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ABSTRACT 

Streamflow is one of the key components of the hydrological cycle in a watershed that 

can be affected by a variety of variables. One of the key variables is the change in land 

use and land cover (LULC). This study is mainly focused on assessing the impact of 

LULC change on only surface runoff using the soil and water assessment tool (SWAT) 

model. Sensitivity, calibration, and validation were performed by SWAT-CUP 

(calibration and uncertainty program) using sequential uncertainty fitting version 2 

(SUFI-2). The time series LULC map of the research area for the years 1997, 2010, and 

2022 were assessed using Google Earth Engine (GEE). There were four different 

algorithms applied to classify the LULC change (SVM, CART, RF, and Navia’s) 

available in GEE and the coverage of LULCs was including land class of agricultural 

land, forest land, grass land, urban area, barre land, and shrub land. The best 

performing of four distinct algorithms were compared, and chosen to generate LULC 

map. To train and evaluate the LULC map generated from the GEE platform, high-

resolution, 30 meter Landsat imagery from Landsat 5 Thematic Mapper (TM), Landsat 7 

Enhanced Thematic Mapper (ETM), and Sentinel 2 were employed, along with historical 

trends and ground-based data. As a result, the RF algorithms performed well. During the 

study period, the area covered by agriculture increased from 48.09% to 64.51%, while 

forest cover increased from 1.52% to 5.51% and grass land declined from 32.31% to 

8.81%. The calibration and validation result showed that an acceptable range between 

observed and simulated streamflow (0.83 for NSE and 0.83 for R
2
) and (0.77 for NSE and 

0.80 for R
2
) respectively. LULC changes have an impact on the streamflow of the Kiltie 

watershed by changing surface water quantity increased by 20,971,440 m
3
at wet and 

decreased by 3,090,528 m
3
 at dry season. 

 

Key words: SWAT, SWAT-CUP, Streamflow, Google Earth Engine, Machine 

Learning, Kiltie Watershed 
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1 INTRODUCTION  

1.1  Background  

Throughout human history, land use has been tightly attached to economic, social, 

infrastructure, and other human activities (Lambin et al., 2003). In the past few decades, 

the conversion of grassland, woodland, and forest into agricultural land and pasture lands 

has risen dramatically, especially in developing countries where a large proportion of the 

population depends on natural resources for their livelihoods (Siry et al., 2005). The 

current rate of change is not the same as what it was at the beginning. 

Understanding the hydrological process associated with land use and land cover (LULC) 

change is vital for decision-makers to improve human wellbeing. LULC change is one of 

the factors that directly impact the watershed hydrological cycle (Brook et al., 2015), and 

the change significantly affects the hydrology of the landscape, caused by anthropogenic 

activities (Engida et al., 2021). LULC changes are mainly caused by unlimited human 

interest activities as a result of an increase in human population without considering its 

consequences on surface water balance. One of the main parameters that affects the 

surface water quantity and groundwater table in a watershed is the use of land, and its 

cover changes over time. The response of hydrologic circulation is closely related to land 

use planning and management (Garg et al., 2019). On top of the rapid change in LULC of 

forest land, grazing land or bush lands to cultivated lands is becoming a common practice 

in most parts of Ethiopia (Abate & Lemenih, 2014). The impacts of LULC change on 

hydrology are especially significant, as they are related to the change and availability of 

water resources that are essential for both human beings and ecosystems (Oki & Kanae, 

2006). The progressive vegetation removal and increased impervious area in the 

watershed resulted in increased wet-season runoff frequency and magnitude. 

Hydrological data collected throughout the year is important for understanding and 

measuring the impact of land use and land cover changes on the watershed. In Ethiopia, 

there is a lack of metrological and hydrological data, especially for small watersheds. 

Because of this, hydrology studies are difficult because of some input data. This leads to 

the prediction of data for research and design work from the nearest watershed using 

hydrological models. 
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Reliable continuous streamflow forecasting using hydrological modeling is an important 

factor in watershed planning and sustainable water resource management because it is 

instrumental in obtaining a deeper sense of the flow variability of the watershed. 

However, it becomes challenging as the majority of rivers and streams in the world are 

ungauged or poorly gauged (Razavi & Coulibaly, 2013). Ungauged streams are often 

located upstream (in mountainous areas and maritime regions) and downstream in rural 

and remote areas because of their inaccessibility or lack of developer intentions. 

However, the hydrological parameters for the catchment can be predicted using 

regionalization methods (Sivapalan et al., 2003). This study was conducted in one of the 

short-period gauged rural areas of the Kiltie watershed, Gilgel Abay River Basin, in 

North Gojjam Zone of Amhara Region. 

Various models have been developed and applied to predict, assess, and monitor natural 

phenomena such as streamflow from the watershed, but the SWAT model, which is a 

deterministic, continuous watershed model that can operate on monthly and daily time 

steps, is the most widely used and freely available (Neitsch, 2005). The SWAT model is 

the best of the hydrological models because of its availability to apply to large-scale 

watersheds (> 100 km
2
), interface with a Geographic Information System (GIS), 

continuous-time simulation performance, generation of the largest number of sub-basins, 

and ability to characterize the watershed in sufficient special detail. In this study, the 

SWAT model is used to analyze the impact of LULC on surface runoff. 

1.2 Statement of the problem  

Tana sub-basin has been continuously under threat by several land resource degradation 

which is caused invariably by a combination of natural phenomenon and man‟s action 

such as destruction of the forest resources through deforestation, overgrazing and 

inappropriate agricultural practices that are not in harmony with the ecological 

environment (Andualem & Gebremariam, 2015). The main factor that contributes to land 

degradation is continuous and active land use and land cover change, especially from 

vegetation to other land use types, typically cultivated land. This continuous change in 

land cover has impacted the water balance of the watershed by changing the magnitude 
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and pattern of the component of streamflow which results increasing the extent of the 

water management problem (Geremew, A. A. 2013). Deforestation is a day-to-day 

activity of people living in rural watersheds, and it causes the majority of environmental 

degradation by increasing surface runoff instead of infiltration into the soil. Therefore, 

these events resulted in a decrease in river base flow in the watershed. This study 

considered the LULC change periods between 1997 and 2022 of the Kiltie watershed 

which is one of the tributary of Gilgel Abay watershed. Hence, a strong need is identified 

for the hydrological techniques and tools that can assess the effect of LULC change on 

surface runoff of a watershed. Such techniques and tools can provide information that can 

be used for water resource management at a watershed. This study is designed to 

investigate the impact of LULC change on streamflow of the Kiltie watershed, Sub-Tana 

Basin by using SWAT model. 

1.3 Objective   

The study aims to assess the impact of land use and land cover changes on the surface 

runoff of the Kiltie watershed using the Soil and Water Assessment Tools (SWAT) 

model.  

The specific objective includes: 

 To evaluate the machine learning algorithms for LULC classification. 

 To identify the main LULC classes and their changes. 

 To evaluate the effect of land use and land cover changes on the streamflow of the 

Kiltie watershed for the past years by using the SWAT model. 

1.4 Research questions    

To address the above objectives, the following research questions are designed: 

1. Which machine learning classifier is appropriate for the classification of LULC 

for Kiltie Watershed? 

2. What are the main LULC types, their area coverage in the Kiltie watershed? 

3. How do land use and land cover change affect the annual flow of the Kiltie River? 

1.5 Scope of the study 

This study was limited to the Kiltie watershed and focuses only on the assessment of land 

use and land cover change and its impact on the streamflow of the watershed. The study 
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area is one of the tributary watersheds, the Gilgel Abay watershed, and the river joins the 

Gilgel Abay River after the Wottet Abay gauging station. The SWAT model is used to 

analyze the impact of LULC changes on streamflow. The LULC change and map were 

identified using the Google Earth Engine (GEE) application for the periods of 1997, 

2010, and 2022. This study only focuses on the impact of LULC change on streamflow. 

1.6 Significance of the study  

Giving less attention to LULC change assessment leads to poor planning, design, and 

operation of water resource projects and soil conservation works at the watershed level. 

Such an outcome affects directly or indirectly the economic development of the country. 

So, a proper estimate of LULC change and the identification of different analyses of the 

area increase knowledge about river base flow within the watershed. Therefore, this study 

contributes to assessing the impact of LULC change on surface runoff in the Kiltie 

watershed for future water resource developments and soil conservation works and also 

clarifies the LULC impacts on streamflow in the watershed. The main significance of this 

study is to understand the impact of LULC change on water resource. The findings of this 

study will give scientific clues for resource-based analysis and the development of 

effective and appropriate response strategies for sustainable management of natural 

resources. 
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2 LITERATURE REVIEW  

2.1 LULC definition and concept 

Land use is the utilization of land by human activities for agriculture, settlement, and 

other purposes as they want. Vandewiele & Elias, (1995) defined land use as a human 

endeavor to alert the future of land to create a favorable environment for their lives by 

engaging in various activities such as agricultural land, road construction, and settlement. 

According to the author, environmental issues are tied to land use change. Therefore, 

LULC change analysis is required for environmental management through decision-

making and future planning. 

Global scale studies have been conducted on LULC change and its impact on streamflow. 

For example, Shahid et al. (2018) conducted a study on the impacts of climate change 

and human activities on stream flow using the ABCD hydrological model. The model 

was employed to examine how land use and climate change affected runoff generation at 

the basin level in  Pakistan. Previous studies in the Awash basin and elsewhere in 

Ethiopia identified the impact of LULC change on surface runoff (Woldesenbet et al. 

2017; Gashaw et al. 2018; Birhanu et al. 2019; Dibaba et al 2020). These studies focused 

on analyzing the impact of climate change and land use change on runoff and runoff 

changes using diverse methodologies. Studies also tried to assess the impact of LULC 

change on surface water availability (Kumar et al. 2018; Tadese et al. 2020b). These 

studies contributed to the current understanding of the impact of LULC changes on 

surface runoff and the water availability in the watershed. However, they are presented in 

a disentangled way, and the exact relationship between the impacts of LULC change on 

streamflow and hence the surface water availability is missing. 

Land cover refers to the visible physical characteristics of the earth surface, such as water 

bodies and vegetation, as well as those created by human activities, such as settlement 

areas, agricultural land, urbanized land features, exposed land surfaces due to tree 

removal for plantations, and others (Potopová et al., 2017). Land use and land cover 
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changes result from various natural and human factors within social, economic, and 

political contexts. Hence, the local human activities expressing the drivers can be 

determined by measuring the rates and types of changes and analyzing other relevant 

sources of data like demographic profiles, household characteristics, and policies related 

to land resource administration (Di Gregorio, 2005). 

According to Takassahun et al. (2009) LULC change is commonly grouped into two 

broad categories: conversion and modification. Conversion is defined as a change from 

one cover or use category to another (for example, from forest to grassland). 

Modification, on the other hand, represents a change within one land use or land cover 

category (for example, from a rain-fed cultivated area to an irrigated cultivated area) due 

to changes in its physical or functional attributes. These changes in LULC systems have 

important environmental consequences through their impacts on soil and water, 

biodiversity, and microclimate (Meyer & BL Turner, 1994). 

Considering the research on land use change alone, the development of separate and very 

sophisticated land dynamic tools were caused by the large number of variables from 

different scientific fields that influence land use change. Therefore, future development 

of land use change modeling related to river catchment modeling will probably remain a 

parallel process where a dynamic link would be the desired connection from a long-term 

perspective dealing with dynamically changing land use input. 

2.1.1 Causes of LULC change 

LULC changes are complex processes that arise from variations in the land cover during 

the land change process. According to Lumbin et al. (2003), LULC change is driven by 

the interaction in space and time between biophysical and human dimensions. 

Throughout the entire history of mankind, intense human utilization of land resources has 

resulted in significant changes in LULC. Since the period of industrialization and rapid 

population growth, LULC change phenomena have strongly accelerated in many areas. 

There is a significant statistical correlation between population growth and LULC 

conversion in most African, Asian, and Latin American countries (Gereta et al., 2003). In 

most developing countries like Ethiopia, population growth has been a dominant cause of 

LULC change compared to other forces (Meyer & BL Turner, 1994). Due to the 
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increasing demands of food production, agricultural lands are expanding at the cost of 

natural vegetation and grasslands (Pretty et al., 2010). The expansion and increase of 

agricultural lands, the development of urban areas, and the need to extract timber and 

other products are accelerating over time to meet the needs of an increasing population. 

2.1.2 Criteria for land use and land cover classification  

A land use and land cover classification system that can effectively employ orbital and 

high-altitude remote sensor data should meet the following criteria: 

 The minimum level of interpretation accuracy in the identification of land use and 

land cover categories from remote sensor data should be at least 85 percent. 

 The accuracy of interpretation for the several categories should be about equal. 

 Reputable or repetitive results should be obtainable from one interpreter to 

another and from one time of sensing to another. 

 The classification system should be applicable to extensive areas. 

 The classification system should be suitable for use with remote sensor data 

obtained at different times of the year. 

 The categorization should permit vegetation and other types of land cover. 

 Effective use of subcategories that can be obtained from ground surveys or from 

the use of larger-scale or enhanced remote sensor data should be possible. 

 Aggregation of categories must be possible. 

 Comparison with future land use data should be possible. 

 Multiple uses of land should be recognized when possible. 

2.1.3 LULC change detection 

LULC change detection can be defined as the process of identifying differences in two or 

more images of the same location taken at different times. Principally, it also involves the 

ability to quantify temporal applications of remotely sensed data obtained from Earth-

orbiting satellites (Lambin et al., 2003). Many change detection methods were developed 

and used for various applications. However, the change detection techniques can be 

broadly divided into two approaches: pre-classification and post-classification. 

In the pre-classification approach, the image values are not categorized for the change 

analysis. The most common and widely used pre-classification approach is vegetation 
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index difference (NDVI), normalized difference water index (NDWI), change vector 

analysis (CVA), etc. They are simple, effective at detecting and locating change, and 

simple to execute. Post-classification approaches separate images and assess the 

differences of images pixel by pixel, providing comprehensive change-class information 

that is critical for landscape monitoring. 

In general, selecting an appropriate approach to detecting change is critical because no 

single method can be used effectively for all research topics. The result of change 

detection from imagery can be affected by several factors, such as the quality of image 

registration between multi-temporal images (Tingting Dan, 2018), change detection 

methods, and lack of knowledge about approaches as well as analysis skill and 

experience (Shivangi Mishra, 2017), dataset availability and quality (Ayele, 2016), image 

pre-pprocessing (Khorram, 2013), the atmospheric conditions and shadow present in the 

image (Gustavtolt, 2011), the acquisition times of the image (Khorram, 2013), and 

landscape and topography characteristics of the study areas.   

2.1.4 Impact of LULC change on streamflow 

Watershed characteristics directly affect the river flow. The flow of the stream and the 

amount of water moving off the watershed into the stream channel have a direct 

relationship. Watersheds that have a large coverage area have the potential to generate 

large river flows because they have a large capacity to store water. LULC plays a key 

role in monitoring the hydrologic response of watersheds in several important ways. 

Changes in LULC can lead to significant changes in evapotranspiration, soil moisture 

content and infiltration capacity, surface and subsurface flow regimes, including base 

flow contributions to streams, groundwater recharge, surface roughness, runoff, and soil 

erosion through complex interactions among vegetation, soils, geology, topography, and 

climate processes. 

Therefore, LULC can affect both the degree of infiltration and surface runoff following 

rainfall events and rates of evaporation. Surface water flow and ground water flow can be 

affected by LULC changes. This evidence indicates that LULC is important to determine 

the potential of water supply in its transit through a landscape. 
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(Zaitunah & Manurung, 2018), suggested that decreased evapotranspiration due to 

deforestation is larger than the increase in evapotranspiration due to irrigation when 

globally averaged. (Tingting Dan, 2018), emphasized that the observed increase in runoff 

over the 20th century was not only due to climate change but that LULC change was 

equally important. Both surface runoff and groundwater flow are significantly affected by 

types of LULC (Gordon et al., 2005). 

Several studies have been conducted to investigate the impact of LULC changes on 

streamflows, which ended up exhibiting that the causes of streamflow changes are due to 

LULC changes. A study on LULC changes impacting streamflow by Piao et al. (2007) in 

the Upper Mara watershed showed that the conversion of forest to agriculture decreased 

the dry season flow, which resulted in aggravating water scarcity during low flows. 

All parts of the literature have shown that there is a strong relationship between 

streamflow and LULC change. Assessing the impact of LULC changes on the hydrology 

of the Gilgel-Abay watershed in the Lake Tana basin also came up with similar findings 

(Geremew, A. A. 2013). In the wet season, streamflow in Gilgel Abay has increased by 

16.26 m3/sec and decreased by 5.41 m3/sec in the dry season. 

2.2 Land use and land cover change in Ethiopia 

Several studies have been conducted in different locations in Ethiopia using various 

approaches and methods for studying LULC changes. For instance, Asitatikie, (2019), 

investigated how LULC change affects the hydrology of the Rib catchment in the Lack 

Tana sub-basin. The study discovered a 29.94% increase in cultivated land and a 6.143 

m3/s increase in streamflow. 

Fentie et al., (2020), do another investigation to investigate LULC variations and their 

cumulative effects on the chemical and physical qualities of soils within the Tejibara 

watershed over 30 years (from 1989 to 2019). In the investigation, the amount of forest 

and grazing land has decreased, creating changes in soil attributes. As a result, the land 

has been degraded, and soil productivity has decreased. 

(Dinka & Chaka, 2019), conduct a similar study on the Adei watershed in Ethiopia's 

central highlands. Significant LULC change has occurred in the watershed, particularly 

the conversion of natural cover to managed agrosystems. Furthermore, the report stated 
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that farmland has rapidly expanded, resulting in plant diversity and the emergence of 

deforestation as a result of this expansion. 

Overall, global LULC change is accelerating, particularly in developing countries like 

Ethiopia. It has a wide range of consequences, from climate change to biodiversity loss. 

As a result, it's critical to assess the shifting trend and its implications in Ethiopia as a 

whole, as well as in the Kiltie watershed in particular. 

2.3 Analysis of Land Use Land Cover Change  

2.3.1 Image classification  

Image classification is perhaps the most important part of digital image analysis. It is 

very nice to have a “pretty picture” or an image showing a magnitude of colors 

illustrating various features of the underling terrain, but it is quite useless to know what 

the colors mean. Image classification is used to identify and portray, as a unique gray 

level or color, the features occurring in an image in terms of the object or type of land 

cover these features actually represent on the ground. The intent of the image 

classification process is to categorize all pixels in a digital image into one of several land 

cover classes. This categorized data may then be used to produce thematic maps of the 

land cover present in an image. Normally, multispectral data is used to perform the 

classification, and indeed, the spectral pattern present within the data for each pixel is 

used as the numerical basis for categorization. 

Information derived from land use and land cover change detection is important to land 

conservation, sustainable development, and the management of water resources (Dires 

2019). To perform image classifications, the raw data must be preprocessed and prepared 

properly so that errors due to the geometry of the earth and radiometric and atmospheric 

effects can be accounted for. The general procedure in the preprocessing stage includes 

the detection and restoration of band lines, geometric rectification or image registration, 

radiometric calibration, atmospheric correction, and topographic correction. With the 

availability of historical remote sensing data, reduced cost, and increased resolution from 

satellite platforms, remote sensing technology appears ready to make a greater impact on 

monitoring LULC. LULC can be analyzed over a period using Landsat sensors such as 

Landsat Multi-Spectral Scanner (MSS) data and Landsat Thematic Mapper (TM) data 
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using image classification techniques (Webister, 2010). Since 1972, Landsat satellites 

have provided repetitive, synoptic, and global coverage of medium-resolution 

multispectral images. Image classification using remote sensing has attracted the 

attention of the research community (Lu D. A., 2007). 

There are two main classification methods: unsupervised classification and supervised 

classification.  

A. Supervised classification  

During supervised classification, the classifier or expert identifies examples of the 

information classes, i.e., land use type, of interest in the image, which are called training 

sites. Then the image processing software system is used to develop a statistical 

characterization of the reflectance for each information class. This stage is often called 

signature analysis and may involve developing a characterization as simple as the mean 

or the average of reflectance on each band. 

The objective is to extend or extrapolate information on land cover type for a known area 

of the image to the unknown areas of the whole selected image. The image analyst 

defines a number of training areas for each land cover category. Based on this 

information, the computer generates spectral signatures. 

In supervised image classification, the analyst has previous knowledge about pixels to 

generate representative (ground truth) parameters for each land cover class of interest. 

The maximum likelihood classification, under the category of supervised classification, is 

the most widely used per-pixel method by taking into account the spectral information of 

LULC classes (Qian, 2007). 

B. Unsupervised classification 

Unsupervised classification is a method that examines a large number of unknown pixels 

and divides them into a number of classes based on the natural groupings present in the 

image values. Unlike supervised classification, unsupervised classification does not 

require analyst-specified training data. The basic premise is that values within a given 

cover type should be close together in the measurement space, i.e., have similar gray 

levels, whereas data in different classes should be comparatively well separated Lillesand 

and Kiefer (1994). 
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Unsupervised classification is the simplest technique within the image data. For the 

different wavelengths, the computer is asked to determine a user-defined number of 

clusters. Each cluster represents a land cover class or sub-class. The mean digital value 

for each input band could be represented as a spectral reflectance profile. The cluster 

represents the spread of values around the mean for the land cover class. After the 

classification has been completed, each class should be examined and assigned a name. It 

may also be necessary to merge a number of classes into a single category. 

Unsupervised classification is an automated classification method that creates a thematic 

raster layer from remotely sensed data by letting the software identify statistical patterns 

in the data without using any ground truth data (Lilleesand 2004).  

2.3.2 Application of Google Earth Engine for LULC Change Detection 

Google Earth Engine (GEE) is a geographical processing tool with a cloud-based 

platform for wide-ranging environmental study and interpretation. The GEE is a web-

based Graphical User Interface (GUI) that provides access to a multi-petabyte catalog of 

RS imagery and other datasets through Google computational infrastructure. For popular 

coding languages like JavaScript and Python, a set of application programming interfaces 

(APIs) and development environments are available. GEE is a powerful cloud computing 

platform that provides the whole Landsat collection and allows for rapid scientific 

analysis and expert analysis (Navarro, 2017). It allows scientific researchers and 

developers to visualize a large geographical dataset using advanced machine learning 

algorithms. Massive satellite images can be directly obtained from this platform, and 

image processing can be evaluated and executed using machine learning algorithms 

(Tsai, 2018). 

GEE Explorer and Code Editor are two web-based platforms that are currently available 

to anyone who has registered to use them (Gorelick, 2017). GEE has been used in a 

variety of studies because it is a new application. GEE contains a wealth of data from 

satellites, ranging from the Landsat program to a variety of climate datasets. 

GEE has been used in a variety of applications. These will be used to analyze LULC 

change and provide a suitable foundation for additional investigation on a separate 

platform (Wahap, 2020). The application of GEE is very wide, ranging from drought 
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assessment (Sazib, 2018), agriculture and ecosystem service (Goldblatt, 2017), drought 

monitoring, vegetation mapping, and monitoring (Poortinga, 2018), to historical LULC 

mapping (Geetha, 2019) 

Generally, all studies agree that GEE is capable of creating multi-temporal maps or 

conducting time series analysis using the available satellite images on the platform. The 

GEE platform could be very useful and rapid for analyzing satellite images and doing 

remote sensing analysis of large and long-term data. The GEE has many advantages. The 

major benefit is that the data is preprocessed and ready to use, and a large number of 

processed and unprocessed data can be maintained effortlessly (Gorelick, 2017). Because 

the GEE's easily accessible and user-friendly properties provide a convenient 

environment for interactive data and algorithm development, users may contribute and 

construct their data and collections using Google's cloud resources to execute all of the 

processing  (Mutanga, 2019). 

The main limitation of the GEE platform is its dependency on an internet connection and 

filtering the cloud. In the wet season, it is very difficult to get an image that is free from 

cloud cover using the cloud cover masking function available on GEE.  

2.3.3 Machine learning classification in GEE 

Machine learning algorithms organize and classify pixels based on inputs (imagery and 

training data). Since the algorithm is a "black box," the researcher may examine the 

inputs and outputs. GEE has a number of machine learning classifiers that may be used 

for both supervised and unsupervised classification. Support Vector Machine, 

Classification and Regression Tree (CART) classifier, Random Forest, and Naive Bayes 

are common (Ayodele, 2010). 

Support vector machine (SVM) 

Support vector machine is a non-parametric machine learning classifier that is available 

in the Google Earth engine (Lin, 2015). As first proposed by (Vapnik, 1999), it is a 

classification algorithm based on statistical learning theory that is theoretically capable of 

catching crucial spectral signatures with only a few training samples, deriving the 

hyperplane to achieve reliable and satisfied land cover classification. The classification 

problem in support vector machines is tackled by determining the optimal interval 
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between distinct classes by finding the best hyperplane of the feature space (Haykin, 

2008). 

The hyperline of SVM is described in (Vapnik V. ,., 1999) by the following equations: 

  (    )                        

Where: yi is the point lying on the boundary of the hyperplane, wi is the weight vector, 

and b is called the bias. 

Finally, (Haykin, 2008) concluded that “SVM classifiers provide an analytic approach for 

determining the optimum size of the feature (hidden) space, thereby ensuring the 

optimality of the classification task.” 

Many studies have demonstrated the capability of SVM in land cover mapping and 

suggest it would be an effective algorithm for deriving the change in land cover using 30-

meter-resolution Landsat images. For example, a study conducted in Malaysia, Klang 

Valley, used an SVM classifier to classify satellite remotely sensed multispectral data. 

The study emphasized that SVM classified the land cover within the study area with high 

accuracy  (Bahari, 2014). 

A similar study in Mongolia effectively applied SVM for mapping the historical land use 

and land cover change as a result of the changing trend and type of features. The mapping 

was successfully done with the best performance capability of the SVM classifier, and the 

overall accuracy was very high (Jamsran, 2019). 

(Shi & Yang, 2015), demonstrate the effectiveness of SVM for heterogeneous land cover 

mapping. The study found that SVM can significantly improve mapping accuracy, 

particularly for spectrally and spatially complex land cover categories. In addition to the 

mapping of LULC, SVM has been used for various purposes, for example, in ground 

water potential mapping (Naghibi & Dashtpagerdi, 2017), modeling low flow time series 

(Sahoo et al., 2019), and ground water quality evaluation (Chang et al., 2010). 

All of the studies have found that SVM has strengths in terms of classification accuracy 

and training time. As a limitation, the studies suggested that the classification accuracy of 

SVM can be affected by the size and quality of the training sample. 

Classification and regression tree (CART) classifier 
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CART is a sophisticated technique that uses a decision tree (DT) classification algorithm 

to build a decision tree from a collection of training data. The choice is made based on 

the attribute with the largest normalized information gain (Breiman, 1984). 

CART's ability to handle both numerical and categorical data makes it easier to 

comprehend, visualize, and interpret the classified images (Herrera et al., 2019). 

Additionally, it differentiates the most significant variables from non-significant ones 

(Bittencourt & Clarke, 2003). 

The CART classification algorithm repeatedly splits input data based on a statistical test 

to increase the similarity of the training data in the resulting node (Mondal, 2019). The 

main limitation of the CART algorithm is the presence of high variance across samples, 

which leads to high variability in predicting classes and estimates (Hayes, 2015). 

Random forest classifier (RF) 

RF is the most popularly applied machine learning classifier (Belgiu, 2016) and the most 

frequently used classifier on the GEE platform (Tamiminia, 2020). An RF classifier uses 

training data to classify statistical patterns in huge datasets and then selects the best 

classification for all pixels within the imagery using a succession of decision trees 

(Breiman L. , 2001). It's a non-parametric machine learning technique that uses multiple 

decision trees to categorize a random sample of training data using covariate predictors. 

The majority vote among all trees determines the final class and model development 

options. Because the effectiveness of a random forest classifier is not affected by the 

number of variables per split, the user can define the number of trees and variables per 

split in a random forest (Breiman L. F., 1984). 

The random forest method has several advantages, such as more effective results for large 

datasets (Herrera, 2019). Can handle thousands of variables without reducing them 

(Rodriguez-Galiano, 2012) and gives an estimate of variables that are important in 

classification. It can produce unbiased estimates of generalization errors (Siroky, 2009) 

and is computationally lighter than other tree ensemble methods. 

The accuracy of RF classification relies on two parameters, namely the number of trees 

(Ntree) and the number of features (Mtry). The classification accuracy of RF is more 

sensitive to Mtry than Ntree, where the smaller Mtry would shorten the processing time 
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but provide lower accuracy. It is common to set Ntree as large as possible; this will not 

affect the efficiency or cause overfitting during the classification process (Belgiu & 

Drăguţ, 2016). 

Several studies have demonstrated the effectiveness of using the random forest classifier 

in LULC mapping. For instance, Nurfadila et al., (2019) used Sentinel 2 satellite data 

with a spatial resolution of 10 m to map land use and land cover change, resulting in 

more optimal LULC maps with a 95% overall accuracy. Moreover, this classifier has 

been widely used to classify satellite data for wetland mapping (Masoud, 2017), cropland 

mapping (Oliphant et al., 2019), and natural hazard susceptibility area mapping (Taalab 

et al., 2018). 

Naive Bayes (NB) 

The Bayesian theory of probability and predictions of the unknown class are used or 

applied by a naive Bayes classifier, which assumes that the features have substantial 

(naive) independence. This makes the Naive Bayes classifier a probabilistic model 

(Camargo et al., 2019). NB assumes that the feature class doesn‟t depend on the presence 

or absence of any other feature class; instead, it depends on the nature of the probability 

model, which makes the datasets train quicker (Ratika Pradhan, 2010). 

The NB classifier was successfully deployed for gully erosion and landslide susceptibility 

assessment (Chen et al., 2019), Spatial Prediction of Groundwater Potentiality: Assessing 

the spatial likelihood of a flood hazard (Liu, 2016). 

2.3.4 Image processing  

Image processing is a method to perform some operations on an image in order to get an 

enhanced image or extract some useful information from it. It is a type of signal 

processing in which the input is an image and the output may be an image or 

characteristics or features associated with that image. In image processing, the 

preprocessing stage includes the detection and restoration of band lines, geometric 

rectification or image registration, radiometric calibration, atmospheric correction, and 

topographic correction. Accurate geometric rectification or image registration of remotely 

sensed data is a prerequisite for a combination of different source data in classification 

processes. The study would be done using Landsat imaginaries to identify changes in 
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LULC distribution in the watershed over a 26-year period from 1997 to 2022. To avoid 

seasonal variation and minimize cloud cover, the selection of dates for acquired data is 

made in the dry season and with the same annual season as the acquired years. To view 

and discriminate the surface features clearly, all the input satellite images would be 

composed using the RGB color composition.  

Individual pixels on the images were used as validation units for the image accuracy 

assessment. User‟s, producer‟s, overall, and kappa coefficient assessments were done as 

part of the accuracy assessment. User‟s accuracy measures commission mistakes that 

correspond to pixels from other classes that the classifier has categorized as belonging to 

the class of interest (Rwanga and Nudambuki, 2017). The producer‟s assessment 

indicates the number of omission mistakes corresponding to pixels belonging to the class 

of interest that the classifier missed (Thapa and Murayama, 2009). The overall accuracy 

refers to the percentage of correctly classified samples (Story and Congalton, 1986). The 

kappa coefficient quantifies the proportionate reduction in error caused by a classification 

algorithm (Fahsi et al., 2000).  

Kappa coefficient was calculated using Equation 2.2 (Congalton, 1991) 

                 ( )  
((        )   ∑〖(       ))〗

(     ∑〖(     ))〗
               

Where TS = Total Sample, TCS = Total Column Sample, CT = Column Total, RT = Row 

Total 

2.3.5 Ground truth and classification accuracy assessment 

A ground truth or field survey is done in order to observe and collect information about 

the actual condition on the ground at a test site or study area and determine the 

relationship between remotely sensed data and observed data. It is recommended to have 

the ground truth at the same time of data acquisition, or at least within the time that the 

environmental condition does not change. 

Classification accuracy assessment is a general term for comparing the classification to 

geographical data that is assumed to be true to determine the accuracy of the 

classification process. Usually, the assumed true data is derived from ground truth. A set 
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of reference pixels is usually used. Reference pixels are points on the classified image for 

which actual data is known, and the reference pixel is randomly selected. 

2.4 Hydrological modeling 

Hydrological models are a relatively complex mathematical description of the hydrologic 

cycle (Linsley K., 1982). They define the actual physical processes of the hydrologic 

cycle and represent the behavior of the watershed in transforming a hydrologic input 

(rainfall) into an output (streamflow or runoff). Hydrological models are 

characterizations of the real-world system. The best model is one that produces outcomes 

that are as close to reality as possible while using the fewest number of parameters and 

having the least degree of model complexity (Gayathri et al., 2016). Streamflow models 

are therefore mathematical expressions that simulate streamflow or runoff like the way a 

watershed would operate on the same rainfall event. The model structure and architecture 

are determined by the objective for which the model is built (Singh & Woolhiser, 2002). 

There are many different reasons why modeling the rainfall-runoff processes of 

hydrology is required. The main reasons behind this are a limited range of hydrological 

measurement techniques and a limited range of measurements in space and time (Beven 

& Cloke, 2012). Therefore, it is necessary to develop a means of extrapolating from those 

available measurements in space and time to an ungauged watershed and into the future 

to assess the likely impact of future hydrological change. Hydrological models are 

characterizations of the real-world system. The researchers use a wide range of 

hydrological models; however, the applications of those models are highly dependent on 

the purposes for which the modeling is made. (Beven & Cloke, 2012). Stated that many 

rainfall-runoff models are carried out purely for research purposes as a means of 

enhancing knowledge about hydrological systems. He also adds that other types of 

models are developed and employed as tools for simulation and prediction, aiming 

ultimately to allow decision-makers to improve their decision-making about hydrological 

problems. Before developing the hydrological models, it is vital to understand how the 

watershed responds to rainfall under different conditions. 

Based on the process description, the hydrological models can be classified into three 

main categories (Shaw, 1998). 
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Lumped model: in lumped models, the entire river basin is taken as a single unit where 

spatial variability is disregarded, and hence the outputs are generated without considering 

the spatial processes. The parameters often do not represent the physical features of 

hydrologic processes and usually involve a certain degree of empiricism. 

Distributed models: parameters of distributed models are fully allowed to vary in space 

at the resolution chosen by the user. The distributed modeling approach attempts to 

incorporate data concerning the spatial distribution of parameters together with 

computational algorithms to evaluate the influence of this distribution on simulated 

precipitation runoff behavior. Distributed models generally require a large amount of 

data. (Beven & Cloke, 2012), explains that the distributed model does have some 

problems with its non-linearity, scale, uniqueness, and uncertainty. 

Semi-distributed models: to overcome the difficulties of fully distributed, another semi-

distributed model is a compromise between lumped and fully distributed. According to 

Moradkhani, (2008) the algorisms in semi-distributed conceptual models are simple but 

physically based. Parameters of semi-distributed models are partially allowed to vary in 

space by dividing the basin into several smaller sub-basins. The main advantage of these 

models is that their structure is more physically based than the structure of lumped 

models and requires fewer input data points than fully distributed models. SWAT, HEC-

HMS, and HBV are considered semi-distributed models. 

Watershed hydrologic models have been developed for many different reasons and, 

therefore, have many different forms. However, they are designed to meet one of the two 

primary objectives. The first objective of watershed modeling is to gain a better 

understanding of the hydrologic processes in a watershed and how changes in the 

watershed may affect these phenomena. The second one is the generation of synthetic 

sequences of hydrologic data for facility design or for use in forecasting. They are also 

providing valuable information for studying the potential impacts of changes in land use 

or climate. 

Recently, hydrological simulation models, including SWAT, HEC-HMS, and others, 

have been developed partly to quantify the influence of changes in LULC and 

management practices on the hydrologic cycle. Moreover, with the development of the 
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GIS and RS methods, the hydrological catchment models have been more physically 

based and distributed to enumerate various interactive hydrological processes considering 

spatial heterogeneity (Mohan & Shrestha, 2000). 

2.4.1 Model selection criteria 

The choice of the best model depends on the project objectives. The model must be 

evaluated and selected before being applied to estimate catchment output. The selection 

of a hydrological model should include the structure of the model, time setup, 

representation of the physical process, requirements for input data, and hardware or 

software (Nemec J, 1993). 

Nowadays, there are different models used to predict the hydrology of a given watershed 

and also developed partly to quantify the influence of change in LULC and management 

practices on the hydrologic cycle. Hydrologiska Byråns Vattenbalansavdelning (HBV), 

SWAT (Arnold et al., 1998), Hydrologic Simulation Program Fortran (HSPF), MIK SHE 

(System Hydrologique European) (Butts M.B, 2005) Hydrologic Engineering Center„s 

Hydrologic Modeling System (HEC-HMS) (Choudhari K, 2014) and TOP MODEL 

(Gayathri, 2015) are some of the models. 

There are various criteria that can be used to choose the right hydrological model for a 

specific problem. These criteria are always project-dependent, since every project has its 

own specific requirements and needs. Further, some criteria are also user-dependent and 

subjective. Among the various project-dependent selection criteria, there are two 

fundamental ones that must always be answered: 

 Required model outputs are important to the project and therefore to be estimated 

by the model (does the model predict the variables required by the project, such as 

the long-term sequence of flow?) (Cunderlik, 2003), 

 Hydrologic processes that need to be modeled to estimate the desired outputs 

adequately (is the model capable of simulating single-event or continuous 

processes?), (Cunderlik, 2003), 

 Availability of input data (can all the inputs required by the model be provided 

within the time and cost constraints of the project?) (Cunderlik, 2003) , 
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 Price (does the investment appear to be meaningful for the objectives of the 

project?) (Cunderlik, 2003), 

 The model must be able to simulate agricultural areas because the study area can 

be classified as an agricultural watershed  (Birhanu D, 2009), 

 The ability of a hydrological model to integrate GIS for hydrologic data 

development, special model layers and interfaces (Kassa.T, 2009), 

 The model must be ready and freely available, both for researchers and for future 

use in the country. 

Based on the above criteria and to meet the objectives of this study, a semi-distributed 

SWAT model is selected. The model includes a set of mathematical descriptions of the 

hydrologic cycle, and they are based on a set of interrelated equations that try to convert 

the physical laws that govern extremely complex natural phenomena into abstract 

mathematical forms. 

2.4.2 Reasons for selecting SWAT model 

The reasons behind selecting the SWAT model for this study are: 

 The model was applied for land use and land cover change impact assessment in 

different parts of the world. 

 The model simulates the major hydrological processes in the watersheds. 

 It is less demanding on input data, and 

 It is readily and freely available. 

SWAT is a semi-distributed, physically based, continuous-time, widely used, and flexible 

modeling tool that addresses many aspects of catchment (Thomas C, 2015). One of the 

main advantages of SWAT is that it can be used to model watersheds with less 

monitoring data (Geremew, 2013). The SWAT model has gained international acceptance 

as an inter-disciplinary watershed modeling tool by many international SWAT 

conferences (Gassman et al., 2007), and can be downloaded freely from 

http://swat.tamu.edu/software. The interface of the SWAT model is compatible with Arc-

GIS, which can integrate many available geospatial data points to accurately represent the 

characteristics of the watershed (Geremew, 2013). 

http://swat.tamu.edu/software
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Weather variables for computing the hydrologic balance in SWAT are precipitation, 

maximum and minimum temperature, solar radiation, wind speed, and relative humidity. 

Daily inputs can be entered directly, or the weather generator can be used to simulate 

daily values for these variables. The weather generator can be downloaded from the 

SWAT web site http://swat.tamu.edu/software other than these DEMs (Digital Elevation 

Models), soil map, a land use map is also needed for the model. 

A major limitation to large-area hydrologic modeling of SWAT is the spatial detail 

required to correctly simulate environmental processes. For example, it is difficult to 

capture the spatial variability associated with precipitation within a watershed. Another 

limitation is that data files can be difficult to manipulate and can contain several missing 

records. The model simulations can only be as accurate as the input data. The other 

limitation is that the SWAT model does not simulate detailed event-based flood and 

sediment (Geremew, 2013). 

To achieve the objectives of LULC change and its impacts on streamflow in Kiltie River, 

the following selection criteria are considered for selecting the type of model to be used: 

 The SWAT model predicts the output in an acceptable range to meet the objective 

of the study. 

 Availability of input data. 

 Technical support: What documentation is available about the model? Ease-of-

use, and it is readily and freely available. 

Based on the above selection criteria, the SWAT model is selected for detailed analysis 

and investigation of LULC change effects on streamflow in the Kiltie watershed. 

2.4.3 Application of SWAT model in impact study 

The SWAT model is used to analyze the impacts of land use change on discharge, 

erosion, sedimentation, and water quality in gauged and ungauged watersheds. The 

special feature of SWAT is the use of HRUs, where designated land use, soil type, and 

slope information can be grouped into a file for each subwatershed. Outputs at the HRU 

level are aggregated at the subwatershed level and eventually delivered from upstream to 

downstream subwatersheds via channel routing (Arnold et al., 1998). On the other hand, 

http://swat.tamu.edu/software
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users can assign one HRU per subwatershed so that the SWAT project will be closer to a 

physical-based model with modern computer technology. 

The SWAT model has been applied in agricultural watersheds and has been successfully 

calibrated and validated in many areas of the world. SAWT has been applied globally to 

various subjects, including LULC change (Shiferaw et al. 2018). The study indicates that 

the SWAT model is capable of simulating the hydrologic process in the complex and 

data-poor watershed with reasonable model performance statistical values. (Getachew & 

Melesse, 2012) applied the SWAT model of Lake Tana Reservoir Water Balance and 

reported that the overall model performance was satisfactory. Similarly, Tibebe, (2011) 

also applied the SWAT model to evaluate surface runoff generation and soil erosion rate 

for a small watershed (Keleta Watershed) in the Awash River basin, Ethiopia, and 

recommended that the SWAT model provide a useful tool for soil erosion assessment in 

the watershed and facilitate planning for sustainable land management. 

2.5 Previous studies on the impact of LULC change on streamflow 

In Ethiopia, studies showed that LULC change affected streamflow and hydrological 

cycle process in different basins, sub-basins, and catchments (Dibaba et al. 2020a; Assefa 

et al. 2022). For instance, a studie of Hassen (2022) in Baro Basin indicated that 

converting forests, shrubs, and grasslands into agricultural lands affects the river‟s 

streamflow and evapotranspiration. Late et al. (2021) extrapolated that for the period 

2019-2050, surface runoff increased by 4.23 percent during the short rain season and 2.0 

percent during the dry season due to LULC alterations in the Nashe watershed of Blue 

Nile Basin. Cultivated land enhances streamflow throughout the major rain season and 

decrease evapotranspiration, but there is unpredictability during the short rainy and dry 

seasons (Adnan and Atkinson 2011; Hyandye et al. 2018). In Northwestern Ethiopia, 

according to Dibaba et al. (2020b), agricultural land expanded by 16 percent over the last 

30 years, while forest land areas decreased by 12 percent.     

Andualem & Gebremariam (2015) studied the LULC change of the Gilgel Abay 

watershed, Abay Basin, using ERDAS Imagine 2014 and analyzed the discharge of the 

river using SWAT modeling. According to his results during the 25 year study period 

(1986 - 2011), most parts of the grassland and shrub land were converted to cultivated 
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land. An increase in cultivated land by 33.79% resulted in an increase in streamflow by 

5.87 m3/s. 

The result of Geremew, (2013) in the Gilgel Abay watershed, Lake Tana basin, used (RS) 

and (GIS) integrated with the SWAT model for the assessment of the impacts of land 

cover changes on streamflow showed that the cultivated land has expanded during the 

study period of 1986 – 2001. Using the two generated land cover maps, two SWAT 

models were set up to evaluate the impacts of land use and cover changes on the 

streamflow of the study watershed. The Nash-Sutcliff efficiency and coefficient of 

determination (R
2
) were used for evaluating the model's performance. The surface 

discharge increased, while groundwater discharge decreased from 1986 to 2001 due to 

the increase in cultivated lands. The model results showed that the streamflow 

characteristics changed due to the land cover changes during the study period. 

Getachew & Melesse, (2012), analyzed the land cover change between 1985 and 2011 in 

the Angereb watershed and the effect of these changes on the runoff and reservoir inflows 

in the watershed. The SWAT model was used to investigate the impact of land cover 

change on streamflow. Land cover change analysis has shown that cultivated land and 

built-up areas have increased while forest and grass land have decreased between 1985 

and 2011. The evaluation of the SWAT model response to the land cover has shown that 

the mean wet monthly flow for the 2011 land cover increased by 39% compared to the 

1985 land cover. On the other hand, dry average monthly flow decreased by 46% in 2011 

compared to 1985 land cover.  
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3 METHODOLOGY  

3.1 Description of the study area 

3.1.1 Location and topography  

The study area is found in the northern part of Ethiopia, Amhara Region, which is 

geographically located between 11
0
10‟ and 11

0 
28‟ N latitude and 36

0 
50‟ and 36

0 
57‟ E 

longitude. As shown in the Figure 3.1 below, the watershed is found in the Tana sub-

basin and which is one of the Gilgel Abay sub-watersheds, and the river drains to the 

northern part of the Gilge Abay River. The altitude ranges from 1829 to 2667 m. The area 

of the Kiltie watershed is around 598.67 km
2
. The main rainy season is from June to 

September. 
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Figure 3.1 Location map of the study area including topographic map 

Topography is defined by the digital elevation model (DEM), which describes the 

elevation of any point in a given area at a specific spatial resolution as a digital file. The 

northwest and southwest parts of the Kiltie watershed have elevation characteristics of 

mountainous landscapes. The peak elevation within the watershed is 2667 masl, and the 

minimum elevation, which is found in the north-east part of the watershed, is 1829 masl.  

3.1.2 Climate of the study area 

According to the traditional climate classification of Ethiopia, the study area was 

classified in the Woina Dega climatic zone. The study area annual rainfall ranges from 

1344 mm to 2047 mm and mean annual rainfall of the study watershed is 1677mm. The 

main rainfall season, which accounts for more than 70% of the annual rainfall 

distributions of the study area occurs from June to September. The monthly rainfall 

distributions of the study area indicate that July and August are the wettest months of the 

year in all the selected stations. The mean maximum temperature is 25.4
0
C and mean 

minimum temperature is 9.7
0
C.  

3.2 Methods of data collection  
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The impact of land use and land cover on streamflow in the Kiltie watershed has been 

evaluated using the SWAT model. For the completion of this study, primary and 

secondary data were used. In watershed modeling, the quality and quantity of acquired 

data have a great effect on the performance of the model. Particularly, the SWAT model 

requires good quality that includes DEM, soil, land use and land cover data, streamflow, 

and climatic data. Generally, the data are mainly classified into two main categories: 

spatial and time-series data.  

3.2.1 Spatial data 

DEM is an important spatial input acquiring from the ASTER Global Digital Elevation 

Model (ASTER-GDEM) obtained from USGS earth explorer for the automatic extraction 

of topographic parameters for the soil and water assessment tool (SWAT). Topography is 

defined by a DEM that describes the elevation of any point in a given area at a specific 

spatial resolution. So, DEM data is important for the hydrological modeling of a 

watershed. Therefore, in this study, DEM data with 30 m resolution in raster format is 

used and projected to the Universal Transverse Mercator (UTM) on the spheroidal of 

WGS84 to correct the errors and fit into the model requirements. 

LULC data is very essential for SWAT input to determine the watershed characteristics 

and for a comparison of the impacts of LULC change on the streamflow of the watershed. 

Therefore, detailed analysis and mapping of LULC are critical for proper hydrological 

modeling. The LULC map and all datasets from 1997–2022 were generated from the 

Google Earth Engine platform. Dry seasons were selected to get good quality (free of 

cloud cover) of satellite images and making it easy to identify the classified land use. 

The soil data of the watershed was obtained from the Amhara Design and Supervision 

Work Enterprise as classified shape file. These shape file is used for the determination of 

the available dominant soil types in the study area using ArcGIS 10.8 software. 

The satellite imagery used in this study to classify LULC changes is the Landsat_5 

Thematic Mapper (TM) for the year 1997, the Landsat_7 Enhanced Thematic Mapper for 

the year 2010, and the Sentinel_2 for the year 2022 from the United States Geological 

Survey (USGS). Each of them is analyzed individually, and change detection analysis is 

done by performing pre and post-change detection techniques. 
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3.2.2 Time series data  

To simulate the hydrological condition of the watershed, the SWAT model needs 

hydrological and metrological datasets. The main metrological datasets used were daily 

precipitation, maximum and minimum temperature, relative humidity, wind speed, solar 

radiation, and sunshine hour, which were obtained from the National Meteorological 

Institute of Ethiopia (NMIE) with a different record length of the year. Those data were 

collected from the north-west Metrological institute of Ethiopia. The metrological 

stations used for this study are shown in (Table 3.1). 

Table 3.1: Metrological stations location used for the study 

No Station Name Latitude Longitude Elevation Record Length 

1 Dangila 1264817.961 264988.171 2116 1997 - 2022 

2 Injibara 1216262.141 272648.022 2568 1997 - 2022 

3 Wottet Abay 1257614.475 286364.103 1920 1997 - 2022 

For performing sensitivity analysis, calibration, and validation of the model, streamflow 

data is required. Hydrological data like the observed daily streamflow of the Kiltie River, 

which covers a period of 1997–2003, were obtained from the Abay Basin Authority. 

3.2.3 Collection of training data 

The primary data were collected at filed which was used for further analysis, 

interpretation and comparison and expressing watershed characteristics. The data that 

were collected at field using GPS for selected LULC and other relevant data for this 

study. The collected ground truth data were used as training points for supervised 

classification, accuracy assessment and geometric correction of satellite images of the 

watershed. A minimum of 35 and a maximum of 50 ground control points had been 

collected from the field for each of the classified LULC classes. In order to minimize the 

impact of the location of the sample points on the classification results, we tried to 

maintain most of the sample points at the same location all over the 26-year study period, 

unless land use change was identified visually during the sample point selection. 
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Figure 3.2: Collection of training data 

For the collection of sample data for land cover type, the target area is clipped, and the 

true color composite and false color composite methods are used for the extraction of 

spectral and special features from Landsat images based on the pixel-based approach. 

This helps to select training points effectively for each of the land cover types in the 

study area. The selected sample points were imported into the GEE script to run the 

classification. 

3.2.4 Required Software and materials 

Table 3.2: Software tools and materials used in this study 

No Materials Version Purpose of the material 

1 ArcGIS 10.8 Preparation of study area map and data processing  

2 Google Earth Engine   For land use land cover map processing and preparation 

3 Google earth pro  For investigating historical images of the study area 

4 GPS GARMIN For the collection of ground truth points 

5 MS excel 2013 For data analysis 

6 SWAT 2012 River discharge simulation  

7 SWAT-CUP 5.1.6 Sensitivity analysis, calibration and validation 

3.3 Data analysis and quality checking 

3.4 Filling missing rainfall data  

In some metrological stations, missing data occurs due to instrumental or personal errors. 

Filling in missing data is very important for hydrology analysis and simulations using 

data from long-term series. Thus data from the surrounding gauges are used to estimate 
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the missed rainfall data. There are different methods for filling in missing rainfall data 

from those arithmetic mean and normal ratio methods used in this study. 

The average annual rainfall at each of these three index stations differs within 10% of the 

average annual rainfall of the station X (the station with missing data), the arithmetic 

mean method can be used to fill in the missed value. The station average method for 

estimating missing data uses n gauges from a region to estimate the missing point rainfall 

Px. 

    
 

 
∑  

 

   

                        

Where Px is missed rainfall value, Pi in rainfall at gauge i, and N is number of nearby 

gauging stations. 

On the other hand, the average annual rainfall at each of these three index stations differs 

by more than 10%, the normal ratio approach is applied. 

             
     

  
                  

Nx –Ni must be positive. Then, the mean of the nearby station difference is determined.  
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Where Px is the missing data at station x, Nx is the missing data station normal annual 

rainfall, Nm normal annual rainfall at station m and m is number of nearby gauges.   

In this study, the arithmetic mean of the entire period was used to fill in the missed values 

for the station with less than 10% missed recorded, and the normal ratio approach was 

applied to calculate the missed data values before the data was used by the model. 

3.4.1 Consistency of rainfall data 

Consistency and continuity of rainfall data series are very important for obtaining reliable 

results from such studies. Different factors could affect the consistency of rainfall records 

at a given station. Among the factors: 

 Damage and replacement of a rain gauge 

 Change the gauge location or elevation. 

 Growth of high vegetation or construction of buildings 

 Change in measurement procedure 
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 Human, mechanical, or electrical error in taking readings 

The Double Mass Curve (DMC) is used to check the quality, homogeneity, and 

consistency of rainfall, as well as adjust inconsistent data. This technique is based on the 

principle that when each recorded piece of data comes from the same parent population, 

it is consistent. The procedure consists of comparing the accumulated annual 

precipitation at the station in question with the accumulated annual precipitation for a 

group of surrounding stations. The scatter plot is drawn between the interested gauge and 

a number of surrounding gauges. 

The existence of a break in the double mass curve indicates a change occurred in that 

year. Adjusting the data to the condition before change is equivalent to bringing the 

observed point on the line after the change vertically to the line that is the extension of 

the line before the break. If the slope of the line prior to the change is m1, and the slope 

after the change is m2, then the adjustment factor will be m1/m2. The multiplier will be 

applied to the post-change observed data to obtain the adjusted data. According to the 

double mass curve, in this study, at all gauging stations, the observed precipitation data 

shows homogeneity.  

 

Figure 3.3 Double Mass Curve 

 

3.5 Land use land cover change analysis 



 

32 

 

 

Google Earth Engine (GEE), a JavaScript Application Program Interface (API), is used to 

analyze the spatial and temporal land use and land cover dynamics. JavaScript API codes 

are taken from https://earthengine.google.org/. However, the script is customized for the 

present usage study area. Landsat satellite images are contained in Google Earth Engine‟s 

public data archive and can be used to detect and estimate the long-term dynamic of land 

use and land cover changes. The application of GEE greatly reduces the analysis time by 

utilizing Google‟s distributed computing infrastructure platform. This study uses annual 

composite Landsat Surface Reflectance images covering an area of around 598.67 km
2 

of 

the Kiltie watershed, for classification and further analysis. Three annual different images 

from three different Landsat series are used in this study. When selecting the right type of 

dataset, several aspects have to be considered; the most important are the availability, 

accessibility, and quality of the data.  

Table 3.3 Landsat images used for LULC change analysis 

Landsat 

Images 

Path Row  Sensor Resolution/ 

Scale 

Number 

of bands 

Date of 

acquisition 

Cloud 

cover 

Landsat 5  170 52 TM 30 7 03/01/1997 0.00 

Landsat 7  170 52 ETM 30 8 03/01/2010 0.00 

Sentinel-2  170 52 S1 10 13 01/01/2022 0.00 

A large number of high-quality samples are selected by visual interpretation (for the year 

2022), and Google Earth images (for others) are used for selecting training samples to 

improve the classification accuracy. Four popular machine-learning algorithms of 

Support Vector Machine (SVM), Classification and Regression Tree (CART), Random 

Forest (RF), and Naive Bayes are used to identify and map long-term LULC change. 

The Landsat archived data from the (USGS) collection was loaded as an image 

collection, and the selected study area was injected into the GEE and displayed. The 

LULC classification technique is applied and evaluated by developing code on the GEE 

platform using the supervised classification method and Landsat imagery for each 

selected year. 
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3.5.1 Image preprocessing in GEE 

To minimize confusion and overcome timeout errors, three customized GEE code editor 

scripts are used for each individual year separately. Each of the individual year images 

passes the following main components of image preprocessing: 

3.5.1.1 Accruing Landsat surface reflectance image collection 

The first step is accessing and accruing data, which is started by a function to call and 

make a composite image by calling a series of images from the image collections. 

3.5.1.2 Image cloud removal 

After acquiring the required image collections, the next step is injecting the shape file of 

the study area into the Google Earth Engine platform in the form of a zip file format or 

other options for a selected year. The Landsat image collection is loaded by filtering the 

date of acquisition and this is done to minimize the effect of the rainy season on the 

classification result. Then, a cloud-masking function is developed by assigning a cloud 

score to each pixel in the image collections for the removal of cloud covers. For this a 

cloud threshold of 1% and 5% is selected based on the visual interpretation of Landsat 

imagery. This cloud masking function computes a cloud likelihood score to compare 

multiple views of the same point for relative cloud likelihood, and pixels with a cloud 

score higher than 1% and 5% are screened out. The filtered image collections are 

acquired after the cloud mask, and a limited date and year range are applied. 

 

Figure 3.4: Cloud free image of the study area in GEE 
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3.5.2 Image classification  

In the study, Landsat and Sentinel satellite images were used to identify changes in land 

use and land cover distribution in the Kiltie watershed over 26 years from 1997 to 2022. 

Three images were selected for the time period for land cover mapping of the watershed. 

During this time period, different years are selected to represent the land cover conditions 

of the year. 

The obtained images are then classified within the GEE using the Random Forest (RF) 

classifier with the following six land cover categories: agriculture land, forest cover, 

grass land, built-up area, barre land, and shrub land. Finally, the relevant results from the 

analysis, such as charts, images, maps, and tables from the classified images, are exported 

to Google drive. 

3.5.3 Land use and land cover change using different GEE classifiers 

In this study, four machine learning algorithms that were used for LULC classification 

were evaluated and compared. These classifiers are: Random Forest, Support Vector 

Machine, CART, and Naïve Bayes. However, the accuracy and performance of these 

classifiers were evaluated according to ground truth points. In case of the Kiltie 

Watershed ground truth points were collected (150) for all LULC site on the year 2022. 

The recent and free cloud cover Sentinel-2 image that was collected on the dates of 2022-

03-01 (https://earthengine.google.com) was used to classify and evaluate the algorithms 

in LULC classification for the Kiltie watershed. 

In this study, six land use and land cover categories (agricultural land, forest land, grass 

land, shrub land, barre land, and built-up area) have been detected and collected using the 

pixel-based approach.  

3.5.4 Method of accuracy assessment 

Accuracy assessment helps to understand how precise the maps are to use the data 

accurately and effectively. Failure to attain the expected target levels of precision is 

commonly interpreted as a lack of satellite data classification against LULC. Various 

algorithms accuracy was evaluated using metrics obtained from error matrix, such as 

Overall Accuracy (OA), Producer Accuracy (PA), Consumer Accuracy (CA), and Kappa 
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Coefficient (KC) (Abdi, 2020; Foody, 2002). Below, equations are used for acquiring 

accuracy.  

Overall accuracy = Total number of correct sample – total number of samples ------- eq 

3.4 

Producer Accuracy = 100% - error of omissions ----------------- eq 3.5 

Consumer Accuracy = 100% - error of commissions ---------------- eq 3.6 

                  
((        )  ∑〖(       ))〗

(     ∑〖(     ))〗
                

Where TS = Total Sample, TCS = Total Column Sample, CT = Column Total, RT = Row 

Total 

3.5.5 Land use land cover data processing  

The land use and land cover are processed and generated by the Google Earth Engine. 

Among the classified classes of land use and land cover, the dominant land cover is 

identified, and the generated land use and land cover is converted to SWAT database 

code for the running of the SWAT model.  

Table 3.4: Original and redefined land use and land cover name of the Kiltie Watershed 

Original land use 

land cover 

Redefined land use land cover according to SWAT 

database 

SWAT 

code 

Agriculture land Agricultural land closely grown AGRC 

Forest cover Forest Evergreen FRSE 

Urban area Residential-High Density URHD 

Barre land Range Brush BARR 

Grass land Range Grasses RNGE 

Shrub land Range Brush REGB 

3.5.6 LULC change detection 

The importance of change detection is to determine which land use class is changing to 

another. The most commonly used land use change detection methods include image 

overly, classification comparison of land cover statistics, change vector analysis, 

principal component analysis, image rationing, and the differencing of the normalized 

difference vegetation index (NDVI). The process of identifying differences in LULC 

change in the Kiltie watershed would be done by observing the classified images at 
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different times. Therefore, comparisons based on three satellite images are made. In this 

study, a classification comparison of land cover statistics is used. The direction of 

changes (positive or negative) in each land cover type is determined by comparing the 

land cover area at various periods.  

3.6 Hydrological modeling 

River flow data is required for performing sensitivity analysis, calibration, and validation 

of the model. There is no active hydrometric station within or at the outlet of the Kiltie 

watershed, but there is a short period of records (7 years) that is from 1997 to 2003. For 

this study, two-thirds of 7 years of flow data was used for calibration and the one-third is 

for validation, while one year data was used for the warm-up period. 

3.6.1 SWAT model description  

SWAT model was developed by United States Department of Agriculture-Agriculture 

Research Service (USDA-ARS). It is a conceptual model that functions on a continuous 

time step. Model components include weather, hydrology, erosion/sedimentation, plant 

growth, nutrients, pesticides, agricultural management, channel routing, and 

pond/reservoir routing. SWAT model is a semi-distributed parameter model that operates 

on a daily time step so as to predict the impact of management measures on flow, 

sediment and agricultural chemical yields of the watersheds (Getachew & Melesse, 

2012). SWAT applies physical algorithm to estimate the runoff using biophysical data 

such as precipitation, soil properties, topography, land use and land cover, and SCS curve 

number equation (Zare et al., 2016). SWAT is a physically based semi-distributed 

continuous time-scale hydrological model, which works on a daily time step. This model 

can simulate runoff, sediment, nutrients, pesticide, and bacterial transport from 

agricultural watersheds. It simulates the hydrological cycle parameters based on the water 

balance represented in equation within the watershed (Neitsch, 2005). The model 

estimates relevant hydrologic components such as evapotranspiration, surface run-off and 

peak rate of run-off, ground water flow and sediment yield for each HRUs unit.  SWAT 

is fixed in GIS interface. Arc-SWAT ArcGIS extension is a graphical user interface for 

the SWAT 2005 involved from AVSWAT which is an ArcView extension developed for 

an earlier version of SWAT. In SWAT the watershed is divided in to multiple sub 
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watersheds, which are then further subdivided into Hydrologic Response Units (HRUs). 

HRUs are used to describe spatial heterogeneity in terms of land covers, soil types and 

slope classes within a watershed. 

3.6.2 Hydrologic component of SWAT model 

The simulation of hydrology in the watershed was conducted in two separate divisions. 

The first stage was the land phase of the hydrologic cycle that controls the amount of 

water, sediment, nutrient, and pesticide loadings to the main channel in each sub-basin. 

The second division was routing phase of the hydrologic cycle that can be defined as the 

movement of water, sediment, nutrient, and organic chemicals through the channel 

network of the watershed to the outlet.  

3.6.2.1 Land phase  

In land phase the hydrologic cycle, SWAT simulates the hydrological cycle based on the 

water balance equation:- 

         ∑(                       ) 

 

   

             

Where, SWt is the final soil water content (mm), SWo is the initial soil water content on 

day i (mm), t is the time (days), Pday is the amount of precipitation on day i (mm), Qsurf 

is the amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on 

day i (mm), Wseep is the amount of water entering the vadose zone from the soil profile 

on day i (mm), and Qgw is the amount of return flow on a day i (mm). 

SWAT operates on daily climatic data and is used to predict the impact of LULC on 

streamflow. In the SWAT model, a watershed is divided into multiple sub-watersheds, 

which is further divided into Hydrologic Response Unit (HRU) which consists of 

homogeneous LULC, topographical, and soil characteristics. The HRU is represented as a 

percentage of the sub-watershed area. The water balance components of each HRU are 

computed on the daily time step. Water balance is the driving force behind all the 

processes in the SWAT model. Weather data such as daily precipitation, maximum and 

minimum temperature, solar radiation, wind speed, and relative humidity are used to do 

the water balance by SWAT model. The model has eight major components: hydrology, 
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weather, sedimentation, soil temperature, crop growth, nutrients, pesticides, and 

agricultural management Neitsch, (2005). 

3.6.2.2 Surface runoff  

Surface runoff occurs whenever the rate of precipitation exceeds the rate of infiltration. 

Runoff in SWAT can be estimated either Soil Conservation Service (SCS) Curve Number 

(CN) method (Service, 1972) or the Green and Ampt infiltration method (Green, 1911). 

The lateral method is better in estimating run off volume precisely; its sub daily time step 

data requirement makes it difficult to be used for the cause of our country. In this study 

Soil Conservation Service (SCS) method was selected because it used to estimate surface 

runoff for small agricultural watersheds and the Curve Number (CN) varies non-linearly 

with the moisture content of the soil. It drops to zero as the soil approaches the wilting 

point and increases to be near 100 as the soil approaches saturation, with higher CNs 

associated with higher runoff potential watershed. This method is widely used J. G. 

Arnold, (1998). 

According to USDA-SCS, 1985, mathematically expressed SCS curve number equation 

is: 

   
(     ) 

       
                 

The above equation is functional for Pa > Ia, on the other hand Qs = 0 for Pa < Ia. 

Where Qs is the accumulated runoff (mm), Pa is the rainfall depth for the day (mm), and 

Ia is infiltration to the soil for the day (mm). The retention parameter S, defined by 

equation:  

       (
   

     
)                      

Where CN is the curve number for the day and its value is the function of land use 

practice, soil permeability and soil hydrologic group. 

The initial abstraction, Ia, is commonly approximated as 0.2S and surface runoff 

becomes:  

   
(     ) 

(       )
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For the definition of hydrological groups, the model uses the U.S Natural Resource 

Conservation Service (NRCS) classification. The classification defines a hydrological 

group as a group of soils having similar runoff potential under similar storm and land 

cover conditions. Thus, soils are classified in to four hydrologic groups (A, B, C, and D) 

based on infiltration which represent high, moderate, slow, and very slow infiltration 

rates, respectively. 

3.6.3 SWAT model setup  

This study uses Arc SWAT 2012 to generate a hydrologic model for streamflow from the 

study watershed, Kiltie, at a GIS interface. Arc SWAT is an extension of Arc GIS, and its 

toolbar is added to Arc GIS for use to meet the objective of the study. The SWAT model 

passes three key processing steps: watershed delineation, hydrological response unit 

(HRU) analysis, and weather data definition. In the SWAT model simulation part, 

sensitivity analysis of parameters, and calibration and validation of the model was done.   

3.6.3.1 Watershed delineation 

The primary steps in creating a new SWAT model project, in addition to the preparation 

of input data is watershed delineation from DEM. The watershed delineation involves 

five major steps: DEM set-up, stream definition, outlet definition, and watershed outlet 

selection and definition. Watershed delineation is performed using DEM at 30 m 

resolution. Watershed delineation is more developed in the section by defining the outlet 

point for the whole watershed. The outlet location of the Kiltie watershed is added 

manually to the defined streamline. The final step in the delineation of the watershed is 

the calculation of basin parameters such as geomorphic parameters and stream reach. The 

size of the sub-basin in the watershed would affect the assumption of homogeneity. In 

this study, the delineation of the watershed has been done, and the watershed outlet is 

manually added and selected to finalize the watershed delineation. With this information, 

the model automatically delineates the watershed into sub-watersheds for simulation.   

3.6.3.2 Hydraulic Response Unit  

After performing the automatic watershed delineation, the watershed is partitioned into a 

hydrological response unit and lumped land areas within the sub-watershed, which 

incorporates the same land use, soil, and management practices. LULC, soil, and slope 
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characterization for watersheds are performed using commands from the HRU analysis 

menu of the Arc SWAT toolbar. This tool is used to load the LULC and soil layers of the 

study area watershed. Therefore, LULC/soil/slope combinations and distribution for the 

delineated Kiltie watershed are determined in HRU analysis. Finally, the watershed is 

divided into HRUs, which have similar soil, LULC, and slope combinations. Any parcel 

of land within one sub-watershed that shares the same combination of those three features 

land use, soil, and management practices would be considered one HRU. 

The prepared composite LULC map and soil map are given as input to the model in this 

step. The lookup table containing various SWAT LULC class codes is prepared. This 

prepared lookup table is linked to the SWAT LULC database. These lookup tables have 

two columns named value and name. The value in the lookup table corresponds to the 

value of LULC in the attribute table for the classified image, and the name corresponds to 

the name of the LULC class, which corresponds to the name in the SWAT database. 

 

Figure 3.5: hydrological response unit (HRU) map of the Kiltie watershed. 

3.6.3.3 Weather data definition 

SWAT requires a long-term daily record of precipitation, solar radiation, wind speed, 

relative humidity, and maximum and minimum temperature. The SWAT weather 

generator model is used to fill in missing weather data values. Since in the study area 

most of the stations have no full weather data, like relative humidity, solar radiation, and 

wind speed data, by selecting one synoptic station that has full weather data, SWAT 
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generates the above data by using a weather generator. For this reason, Dangila station is 

a synoptic station that has full weather data and generates data for the other station. The 

Penman-Monteith method, which utilizes relative humidity, wind speed, and solar 

radiation data records, is employed for the estimation of potential evapotranspiration 

(PET). The weather generator collects all information about climate data in one folder, 

and from this, the data has been imported into the SWAT 2012 model database. 

The last step before a SWAT simulation is going to be run is to write all of the input files 

required by SWAT and produce them from the prepossessed data from Arc SWAT. Once 

they are written, individual files can be edited through Arc SWAT. 

3.6.4 Model simulation 

After the model set up, the next step is running the model for monthly time step from 

1997 to 2022. The output result cannot be used for further analysis without evaluating the 

ability of the model to predict streamflow through sensitivity analysis, model calibration, 

and validation. 

3.6.5 SWAT Calibration and Uncertainty Procedure (SWAT-CUP) 

SWAT-CUP is a computer program designed to integrate various calibration/uncertainty 

analysis programs for SWAT using the same interface. The program links SUFI-2, PSO, 

GLUE, ParaSol, and MCMC procedures to SWAT. It enables sensitivity analysis, 

calibration, validation, and uncertainty analysis of SWAT model (Neitsch et al., 2011). 

The program guides the input files necessary for running a calibration program. Each 

SWAT-CUP project contains one calibration method and allows running the procedure 

many times until convergence is reached. It allows saving calibration iterations in the 

iteration history for later use. 

Prediction uncertainty arises from the uncertainty parameters, the model, and the input. In 

the concept of SUFI-2, all these uncertainties are assigned to the parameter distributions 

(Abbaspour K.C, 2014). The increasing of the uncertainties in the parameters leads to 

uncertainties in the model output variables, which are expressed as the 95% probability 

distributions. These are calculated at the 2.5% and 97.5% levels of the cumulative 

distribution of an output variable generated by the propagation of the parameter 
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uncertainties using Latin hypercube sampling. This is referred to as the 95% prediction 

uncertainty or 95PPU (Abbaspour K.C, 2015). 

3.6.6 Sensitivity analysis  

Sensitivity analysis is the process of determining the rate of change in model output with 

respect to changes in model input (parameters). It is necessary to identify key parameters 

and the parameter precision required for calibration (Zhan, 2013). Sensitivity analysis is 

an integral part of model development and involves the analytical examination of input 

parameters to help in model validation and provide guidance for further research. 

Sensitivity analysis is used to identify how much variation in input values for a given 

variable impacts the results of a mathematical model. It identifies the data to be collected 

for analysis to evaluate a project's investment. SWAT model is used in this study and the 

sensitivity analysis of simulated streamflow for the watershed were performed using the 

monthly observed flow for identification of sensitive parameters and for further 

calibration of the simulated streamflow using the Sequential Uncertainty Fitting Version 

2 (SUFI-2) program. 

The first step of the calibration and validation process in SWAT is the determination of 

the most sensitive parameters for a given watershed. Sensitivity analysis is performed on 

the SWAT model to identify influential parameters in the modeled streamflow to avoid 

the problem of overparameterization. The importance of sensitivity analysis was to allow 

the reduction of a number of parameters that must be estimated by reducing the 

computational time required for model calibration. Once the sensitive analysis is done, 

calibration can be performed for a limited number of influential parameters. To improve 

simulation results and thus understand the behavior of the hydrologic system in the study 

area watershed, sensitivity analyses are conducted using the entire flow parameters for 

the SWAT model. Therefore, sensitivity analysis is used as an instrument for the 

assessment of the input parameters concerning their impact on model output. 

The current version of the SWAT model, SWAT 2012, provides algorithmic techniques 

for sensitivity analysis. Two types of sensitivity analysis are allowed when using (SUFI-

2). Those are global sensitivity and one-at-a-time sensitivity analysis. The two above-

mentioned sensitivity analysis methods may yield different results since the sensitivity of 
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one parameter depends on the value of other related parameters. In this study, global 

sensitivity analyses are performed, and the ranking of the parameters is determined. 

3.6.7 Model calibration and validation  

Model calibration is an interactive exercise used to get the most suitable parameters for 

modeling. Calibration and uncertainty analysis of the distributed watershed model is best 

done with some issues that deserve the attention and careful consideration of researchers. 

It involves the identification of the most important model parameters and changing the 

parameter set. The calibration is done on month-time setups using the average streamflow 

of the Kiltie River. After the model is calibrated and gets acceptable results, it is 

validated using data from the average monthly streamflow. 

Validation is done to compare the model outputs with an independent dataset that is set 

for the calibration process without making further adjustments to the parameter values. 

The process continues until the simulation of the validation period of the stream confirms 

best the measured data of its correspondence so that the model performs satisfactorily. 

In this study, the calibration and validation are performed in the SWAT calibration and 

uncertainty program (SWAT-CUP) 2012, version 5.1.6.2, which facilitates the calibration 

process. SWAT-CUP is a computer program for the calibration and validation of SWAT 

models. It is a public domain program and, as such, may be used and copied freely. The 

program links many algorithms SUFI-2 (Sequential Uncertainty Fitting Algorithm), PSO 

(Particle Swarm Optimization), MCMC (Markov Chain Monte Carlo), GLUE 

(Generalized Likelihood Uncertainty Estimation), and Parasol (Parameter Solution) to 

SWAT. A sequential uncertainty-fitting algorithm, referred to as SUFI-2, is used for 

uncertainty analysis. 

Identifying parameters that do or do not have any significant influence on the model 

simulation is crucial not only in reducing parameter uncertainty but also in reducing 

overparameterization of the model, which can destroy its physical representation. 

3.6.8 Model performance evaluation  

To evaluate the model simulation outputs relative to the observed data, a model 

performance evaluation is necessary. Model performance is carried out to verify the 
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robustness of the model to simulate hydrological processes. There are various methods to 

evaluate the model's performance during calibration and validation periods. 

Nash and Sutcliffe simulation efficiency (NSE) indicates the degree of fitness of 

observed and simulated data, and it is calculated using the following equation: 

       
∑ (          )  
   

∑ (           )   
   

                 

Where N is the number of compared values, Qobs is the observed data, Qm is the 

observed mean, and Qsim is the simulated data. 

The NSE indicates how well the plot of the observed versus simulated value fits the 1:1 

line. The closer the model efficiency to 1, the more accurate the model, and if it is found 

between 0 and 1, it indicates deviations between measured and predicted values. If NSE 

is negative, predictions are poor, and the average value of output is a better estimate than 

the model prediction. 

The coefficient of determination (R
2
) is an indicator of the extent to which the model 

explains the total variance in the observed data. It measures the ability of a model to 

predict or explain an outcome in a linear regression setting.  

According to Moriasi et al., (2007), simulation judged as satisfactory if R
2
 ≥ 0.6 for flow.  

   
∑(       )(        )

√(∑(       ) (       ) )
                   

Where Xi is the measured value, Xave is the average measured value, Yi is the simulated 

value, and Yave is the average simulated value. 

Percent bias (PBIAS) measures the average tendency of the simulated data to be larger 

or smaller than the observed counterparts. The optimal value of percent bias is 0, with 

low magnitude values indicating accurate model simulation. A positive value indicates 

model underestimation bias, and a negative value indicates model overestimation bias. 

PBIAS is computed as shown below. 

      
∑ (     ) 
   

∑ (  ) 
   

                      

Where, PBIAS is the deviation of the data being evaluated, expressed as a percentage Oi 

is observed discharge, and Si simulated discharge.  

If PBIAS ± 25% for streamflow the model simulation can be judged as satisfactory.  
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The remote mean square error observation standard deviation ratio (RSR) 

incorporates the benefits of error index statics and includes a scaling and normalizing 

factor so that the resulting static and reported values can apply to various constituencies. 

RSR varies from the optimal value of "0," which indicates zero root mean square error or 

residual variation, and from the perfect model simulation to a large positive value. 

Generally, if the value of RSR is ≤ 0.70, the model simulation can be considered 

satisfactory.  

     
    

        
 

√∑ (     )  
   

√∑ (       )  
   

                

Where, STDEVods is standard deviation of observed flow and Savr is simulated 

average flow. 

Table 3.5 : Performance rating Moriasi et al., (2007) 

Performance rating RSR NSE PBIAS% Streamflow 

Very good 0.00 < RSR < 0.50 0.75 < NSE < 1.00 PBIAS < ± 10 

Good 0.50 < RSR < 0.60 0.65 < NSE <0.75 ± 10 < PBIAS < ± 15 

Satisfactory 0.60 < RSR <0.70 0.50 < NSE < 0.65 ± 15 < PBIAS < ±25 

Unsatisfactory RSR > 0.70 NSE < 0.50 PBIAS > ± 25 

3.6.9 Evaluation of Streamflow due to LULC changes  

The impact of LULC change evaluation on streamflow is one of the most significant parts 

of the study. The study would be carried out for three different years. The three classified 

LULC maps, soil, climate, and streamflow data values would be used to evaluate the 

impact of land use and land cover change on streamflow. To evaluate the variability of 

streamflow due to LULC change, the three LULC maps will be used independently and 

in simulations while keeping other variables constant. After processing, the result 

discover annual variation and seasonal variation of streamflow due to the LULC map. 

Moreover, the general workflow is shown in Figure 3.7 below. 
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Figure 3.6: General work flow of the study 
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4 RESULT AND DISCUSSION  

4.1 Land use and land cover change detection   

4.1.1 Accuracy assessment  

The error matrix, which is commonly applied to evaluate the accuracy of algorithms and 

select methods that were used for LULC classification, is applied in the study. However, 

in the LULC classification, the best-performed algorithm is presented in Table 4.1 below. 

From the four machine learning algorithms, the one that performed better in detecting the 

LULC map according to validation accuracy in the case of the Kiltie watershed was 

selected to generate a historical LULC map for 1997 and 2010.  

Table 4.1: Summary of overall accuracy and kappa value for all algorithms in the year of 

2022 

In the case of the RF algorithm, the user‟s accuracy ranged from 81.67% to 95.00%, and 

it indicates the urban area detected as having 95% accuracy, whereas the producer‟s 

accuracy ranged from 75.38% to 98.155%. The algorithm was highly performed and 

better at detecting forest land with 98.15% of the producer's accuracy. A high 

commission error was observed in the agriculture land due to some of the agriculture land 

pixels laid on the other land features. The reason for the lower accuracy for these classes 

may be the larger size of the feature areas as well as the high distribution of agricultural 

land relative to other land covers. This might confuse the algorithms in differentiating the 

agricultural land from the other land. The overall accuracy of the algorithms for 

validation performance was 90.03%, and the statistical kappa coefficient value was 

89.54%. 

The LULC map are not very useful without a numerical statement about their accuracy. 

The RF algorithm accuracy of the map for the year 2022 is presented as an error matrix 

below in (Table 4.2) and for other periods it is described in Appendices B. The numbers 

Classifier Over all accuracy % Kappa value % 

Random Forest 90.03 89.54 

CART 80.66 78.3 

Support Vector Machine  79.75 57.45 

Fast Naive Bayes 71.90 38.32 
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along the diagonal of the matrix indicate the number of reference pixels that are 

accurately
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classified by the algorithm. The value outside the diagonal shows misclassification. As shown in (Table 4.2), the algorithm had 

difficulties during the classification of some of the land use and land cover features. 

For example, grass land pixels were classified as agricultural land, urban area, barre land, and shrub land were classified as 

forest land and grass land because of the reflectance similarity of agricultural land with urban area and barre land and shrub 

land with forest land, grass land uses land cover types. In addition to this, among other land use land cover classes, more of the 

agricultural cover classes fall under the grass land class. This indicates that the algorithm has been confused in detecting the 

agricultural land class, grass land cover class, shrub land class, and forest land class. For the map of 2022, the overall accuracy 

was 90.03% and the kappa coefficient was 89.54%. This indicates that the algorithm ranged as very good (Taati et al., 2015).  

Table 4.2: Summary of the Confused Matrix for the RF Algorithm for 2022 

  Agriculture Forest Grass Urban Shrub Barre land sum User Accuracy (%)  Commission Error (%) 

Agriculture 49  0 11 0 0 0 60 81.67 18.33 

Forest 1 53 0 1 1 0 56 94.64 5.36 

Grass 4 0 49 1 0 1 55 89.09 10.91 

Urban 2 0 0 57 0 1 60 95.00 5.00 

Shrub 0 1 3 0 46 0 50 92.00 8.00 

Barre land 4 0 2 0 0 44 50 88.00 12.00 

Sum 60 54 65 59 47 46   

Procedure 

Accuracy (%) 

81.67 98.15 75.38 96.61 97.87 95.65 

Commission 

Error (%) 

18.33 1.85 24.62 3.39 2.13 4.35 
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In the CART algorithm, the user accuracy ranged from 69.09% to 95.00%. Urban areas 

have about 95% user accuracy with a commission error of 5%. On the other hand, urban 

areas have a producer accuracy of 91.94% with an 8.06% omission error. In this 

classifier, a high commission error of about 30.91% has been observed at grass land 

because more of the grass land pixels are classified as agriculture land, as well as some of 

the other land feature classes. The overall accuracy was 80.66%, and the kappa value was 

78.3%. This classifier shows less performance when compared to the RF classifier. The 

complete error matrix of this classifier is found in Appendices B. 

In the SVM algorithm, the user accuracy ranged from 98.21% to 29.09%. Forest and 

agriculture land has about 98.21% user accuracy with a commission error of 1.79%. On 

the other hand, barre land has a producer accuracy of 97.56% with a 2.44% omission 

error. In this classifier, a high commission error of about 70.91% has been observed at 

grass land because more of the grass land pixels are classified as agricultural land, as well 

as some are lied on in the other land feature classes. The overall accuracy was 79.75%, 

and the kappa value was 45.57%. The complete error matrix of this classifier is found in 

Appendices C. 

Finally, with the Naïve Bayes algorithm, the percentage of user accuracy ranged from 

98% to 40%. Barre Land has about 98% user accuracy with a commission error of 2%. 

On the other hand, urban areas have a producer accuracy of 96.43% with a 3.57% 

omission error. In this classifier, a high commission error of about 60% has been 

observed at grassland because more of the barre land pixels are classified as agriculture, 

compared to the other land feature classes. The overall accuracy was 71.9%, and the 

kappa value was 38.32%. The complete error matrix of this classifier is found in 

Appendices E. 

4.1.2 Land use land cover change 

Change detection of the Kiltie watershed for 26 years was performed based on the 

previous LULC classification result of time series data. The (Figure 4.1) below shows, 

the LULC map of the Kiltie watershed for the year 1997, 2010, and 2022 that have been 

generated from image collection LANDSAT/LTO5/C2/T1_L2, 

LANDSAT/LE07/C2/T1/_L2, and COPERNICUS/S2_SR, respectively.  
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As shown in the (Figure 4.1) below, in the year 1997, most of the south-west and north 

parts of the study area were covered by grassland, and most of the middle and east parts 

were covered by agricultural land. On the other hand, a built-up area was covered on the 

southern part of the watershed. Barre land, forest land, and shrub land cover as little as 

the whole area of the watershed. 

In case of this study during the year 2010, agricultural land area increased all over the 

watershed relative to the past land use class, built-up area, and barre land area slightly 

increased on the north part of the watershed when compared with the year 1997. In the 

upper part of the watershed, barre land slightly expands with the reduction of grass land 

and shrub land. Generally, agricultural land covers expand more than the whole 

watershed. 

Finally, in 2022, there would be an expansion of agriculture land over the watershed. In 

addition to this, the barre land, forest cover, and built-up area increased to some extent. 

Whereas grass land and shrub land cover decreases relative to the past year classification. 

In the study area watershed forest cover increase from year to year because of the 

afforestation of Eucalyptus (Table 4.3). 

According to Getachew and Melesse (2012), agricultural land and Built-up area increases 

during the study period of 1985 to 2011 on Angereb watershed. The expansion of 

cultivated land at the expanse of forest, shrub land and grass land in Gilgel Abay 

watershed between 1986 and 2019 periods is aligned with many studies in Ethiopian 

Highlands (e.g., Gashaw et al., 2017; Woldesenbet et al., 2017; Berihun et al., 2019). For 

example, Gashaw et al., (2017) has reported the expansion of cultivated land at the 

reduction of forest, shrub land and grass land in the Andassa watershed during 1985 – 

2015 periods. There was also an increase of cultivated land and decrease of shrub land in 

the Lack Tana sub-basin between 1986 and 2010 periods (Woldesenbet et al., 2017).    

The area covered by natural vegetation showed was also decrease in Kasiry catchment 

(Upper Blue Nile Basin) during 1982-2017 periods (Berihun et al., 2019). Nigussie et al., 

(2017) has also indicated that the reduction of cultivated land in the Upper Blue Nile 

Basin between 2006 and 2017 periods was mainly attributed to the farmers growing 

interest in allocating more land to Acacia decurrens to remedy a decline in soil fertility 

and to provide fuelwood and charcoal.  
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In 1997, the land use land cover map (Figure 4.1 (A)) and the percentage cover of each 

land cover class indicated that the Kiltie watershed. In 2010, the land use land cover map 

(Figure 4.1 (B)) and the percentage cover of each land cover class showed that 

agriculture land increased by 11.44%, forest land increased by 0.01%, built-up area 

increased by 0.35%, grass land decreased by 8.46%, shrub land decreased by 6.05%, and 

barre land increased by 2.71% of the watershed. This year, agricultural land was 

expanded in most parts of the watershed. Similarly, 4.99% of agriculture land was 

dominantly increased, 3.98% of forest land was increased relative to the year 2010, 

0.53% of built-up area was increased, and grass land cover decreased by 15.04% in the 

year 2022 (Figure 4.1 (C)). 

The special analysis result of the land use dynamics was summarized as follows in the 

(Table 4.3) below. So that it is simple to compare land use land cover change patterns and 

the overall land use dynamics with time. 

Table 4.3: Area coverage of each land use and land cover type 

 

LULC Type 

1997 2010 2022 

Area  

(sq km) 

Percentage Area 

(sq km) 

Percentage Area  

(sq km) 

Percentage 

Agriculture land 287.89 48.09% 356.36 59.52% 386.22 64.51% 

Forest cover 9.10 1.52% 9.15 1.53% 33.00 5.51% 

Urban area 1.03 0.17% 3.11 0.52% 6.31 1.05% 

Grass land 193.41 32.31% 142.79 23.85% 52.72 8.81% 

Shrub land 102.76 17.16% 66.56 11.12% 94.16 15.73% 

Barre land 4.48 0.75% 20.72 3.46% 26.28 4.39% 
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Figure 4.1: Classified LULC of the Kiltie watershed for A) 1997, B) 2010 and C) 2022. 

4.1.3 Land use land cover change detection  

A change detection map was produced for each class in the study area. Figure 4.1 shows 

the changed land use and land cover class of the study area, indicated with a variety of 

different colors. Table 4.4 below shows the change of one land use class to the other class 

coverage area and percentage by numerical value.  

As shown in (Figure 4.2(A)), during the years 1997–2010, among the classified types of 

land use, land cover classes shrub land and grass land cover have decreased and been 

converted to agriculture land use. (Figure 4.2 (B)) describes the land use and land cover 

class of the years 2010–2022. During this period, more grass land and barre land were 

converted to agricultural land. Moreover, the grass land has been lost due to its 

conversion to agricultural land. Due to this trend, agriculture activity was very high 

during this period. 

Finally, (Figure 4.2 (C)) shows major losses were noticed in grassland and barre land, 

whereas expansions were observed in agricultural land, urban area, and forest land 

covers. Generally, the analysis of LULC for the study watershed showed that agricultural 

land was predominant and showed a slightly continuous increment over the study period. 
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Figure 4.2: LULC change dynamics over A) 1997-2010, B) 2010-2022 and C) 1997-2022

Table 4.4: Major changes in LULC dynamics over the study period in Kiltie watershed 

 

LULC 

1997 - 2010 2010 - 2022 1997 - 2022 

Change To Area  (Km
2
) % Area  (Km

2
) % Area  (Km

2
) % 

Ag Ag 231.93 80.57 262.80 73.76 214.78 74.62 

Ba 7.47 2.60 16.29 4.57 14.94 5.19 

Fr 1.60 0.56 13.85 3.89 10.03 3.49 

Gr 23.10 8.03 17.15 4.81 11.46 3.98 

Sh 22.68 7.88 43.55 12.22 34.81 12.09 

Ur 1.06 0.37 2.65 0.74 1.82 0.63 

Ba Ag 1.32 29.40 12.19 58.88 3.83 85.54 

Ba 2.16 48.30 2.04 9.83 0.53 11.91 

Fr 0.00 0.00 1.23 5.94 0.01 0.13 

Gr 0.99 22.16 1.24 5.99 0.05 1.11 

Sh 0.00 0.10 3.78 18.27 0.05 1.04 
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Ur 0.00 0.06 0.23 1.11 0.01 0.27 

Fr Ag 0.40 4.37 1.71 18.76 2.15 23.67 

Ba 0.17 1.84 0.25 2.75 0.15 1.67 

Fr 3.08 33.89 2.83 31.01 2.45 26.96 

Gr 2.18 23.95 0.24 2.58 0.44 4.87 

Sh 3.11 34.19 4.01 43.92 3.49 38.40 

Ur 0.16 1.79 0.10 1.07 0.40 4.43 

Gr Ag 87.74 45.37 81.89 57.36 117.14 60.58 

Ba 5.13 2.65 3.06 2.14 5.28 2.73 

Fr 0.45 0.23 6.17 4.32 11.32 5.85 

Gr 89.45 46.26 29.51 20.67 31.20 16.13 

Sh 10.18 5.26 20.30 14.22 26.31 13.61 

Ur 0.43 0.22 1.85 1.30 2.13 1.10 

Sh Ag 34.65 33.73 26.12 39.26 47.87 46.59 

Ba 5.75 5.59 4.59 6.91 5.34 5.19 

Fr 3.99 3.88 8.80 13.22 9.13 8.89 

Gr 26.84 26.13 4.36 6.55 9.48 9.22 

Sh 30.43 29.62 22.01 33.07 29.26 28.48 

Ur 1.08 1.06 0.67 1.01 1.67 1.62 

Ur Ag 0.26 25.11 1.44 46.27 0.38 36.49 

Ba 0.04 3.55 0.04 1.39 0.03 2.63 

Fr 0.02 2.12 0.11 3.54 0.05 5.17 

Gr 0.20 19.28 0.22 7.17 0.08 8.01 

Sh 0.15 14.35 0.48 15.58 0.22 20.89 

Ur 0.36 35.38 0.81 25.98 0.27 26.59 

AG = Agriculture, Fr = Forest, Ur = Urban, Gr = Grass, Sh = Shrub, and Ba = Barre 

4.2 Streamflow evaluation 

4.2.1 Sensitivity analysis of simulated streamflow  

SWAT CUP 2012 is used for sensitivity analysis considering 25 flow related parameters 

to identify which model parameter is top sensitive that has a significant influence on 

controlling streamflow in Kiltie watershed. It was carried out for a period of seven years, 
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which includes both one-year warm-up periods from January 1, 1997, to December 31, 

1997, the calibration period from January 1, 1998, to December 31, 2001, and validation 

periods from January 1, 2002, to December 31, 2003.  

After the model simulation was done for 500 runs the result shows good fitting with the 

observed data (Figure 4.3) and all 25 selected parameters were reported as sensitive to 

different degree (Appendices G).  

 

Figure 4.3: Best simulation for the year 1997 

Out of the 25 flow parameters, only selected most top sensitive ones (Table 4.5) were 

identified for the model to avoid model overparameterization. The five most sensitive 

streamflow parameters from high to low sensitivity are CN2, CANMX, SOL_K 

ALPHA_BF, and EPCO. Table 4.5 shows the most top sensitive parameters for the 1997 

year of LULC map. For the map of 2010 and 2022 the most sensitive parameters are 

presented in Appendices H and Appendices I. Figure 4.3 shows the best simulation for 

the beginning year that is 1997. 

Table 4.5: Top 10 Sensitive Parameters for the LULC map of the year 1997 

Parameters  t-stat p-value Rank 

v_CN.mgt 13.967 0.0000 1 

r_CANMX.hru 2.8217 0.0049 2 

a_SOL_K.sol 2.7034 0.0071 3 

v_ALPHA_BF.gw 2.3621 0.0185 4 

a_EPCO.bsn 2.12926 0.0337 5 

r_SOL_ALB.sol 1.78648 0.0746 6 
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v.HRU_SLP.hru 1.62168 0.1055 7 

r_GW_DELAY.gw 1.4038 0.1610 8 

r_TLAPS.sub 1.3673 0.1721 9 

v_OV_N.hru 1.34589 0.1789 10 

4.2.2 Calibration and validation 

The graphical comparison of the observed and simulated streamflow during the 

calibration and validation periods are shown in Figure 4.4. Based on the performance 

rating value, the results of model performance during the calibration and validation 

periods of monthly streamflow demonstrated a good agreement between observed and 

simulated streamflow (Table 4.6) with the performance rating ranges: Coefficient of 

determination (R
2
), Nash-Sutcliffe efficiency (NSE), PBIAS and RSR for the land use 

land cover map of 1997. 

 

 

 

 

 

Table 4.6: Model Performance Measures for Calibration and Validation 

Land use land 

cover map 

Calibration Validation 

R
2
 NSE PBAS RSR R

2
 NSE PBAS RSR 

1997 0.83 0.83 3.4 0.42 0.8 0.77 8.9 0.48 

The above Table 4.6 indicates the result of the simulation of the flow for the model 

performance that was adequately good during the calibration and validation periods. This 

indicates that the model performs well in simulating the generated streamflow from the 

watershed. Therefore, the simulation results can be used to assess the LULC impacts on 

streamflow. In addition to the above statistical measures, the following line graph (Figure 

4.4) shows the relationship between observed and simulated streamflow during the 

calibration and validation of LULC maps for the years 1997. As we can see from the 

graph, there is a great relationship between observed and simulated streamflow. 

Therefore, the result of model performance (Table 4.6) indicates that SWAT model is a 

very good predictor of streamflow of the Kiltie watershed.  
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Figure 4.4: Model monthly calibration and validation for LULC 1997 

 

 

 

 

 

 

4.3 Impact of land use land cover change on streamflow 

4.3.1 Change of monthly streamflow 

Table 4.7: Monthly Streamflow Change for the Study Period 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Obs 0.98 0.54 0.26 0.27 0.84 7.16 21.15 31.74 21.74 12.60 4.31 1.44 

1997 0.92 0.91 0.84 0.80 1.43 12.49 24.60 24.78 16.16 12.15 1.94 1.02 

2010 0.79 0.78 0.72 0.67 1.71 14.27 24.91 25.13 16.38 12.26 1.87 0.88 

2022 0.77 0.76 0.70 0.66 1.24 12.22 25.16 25.38 16.61 12.37 1.87 0.85 

By the year 1997, the average monthly flow was low relative to the year 2010. This is 

due to the effect of shrub land and grass land, which had good coverage on the watershed, 

about 17.16% and 32.31% of the watershed, respectively. The shrub land has ability to 

delay the runoff flow to the outlet of the watershed. However, the shrub was reduced by 

6.04% in 2010 with a complete incensement of agricultural and barre land, and at the 

same time, the average annual streamflow was increased by 5,991,840 m
3
. This indicates 

that the increase in agricultural activity and barre land class were responsible for the 

occurrence of this change in streamflow from the period 1997 to 2010. On the other hand, 
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during the period 2010–2022, a reduction in streamflow was noticed by 4,415,040 m
3
. At 

this period, the dominant land cover class was agricultural land and shows some 

increment on forest cover by 3.99% and the shrub land was also increased by 4.61% 

(Table 4.3). Forest and shrub land will delay the runoff to the outlet of the watershed and 

due to dominant land cover is agricultural land which uses more water because it has 

more porous media. In Figure 4.5 shows the model poorly predict stream flow in the 

month of June and July. This is happen because of the high porous media in the soil. 

(Figure 4.5) shows the monthly streamflow distribution over the study period.  

 

Figure 4.5: Monthly streamflow distribution throughout 1997 - 2022 (m
3
/s) 

4.3.2 Change on seasonal streamflow  

For the analysis of seasonal streamflow, the months of February, March, April, and May 

are considered Belg season, whereas June, July, August, and September are assigned as 

Kiremt season; additionally, the months of October, November, December, and January 

are assigned to Bega season. 

The seasonal streamflow in (Table 4.8) shows variation throughout the three seasons 

because of LULC change. During Belg season, moderate decreases occurred between the 

years 1997–2010 and 2010–2022, by 259,200 m
3
/s and 1,347,840 m

3
. At the time, the 

smallest seasonal change was noticed in Bega season decrease by 601,344 m
3
 and 

increase by 155,520 m
3
. On the other hand, the effect of LULC change was largest in the 

Kiremt season increased by 0.665 m
3
/s and decreased by 0.330 m

3
/s, respectively. 

Generally during the study period, agricultural land, urban areas, and barre land increased 

continuously, while grass land and shrub land decreased throughout the year. This change 

in LULC increases the runoff in the watershed. On the other hand, forest cover increases 

throughout the year because of the afforestation activity of eucalyptus to provide 
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fuelwood and charcoal. This implies a streamflow decrease in the year 2022 in the Kiltie 

watershed which make delay of runoff at rein season. 

Table 4.8: Seasonal mean streamflow (m
3
) 

  Belg season Kiremt season Bega season 

1997 10316160 210681000 41554944 

2010 10056960 217863000 40953600 

2022 8709120 214299000 41109120 

The significant change of streamflow were occurred in wet period than dry periods. 

During the wet season (June, July, August, September), the mean monthly flow was 

increased by 20,971,440 m
3
 while the mean monthly flow decreased by 3,090,528 m

3
 

during dry season (October, November, December, January, February, March, April, 

May). 

 

 

 

 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusions  

LULC changes were detected periods between 1997 and 2022, in the cause of study area 

(Kiltie watershed). The LULC analysis clearly shows that grassland and shrub land were 

accompanied by an increase in agricultural land. This shows that agricultural activity 

within the watershed is very high, which, in turn, will affect the natural resources in 

particular and the hydrological cycle in general. The result in this paper shows that there 

has been a visible change in the LULC of Kiltie Watershed over the past years. Among 

the applied machine learning classifier algorithms, RF performed better, with the highest 

overall accuracy of 90.03% and a kappa coefficient of 0.895. The accuracy of the 

prepared land use and land cover was done using confusion matrixes, which measure the 

degree of agreement with the reference data. The value of all the accuracy indicators was 

within the acceptable range. Therefore, the accuracy of the three maps was found 

adequate to use the map for further analysis as per the objective of this thesis. 
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Streamflow for the watershed was determined from the SWAT model. The model is 

simulated for different land use and land cover maps; each map gives a different result, 

and the performance of the model has been perfectly measured using model evaluation 

statistics for each of the simulated streamflow. As a result of the LULC map of 1997, the 

NSE and R
2
 values for the calibration period were 0.83 and 0.83, whereas for the 

validation period, the NSE was 0.77 and the R
2
 0.80. All of the model performance 

measures described above were in the acceptable range, therefore the SWAT model has 

perfectly simulated the streamflow in Kiltie Watershed. 

The average yearly streamflow of Kiltie watershed increased from 1997 to 2010 by 

5,991,840 m
3
, and from 2010 to 2022, the yearly streamflow was reduced by 4,415,040 

m
3
. The reduction in streamflow was due to a high percentage increase in agricultural 

land class, which have high porosity, and an increase in forest land class. For the study 

period between 1997 and 2022 in general, the streamflow was increased by 1,576,800 m
3
 

that shows the impact of LULC change in stream flow in the Kiltie watershed.  

 

 

 

5.2 Recommendation  

Based on the method and results obtained in this study, some recommendations were 

stated as follows: 

 Due to significance of land use and land cover change, it needs effective 

participatory integrated watershed management. 

 On the other hand, an increase in cultivated land and a reduction of shrub land and 

grass land were as a result of population growth, with a high interest in land 

partitioning for the purpose of agriculture activity for food security. This farming 

activity was not considered a soil water-absorbing property. It needs creating 

awareness about the farming practices and free grazing to increase the infiltration 

rate.  

 The research was conducted by evaluating the effect of LULC changes on 

streamflow. So, further research of this kind can be computed based on the 
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assessment of the impact of LULC change on sediment transport, base flow, and 

ground water flow. 
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APPENDICES  

APPENDICES A: Google Earth Engine land use land cover mapping codes  

/////Section ____1   Sentinel_2 Landsat -----RF 

     ////////Load sentinel Landsat 

  ////Landsat clou mask 

function cloudMasklandsat(image){ 

var cloudMaskL457 = function(image) { 

var qa = image.select('pixel_qa'); 

// If the cloud bit (5) is set and the cloud confidence (7) is high 

// or the cloud shadow bit is set (3), then it's a bad pixel. 

var cloud = qa.bitwiseAnd(1 << 5) 

.and(qa.bitwiseAnd(1 << 7)) 

.or(qa.bitwiseAnd(1 << 3)); 

// Remove edge pixels that don't occur in all bands 

var mask2 = image.mask().reduce(ee.Reducer.min()); 

return image.updateMask(cloud.not()).updateMask(mask2); 

}; 

var image = ee.ImageCollection("COPERNICUS/S2_SR") 

         .filterDate('2022-03-01','2022-04-01') 

        .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 0.1)) 

        .filterBounds(AOI) 

        .median(); 

var visParamsTrue = {bands:['B4','B3','B2'],min: 0, max: 2500, gamma:1.1}; 

Map.addLayer(image.clip(AOI),visParamsTrue,'Sentinel_2022') 
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Map.centerObject(AOI,11); 

         ////creatinig training data 

var training = 

Agricultureland.merge(Forestland).merge(Grassland).merge(Urbanarea).merge(Shrublan

d).merge(Bereland) 

print(training); 

var label = 'class' 

var bands = ['B2','B3','B4','B8','QA10'] 

var input = image.select(bands); 

             ///overlay the points on the imagery to get training 

var trainImage = input.sampleRegions({ 

collection:training, 

scale:30, 

}); 

var trainigData = trainImage.randomColumn(); 

var trainSet = trainigData.filter(ee.Filter.lessThan('random',0.8)) 

var testnSet = trainigData.filter(ee.Filter.greaterThanOrEquals('random',0.8)); 

               //// delet the nul 

              // ///Filter out the null property values and try again. 

var trainingNoNulls = 

trainImage.filter(ee.Filter.notNull( trainImage.first().propertyNames())); 

      //// Classification  model  

var classifier = ee.Classifier.smileRandomForest(100).train(trainingNoNulls , 'class', 

bands); 

var classified = image.select(bands).classify(classifier) 

Map.addLayer(classified.clip(AOI), {min: 0, max: 5, palette: ['#d63000', '#56cc67', 

'#c7e460', '#6cfcff', '#ff60f6','#4b31c2']},'classification 2022RF'); 

            ///merg into one feature collection 

var valNames = 

vAgri.merge(vForest).merge(vGrass).merge(vUrban).merge(vShrub).merge(vBarre); 

var validation = classified.sampleRegions({ 



 

   75 

 

collection:valNames, 

  properties:['class'], 

  scale:30, 

});  

print(validation) 

               /////compare the land cover of your validation dataagainst the classification 

var testAccuracy = validation.errorMatrix('class','classification'); 

                /////print error matrix to the console 

print('validation error matrix:',testAccuracy); 

                   ////print the overall accurancy of the console 

print('validation overall accuracy:',testAccuracy.accuracy()); 

print(classifier.confusionMatrix().kappa(), 'kappa'); 

print(classifier.confusionMatrix(), 'matrix'); 
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APPENDICES: Confusion Matrix 

Appendices B: CART algorithm confusion Matrix for 2022 

 

 

 

 

  Agriculture Forest Grass Urban Shrub Barre sum User 

Accuracy (%)  

Commission 

Error (%) 

Agriculture 43 0 11 3 0 3 60 71.67 28.33 

Forest 3 51 0 1 1 0 56 91.07 8.93 

Grass 10 0 38 1 3 3 55 69.09 30.91 

Urban 3 0 0 57 0 0 60 95.00 5.00 

Shrub 3 6 2 0 39 0 50 78.00 22.00 

Barre 6 0 5 0 0 39 50 78.00 22.00 

Sum 68 57 56 62 43 45   

Procedure 

Accuracy (%) 

63.24 89.47 67.86 91.94 90.70 86.67 

Omission 

Error (%) 

36.76 10.53 32.14 8.06 9.30 13.33 

Overall accuracy 80.66%  

Kappa value 78.3%. 
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Appendices C: SVM algorithm confusion Matrix for 2022 

  Agriculture Forest Grass Urban Shrub Barre sum User  

Accuracy (%)  

Commission 

Error (%) 

Agriculture 57 0 3 0 0 0 60 95.00 5.00 

Forest 0 55 0 1 0 0 56 98.21 1.79 

Grass 35 0 16 1 2 1 55 29.09 70.91 

Urban 4 0 1 55 0 0 60 91.67 8.33 

Shrub 7 2 0 0 41 0 50 82.00 18.00 

Barre 2 0 8 0 0 40 50 80.00 20.00 

Sum 105 57 28 57 43 41   

Procedure 

Accuracy (%) 

54.29 96.49 57.14 96.49 95.35 97.56 

Omission 

Error (%) 

45.71 3.51 42.86 3.51 4.65 2.44 

Overall accuracy 79.75%1  

Kappa value 57.45%. 
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Appendices D: NB algorithm confusion Matrix for 2022 

  Agriculture Forest Grass Urban Shrub Barre sum User 

Accuracy (%)  

Commission 

Error (%) 

Agriculture 28 0 6 0 1 25 60 46.67 53.33 

Forest 0 51 0 1 4 0 56 91.07 8.93 

Grass 16 0 22 1 13 3 55 40.00 60.00 

Urban 2 0 0 54 0 4 60 90.00 10.00 

Shrub 0 16 0 0 34 0 50 68.00 32.00 

Barre 0 0 1 0 0 49 50 98.00 2.00 

Sum 46 67 29 56 52 81   

Procedure 

Accuracy (%) 

60.87 76.12 75.86 96.43 65.38 60.49 

Omission 

Error (%) 

39.13 23.88 24.14 3.57 34.62 39.51 

Overall accuracy 71.90%  

Kappa value 38.32%. 



 

   79 

 

Appendices E: RF algorithm confusion matrix for the year 1997 LULC map 

  Agriculture Forest Grass Urban Shrub Barre sum User 

Accuracy (%) 

Commission 

Error (%) 

Agriculture 41 0 3 0 0 1 45 91.11% 8.89% 

Forest 1 42 1 0 1 0 45 93.33% 6.67% 

Grass 2 0 37 0 2 0 41 90.24% 9.76% 

Urban 2 1 0 44 3 0 50 88.00% 12.00% 

Shrub 1 1 2 0 34 0 38 89.47% 10.53% 

Barre 2 0 0 0 1 40 43 93.02% 6.98% 

Sum 49 44 43 44 41 41   

Procedure 

Accuracy % 

83.67 95.45 86.05 100 82.93 97.56 

Omission 

Error  % 

16.33 4.55 13.95 0.00 17.07 2.44 

Overall accuracy 90.83%  

Kappa 98.71% 
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Appendices F: RF algorithm confusion matrix for the year 2010 LULC map 

  Agriculture Forest Grass Urban Shrub Barre sum User 

Accuracy  

Commission 

Error  

Agriculture 43 0 1 2 2 0 48 89.58% 10.42% 

Forest 0 31 1 1 10 1 44 70.45% 29.55% 

Grass 2 0 37 2 1 3 45 82.22% 17.78% 

Urban 1 0 1 41 1 3 47 87.23% 12.77% 

Shrub 0 2 1 0 39 1 43 90.70% 9.30% 

Barre 2 0 2 1 0 39 44 88.64% 11.36% 

Sum 48 33 43 47 53 47   

Procedure 

Accuracy 

% 

89.58 93.94 86.05 87.23 73.58 82.98 

Omission 

Error%  

10.42 6.06 13.95 12.77 26.42 17.02 

Overall accuracy 84.87% 

Kappa 98.58% 
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Sensitivity analysis parameters  

Appendices G: Parameters used in Sensitivity analysis 

Parameter Name t-Stat P-Value 

11:R__SLSUBBSN.hru 0.02 0.99 

7:V__BIOMIX.mgt 0.11 0.91 

14:R__CH_N2.rte 0.12 0.91 

20:R__REVAPMN.gw 0.37 0.71 

19:R__SURLAG.bsn -0.49 0.63 

9:A__SOL_AWC(..).sol 0.60 0.55 

18:R__ESCO.bsn -0.64 0.52 

16:R__ALPHA_BNK.rte 0.65 0.51 

8:A__CH_K2.rte -0.76 0.45 

13:R__GWQMN.gw 0.88 0.38 

12:R__RCHRG_DP.gw 0.89 0.37 

4:V__OV_N.hru -1.35 0.18 

21:R__TLAPS.sub -1.37 0.17 

10:R__GW_DELAY.gw -1.40 0.16 

3:V__HRU_SLP.hru 1.62 0.11 

15:R__SOL_ALB(..).sol 1.79 0.07 

6:A__EPCO. hru 2.13 0.03 

5:V__ALPHA_BF.gw -2.36 0.02 

1:A__SOL_K(..).sol -2.70 0.01 

17:R__CANMX.hru 2.82 0.00 

2:V__CN2.mgt -13.96 0.00 

 

Appendices H: Top 10 Sensitive parameters for 2010 

4:V__OV_N.hru -1.35 0.18 

21:R__TLAPS.sub -1.37 0.17 

10:R__GW_DELAY.gw -1.40 0.16 

3:V__HRU_SLP.hru 1.62 0.11 

15:R__SOL_ALB(..).sol 1.79 0.07 

6:A__EPCO.bsn 2.13 0.03 

5:V__ALPHA_BF.gw -2.36 0.02 

1:A__SOL_K(..).sol -2.70 0.01 

17:R__CANMX.hru 2.82 0.00 

2:V__CN2.mgt -13.96 0.00 
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Appendices I: Top 10 sensitive parameters for 2022 

9:A__SOL_AWC (..).sol 1.27 0.20 

10:R__GW_DELAY.gw -1.62 0.11 

20:R__REVAPMN.gw -1.75 0.08 

3:V__HRU_SLP.hru 1.81 0.07 

17:R__CANMX.hru 2.18 0.03 

16:R__ALPHA_BNK.rte 2.39 0.02 

1:A__SOL_K(..).sol -2.54 0.01 

5:V__ALPHA_BF.gw -10.06 0.00 

13:R__GWQMN.gw 12.68 0.00 

2:V__CN2.mgt 16.40 0.00 

 

APPENDICES J: - 95PPU plot   

 

Appendices D: 95PPU for Best Simulation 

 


