Average number of bulk rates in the backward

direction

63. Subflow Fwd Packets The average number of packets in a sub-flow in the

forward direction

64. Subflow Fwd Bytes The average number of bytes in a sub-flow in the

forward direction

65. Subflow Bwd Packets The average number of packets in a sub-flow in the

backward direction

66. Subflow Bwd Bytes The average number of bytes in a sub-flow in the

backward direction

67. Init_Win_bytes_forward The total number of bytes sent in an initial window

32

in the forward direction

68. Init_Win_bytes_backward The total number of bytes sent in an initial window

in the backward direction

69. act_data_pkt_fwd Count of packets with at least 1 byte of TCP data

payload in the forward direction

70. min_seg_size_forward Minimum segment size observed in the forward

direction

71. Active Mean Meantime a flow was active before becoming idle

72. Active Std Standard deviation time a flow was active before

becoming idle

73. Active Max The maximum time a flow was active before

becoming idle

74. Active Min The minimum time a flow was active before

becoming idle

75. Idle Mean Meantime a flow was idle before becoming active

76. Idle Std Standard deviation time a flow was idle before

becoming active

77. Idle Max The maximum time a flow was idle before

becoming active

78. Idle Min The minimum time a flow was idle before

becoming active

79. Label Target class

3.2 Data preprocessing

The primary objective of preprocessing in machine learning is to optimize the

training and testing process by effectively transforming and scaling the dataset. This

critical step in the ML workflow involves preparing the data before applying it to an ML

algorithm. Preprocessing scales features to a consistent range, enhancing accuracy,

reducing the time and resources needed for model training, preventing over fitting, and

improving the model's interpretability(Al Lail et al., 2023).

In our research, we used the MachineLearning.CSV data subset from the CICIDS-2017

dataset. This file comprises eight (8) traffic monitoring sessions, each presented in a

33

comma-separated value (CSV) format(Maseer et al., 2021). This file encompasses both

normal traffic labeled as BENIGN and anomaly traffic labeled as ATTACKS. The

specific attack types are further detailed in the fourth column of Table 4. Apart from

benign traffic, this dataset includes 14 types of attacks. As outlined in Table 4, the label

class indicates whether the traffic is normal or an attack, where normal corresponds to

Benign and the listed attacks.

The dataset used have a total of 2,830,743 records out of the total 2,273,097 records are

benign and 557,646 are attacks.

Figure 3. 1 Class distribution of the total CICIDC 2017 dataset

In the preprocessing phase, we first concatenate the eight files into one containing all

files. Then we applied random sampling to select 20% of the dataset for our

preprocessing because of a shortage of resources out of 2,830,743 records, we selected

566,149 records and 79 columns.

Figure 3. 2 Selecting 20% of CICIDS 2017 dataset

A crucial step in preprocessing is cleaning the dataset(Al Lail et al., 2023). The cleaning

of the data includes finding incomplete, improper, inaccurate, or unnecessary data, by

replacing, modifying, or deleting these data from the dataset. In our preprocessing rows

with null values, duplicates, and empty cells, such as infinity (Inf) and not a number

(NaN) are dropped. To improve quality the dataset we have remove total of 1,172 infinity

(Inf) values and 38,255 duplicate rows using python code.

34

Figure 3. 3 Data cleaning output

The initial CICIDS-2017 dataset also contains categorical features (e.g., labels) that need

to be converted into numerical values to prepare them for the ML algorithms. We have

converted the categorical values in the label class to numeric values by designating the

normal class as “0” and the attack class as “1”.

We employed the MinMaxScaler to normalize the data, ensuring algorithms sensitive to

feature magnitudes are not biased towards features with larger values. Without scaling,

such algorithms may prioritize these larger numerical values, skewing the results. By

applying MinMaxScaler, we transform all feature values in the cleaned data to a uniform

range between zero and one, enabling the models to learn more effectively and improving

their performance.

Finally, the cleaned 20% of the dataset is split into two sub-datasets: training (80%), and

testing (20%). The split is performed randomly meaning that the class distribution

percentage of the 20% of the dataset is retained in the training and testing sets. The split

is created in this way to ensure that there are sufficient samples to train the models, while

also ensuring sufficient samples for the testing of the results. The training sub-datasets

are used for model training while the testing dataset is used for the final evaluation of the

models.

3.3 Feature Selection

In Machine Learning (ML), Feature Selection (FS) holds significant importance

by diminishing data dimensionality and amplifying the efficiency of proposed

frameworks. Nonetheless, in practical scenarios, FS endeavors encounter obstacles such

35

as daunting dimensionality, computational and storage intricacies, noisy or ambiguous

attributes, and the demand for high performance. The domain of FS presents a vast and

formidable landscape, fraught with challenges(Dhal & Azad, 2022). In this study, we

proposed a hybrid feature selection method that combines Mutual Information (MI) from

the filter feature selection approach with Recursive Feature Elimination using a Random

Forest Classifier from the wrapper feature selection approach.

3.3.1 Mutual Information Feature Selection

Mutual information feature selection stands as a widely used filter method to

enhance the efficiency of intrusion detection systems (IDS). It measures the dependence

between individual features and the target variables and selects the features with the

highest mutual information scores. Mutual information yields a non-negative value,

where a value of zero indicates that the two observed variables are statistically

independent(Ambusaidi et al., 2016).

Based on (Dhal & Azad, 2022),(Valenzuela et al., n.d.),(Kou et al., 2020),(Priscilla &

Prabha, 2021) the following are Advantages of MI feature selection.

Non-linearity data handling: MI, being a non-parametric measure can capture complex

non-linear dependencies between features and the target variable. It assesses the amount

of information shared between variables, making it suitable for identifying non-linear

associations.

Efficiency: The MI feature selection method was computationally efficient, especially

when dealing with high-dimensional datasets, by focusing on the information content of

features rather than exhaustive search.

Model Agnostic: MI feature selection can be used with any machine learning algorithm

without requiring any changes because it is model agnostic.

Feature Independence: MI accounts for the independence between features but also

takes into account the mutual dependence between features and the target variable. It

finds features that have distinct and important information for target prediction, resulting

in a more effective and comprehensible feature set.

No Assumptions about Data Distribution: MI doesn't require data transformation or

preprocessing and can handle discrete and continuous data, making it appropriate for a

variety of datasets.

36

Feature Ranking: Features can be prioritized or their relative importance in the context

of the problem domain can be understood by using the feature importance ranking that

MI provides, which is based on how relevant each feature is to the target variable.

Given that the dataset used was large and showed nonlinear relationships between the

features and the target variable, a straight-line model would not suffice to describe the

input-output relationships. This means that changes in the output are not directly

proportional to changes in the input features. The choice of Mutual Information (MI)

feature selection was made because of its computational efficiency for high-dimensional

data and its ability to handle nonlinear datasets. Furthermore, MI feature selection is

adaptable and does not require modification for a wide range of machine learning

algorithms. It considers the mutual dependence between features and the target variable

and can handle both continuous and discrete data types. Furthermore, MI assigns a

ranking to features, which is helpful in order to prioritize features or determine their

relative importance. These factors led to the selection of the MI feature selection method

over the filter feature selection techniques.

The following feature selection steps are followed by the Mutual Information algorithm:

Compute MI Scores: First, the mutual information scores between every feature and the

target variable are computed by the algorithm.

Rank Features: The algorithm ranks the features according to their scores after

calculating the mutual information scores for each feature. Higher mutual information

scores indicate that a feature is more relevant or informative about the target variable.

Choose the Best Features: The top 'k' features with the highest mutual information

scores are chosen by the algorithm. One can predetermine the value of 'k' or use

optimization criteria to determine it.

Feature Subset Selection: The selected feature subset consists of the identified top

features. While features that are superfluous or less useful are eliminated.

In our proposed model, we first compute mutual information scores for each feature and

rank the features according to their scores to ascertain the relationship between individual

features and the class label. Next, we have selected features that have Mutual Information

37

(MI) values of at least 0.10. Out of the 78 features in total, 52 features were chosen based

on this criterion.

3.3.2 Recursive Feature Elimination Feature Selection

Recursive Feature Elimination (RFE) constitutes the second phase of our feature

selection approach. Operating as a wrapper method, RFE iteratively assesses feature

importance by eliminating them based on machine learning performance. It progressively

discards the least significant features until optimal performance is achieved or a

predetermined number of features are attained(Thakkar & Lohiya, 2021). RFE is a

wrapper feature selection approach that fits a learning model and eliminates the less

important features. Based on the scores obtained by the learning model, features are

ranked and recursively eliminated through iterations. RFE removes the dependency and

collinearity among features(Priscilla & Prabha, 2021).

Advantages of RFE (Priscilla & Prabha, 2021), (Assistant Professor, Department of

Information Technology, Bishop Heber College, Affiliated to Bharathidasan University,

Tiruchirappalli, 620 024, Tamil Nadu, India, et al., 2023), (Habeeb & Babu, 2024), (Yin

et al., 2023).

Model Agnosticism: RFE is model agnostic because it works with a variety of machine

learning techniques. Without any changes, it can be used with clustering, regression, or

classification techniques.

Scalability: RFE's iterative operation on subsets of features makes it scalable to huge

datasets. Because of its ability to manage datasets with tens of thousands or even millions

of characteristics, it is appropriate for big data applications where effective modeling

requires dimensionality reduction.

Diminishes Dimensionality: By removing unimportant characteristics, RFE successfully

lowers the dimensionality of the feature space.

Feature Ranking: RFE offers a feature priority ranking according to how much each

feature improves model performance. This score can direct feature engineering efforts or

assist in prioritizing features for more study.

38

As previously indicated, there were nonlinear relationships between each feature and the

target variable in our large dataset. Because it is capable of handling datasets with

thousands or even millions of features, Recursive Feature Elimination (RFE) was

selected. It decreases dimensionality, ranks feature to prioritize them for additional

examination, and works with a variety of machine-learning algorithms. RFE was chosen

from the wrapper feature selection techniques for the aforementioned reasons.

The RFE algorithm works through the following steps in feature selection:

1. Initialization: Begin by deciding on a machine learning algorithm that can be used

for importance or feature ranking.

2. Feature Ranking: Utilizing the full dataset, train the selected model to determine the

features' relative importance or coefficients. In this step, each feature is given a

weight that represents its contribution to the predictive performance of the model.

3. Feature Elimination: Extract the dataset's least significant feature or features.

4. Model Training: Utilizing the smaller feature set that was acquired in step 3, train

the model. A subset of features that are judged most relevant based on the previously

acquired feature ranking is used to train this model.

5. Performance Evaluation: Employing a suitable assessment metric, assess the

model's performance.

6. Stopping Criterion: Determine if the specified stopping criterion has been satisfied.

7. Iteration: Up until the stopping requirement is met, recursively repeat steps 2

through 5. The model is retrained on the smaller feature set after the least significant

features are eliminated in each iteration.

8. Final Model Selection: Using performance metrics gathered from the iterations,

select the final model.

The input dataset for our RFE FS algorithm only includes the 52 features that have been

reduced using the mutual information algorithm from the first stage. The significance of

the features is then graphically displayed by the RFE algorithm, and we have chosen the

top 25 features from a total of 52 features for the assessment of the suggested model.

39

3.4 Synthetic Minority Oversampling Technique (SMOTE)

One of the most significant challenges in classification problems is the prevalence

of majority classes compared to minority ones. When minority and majority classes

coexist in the same dataset, they create an imbalanced class distribution. In binary (two-

class) classification problems, it is common to designate class 0 as the majority class and

class 1 as the minority class. To address this imbalance, an oversampling technique was

adopted to balance the data before training the prediction models. The Synthetic Minority

Over-sampling Technique (SMOTE) was employed to oversample the minority class,

effectively mitigating the over fitting problem associated with the majority class, SMOTE

generates new samples, reducing the likelihood of over fitting compared to simply

duplicating minority class samples, avoids potential loss of valuable majority class

information by not discarding any samples, and effective for High-Dimensional

Data(Ahsan et al., 2022),(Fan et al., 2024).

SMOTE works first by randomly selecting a minority class instance, denoted as a. The

algorithm then searches for the k nearest neighbors of a, which are also minority class

instances. One of these neighbors, b is randomly chosen. A synthetic instance is created

by forming a line segment between a and b in the feature space. This new synthetic

instance is a convex combination of the two chosen instances, a and b(Fan et al., 2024).

Figure 3. 4 How SMOTE works

40

3.5 Tools used for Experiment

3.5.1 The Hardware Tools Used

The proposed model implemented on the hardware with the specification of

model: Toshiba satellite L855, operating system: Microsoft Windows 10 Enterprise,

system type: 64-bit operating system, x64-based processor core i7 CPU @ 2.4GHz,

installed memory (RAM): 8.00 GB, hard disk: 500 GB.

3.5.2 The Software Tools Used

Python, a high-level programming language, stands out as a powerful, object-

oriented, and general-purpose tool that has seen widespread adoption in recent years. Its

design focuses on readability, and its syntax enables programmers to convey concepts

with fewer lines of code compared to languages like C(Python_for_Data_Analysis.Pdf,

n.d.).

Based on the above-mentioned reasons and other advantages as a high-level

programming language, Python is rapidly growing, platform-independent, powerful, easy

to understand, and open-source with an object-oriented approach we choose Python for

implementing the proposed methodology.

The following are some Python libraries:

 Math: The math library offers mathematical functions and constants essential for

numerical computations. It encompasses operations like basic arithmetic,

trigonometry, exponentiation, logarithms, and more.

 Random: The random library serves for generating random numbers and

conducting random sampling. It facilitates the creation of random integers,

floating-point numbers, and the selection of random elements from sequences.

 NumPy (np): NumPy is a robust library for numerical computing in Python. It

enables support for large, multi-dimensional arrays and matrices, alongside a suite

of mathematical functions tailored for efficient array operations.

 matplotlib.pyplot (plt): Matplotlib is a widely-used plotting library in Python,

instrumental in crafting static, interactive, and animated visualizations. The pyplot

module furnishes a MATLAB-like interface, simplifying the creation of various

plots and visualizations.

41

 Pandas (Pd): Pandas is a potent library for data manipulation and analysis in

Python. It furnishes data structures and functions for the seamless handling of

structured data, such as tabular data and time series data.

 Seaborn (sb): Seaborn stands as a statistical data visualization library, built upon

Matplotlib. It delivers a high-level interface for crafting informative and visually

appealing statistical graphics.

42

3.6 System Architecture of Proposed Method

The following diagram shows our proposed Hybrid feature selection intrusion detection

system to classify as normal or attack based on the dataset.

CICIDS

2017

Dataset

Feature Selection

SMOTE

Feature selection using MI

Feature selection using RFE

Classifiers

Stacking

Meta-Model (Logistic

Regression)

Normal/Attack

XGBoostDT KNN RF

Pre-processing

Converting categorical to

numeric value

Data cleaning

Normalization

Figure 3. 5 System architecture for the proposed model

As shown in Figure 3.5 our proposed model begins by acquiring the Intrusion Detection

System (IDS) dataset namely CICIDS 2017 and proceeds with preprocessing techniques.

43

We remove the duplicates, infinity values, and NaN values from the dataset to ensure

data integrity.

We have converted the categorical value in the label class to a numeric value by

assigning the normal class as 0 and the attack class as 1.

Normalization is then performed using MinMaxScaler, which rescales the features to a

fixed range, typically within [0, 1]. This transformation standardizes the feature values,

aiding in uniformity across the dataset.

Following preprocessing, feature selection is conducted. Initially, Mutual Information

(MI) is employed as a filter feature selection approach to identify relevant features.

Subsequently, Recursive Feature Elimination (RFE) from the wrapper feature selection

approach is utilized to further refine the feature set.

After selecting the top-importance features through RFE, the model is evaluated using

various machine learning algorithms including DT, KNN, RF, and XGBoost, and these

algorithms are then combined using stacking a technique that merges the predictions of

multiple models to enhance overall performance and robustness.

44

CHAPTER FOUR

RESULTS AND DISCUSSION

This chapter focuses on the experimentation of our proposed method using the

CICIDS 2017 dataset, employing Python programming language for implementation. We

detail the simulation and analysis process, including the steps involved in simulating and

analyzing the dataset. Following the analysis conducted using Python tools; we

thoroughly discuss and interpret the findings and results.

The experiment was conducted using the Anaconda Navigator tool which has a Jupyter

Notebook interface. The algorithms chosen for our analysis are, DT, KNN, RF, and

XGBoost, and we combined those using stacking concepts.

4.1 Dataset used for Experiments

As described in Chapter Three, our experiment utilized the CICIDS 2017 dataset.

This dataset comprises a total of 2,830,743 records. Due to resource constraints,

specifically a lack of high-performance computing resources, we used 20% (566,149)

records of the CICIDS 2017 dataset for our experiment.

Following preprocessing of the 20% we divided the dataset into training and testing sets.

Specifically, 80% (422,086) records were allocated for training purposes, while the

remaining 20% (105,522) records were reserved for testing.

4.2 Handling Class Imbalance

As mentioned in chapter three to balance the distribution of class in the dataset we

applied SMOTE and we trained the model using balanced class.

Table 4.1 and Table 4.2 shows the distribution of the class before and after applying

SMOTE.

45

Table 4. 1 Distribution of label class in training and testing before applying SMOTE

class Training Testing Total

0 346, 464 86,603 433,067

1 75, 622 18,919 94,541

Total 422,086 105,522 527,608

The above table 4.1 shows the distribution of label classes in the training and testing

datasets before applying SMOTE (Synthetic Minority Over-sampling Technique). In the

training dataset, there are a total of 422,086 instances. Out of these, 346,464 instances

belong to class 0 (normal), and 75,622 instances belong to class 1 (attack). In the testing

dataset, there are a total of 105,522 instances. Out of these, 86,603 instances belong to

class 0 (normal), and 18,919 instances belong to class 1 (attack). The total number of

instances across both the training and testing datasets is 527,608, with 433,067 instances

belonging to class 0 (normal) and 94,541 instances belonging to class 1 (attack). The data

suggests an imbalance in the class distribution, with a significantly higher number of

instances in class 0 (normal) compared to class 1(attack).

Figure 4. 1 Experiment result of SMOTE in Training dataset

The above Figure 4.1 illustrates the class distribution in the dataset before and after the

applying of SMOTE (Synthetic Minority Over-sampling Technique). SMOTE is

46

employed to address class imbalance, a common issue where one class is significantly

underrepresented compared to another. Before applying SMOTE, our dataset shows a

considerable imbalance the training set contains 346,464 instances of Class 0 (majority

class) and only 75,622 instances of Class 1 (minority class).

After applying SMOTE, the training set is balanced, with both Class 0 and Class 1 having

346,464 instances each. This adjustment ensures that the proposed model receives an

equal representation of both classes during the training process, which can significantly

enhance its ability to correctly predict the minority class.

Table 4. 2 Distribution of label class in training and testing after applying SMOTE

class Training Testing Total

0 346,464 86,603 433,067

1 346,464 18,919 365,383

Total 692,928 105,522 798,450

The above table 4.2 shows the distribution of label classes in the training and testing

datasets after applying the Synthetic Minority Over-sampling Technique (SMOTE). In

the training dataset, there are a total of 692,928 instances. Out of these, 346,464 instances

belong to class 0 (normal), and the same number, 346,464, belong to class 1 (attack). In

the testing dataset, there are a total of 105,522 instances. Out of these, 86,603 instances

belong to class 0 (normal), and 18,919 instances belong to class 1 (attack). The total

number of instances across both the training and testing datasets is 798,450, with 433,067

instances belonging to class 0 (normal) and 365,383 instances belonging to class 1

(attack).

After applying SMOTE, the class distribution in the training dataset has been balanced,

with an equal number of instances in both class 0 (normal) and class 1 (attack). This is a

common technique used to address the problem of class imbalance, where one class

significantly outnumbers the other. By oversampling the minority class (class 1 in this

case), the model can learn more effectively from both classes, potentially improving its

overall performance. The testing set remains unchanged, retaining its original class

47

distribution. This decision allows for an unbiased evaluation of the model's performance

on the natural, imbalanced data.

4.3 Performance Evaluation Metrics

 In our proposed model we have evaluated the model using the confusion matrix,

accuracy, precision, recall, f1-score, and computational times.

Confusion matrix:

A confusion matrix is a square matrix where the rows represent the actual classes of

instances, and the columns represent the predicted classes. The confusion matrix is a 2 X

2 matrix when dealing with a binary classification task.

The confusion matrix for binary class classification has 2 outputs, the inputs for this

classification will fall in either of the 2 outputs or classes. The confusion matrix for two-

class and is shown in Tables 4.3. The attack class is taken as a positive and the normal

class as a negative.

Table 4. 3 Confusion matrix for two class classification

 Predicted Class

Actual class

 Normal Attack

Normal TN FP

Attack FN TP

Where:

True Positive (TP): classified as an attack by the model and that is an attack.

True Negative (TN): classified a normal by the model and that is normal.

False Positive (FP): the model classified as an attack but that is normal.

False Negative (FN): the model classified as normal but that is an attack.

Accuracy, Precision, Recall, and F1-Score are then defined as follows(Krstinić et al.,

2020).

48

Accuracy: is one of the evaluation metrics that calculate how many correct predictions

your classification model made for the whole test dataset, and it is a good basic metric to

measure the performance of the model. It is calculated as follows:

Accuracy=
TP+TN

TP+TN+FP+FN
 2

Precision: is a form of performance evaluation that determines what number of the

correctly predicted cases turned out to be positive. This can determine whether our model

is reliable or not and it is a valuable metric in cases where a false positive is a higher

concern than a false negative. It is calculated as follows:

Precision =
TP

TP+FP
 3

Recall: Recall is a type of performance evaluation metric that measures how many actual

positive cases our model correctly predicted. It is particularly important in situations

where false negatives are more critical than false positives. It is calculated as follows:

Recall=
TP

TP+FN
 4

F1-Score: is a type of performance evaluation that has a harmonic mean of precision and

recall and so it gives a combined idea about these two metrics and it will be maximum

when the precision is equal to recall. It is calculated as follows:

F1-Score=
2* Precision * Recall

Precision + Recall
 5

Computational time: The computation time represents the duration required for an

algorithm to finish its operations. In our study, we evaluate each classifier by training and

prediction time in seconds.

Cross validation:

To check whether the proposed model is efficient enough to predict the outcome of an

unseen data point and performance we used k-fold cross-validation with k=3.

4.4 Hyper-parameters

The distributions of all the optimal hyper-parameters that were used in this experiment

are described in Table 4.4.

49

We determined the optimal hyper-parameter for each classifier through a manual trial-

and-error process using different hyper-parameters. We experiment with different hyper-

parameter combinations, training the model, and evaluating its performance until to

identify the best results.

Table 4. 4 Hyper-parameters for the classifier algorithm

Model Optimal Hyper-parameters Description

DT max_depth=10,

random_state=42

max_depth: Hyper-parameter that

limits the maximum depth of the

tree.

random_state: Hyper-parameter

that ensures reproducibility.

KNN n_neighbors=5 n_neighbors: Hyper-parameter that

specifies the number of neighbors

to use

RF n_estimators=100

max_depth=10

random_state=42

n_estimators: Hyper-parameter

that specifies the number of trees in

the forest.

max_depth: Hyper-parameter that

limits the maximum depth of the

trees.

random_state: Hyper-parameter

that ensures reproducibility.

XGBoost params = {

 'objective': 'binary:logistic',

 'eval_metric': ['error', 'logloss'],

 'max_depth': 12,

 'eta': 0.3,

 'subsample': 0.7,

 'colsample_bytree': 0.7,

 'seed': 42

Objective: Hyper-parameter that

defines the learning task and the

corresponding learning objective.

eval_metric: Hyper-parameter that

specifies evaluation metrics for

validation data.

max_depth: Hyper-parameter that

limits the maximum depth of a tree.

50

}

bst = xgb.XGBClassifier(**params)

eta: Hyper-parameter for step size

shrinkage to prevent over fitting.

subsample: Hyper-parameter that

specifies the fraction of samples to

be used for each tree.

colsample_bytree: Hyper-

parameter that specifies the fraction

of features to be used for each tree.

seed: Hyper-parameter that ensures

reproducibility.

Stacking

(DT+

KNN+RF

+XGBoost)

estimators = [

 ('dt', clf_dt),

 ('knn', clf_knn),

 ('rf', clf_rf),

 ('xgb', bst)

]

stacking_clf = StackingClassifier(

 estimators=estimators,

final_estimator=LogisticRegression()

)

Estimators: Hyper parameter that

lists the base classifiers used in the

stacking ensemble.

final_estimator: Hyper-parameter

that specifies the classifier used to

aggregate the predictions of the

base classifiers.

4.5 Experiments and Results

Our experimental design was categorized into three main processes by

considering DT, KNN, RF, XGBOOST, and Stacking (DT + KNN + RF + XGBoost) ML

classification techniques. In the first step of our experiments, we employed the full

features (78 features) of the CICIDS 2017 dataset for classification. In the second of our

experiment we evaluated using 52 features which selected by MI. In the third phase, we

evaluated those classifies using the 25 features selected using the RFE. The results of our

experimental processes are listed in Tables 4.5, 4.6, and 4.7 whereby Table 4.5 provides

the results obtained by the ML methods for the classification technique using the full

features of the CICIDS 2017 dataset. Table 4.6 provides the result using 52 features, and

51

Table 4.7 lists the results obtain by the ML algorithms for the classification scheme using

the reduced 25 features.

4.5.1 Experimental Results of Feature Selection Using Mutual Information

Figure 4. 2 Mutual Information (MI) Score of all the features

Figure 4.2 displays the mutual information scores for features indexed from 0 to 77, with

the scores ranging from 0.00 to 0.36 on the y-axis and the feature indices on the x-axis.

The highest mutual information score observed is approximately 0.36, indicating

significant variability across different features. Notably, features indexed at 5, 40, 41, 42,

52, and 65 show the highest mutual information scores, exceeding 0.30, suggesting their

strong relevance to the target variable.

Many features show moderate mutual information scores ranging between 0.10 and 0.30,

including indices such as 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,

22, 23, 25, 26, 28, 29, 34, 35, 36, 37, 38, 39, 53, 54, 55, 62, 63, 64, 66, 67, 70, 72, 73, 74,

76, and 77. In contrast, features indexed at 19, 24, 27, 30, 31, 32, 33, 43, 44, 45, 46, 47,

48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 68, 69, 71, and 75 have low mutual information

52

scores, often below 0.10, indicating minimal influence on the target variable and potential

candidates for exclusion during feature selection.

Based on these observations, it is advisable to focus on features with higher mutual

information scores for the second feature selection process. Evaluating the impact of

removing low-scoring features could simplify models and improve computational

efficiency. Out of a total of 78 features we selected only the top 52 features that are MI

scores greater or equal to 0.10 for the second stage of feature selection.

Figure 4. 3 Selected features by MI

4.5.2 Experimental Results of Feature Selection Using RFE

Figure 4. 4 Feature importance score of the selected features

Figure 4.4 illustrates the importance scores for 52 features, with the scores ranging from

0.00 to 0.08 using RFE with RF classifier. The highest importance scores are observed

for features indexed at 41 and 42, each scoring around 0.07 to 0.08, indicating their

significant relevance. Other features with high importance scores include indices 13, 12,

54, 39, 40, 52 and 10, with scores ranging from 0.04 to 0.06. Several features show

moderate importance scores between 0.02 and 0.04, such as those indexed at 0, 4, 63, 5,

53

and 17. While these features are not as critical as the top-scoring ones, they still

contribute significantly to the model.

In contrast, features indexed at 65, 8, 6, 2, 67, 35, 34, 53, 66, 62, 55, 22 23, 37, 64, 3, 21,

36, 18, 20, 16, 15, 74, 76, 38, 14, and 11 have lower importance scores, generally below

0.02. The lowest importance scores are observed for features indexed at 17, 1, 26, 28, 25,

9, 7, 29, 73, 70, and 72, all scoring near 0.00. The figure shows a steep decline in

importance scores from the highest-ranked feature to those ranked lower, with a

noticeable drop after the top ten features.

Based on the figure features with high importance scores, such as indexed 41, 42, 13, and

12, should be prioritized in model evaluation. Moderate-importance features should be

evaluated for their potential contributions and considered for inclusion based on their

impact on the model's performance. Low-importance features might be candidates for

exclusion to simplify the model and reduce complexity. Overall, emphasizing high-

importance features could enhance model accuracy and efficiency. Out of the 52 features

based on their importance we have selected 25 features to evaluate our proposed model.

Figure 4. 5 Selected features using Recursive feature elimination (RFE)

The above figure 4.5 displays a list of feature indices, which represent the most important

features selected by the RFE algorithm. The feature indices are [0, 2, 4, 5, 6, 8, 12, 13,

18, 23, 34, 35, 37, 39, 40, 41, 42, 52, 54, 55, 62, 63, 65, 66, and 67].The selected features

shown in this figure are likely the top-ranked features based on the RFE algorithm's

evaluation. These features are considered the most important as they provide the most

relevant information for the model to make accurate predictions.

54

4.5.3 Confusion Matrix Experiment Result

The list below figures 4.6 to 4.10 shows the confusion matrices for the DT, KNN,

RF, XGBoost, and Stacking (DT + KNN + RF + XGBoost) classifiers using the reduced

set 25 features.

Figure 4. 6 Confusion matrix for DT

Figure 4.6 shows the confusion matrix for the DT classifier and reveals the distribution of

actual versus predicted classifications. In the matrix, 86,006 instances were correctly

predicted as class 0, while 18,822 instances were correctly predicted as class 1. However,

there were also 597 instances where the model incorrectly predicted class 1 but the actual

class was 0, and 97 instances where the model incorrectly predicted class 0 but the actual

class was 1.

55

Figure 4. 7 Confusion matrix for KNN

Figure 4.7 shows the confusion matrix for the KNN classifier and demonstrates the

model's performance in predicting class labels. It shows that 83,767 instances were

correctly identified as class 0, while 18,444 instances were correctly identified as class 1.

However, the model also made some errors, with 2,836 instances incorrectly predicted as

class 1 when they were actual class 0, and 475 instances incorrectly predicted as class 0

when they were actual class 1.

56

Figure 4. 8 Confusion matrix for RF

Figure 4.8 shows the confusion matrix for the RF classifier and reveals the model's

performance in classifying instances. In this matrix, 86,293 instances were correctly

predicted as class 0, and 18,830 instances were correctly predicted as class 1. However,

the model also made some errors, with 310 instances incorrectly predicted as class 1

when they were actual class 0, and 89 instances incorrectly predicted as class 0 when they

were actual class 1.

57

Figure 4. 9 Confusion matrix for XGBoost

Figure 4.9 shows the confusion matrix for the XGBoost classifier and reveals the model's

performance in classifying instances. In this matrix, 86,338 instances were correctly

predicted as class 0, and 18,900 instances were correctly predicted as class 1. However,

the model also made some errors, with 265 instances incorrectly predicted as class 1

when they were actual class 0, and 19 instances incorrectly predicted as class 0 when they

were actual class 1.

58

Figure 4. 10 Confusion matrix for Stacking (DT + KNN + RF + XGBoost)

Figure 4.10 shows the confusion matrix for the Stacking (DT + KNN + RF + XGBoost)

classifier and reveals the model's performance in classifying instances. In this matrix,

86,380 instances were correctly predicted as class 0, and 18,888 instances were correctly

predicted as class 1. However, the model also made some errors, with 223 instances

incorrectly predicted as class 1 when they were actual class 0, and 31 instances

incorrectly predicted as class 0 when they were actual class 1.

59

4.5.4 Experimental results without feature selection with full features

Table 4. 5 Experiment results using full features

Algorithms Classes Precision Recall

F1-

score
Accuracy

Training

Time (s)

Testing

Time(s)

DT
0 0.9885 0.9371 0.9621

0.9394
12.5006

0.0312

 1 0.7676 0.9503 0.8492

KNN

0 0.9979 0.9890 0.9934

0.9772 131.8696

40.0321

 1 0.9518 0.9905 0.9708

RF

0 0.9980 0.9980 0.980

0.9941 488.2859

1.3570

 1 0.9907 0.9910 0.9908

XGBoost

0 0.9997 0.9991 0.9994

0.9954 22.2843

0.1269

 1 0.9957 0.9988 0.9973

Staking

(DT+KNN+

RF+

XGBoost)

0 0.9997 0.9991 0.9994

0.9975 595.9680

302.612

3

 1 0.9958 0.9987 0.9973

The above table 4.5 shows the results of the performance of Decision Tree (DT), K-

Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking (DT + KNN +

RF + XGBoost) algorithms without applying the feature selection method with full

features. We evaluate those algorithms using precision, recall, F1-score, accuracy,

training time, and testing time evaluation metrics for each algorithm for both classes (0

and 1).

In DT we conducted experiments using different models based on the tree's maximum

depth using maximum_depth_values = {3, 5, 10, and 11} and we got better results with

maximum_depth values 10. Its performance for class 0, with a precision of 98.85% for

class 0 and 76.76% for class 1, recall of 93.71% for class 0 and 95.03% for class 1, F1-

score of 96.21% for class 0 and 84.92% for class 1.. The overall accuracy is 93.94%. The

key advantage of DT is its fast training of 12.5006 seconds and testing 0.0312 seconds

60

times, making it suitable for real-time applications or scenarios with limited

computational resources.

In KNN we trained the models with multiple number_of _neighours = {3, 5, 7, and 10},

and the results show that a KNN classifier with 5 neighbors achieved better results. KNN

performs with precision of 99.79% for class 0 and 95.18% for class 1, recall 98.90% for

class 0 and 99.05% for class 1, and F1-scores 99.34% for class 0 and 97.08% for class 1.

This leads to an overall accuracy of 97.72%. However, KNN requires significantly more

time for training 131.8696 seconds and testing 40.0321 seconds compared to DT, which

may limit its applicability in time-sensitive or resource-constrained environments.

RF performed precision 99.80% for class 0 and 99.07% for class 1, recall 99.80% for

class 0 and 99.10% for class 1, and F1-scores 99.80% for class 0 and 99.08% for class 1.

It performs an overall accuracy of 99.41%. The high precision, recall, and F1 scores

indicate that RF is highly effective at correctly classifying instances. However, its long

training time of 488.2859 seconds is a drawback, making this RF less suitable for

applications requiring rapid model updates. The testing time of 1.3570 seconds is

relatively short making RF a good choice for scenarios where model inference needs to

be fast, but training time is less of a concern.

XGBoost performed precision of 99.97% for class 0 and 99.57% for class 1, recall

99.91% for class 0 and 99.88% for class 1, and F1-scores 99.94% for class 0 and 99.73%

for class 1, its overall accuracy of 99.54%. It also offers a good balance between training

at 22.2843 seconds and testing at 0.1269 seconds times. The relatively short training time

compared to RF makes XGBoost suitable for scenarios requiring frequent model

retraining, while its quick testing time supports fast inference. XGBoost is a strong

candidate for a wide range of applications where both performance and computational

efficiency are important.

Stacking (DT + KNN + RF + XGBoost) performs a precision of 99.97% for class 0 and

99.58% for class 1, recall of 99.91% for class 0 and 99.87% for class 1, and F1-scores

99.94% for class 0 and 99.73% for class 1, resulting in an overall accuracy of 99.75%.

Despite its superior performance, the computational cost is substantial, with the longest

training of 595.9680 seconds, and testing 302.6123 seconds times among all algorithms

61

evaluated. Stacking (DT + KNN + RF + XGBoost) is best suited for applications where

the highest possible accuracy is critical and computational resources are not a limiting

factor. Its extensive training and testing times make it less practical for real-time

applications or environments with limited computational capacity.

Figure 4. 11 Accuracy Comparison of Full Features

Figure 4.11 histogram charts compare the accuracy of DT, KNN, RF, XGBoost, and

Stacking (DT + KNN + RF + XGBoost) using the full features of the dataset. As shown

in the figure when we combined the algorithm using stacking the model improved its

accuracy than the individual classifier's accuracy.

62

4.5.5 Experimental results of features selected by MI

Table 4. 6 Experiment result of 52 feature selected by MI

Algorithm Classes Precision Recall F1-

score

Accuracy Training

Time (s)

Testing

Time(s)

DT 0 0.9887 0.9373 0.9623
0.9396 11.9254

0.0284

 1 0.7666 0.9507 0.8488

KNN 0 0.9978 0.9881 0.9929

0.9887 120.0365 33.0215

 1 0.9473 0.9899 0.9681

RF 0 0.9976 0.9981 0.9979

0.9950 327.6088 1.3535

 1 0.9913 0.9892 0.9902

XGBoost 0 0.9997 0.9987 0.9992

0.9961 14.1059 0.1086

 1 0.9940 0.9988 0.9964

Staking

(DT+KNN+

RF

+XGBoost)

0 0.9997 0.9990 0.9993

0.9980

540.5462

250.8457

 1 0.9953 0.9985 0.9969

Table 4.6 shows the performance metrics of the Decision Tree (DT), K-Nearest

Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking (DT +KNN +RF +

XGBoost) using the 52 features for both 0 and 1 classes. The evaluation metrics include

precision, recall, F1-score, accuracy, training time, and testing time for each class (0 and

1).

The DT model shows moderate performance with class 0 achieving a precision of 98.87

%, recall of 93.73 %, and F1-score of 96.23%. For class 1, the precision is 76.66%, with

a recall of 95.07% and F1-score of 84.88%. The overall accuracy of the DT model is

93.96%. In terms of computational efficiency, it has a training time of 11.9254 seconds

and a very quick testing time of 0.0284 seconds, making it suitable for real-time.

63

The KNN model shows class 0 with a precision of 99.78%, recall of 98.81%, and F1-

score of 99.29%. For class 1, it achieves a precision of 94.73%, recall of 98.99%, and F1-

score of 96.81%. The overall accuracy stands at 98.87%. However, the model is

computationally intensive, with a training time of 120.0365 seconds and a testing time of

33.0215 seconds. Despite its high accuracy, the substantial computational cost may limit

its usability in time-sensitive applications.

The RF model performs for class 0 with a precision of 99.76%, recall of 99.81%, and F1-

score of 99.79%. For class 1, a precision of 99.13%, recall of 98.92%, and F1-score of

99.02%. The overall accuracy of the RF model is 99.50%. In terms of computational

resources, it has a training time of 327.6088 seconds and a testing time of 1.3535

seconds, making it a robust choice with a good balance of accuracy and computational

efficiency.

The XGBoost model shows performance for class 0 a precision of 99.97%, recall of

99.87%, and F1-score of 99.95%. For class 1, the precision is 99.40%, recall is 99.88%,

and F1-score is 99.64%. The overall accuracy of the XGBoost model is 99.61%. It is

relatively efficient, with a training time of 14.1059 seconds and a testing time of 0.1086

seconds, offering a strong balance between high performance and computational

efficiency.

The Stacking (DT + KNN + RF + XGBoost) model, which combines DT, KNN, RF, and

XGBoost, achieves the highest performance metrics across all categories. For class 0, it

attains a precision of 99.97%, recall of 99.90%, and F1-score of 99.93%. For class 1, the

precision is 99.53%, recall is 99.85%, and F1-score is 99.69%. The overall accuracy of

the Stacking model is 99.80%, the highest among all models tested. However, it has the

longest training time at 540.5462 seconds and a significant testing time of 250.8457

seconds, indicating a high computational cost which may limit its practical application

despite its superior accuracy.

64

4.5.6 Experimental results of hybrid feature selection (MI + RFE)

Table 4. 7 Experiment results using reduced features

Algorithm Classes Precision Recall F1-

score

Accura

cy

Training

Time (s)

Testing

Time(s)

DT 0 0.9989

0.9931

0.9969

0.9934

11.8113

0.0200

1 0.9693

0.9949

0.9819

KNN 0 0.9944

0.9673

0.9806

 0.9945

115.2157

29.8378

 1 0.8667

0.9749

0.9176

RF 0 0.9990

0.9964

0.9977

 0.9962

309.3665

1.3832

 1 0.9838

0.9953

0.9895

XGBoost 0 0.9998

0.9969

0.9984

 0.9973

12.7620

0.1042

 1 0.9862

0.9990

0.9925

Staking

(DT+KNN

+

RF

+XGBoost)

0 0.9996

0.9974

0.9985

0.9992

515.8013

188.504

8

 1
0.9956

0.9982

0.9969

Table 4.7 shows the performance metrics of the Decision Tree (DT), K-Nearest

Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking (DT +KNN +RF +

XGBoost) using the reduced features for both 0 and 1 classes. The evaluation metrics

65

include precision, recall, F1-score, accuracy, training time, and testing time for each class

(0 and 1).

DT performs an overall accuracy of 99.34%, with a precision of 99.89% for class 0 and

96.93% for class 1, and a recall of 99.31% for class 0 and 99.49% for class 1. The F1

scores are also 99.69% for class 0 and 98.19% for class 1, indicating a balanced

performance. The model benefits from very short training and testing times, making it

computationally efficient. This makes DT a feasible option when interpretability and

speed are prioritized.

KNN achieves an accuracy of 96.86%. The precision 99.44% for class 0 and 86.67% for

class 1, recall 96.73% for class 0 and 97.47% for class 1, and F1-scores 98.06% for class

0 and 91.76% for class 1. The training and testing times are significantly higher,

suggesting that KNN may not be suitable for large datasets or real-time applications due

to its computational inefficiency.

RF performs an accuracy of 99.62% and balanced high precision 99.90% for class 0 and

98.38% for class 1, recall 99.64% for class 0 and 99.53% for class 1, and F1-scores

99.77% for class 0 and 98.95% for class 1. However, the training time is significantly

longer than DT and XGBoost. RF's robustness and high accuracy make it suitable for

applications where performance is critical, but the computational cost must be

considered.

XGBoost performs an accuracy of 99.62% with relatively low training of 12.7620

seconds and testing times of 0.1042 seconds, important to its efficiency. The precision

99.98% for class 0 and 98.38% for class 1, recall 99.69% for class 0 and 99.90% for class

1, and F1-scores 99.84% for class 0 and 99.25% for class 1. XGBoost provides a good

balance between performance and computational efficiency, making it a practical choice

for many applications in intrusion detection.

The Stacking (DT + KNN + RF + XGBoost) method achieves an accuracy of 99.76% and

excellent performance metrics for both classes. Precision 99.96% for class 0 and 99.56%

for class 1, recall 99.74% for class 0 and 99.82% for class 1, and F1-scores 99.85% for

class 0 and 99.69% for class 1 are very high, indicating superior performance. However,

66

it has the highest training 515.8013 seconds, and testing times 188.5048 seconds,

indicating significant computational costs. Stacking (DT + KNN + RF + XGBoost) is

ideal for scenarios where the utmost accuracy is required, and computational resources

and time are not limiting factors.

In conclusion, while Stacking (DT + KNN + RF + XGBoost) and Random Forest offer

the best performance metrics, their high computational cost should be considered.

XGBoost stands out for its balance of high accuracy and efficiency, making it suitable for

practical applications. Decision Tree provides a good trade-off between simplicity and

performance, whereas KNN, due to its inefficiency, might be less suitable for large-scale

or real-time tasks.

Figure 4. 12 Accuracy Comparison of Reduced Features

In the histogram chart in Figure 4.12 above, we present an analysis of the performance of

DT, KNN, RF, XGBoost, and Stacking (DT + KNN + RF + XGBoost) algorithms in

terms of accuracy when the number of features is reduced. From the chart, it is evident

that all the algorithms performed exceptionally well with reduced features, achieving

accuracy above 99%.

67

Figure 4. 13 Accuracy Comparison of the 25 and 52 Features

Figure 4.13 shows a comparison of classifier accuracies using 52 Features and 25

Features for DT, KNN, RF, XGBoost, and a Stacking (DT+ KNN +RF + XGBoost).

The results indicate that reducing the number of features can lead to an improvement in

classifier performance, particularly for the DT and KNN classifiers. This improvement

could be attributed to the reduction of noise and the simplification of the model, which

allows the classifiers to generalize better to the test data.

68

Figure 4. 14 Accuracy Comparison of the 25, 52 and full (78) Features

Figure 4.14 shows a comparison of classifier accuracies using Full Features (78), 52

Features, and 25 Features for DT, KNN, RF, XGBoost, and a Stacking (DT+ KNN +RF

+ XGBoost).

The results indicate that reducing the number of features can lead to an improvement in

classifier performance, particularly for the DT and KNN classifiers. This improvement

could be attributed to the reduction of noise and the simplification of the model, which

allows the classifiers to generalize better to the test data.

For the RF and XGBoost classifiers, the accuracy remains consistently high across all

feature sets, suggesting that these ensemble methods are robust to changes in the number

of features. However, they still show slight improvements with feature reduction,

indicating that even these models benefit from feature selection.

The Stacking ((DT+ KNN +RF + XGBoost)) ensemble method outperforms all

individual classifiers, demonstrating the effectiveness of combining multiple models to

69

leverage their strengths. The highest accuracy of 0.9992 is achieved with 25 features,

which underscores the importance of feature selection in improving the performance of

complex models.

In conclusion, our study highlights the critical role of feature selection in intrusion

detection systems demonstrating that reducing the feature set to the most informative

ones can significantly enhance the performance of various algorithms, particularly DT

and KNN, while still benefiting robust RF, XGBoost, and Stacking (DT + KNN + RF +

XGBoost).

4.5.7 Sample Validation results

The following figures 4.15, 4.16 and 4.17 display sample cross-validation for our

experiments using 3 folds.

Figure 4. 15 Cross-validation for DT

Figure 4.15 shows DT classifier has been assessed through a three-fold cross-validation

procedure, where the dataset is divided into three equally sized folds. The model is

trained on two folds and validated on the remaining fold, and this process is repeated

three times, each time with a different fold as the validation set. The scores across the

three folds indicate high and consistent performance, with an average accuracy of

approximately 99.43%. This suggests that the DT model is performing well on the given

dataset and is likely to generalize effectively to unseen data.

Figure 4. 16 Cross-validation for RF

Figure 4.16 shows the RF classifier has undergone a three-fold cross-validation

evaluation, ensuring that each fold of the dataset is used once as a validation set while the

remaining folds serve as the training set. The mean cross-validation score of 99.53% is

an average of the accuracy scores across all folds. This high average accuracy suggests

70

that the RF classifier is highly effective and performs consistently well across different

partitions of the data.

Figure 4. 17 Cross-validation for stacking (DT+ KNN + RF + XGBoost)

Figure 4.17 shows stacking (DT + KNN + RF + XGBoost) classifier has undergone a

three-fold cross-validation evaluation, ensuring that each fold of the dataset is used once

as a validation set while the remaining folds serve as the training set. The mean cross-

validation score of 99.88% is an average of the accuracy scores across all folds. This high

average accuracy suggests that the stacking classifier is highly effective and performs

consistently well across different partitions of the data.

Table 4. 8 Comparison of training and testing time

Algorithm

Full Features(78) Reduced Features(25)

Training

Time(s)

Testing

Time(s)

Training

Time(s)

Testing

Time(s)

DT 12.5006 0.0312 11.8113 0.02

KNN 131.8696 40.0321 115.2157 29.8378

RF 488.2859 1.357 309.3665 1.1232

XGBoost 22.2843 0.1269 12.762 0.1042

Stacking (DT + KNN

+ RF + XGBoost)

595.968 302.6123 515.8013 188.5048

The above table 4.8 compares the training and testing times (in seconds) for Decision

Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Stacking

(DT + KNN + RF + XGBoost) algorithms using both full features and reduced features.

For the Decision Tree algorithm, the training time decreased from 12.5006 seconds with

full features to 11.8113 seconds with reduced features, while the testing time reduced

from 0.0312 seconds to 0.02 seconds. The K-Nearest Neighbors (KNN) algorithm

exhibited a significant reduction in both training and testing times, with training time

71

decreasing from 131.8696 seconds to 115.2157 seconds, and testing time decreasing from

40.0321 seconds to 29.8378 seconds when using reduced features.

The Random Forest algorithm showed a substantial decrease in training time, from

488.2859 seconds with full features to 309.3665 seconds with reduced features, along

with a modest reduction in testing time, from 1.357 seconds to 1.1232 seconds. XGBoost

demonstrated a noticeable reduction in both training and testing times, with training time

decreasing from 22.2843 seconds to 12.762 seconds and testing time from 0.1269

seconds to 0.1042 seconds when the number of features was reduced.

The Stacking (DT + KNN + RF + XGBoost) method saw a significant decrease in both

training and testing times, with training time reducing from 595.968 seconds to 515.8013

seconds, and testing time from 302.6123 seconds to 188.5048 seconds with reduced

features.

Overall, reducing the number of features from 78 to 25 resulted in lower training and

testing times across all evaluated algorithms. The impact was most pronounced in the K-

Nearest Neighbors and Stacking (DT + KNN + RF + XGBoost) algorithms, where the

reduction in the number of features led to substantial time savings. Decision Tree and

XGBoost also benefited from reduced feature sets, but the changes were less dramatic

compared to KNN and Stacking (DT + KNN + RF + XGBoost). Random Forest showed

a significant decrease in training time, though the reduction in testing time was relatively

modest. In summary, feature reduction improves computational efficiency for all

algorithms, making it a valuable technique for optimizing model performance and

resource utilization.

4.6 Answer to the research questions

RQ#1: What are the features selected through the Hybrid Feature Selection

method?

Through the Hybrid Feature Selection method, the following features were identified as

the most relevant for the model:

 Destination Port, Total Fwd Packets, Total Length of Fwd Packets, Total Length

of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Mean, Bwd Packet

72

Length Mean, Bwd Packet Length Std, Flow IAT Max, Fwd IAT Max, Fwd

Header Length, Bwd Header Length, Bwd Packets/s, Max Packet Length, Packet

Length Mean, Packet Length Std, Packet Length Variance, Average Packet Size,

Avg Bwd Segment Size, Fwd Header Length, Subflow Fwd Packets, SubflowFwd

Bytes, Subflow Bwd Bytes, Init_Win_bytes_forward, Init_Win_bytes_backward

RQ#2: Does implementing a Hybrid Feature Selection method improve the

performance of the model?

Based on our experiments implementation of a Hybrid Feature Selection method

improves the performance of the model in accuracy as well as computational time.

 DT: Accuracy increased from 93.94% to 99.34%.

 KNN: Accuracy increased from 97.72% to 99.45%.

 RF: Accuracy increased from 99.41% to 99.62%.

 XGBoost: Accuracy increased from 99.54% to 99.73%.

 Stacking (DT + KNN + RF + XGBoost): Accuracy increased from 99.75% to

99.92%.

The Hybrid Feature Selection method significantly improves the performance of intrusion

detection models by enhancing both their accuracy and computational efficiency. By

selecting the most relevant features, the method ensures that models are not only more

accurate but also faster to train and test, making them more practical for real-world

applications.

RQ#3: Does a combining classifier algorithm enhance the performance of the

proposed model?

The combining classifier algorithm using Stacking (DT + KNN + RF + XGBoost)

demonstrates a significant enhancement in the performance of our proposed model

 The Stacking (DT + KNN + RF + XGBoost) classifier achieves an accuracy of

99.75% with the full feature set, improving the performance of all individual base

classifiers (DT, KNN, RF, and XGBoost).

73

 With the reduced features, the Stacking (DT + KNN + RF + XGBoost) classifier

further improves its accuracy to 99.92%, indicating that combining classifiers

enhances performance even with fewer features.

74

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This study proposed both Hybrid Feature Selection methods by combining Mutual

Information (MI) and RFE, and combining classifier algorithms using Stacking (DT +

KNN + RF + XGBoost) for intrusion detection systems significantly enhances the

performance of the proposed model. This feature selection approach successfully solves

the problem which is raised by the high dimensional dataset in IDS; the experiment was

conducted using the CICIDS 2017 dataset, which contains 78 features. These 78 features

were reduced to 25 features by the proposed feature selection technique. Initially, we

carried out the experiments using the proposed ML approaches over the full features of

the CICIDS 2017 dataset. Then we conduct the experiments using the reduced features

that were generated by the MI-RFE feature selection algorithm proposed in this work.

The experimental results demonstrated that using reduced (optimal) features has

improved the accuracy and computation time of the proposed method. The proposed

method improved the accuracy of Decision Trees (DT), K-nearest neighbors (KNN),

Random Forests (RF), and XGBoost, with accuracy increases ranging from moderate to

substantial. In particular, 99.75% accuracy with full features was achieved by the

Stacking (DT + KNN + RF + XGBoost) classifier, which combines base classifiers, and

99.92% accuracy with reduced features. By combining classifiers and choosing the most

pertinent features, this dual approach makes the most of each method's advantages and

produces an intrusion detection model that is both more accurate and effective.

75

5.2 Recommendations

 The dataset used for this thesis was from publicly available data. For future

research, we recommend testing the proposed model using local datasets.

 We recommend testing the proposed method using other intrusion detection

datasets.

76

REFERENCES

Aghdam, M. H., & Kabiri, P. (2016). Feature Selection for Intrusion Detection System

Using Ant Colony Optimization. https://doi.org/10.1007/978-3-319-32213-1_27

Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., & Janicke, H. (2018). A Novel

Hierarchical Intrusion Detection System based on Decision Tree and Rules-based

Models (arXiv:1812.09059). arXiv. http://arxiv.org/abs/1812.09059

Ahsan, R., Shi, W., & Corriveau, J. (2022). Network intrusion detection using machine

learning approaches: Addressing data imbalance. IET Cyber-Physical Systems:

Theory & Applications, 7(1), 30–39. https://doi.org/10.1049/cps2.12013

Al Lail, M., Garcia, A., & Olivo, S. (2023). Machine Learning for Network Intrusion

Detection—A Comparative Study. Future Internet, 15(7), 243.

https://doi.org/10.3390/fi15070243

Alalhareth, M., & Hong, S.-C. (2023). An Improved Mutual Information Feature

Selection Technique for Intrusion Detection Systems in the Internet of Medical

Things. Sensors, 23(10), 4971. https://doi.org/10.3390/s23104971

Almasoudy, F. H., Al-Yaseen, W. L., & Idrees, A. K. (2020). Differential Evolution

Wrapper Feature Selection for Intrusion Detection System. Procedia Computer

Science, 167, 1230–1239. https://doi.org/10.1016/j.procs.2020.03.438

Alom, M. Z., & Taha, T. M. (2017). Network intrusion detection for cyber security using

unsupervised deep learning approaches. 2017 IEEE National Aerospace and

Electronics Conference (NAECON), 63–69.

https://doi.org/10.1109/NAECON.2017.8268746

77

Al-rimy, B. A. S., Maarof, M. A., Alazab, M., Shaid, S. Z. M., Ghaleb, F. A., Almalawi,

A., Ali, A. M., & Al-Hadhrami, T. (2021). Redundancy Coefficient Gradual Up-

weighting-based Mutual Information Feature Selection technique for Crypto-

ransomware early detection. Future Generation Computer Systems, 115, 641–658.

https://doi.org/10.1016/j.future.2020.10.002

Ambikavathi, C., & Srivatsa, S. K. (2020). Predictor Selection and Attack Classification

using Random Forest for Intrusion Detection. 79.

http://nopr.niscpr.res.in/handle/123456789/54710

Ambusaidi, M. A., He, X., Nanda, P., & Tan, Z. (2016). Building an Intrusion Detection

System Using a Filter-Based Feature Selection Algorithm. IEEE Transactions on

Computers, 65(10), 2986–2998. https://doi.org/10.1109/TC.2016.2519914

Arif Ali, Z., H. Abduljabbar, Z., A. Tahir, H., Bibo Sallow, A., & Almufti, S. M. (2023).

eXtreme Gradient Boosting Algorithm with Machine Learning: A Review.

Academic Journal of Nawroz University, 12(2), 320–334.

https://doi.org/10.25007/ajnu.v12n2a1612

Asir, D., Appavu, S., & Jebamalar, E. (2016). Literature Review on Feature Selection

Methods for High-Dimensional Data. International Journal of Computer

Applications, 136(1), 9–17. https://doi.org/10.5120/ijca2016908317

Assistant Professor, Department of Information technology, Bishop Heber College,

Affiliated to Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu,

India, Usha, P., & Anuradha, M. P. (2023). Feature Selection Techniques in

Learning Algorithms to Predict Truthful Data. Indian Journal Of Science And

Technology, 16(10), 744–755. https://doi.org/10.17485/IJST/v16i10.2102

78

Berman, D., Buczak, A., Chavis, J., & Corbett, C. (2019). A Survey of Deep Learning

Methods for Cyber Security. Information, 10(4), 122.

https://doi.org/10.3390/info10040122

Dhal, P., & Azad, C. (2022). A comprehensive survey on feature selection in the various

fields of machine learning. Applied Intelligence, 52(4), 4543–4581.

https://doi.org/10.1007/s10489-021-02550-9

Fan, Z., Sohail, S., Sabrina, F., & Gu, X. (2024). Sampling-Based Machine Learning

Models for Intrusion Detection in Imbalanced Dataset. Electronics, 13(10), 1878.

https://doi.org/10.3390/electronics13101878

Faysal, J. A., Mostafa, S. T., Tamanna, J. S., Mumenin, K. M., Arifin, Md. M., Awal,

Md. A., Shome, A., & Mostafa, S. S. (2022). XGB-RF: A Hybrid Machine

Learning Approach for IoT Intrusion Detection. Telecom, 3(1), 52–69.

https://doi.org/10.3390/telecom3010003

Gharib, A., Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2016). An Evaluation

Framework for Intrusion Detection Dataset. 2016 International Conference on

Information Science and Security (ICISS), 1–6.

https://doi.org/10.1109/ICISSEC.2016.7885840

Gupta, B. B., Perez, G. M., Agrawal, D. P., & Gupta, D. (Eds.). (2020). Handbook of

Computer Networks and Cyber Security: Principles and Paradigms. Springer

International Publishing. https://doi.org/10.1007/978-3-030-22277-2

Gupta, A. R. bhai, & Agrawal, J. (2020). A Comprehensive Survey on Various Machine

Learning Methods used for Intrusion Detection System. 2020 IEEE 9th

79

International Conference on Communication Systems and Network Technologies

(CSNT), 282–289. https://doi.org/10.1109/CSNT48778.2020.9115764

Habeeb, M. S., & Babu, T. R. (2024). A Two-Phase Feature Selection Technique using

Information Gain and XGBoost-RFE for NIDS. International Journal of

Intelligent Systems and Applications in Engineering.

Hafeez, M. A., Rashid, M., Tariq, H., Abideen, Z. U., Alotaibi, S. S., & Sinky, M. H.

(2021). Performance Improvement of Decision Tree: A Robust Classifier Using

Tabu Search Algorithm. Applied Sciences, 11(15), 6728.

https://doi.org/10.3390/app11156728

Hancer, E., Xue, B., & Zhang, M. (2020). A survey on feature selection approaches for

clustering. Artificial Intelligence Review, 53(6), 4519–4545.

https://doi.org/10.1007/s10462-019-09800-w

Humayun, M., Niazi, M., Jhanjhi, N., Alshayeb, M., & Mahmood, S. (2020). Cyber

Security Threats and Vulnerabilities: A Systematic Mapping Study. Arabian

Journal for Science and Engineering, 45(4), 3171–3189.

https://doi.org/10.1007/s13369-019-04319-2

Jabali, V. K. (2017). Taxonomy of Feature selection in Intrusion Detection System. 15.

Jhaveri, S., Khedkar, I., Kantharia, Y., & Jaswal, S. (2019). Success Prediction using

Random Forest, CatBoost, XGBoost and AdaBoost for Kickstarter Campaigns.

2019 3rd International Conference on Computing Methodologies and

Communication (ICCMC), 1170–1173.

https://doi.org/10.1109/ICCMC.2019.8819828

80

Jing, D., & Chen, H.-B. (2019). SVM Based Network Intrusion Detection for the UNSW-

NB15 Dataset. 2019 IEEE 13th International Conference on ASIC (ASICON), 1–

4. https://doi.org/10.1109/ASICON47005.2019.8983598

Jose, S., Malathi, D., Reddy, B., & Jayaseeli, D. (2018). A Survey on Anomaly Based

Host Intrusion Detection System. Journal of Physics: Conference Series, 1000,

012049. https://doi.org/10.1088/1742-6596/1000/1/012049

Kasongo, S. M., & Sun, Y. (2020a). Performance Analysis of Intrusion Detection

Systems Using a Feature Selection Method on the UNSW-NB15 Dataset. Journal

of Big Data, 7(1), 105. https://doi.org/10.1186/s40537-020-00379-6

Kasongo, S. M., & Sun, Y. (2020b). Performance Analysis of Intrusion Detection

Systems Using a Feature Selection Method on the UNSW-NB15 Dataset. Journal

of Big Data, 7(1), 105. https://doi.org/10.1186/s40537-020-00379-6

Khan, N. M., Madhav C, N., Negi, A., & Thaseen, I. S. (2020). Analysis on Improving

the Performance of Machine Learning Models Using Feature Selection

Technique. In A. Abraham, A. K. Cherukuri, P. Melin, & N. Gandhi (Eds.),

Intelligent Systems Design and Applications (Vol. 941, pp. 69–77). Springer

International Publishing. https://doi.org/10.1007/978-3-030-16660-1_7

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion

detection systems: Techniques, datasets and challenges. Cybersecurity, 2(1), 20.

https://doi.org/10.1186/s42400-019-0038-7

Kou, G., Yang, P., Peng, Y., Xiao, F., Chen, Y., & Alsaadi, F. E. (2020). Evaluation of

feature selection methods for text classification with small datasets using multiple

81

criteria decision-making methods. Applied Soft Computing, 86, 105836.

https://doi.org/10.1016/j.asoc.2019.105836

Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label Classifier

Performance Evaluation with Confusion Matrix. Computer Science &

Information Technology, 01–14. https://doi.org/10.5121/csit.2020.100801

Kumar, V. (2014). Feature Selection: A literature Review. The Smart Computing

Review, 4(3). https://doi.org/10.6029/smartcr.2014.03.007

Liu, H., & Lang, B. (2019a). Machine Learning and Deep Learning Methods for

Intrusion Detection Systems: A Survey. Applied Sciences, 9(20), 4396.

https://doi.org/10.3390/app9204396

Liu, H., & Lang, B. (2019b). Machine Learning and Deep Learning Methods for

Intrusion Detection Systems: A Survey. Applied Sciences, 9(20), Article 20.

https://doi.org/10.3390/app9204396

Mahesh, B. (2018). Machine Learning Algorithms—A Review. 9(1), 7.

Maseer, Z. K., Yusof, R., Bahaman, N., Mostafa, S. A., & Foozy, C. F. M. (2021).

Benchmarking of Machine Learning for Anomaly Based Intrusion Detection

Systems in the CICIDS2017 Dataset. IEEE Access, 9, 22351–22370.

https://doi.org/10.1109/ACCESS.2021.3056614

Mebawondu, J. O., Alowolodu, O. D., Mebawondu, J. O., & Adetunmbi, A. O. (2020).

Network intrusion detection system using supervised learning paradigm.

Scientific African, 9, e00497. https://doi.org/10.1016/j.sciaf.2020.e00497

82

Nazir, A., & Khan, R. A. (2021). A novel combinatorial optimization based feature

selection method for network intrusion detection. Computers & Security, 102,

102164. https://doi.org/10.1016/j.cose.2020.102164

Panda, M., Abraham, A., & Patra, M. R. (2012). A Hybrid Intelligent Approach for

Network Intrusion Detection. Procedia Engineering, 30, 1–9.

https://doi.org/10.1016/j.proeng.2012.01.827

Priscilla, C. V., & Prabha, D. P. (2021). A two-phase feature selection technique using

mutual information and XGB-RFE for credit card fraud detection. International

Journal of Advanced Technology and Engineering Exploration, 8(85).

https://doi.org/10.19101/IJATEE.2021.874615

Python_for_Data_Analysis.pdf. (n.d.).

Rajadurai, H., & Gandhi, U. D. (2022). A stacked ensemble learning model for intrusion

detection in wireless network. Neural Computing and Applications, 34(18),

15387–15395. https://doi.org/10.1007/s00521-020-04986-5

Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., & Khan, M. K. A. A. (2020).

Performance Analysis of Machine Learning Algorithms in Intrusion Detection

System: A Review. Procedia Computer Science, 171, 1251–1260.

https://doi.org/10.1016/j.procs.2020.04.133

Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020).

Cybersecurity data science: An overview from machine learning perspective.

Journal of Big Data, 7(1), 41. https://doi.org/10.1186/s40537-020-00318-5

Sharafaldin, I., Habibi Lashkari, A., & Ghorbani, A. A. (2018). Toward Generating a

New Intrusion Detection Dataset and Intrusion Traffic Characterization:

83

Proceedings of the 4th International Conference on Information Systems Security

and Privacy, 108–116. https://doi.org/10.5220/0006639801080116

Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., & Xu, M. (2020). A Survey on

Machine Learning Techniques for Cyber Security in the Last Decade. IEEE

Access, 8, 222310–222354. https://doi.org/10.1109/ACCESS.2020.3041951

Sofiane Maza, & Mohamed Touahria. (2018). Feature Selection Algorithms in Intrusion

Detection System: A Survey. KSII Transactions on Internet and Information

Systems, 12(10). https://doi.org/10.3837/tiis.2018.10.024

Taher, K. A., Mohammed Yasin Jisan, B., & Rahman, Md. M. (2019). Network Intrusion

Detection using Supervised Machine Learning Technique with Feature Selection.

2019 International Conference on Robotics,Electrical and Signal Processing

Techniques (ICREST), 643–646. https://doi.org/10.1109/ICREST.2019.8644161

Thakkar, A., & Lohiya, R. (2021). Attack classification using feature selection

techniques: A comparative study. Journal of Ambient Intelligence and Humanized

Computing, 12(1), 1249–1266. https://doi.org/10.1007/s12652-020-02167-9

Thakkar, A., & Lohiya, R. (2022). A survey on intrusion detection system: Feature

selection, model, performance measures, application perspective, challenges, and

future research directions. Artificial Intelligence Review, 55(1), 453–563.

https://doi.org/10.1007/s10462-021-10037-9

Umar, M. A., Chen, Z., & Liu, Y. (2021). A Hybrid Intrusion Detection with Decision

Tree for Feature Selection. Information & Security: An International Journal.

https://doi.org/10.11610/isij.4901

84

Umar, M. A., Zhanfang, C., & Liu, Y. (n.d.). A Hybrid Intrusion Detection with Decision

Tree for Feature Selection. 16.

Valenzuela, O., Rojas, I., Herrera, L. J., Guillén, A., Rojas, F., Marquez, L., & Pasadas,

M. (n.d.). FEATURE SELECTION USING MUTUAL INFORMATION AND

NEURAL NETWORKS.

Venkatesh, B., & Anuradha, J. (2019). A Review of Feature Selection and Its Methods.

Cybernetics and Information Technologies, 19(1), 3–26.

https://doi.org/10.2478/cait-2019-0001

Yin, Y., Jang-Jaccard, J., Xu, W., Singh, A., Zhu, J., Sabrina, F., & Kwak, J. (2023).

IGRF-RFE: A hybrid feature selection method for MLP-based network intrusion

detection on UNSW-NB15 dataset. Journal of Big Data, 10(1), 15.

https://doi.org/10.1186/s40537-023-00694-8

