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Abstract 

The concept of partial order set, lattice, distributive lattice, almost distributive lattice, 

implicative algebra, and lattice implicative algebra are introduced by different authors.  

In this project work our aim is to introduce implicative almost distributive lattices as a 

generalization of implicative algebras in the class of almost distributive lattices. 

The main objective of this project is to understand the concept of implicative almost 

distributive lattice.  
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Chapter One 

1. Introduction and Preliminaries 

1.0 Introduction 

In chapter one of this project our aim is to understand the concept of partial ordering set, 

lattice, distributive lattice, almost distributive lattice, lattice implication algebra and 

implicative algebra. In chapter two of this project our aim is to understand the concept of 

implicative almost distributive lattice, prove theorems and lemmas of implicative almost 

distributive lattice and fill gaps. 

1.1 Review Literature 

The concept of general lattice theory was introduced by Gratzer, G. [3] in 1978.To establish an 

alternative logic for knowledge representation and reasoning, Xu [8] proposed a logical 

algebra-lattice implication algebra in 1993 by combining algebraic lattice and implication 

algebra. Lattice implication algebra is an important non-classical logical algebra, it has been 

studied by researchers. Lattice-valued logic is an important form of many-valued logic which 

extends the field of truth-values to lattices. More importantly, lattice-valued logic can represent 

the uncertainty, especially the incomparable property of people’s thinking, judging and 

decision. In lattice implication algebra, the lattice is defined to describe uncertainties, 

especially for the incomparability and the implication is designed to describe the ways of 

human’s reasoning. Xu et al. [7] have established the lattice valued propositional logic Lp(X) 

and lattice valued first ordered logic Lf(X) and the gradual lattice valued propositional logic 

Lvpl and the gradual lattice valued first order logic Lvfl [9] by taking lattice implication algebra 

as a truth value field. V. Kulluru and Berhanu Bekele [4] introduced the concept of implicative 

algebras and obtained certain properties. Further they proved that implicative algebra is 

equipped with a structure of a bounded lattice and proved that it is a lattice implication algebra. 

The concept of an almost distributive lattice (ADL) was introduced in 1981 by U.M. Swamy 

and G.C. Rao [6] as a common abstraction to most of the existing ring theoretic and lattice 

theoretic generalization of Boolean algebra. [1] B.A. Alaba, M. Alamneh, and T. Mekonnen, 

introduced the concept of implicative almost distributive lattice (IADLs) as generalization of 

implicative algebra in the class of ADLs. They proved some properties and equivalent 

conditions in an implicative almost distributive lattice.  
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1.2 Preliminaries 

First, we recall certain definition and properties of lattice, distributive lattice, almost 

distributive lattice, lattice implication algebra and implicative algebra that are required in the 

next chapter. 

1.2.1. Lattices, Distributive Lattices and Almost Distributive Lattices 

In this section first we recall some concepts of partial ordering set, lattice, distributive lattice 

and almost distributive lattice that will be useful for our work. 

Definition 1.2.1.1.[3]: A binary relation “ ≤ ” on a non-empty set L is called partial ordering 

relation if it satisfies the following properties, for any x, y, z L. 

1) x ≤ x …………………………………………………………(reflexive) 

2) x ≤ y and y ≤ x implies x = y………………………………… (anti-symmetric) 

3) x ≤ y and y ≤ z implies x ≤ z ……………………….………. (transitive) 

A set equipped with this relation (L, ≤) is called partially order set or poset. 

Example:1.2.1.2. Let S be a non-empty set. Then (P(S), ⊆ ), where  P(S) is the power set of 

S is a Poset.  

Definition 1.2.1.3.[2, 5]: A poset (L, ≤) is a lattice if sup {x, y} and inf {x, y} exist in L for all 

x, y ∈ L. 

Example:1.2.1.4: The set of all natural numbers N = {1, 2 . . .} with the usual order of ≤ is a 

poset. By defining sup {x, y} as a bigger of the two elements and inf {x, y} as the smaller of 

the two elements of N it follows a lattice. 

Now we recall an equivalent definition of Lattice. 

Definition 1.2.1.5.[3]: An algebra (𝐿, ˅, ˄) of type (2,2) is called a lattice if for all x, y, z ∈ 𝐿 

it satisfies the following properties. 

1) x ∨ y = y ∨ x and x ∧ y = y ∧ x ………………………… [Commutative law] 

2) x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z……. [Associative law] 

3) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x…………………..…… [Absorption law] 

4) x ∨ x = x and x ∧ x = x ……………………...….………… [Idempotent law] 

Note: a) ˅ and ˄ read as “join” and “meet” respectively and both are binary operations. 

b) In (2,2), 2 represent binary operations  

c)   For   x, y L, x ∨ y = sup {x, y} and x ∧ y = inf {x, y} 

d) If (𝐿, ∨, ∧) is a lattice then the element 0 of 𝐿 is called zero element or least element of 𝐿,  
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i.e. 0 ∧ x = 0 for all x ∈ 𝐿 and an element 1 of 𝐿 is called one element or top element of 𝐿, 

 i.e. x ∨ 1 = 1 for all x ∈ 𝐿. If 𝐿 has 0 and 1 then 𝐿 is called bounded lattice. 

Note that, from the lattice (L, ≤) of Definition 1.2.1.1 (as a poset) we can obtain (L, ∧, ∨) by 

defining x ∧ y = glb {x, y} and x ∨ y = lub {x, y} (as an algebra).   

In other words, in lattice (L, ∧, ∨), by defining x ≤ y if and only if x ∧ y = x or equivalently x 

∨ y = y, we have (L, ≤) is a lattice. 

Theorem 1.2.1.6.[5]: In any lattice (L, ∧, ∨) the following are equivalent: 

1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

2) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) 

3) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) 

4) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z), for all x, y, z L. 

Definition 1.2.1.7.[5]: A lattice (L, ∧, ∨) that satisfies one and hence all of the identities in 

Theorem 1.2.1.4 is called distributive lattice. 

Definition 1.2.1.8.[5, 6]: An algebra (L, ∨, ∧, 0) of type (2,2,0) is called an almost distributive 

lattice (ADL) with 0 if it satisfies the following axioms: 

1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) 

2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

3) (x ∨ y) ∧ y = y 

4) (x ∨ y) ∧ x = x 

5) x ∨ (x ∧ y) = x 

6) 0 ∧ x = 0, for all x, y, z L. 

Example1.2.1.9. Every distributive lattice (L, ∨, ∧) is ADL. 

Definition 1.2.1.10.[6]: Let L be a non empty set. Fix x0 ∈ L. For any x, y ∈ L, define x ∨ y = 

x, x ∧ y = y if x  x0; x0 ∧ y = x0 and x0 ∨ y = y. Then (L, ∨, ∧, x0) is called a discrete ADL 

with x0 as its 0.  

If (L, ∨, ∧, 0) is an ADL, for any x, y ∈ L, define x ≤ y if and only if x = x ∧ y or equivalently 

x ∨ y = y, then ≤ is a partial ordering on L. 

Theorem 1.2.1.11.[6]: Let L be an ADL such that x, y, z ∈ L. Then the following conditions 

hold. 

1) x ∨ y = x ⇔ x ∧ y = y 

2) x ∨ y = y ⇔ x ∧ y = x 

3) x ∧ y = y ∧ x = x whenever x ≤ y 

4) ∧ is associative 
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5) x ∧ y ∧ z = y ∧ x ∧ z 

6) (x ∨ y) ∧ z = (y ∨ x) ∧ z 

7) x ∧ y ≤ y and x ≤ x ∨ y 

8) If x ≤ z and y ≤ z, then x ∧ y = y ∧ x and x ∨ y = y ∨ x 

Theorem 1.2.1.12.[6]: In an ADL L, the following are equivalent. 

1) L is a distributive lattice 

2) The poset (L, ≤) is directed above 

3) x ∨ y = y ∨ x for all x, y ∈ L 

4) x ∧ y = y ∧ x for all x, y ∈ L 

5) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) for all x, y, z ∈ L 

6) θ = {(x, y) ∈ L × L: y ∧ x = x} is anti symmetric 

Definition 1.2.1.13: In an ADL L, (L, ≤) be a poset, S ⊆ L and a ∈ L. Then 

1) a is called a lower bound of S if a ≤ x for all x ∈ S. 

2) a is an upper bound of S if x ≤ a for all x ∈ S. 

3) a is called the greatest lower bound or infimum of S if a is a lower bound of S and for 

any lower bound b of S, we have b ≤ a. In this case we write a = glb of S or a = inf S. 

4) a is called the least upper bound or supremum of S if a is an upper bound of S and for 

any upper bound b of S, we have a ≤ b. In this case we write a = lub of S or a = sup S. 

Definition 1.2.1.14.[6]: An element m of an ADL L is called maximal if for any x ∈ L,  

m ≤ x implies m = x. 

1.2.2. Lattice Implicative Algebra and Implicative Algebra 

In this section we define lattice implicative algebra and implicative algebra. 

Definition 1.2.2.1.[8]: A bounded lattice (𝐿, ∨, ∧, 0, 1) with an order reversing involution 

“  ” and binary operation " → " is called a lattice implication algebra if for any x, y, z ∈ L, it 

satisfying the following axioms. 

1) x → (y→ z) = y → (x → z) 

2) x → x = 1 

3) x → y = y′ → x′ 

4) x → y = y → x = 1 ⇒ x = y 

5) (x → y) → y = (y → x) → x 

6) (x ∨ y) → z = (x → z) ∧ (y → z) 
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7) (x ∧ y) → z = (x → z) ∨ (y → z) 

Definition 1.2.2.2.[4]: An algebra (L, →, ′, 0,1) of type (2,1,0,0) is called implicative algebra 

if it satisfies the following conditions. 

1) x → (y → z) = y → (x → z) 

2) 1 → x = x 

3) x → 1 = 1 

4) x → y = y′ → x′ 

5) (x → y) → y = (y → x) → x 

6) 0′ = 1 for x, y, z ∈ L. 

Definition 1.2.2.3.[4]: A relation ≤ on an implicative algebra is defined as follows: 

x ≤ y ⇔ x → y = 1, for all x, y ∈ L. 

Lemma 1.2.2.4.[4]: In an implication algebra L, the following hold: for all x, y, z ∈ L, 

1) x → x = 1 

2) 1′ = 0 

3) 0 → x = 1  

4) x → y = 1 = y → x ⇔ x = y  

5) x → y = 1 and y → z = 1, then x → z = 1 

6) x ≤ y ⇔ z → x ≤ z → y and y → z ≤ x → z 

7) ((x → y) → y) → y = x → y 

8) (x → y) → [(y → z) → (x → z)] = 1 

9) (x′)′ = x 

10)  x′ = x → 0, all x, y, z ∈ L. 

We define two binary operations ∨ and ∧ on an implicative algebra L respectively as follows. 

x ∨ y = (x → y) → y = (y → x) → x, 

x ∧ y = [(x → y) → x′]′ = [(y → x) → y′]′  for all x, y ∈ L. 

Theorem 1.2.2.5.[4]: In an implicative algebra L, the following conditions hold: 

1) x ∧ y ≤ x, y ≤ x ∨ y 

2) x ≤ y, x ≤ z implies x ≤ y ∧ z 

3) y ≤ x, z ≤ x implies (y ∨z) ≤ x 

4) (x ∨ y) → z ≤ x → z and (x ∨ y) → z ≤ y → z 

5) x → z ≤ (x ∧ y) → z and y → z ≤ (x ∧ y) → z 

6) (x ∨ y) → z = (x →z) ∧ (y → z) 

7) (x ∧ y) → z = (x → z) ∨ (y → z) 
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8) x → (y ∧ z) = (x → y) ∧ (x → z) 

9) x → (y ∨ z) = (x → y) ∨ (x → z), 

Theorem 1.2.2.6.[4]: Let (𝐿, →, ′, 0, 1) be an implicative algebra. Then (𝐿, ∨, ∧, →, ′, 0, 1) is 

a lattice implicative algebra. 
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Chapter Two 

2. Implicative Almost Distributive Lattices 

In this chapter we introduce the concepts of implicative almost distributive lattices (IADLs) as 

a generalization of implicative algebras in the class of ADLs and develop related theory of 

IADLs. In this section, we define implicative almost distributive lattice and study some 

properties and equivalent conditions of implicative almost distributive lattices. 

Definition 2.1.[1]: Let (L, ∨, ∧, 0, m) be an ADL with 0 and maximal element m. Then an 

algebra (L, ∨, ∧, →, ′, 0, m) of type (2, 2, 2, 1, 0, 0) is called implicative almost distributive 

lattice if it satisfies the following conditions: 

1) x ∨ y = (x → y) → y 

2) x ∧ y = [(x → y) → x′] ′ 

3) x → (y → z) = y → (x → z) 

4) m → x = x 

5) x → m = m 

6) x → y = y′ → x′ 

7) 0′ = m, for all x, y, z ∈ L. 

Here after the symbol L stands for an IADL (L, ∨, ∧, →, ′, 0, m) unless otherwise specified. 

Example 2.2. Let L be a discrete ADL with zero and at least two elements. Fix m (≠ 0) ∈ L 

to be maximal element and define the binary operation → on L as follows, for any x, y ∈ L, 

and ′unary operation on L. 

𝑥 → 𝑦 = {
  0 , 𝑖𝑓𝑥 ≠ 0 , 𝑦 = 0

𝑦  ,       𝑖𝑓 𝑥 = 𝑚
𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

To show it satisfies IADL we will follow the following: 

case 1:x  0 and y = 0, then (x → y) → y = (x → 0) → 0 = 0 → 0 = m. 

Case 2: x = m and y ≠ 0, then (x → y) → y = (m → y) → y = y → y = m. 

Case3: x ≠ m and y ≠ 0, then (x → y) → y = m → y = y. 

Thus, we can show the remaining properties by using these three cases. This means that it 

satisfies all properties or conditions to be implicative almost distributive lattice.  

Then the structure (L, ∨, ∧,→, 0, m) is an implicative almost distributive lattice and is called 

discrete IADL. 
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Example 2.3. Let L = {0, x, y, z, m} be a set. Define partial ordered relation on L as 0 < x < 

y < z < m and also define x ∧ y = min {x, y}, x ∨ y = max {x, y} for all x, y, z ∈ L. Define the 

unary operation  and the binary operation → on L as follows: 

 

a a 

0 m 

x z 

y y 

z x 

m 0 

                       

                    Table 1                                                        Table 2 

  Proof: From table 1 we observe that: (x′)′ = x for all x in 𝐿.  

              From table 2 for all x, y, z in 𝐿 we observe that:  

i. x → y = m if and only if x ≤ y  

ii. x → y = m if and only if y′ → x′ = m.  

iii. m → x = x, which is found in the last row  

iv. x → m = m, which is found in the last column. 

Now take x, y, z ∈ 𝐿 with x < y < z. Then  

1) x ∨ y = max {x, y} = y and (x → y) → y = m → y = y  

It implies that x ∨ y = (x → y) → y for all x, y ∈ 𝐿.  

2) x ∧ y = min {x, y} = x and [(x → y) → x′]′ = (m → x′)′ = (m → z)′ = (z′) = x It 

implies that x ∧ y = [(x → y) → x′]′ for all x, y ∈ 𝐿.  

3) x → (y → z) = x → m = m and y → (x → z) = y → m = m.  

           It implies that x → (y → z) = y → (x → z) for all x, y, z ∈ 𝐿.  

4) m → x = x for all x ∈ 𝐿.  

5) x → m = m for all x ∈ 𝐿. 

6) x → y = m and y′ → x′ = m it implies that x → y = y′ → x′ for all x, y ∈ 𝐿. 

7)   0′ = m. 

 Therefor (L, ∨, ∧, →, ′, 0, m) is an implicative almost distributive lattice.   

     

 

→ 0 x y z m 

0 m m m m m 

x z m m m m 

y y z m m m 

z x y z m m 

m 0 x y z m 
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  Lemma 2.4: Let L be an IADL. Then for any x, y ∈ L, the following conditions hold. 

1) [(x → y) → y] ∧ m = [(y → x) → x] ∧ m 

2) [(x → y) → x ] ∧ m = [((y → x) → y)] ∧ m 

3) x → x = m 

4) m = 0 

5) (x) = x (is called involution) 

6) x = x → 0 

Proof. Let x, y ∈ L. Using definition of IADL, we verify the following: 

1) ((x → y) → y) ∧ m = (x ∨ y) ∧ m = (y ∨ x) ∧ m = ((y → x) → x) ∧ m (by Theorem 

1.2.1.12) 

2) ((x → y) → x) ∧ m = (x ∧ y) ∧ m = (y ∧ x) ∧ m = ((y → x) → y) ∧ m (by Theorem 

1.2.1.12) 

3) x → x = (m → x) → x = m ∨ x = m (by Definition 2.1) 

4) m = m → m = 0  → m  = m → 0 = 0 (by Definition 2.1) 

5) (x)  = m → (x)  = 0  → (x)  = x  → 0 = x  → m  = m → x = x (by Definition 2.1) 

6) x  = m → x  = 0  → x  = x → 0. 

The following theorem refers to direct product of implicative almost distributive lattices and 

its proof is direct consequence of definition of IADL. 

Theorem 2.5: Let L and H be two IADLs. Then M = L × H is an IADL with point wise 

operation. 

Proof. Let L and H be two IADLs with maximal element m and m∗ respectively. 

      Let M = L × H. 

      Claim: M is an IADL. 

      Define point wise operation as follows: for all (a, b), (c, d) ∈ M, 

       (a, b) → (c, d) = (a → c, b → d), (a, b) ∨ (c, d) = (a ∨ c, b ∨ d) 

       (a, b) ∧ (c, d) = (a ∧ c, b ∧ d), (a, b)   = (a, b ). 

      Now for all (a, b), (c, d), (e, f) ∈ M, using these definitions and definition of IADL we get, 

1) ((a, b) ∨ (c, d)) = (a ∨ c, b ∨ d) = ((a → c) → c, (b → d) → d) = ((a, b) → (c, d)) → (c, d) 

2) ((a, b) ∧ (c, d)) = (a ∧ c, b ∧ d) = ([(a → c) → a], [(b → d) → b])  

= [(a → c) →a, (b → d) → b] = [(a → c, b → d) → (a, b)]  

= [((a, b) → (c, d)) → (a, b)]  = [((a, b) → (c, d)) → (a, b)] 

3) (a, b) → ((c, d) → (e, f)) = (a, b) → ((c → e), (d → f)) = ((a → (c → e), b → (d → f))  

= ((c → (a → e), d → (b → f)) = (c, d) → ((a, b) → (e, f)) 
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4) (m, m∗) → (a, b) = (a, b) 

5) (a, b) → (m, m∗) = (m, m∗) 

6) (a, b) → (c, d) = (a → c, b → d) = (c→ a, d  → b) = (c, d) → (a, b) = (c, d)→ (a, b) 

7) (0, 0*) = (m, m*).  

Therefore, M is an IADL. 

Example 2.6. Every implicative algebra (L, →, , 0, 1) is an IADL. 

In the following example, we give a method of constructing IADL which is neither implicative 

algebra nor discrete IADL. 

Example 2.7. Let L be an implicative algebra and D be discrete IADL with 0 and at least two 

elements. Then M = L × D is an IADL with respect to point wise operation. But M is not 

implicative algebra since D is not. Also, M is not discrete IADL since L is not. 

➢ M = L × D is IADL with respect to point wise operation because it respects the 

distributive lattice structure and implicative algebra operations. M inherits distributive 

lattice structure from D and L. Hence M is lattice with distributive property.  

➢ M is not implicative algebra because D does not satisfy the necessary implicative 

algebra property. It fails to satisfy the implication properties needed for M to be 

implicative algebra. If D does not have required implicative algebra properties M 

cannot inherit them from D. 

➢ M is not discrete IADL because L does not have the discrete structure required for such 

a lattice. Particularly every element should be comparable (totally ordered). This failure 

implies that M inherits this lack of discrete ness from L. 

Now we define the following ideas in IADL L:  

a) The relation ≤ on L is defined as, for any x, y ∈ L, x ≤ y if and only if x → y = m. 

b) The maximal element m of L is defined as if m ≤ x for any x ∈ L, then m = x. 

c) The principal ideal generated by the maximal element m of L is denoted by (m] and defined 

as (m] = {m ∧ x: x ∈ L}. 

Now we have the following remark.  

1) For any x, y ∈ L, x ∧ y = x ⇔ x ≤ y. 

2) The relation ≤ on L is a partial ordering and hence (L, ≤) is a poset. 

Proof Let x, y, z ∈ L. 

1) Let x, y ∈ L. Assume x ∧ y = x. Then x → y = (x ∧ y) → y = m. Therefore, x ≤ y. 
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Conversely, assume x ≤ y i.e., x → y = m, then (x ∧ y) → x = m implies x ∧ y ≤ x and x → (x 

∧ y) = (x → x) ∧ (x → y) = m → (x → y) = x → y = m implies x ≤ x ∧ y. Thus x ∧ y = x (by 

using Definition 2.1 and properties in ADL). 

2) We prove the relation ≤ on L is a partial ordering relation. 

a) x → x = m implies x ≤ x. (by (3) of Lemma 2.4 and Definition (a) above). 

     Therefore, ≤ is reflexive. 

b) Assume x ≤ y and y ≤ x. Then x → y = m and y → x = m  

Claim: x = y.  

Since x ≤ y ⇔ x ∧ y = x = (x ∨ y) ∧ x = y ∧ x (or x ∨ y = y = y ∨ x),  

we have x = m → x = (y → x) → x = y ∨ x = x ∨ y = (x → y) → y = m → y = y.  

Therefore, ≤ is anti-symmetric. 

c) Assume x ≤ y and y ≤ z. Then x → y = m and y → z = m (by using definition (a) above). 

Now by using definition of IADL we get,  

x → z = x → (m → z) = x → ((y → z) → z) = x → (y ∨ z) = x → (z ∨ y) [Since y ≤ z implies 

y ∨ z = z = z ∨ y] = x → ((z → y) → y) = (z → y) → (x → y) = (z → y) → m = m.  

This implies x ≤ z. Therefore, ≤ is transitive.  

Thus ≤ is a partial ordering on L (by (a), (b) and (c)). Hence, (L, ≤) is a poset.  

The following theorem is used to prove useful results in IADL. Now we have some results 

obtained in IADL. 

Theorem 2.8: Let m be a maximal element of L. Then the following conditions hold: 

1) 0 → x = m 

2) x ∨ m = m for all x ∈ L 

3) x ∧ m = x for all x ∈ L 

4) (m] = L 

5) x ∧ y ≤ x → y 

6) y ≤ x → y 

7) x ∧ z ≤ y implies z ≤ x → y 

8) x ≤ y if and only if z → x ≤ z → y and y → z ≤ x → z 

9) ((x → y) → y) → y = x → y 

10) x → y ≤ (y → z) → (x → z) 

11) (x → z) → (x → y) = (z → x) → (z → y) 

12) (x ∨ y) = x ∧ y 

13) (x ∧ y)  = x ∨ y 
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14) x ≤ y, x ≤ z implies x ≤ y ∧ z 

15) y ≤ x, z ≤ x implies (y ∨ z) ≤ x 

16) (x ∨ y) → z ≤ x → z and (x ∨ y) → z ≤ y → z 

17) x → z ≤ (x ∧ y) → z and y → z ≤ (x ∧ y) → z 

18) (x ∨ y) → z = (x → z) ∧ (y → z) 

19) (x ∧ y) → z = (x → z) ∨ (y → z) 

20) x → (y ∧ z) = (x → y) ∧ (x → z) 

21) x → (y ∨ z) = (x → y) ∨ (x → z), for all x, y, z ∈ L. 

Proof. Let m be maximal elements of L and for any x ∈ L. Then by Definition 2.1 and Lemma 

2.4 we have, 

1) 0 → x = x → 0 = x → m = m. 

2) m = m → m = (x → m) → m = x ∨ m 

3) x ∧ m = ((x → m) → x) = (m → x) = (x) = x 

4) Let x ∈ (m]. Then by definition of principal ideal generated by m we get m ∧ x = x ∈L. 

     Therefore, (m] ⊆ L........................................................................................................(1). 

 Conversely, x ∈ (m] = {x = m ∧ x: x ∈ L} we get x ∈ L and m is maximal element of L implies   

     x = m ∧ x ∈ (m]. Therefore, L ⊆ (m]................................................................................(2)  

     Hence, from (1) and (2) we have L = (m]. 

5) (x ∧ y) ≤ x → y = (x ∧ y) → (x → y) = x → ((x ∧ y) → y) = x → ([(x → y) → x)] → y)  

= x → (y → (x → y) → x) = x → (x → y) → (y → x) = x → (x → y) → (x → y) 

      = x → m = m (by Definition 2.1), we have x ∧ y ≤ x → y. 

6) y ≤ x → y = y → (x → y) = x → (y → y) (using 3 of Definition 2.1) 

  = x → m = m. Therefore, y ≤ x → y. 

7)  x ∧ z ≤ y implies z ≤ x → y. Assume x ∧ z ≤ y. Then by using Definition 2.1 and (2), we    

get (x ∧ z) → y = [(x → z) → x] → y = m 

                              ⇒ y → ((x → z) → x ) = m 

                              ⇒ (x → z) → (y → x ) = m 

                              ⇒ (x → z) → (x → y) = m. 

   Therefore, x → z ≤ x → y. Thus, z ≤ x → z ≤ x → y. 

   Hence, x ∧ z ≤ y implies z ≤ x → y. 

8) x ≤ y  z → x ≤ z → y and y → z ≤ x → z. 

    Assume x ≤ y, then x → y = m.  

    Now, consider (z → x) → (z → y) = (x → z) → (y → z) 



13 
 

            = y → ((x → z) → z)  

                                                            = y → (((x → z)→ z) ∧ m)   

                                                            = y → (((z → x) → x) ∧ m)  

                                                            = y → ((z → x) → x) 

                                                            = (z → x) → (y → x)  

                                                            = (x → z) → (x → y) = m  

     Hence, x ≤ y implies z → x ≤ z → y…………………………………………………. (1) 

     Similarly, consider (y → z) → (x → z) = x → ((y → z) → z) = x → (((y → z) → z) ∧ m)  

                = x → (((z → y) → y) ∧ m) = (z → y) → (x → y) = (z → y) → m = m. 

     Hence, x ≤ y implies y → z ≤ x → …………………………………………………….... (2) 

     (⇐) suppose z → x ≤ z → y, then (z → x) → (z → y) = m. 

     Now, x → y = x → (m → y) = x → ((z → x) → (z → y) → y)  

                                                    = (z → x) → (z → y) → (x → y)  

                                                    = (x′ → z′) → (y′ → z′) → (y′ → x′)  

                                                    = y′ → ((x′ → z′) → z′) → (y′ → x′)  

                                                    = y′ → ((z′ → x′) → x′) → (y′ → x′)  

                                                    = (z′ → x′) → (y′ → x′) → (y′ → x′)  

                                                    = (z′ → x′) → m = m. 

     Hence, z → x ≤ z → y implies x = y…………………………………………………… (3) 

     Consider y → z ≤ x → z, then (y → z) → (x→ z) = m  

     Now, x → y = x → (m → y) = x → ((y → z) → (x → z) → y)  

                                                    = (y → z) → (x → z) → (x → y)  

                                                    = x → ((y → z) → z) → (x → y)  

                                                    = x → ((z → y) → y) → (x → y)  

                                                    = (z → y) → (x → y) → (x → y)  

                                                    = (z → y) → m = m.  

     Hence y → z ≤ x → z implies x = y……………………………………………….…… (4) 

     Therefore, from (1), (2), (3) and (4), we have x ≤ y ⇔ z → x ≤ z → y and y → z ≤   x → 𝑧. 

9) ((x → y) → y) → y = (y → (x → y)) → (x → y) [since ((x → y) → y) = ((y → x) → x)] 

                 = (x → (y → y)) → (x → y) [by Definition 1.2.2.3(1)] 

                 = (x → m) → (x → y) (since y → y = 1) 

                 = m → (x → y) [by Definition 2.1(5)]. 

                                      = x → y 



14 
 

10) (x → y) ≤ (y → z) → (x → z) = (x → y) → ((y → z) → (x → z)) 

                                                 = (x → y) → (x → ((y → z) → z))  

                                                 = (x → y) → ((x → ((y → z) → z)) ∧ m) (by Lemma 2.4) 

                                                       = (x → y) → (x → ((z → y) → y)) 

                                                       = (x → y) → ((z → y) → (x → y)) 

                                                       = (z → y) → ((x → y) → (x → y)) = (z → y) → m = m.                                                     

      Therefore, (x → y) → ((y → z) → (x → z)) = m. Hence, (x → y) ≤ (y → z) → (x → z). 

11) (x → z) → (x → y) = (z → x) → (z → y). By Theorem 2.8 and Lemma 2.4 we have, 

 (x → z) → (x → y) = (z → x) → (y → x) = y → ((z → x) → x)  

= y → (((z → x) →x) ∧ m) =   y → ((x → z) → z) = (x → z) → (y → z)  

      = (z → x) → (z → y). Hence, (x → z) → (x → y) = (z → x) → (z → y).                                                            

12) (x ∨ y) = x ∧ y  

      Consider (x ∨ y)' → x' ∧ y' = ((x → y) → y)' → ((y' → x') → y'')'  

                                                  = ((x → y) → y) ' → ((y' → x') → y)' 

                                                  = ((y' → x') → y) → ((x → y) → y)  

                                                  = ((x → y) → y) → ((x → y) → y) = m (By Definition 2.1)  

    Hence, (x ∨ y) ' ≤ x' ∧ y' ……………………………………………………………….…. (1)  

    And also, x' ∧ y' → (x ∨ y)' = ((x' → y') → x'')' → ((x → y) → y)'  

                                                 = ((y' → x') → y'')' → ((x → y) → y)'  

                                                 = ((x → y) → y) → ((y' → x') → y'')  

                                                 = ((x → y) → y) → ((y' → x') → y)  

                                                 = ((x → y) → y) → ((x → y) → y) = m (Using Definition 2.1) 

     Then, x' ∧ y' ≤ (x ∨ y)' …………………………………….…………………….… (2)  

     Therefore, from (1) and (2), we have (x ∨ y)' = x' ∧ y'. 

13) (x ∧ y)  = x ∨ y 

      Consider (x ∧ y) ' → x' ∨ y' = (((y → x) → y')')' → ((x' → y') → y')  

                                                   = ((y → x) → y') → ((x' → y') → y')  

                                                   = ((y → x) → y') → ((y → x) → y') = m 

     Hence, (x ∧ y)' ≤ x' ∨ y' …………….………………………………………............(1)  

     And also, x ∨ y → (x ∧ y)' = ((x' → y') → y') → (((y → x) → 𝑦')')' 

                                                   = ((x' → y') → y') → ((y → x) → y')  

                                                   = ((x' → y') → y') → ((x' → y) →y') = m                  

     Hence, x' ∨ y' ≤ (x ∧ y)' …………………………………………….……………... (2). 
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     Therefore, from (1) and (2), we have (x ∧ y) ' = x' ∨ y'. 

14) x ≤ y, x ≤ z implies x ≤ y ∧ z 

     Assume x ≤ y and x ≤ z, then x → y = m and x → z = m respectively.  

     Then x → (y ∧ z) = x → [(y → z) → y]  

                            = [(y → z) → y] → x 

                            = [(y →z) → y] → (m → x)  

                            = [(y → z) → y] → ((x → z) → x)  

                            = [(z → y) →y] ∧ m → ((z → x) → x) ∧ m  

                            = [(y → z) →z] → ((x → z) → z) 

                            = (x→ z) → ([(y → z) → z] → z)  

                            = (x → z) → (y → z)   (Since ([(y → z) → z] → z) = (y → z))               

                            = y → ((x →z) → z) ∧ m)  

                            = y → ((z → x) → x))  

                            = (z → x) → (y → x) 

                                  = (x → z) → (x → y) = m (by using Lemma 2.4). Therefore, x ≤ y ∧ z. 

15) Assume y ≤ x and z ≤ x, then y → x = m and z → x = m respectively. 

      Then (y ∨ z) → x = ((y → z) → z) → (m → x)  

                             = ((y → z) → z) ∧ m) → (m → x)  

                             = ((z → y) → y) → ((y → x) → x) 

                             = ((z → y) → y) → ((y → x) → x) ∧ m)  

                             = ((z → y) → y) → ((x → y) → y) 

                             = (x → y) → (((z → y) → y) → y)  

                             = (x → y) → (z → y) 

                             = z → ((x → y) → y)  

                             = z → ((y→ x) → x)  

                             = (y → x) → (z → x) = m. Hence, y ∨ z ≤ x. 

16) Consider ((x ∨ y) → z) ≤ (x → z) = ((x ∨ y) → z) → (x → z)  

                                                       = (((x → y) → y) → z) → (x → z) 

                                                       = ((((x → y) → y)  m) → (zm)) → (x → z)  

                                                       = (((y → x) → x) → z) → (x → z)  

                                                       = z→ ((y → x) → x) → (x → z)  

                                                       = (x → z) → (y → x) → (x → z)  

                                                       = (y → x) → (x → z) → (x →z)  
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                                                       = (y → x) → m = m (since (x → z) → (x → z) = m)  

     Similarly, we have ((x ∨ y) → z) ≤ (y → z) = ((x ∨ y) → z) → (y → z)  

                                                                     = (((x → y) → y) → z) → (y → z)  

                                                                     = z→ ((x → y) → y) → (y → z)  

                                                                     = (y → z) → (x → y) → (y → z) 

                                                                     = (x → y) → (y → z) → (y → z) 

                                                                     = (x → y) → m = m. 

     Therefore, ((x ∨ y) → z) ≤ x → z and ((x ∨ y) → z) ≤ y → z hold. 

17) Consider (x → z) → ((x ∧ y) → z) = (x ∧ y) → ((x → z) → z)  

                                                        = (x ∧ y) → (((x → z) → z) ∧ m)  

                                                        = (x ∧ y) → ((z → x) → x)  

                                                        = (z → x) → ((x ∧ y) → x)  

                                                        = (z → x) → (x → (x ∨ y)) 

                                                        = (z → x) → (x → ((x → y) →y))  

                                                        = (z → x) → ((x → y) → (x → y))  

                                                        = (z → x) → ((y → x) → (y → x)) 

                                                        = (z → x) → m = m (by using Lemma 2.4).  

     Therefore, (x → z) → ((x ∧ y) → z) = m. Hence, x → z ≤ (x ∧ y) → z. 

     Similarly, we have (y → z) → ((x ∧ y) → z) = (x ∧ y) → ((y → z) →z)  

                                                                       = (x ∧ y) → (((y → z) →z) ∧m)  

                                                                       = (x ∧ y) → ((z → y) →y)  

                                                                       = (z → y) → ((x ∧ y) →y)  

                                                                       = (z → y) → (y → (x∧ y)) 

                                                                       = (z → y) → (y → (x ∨ y))  

                                                                       = (z → y) → (y → (y ∨ x))  

                                                                       = (z → y) → (y → (y →x) →x) 

                                                                       = (z → y) → (y →x) → (y →x)  

                                                                       = (z → y) →m = m. (by using Lemma 2.4).  

 Therefore, y → z ≤ (x ∧ y) → z. 

18) From the above Theorem 1.2.2.5 (2) and Theorem 1.2.2.5 (4), we have 

      (x ∨ y) → z ≤ (x → z) ∧ (y → z) …….………………………………………….…. (1) 

 And it remains to show that the other way (x → z) ∧ (y→ z) ≤ (x ∨ y) → z. 

 Now [ (x → z) ∧ (y→ z)] → (x ∨ y) → z  
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                = [((x → z) → (y → z)) → (x →z)]→ [((x → y) → y) → z]  

                      = [((x → y) → y) → z] → [((x → z) → (y → z)) → (x→ z)]  

                = [(x → z) → (y → z)] → [(((x → y) → y) → z→ (x → z)]   

                = [(x → z) → (y → z)] → [(x → z) → (((x → y) → y) → z)]  

                = [y → ((x → z) → z)] → [((x → y) → y) → ((x → z) → z)]  

                = ((x → y) → y) → [(y → ((x→ z) → z) → ((x → z) → z))]  

                = ((x → y) → y) → [((((x → z) → z) → y) → y)] 

                = ((x → z) → z) → y → [(((x→ y) → y) → y)] 

                = (((x → z) → z) → y) → (x → y) 

                ≥ x → ((x → z) → z) = (x → z) → (x → z) = m. 

      Hence (x→ z) ∧ (y → z) → (x ∨ y) → z = 1, then (x → z) ∧ (y → z) ≤ (x ∨ y) → z... (2) 

 Therefore, from (1) and (2) we have (x ∨ y) → z = (x → z) ∧ (y → z). 

19) Clearly from the above Theorem 1.2.2.5 (3) and Theorem 1.2.2.5 (5), we have  

(x → z) ∨ (y→ z) ≤ (x ∧ y) → z…………………………………………………….… (1) 

And it remains to show that the other way (x ∧ y) → z ≤ (x → z) ∨ (y → z). 

 Now (x ∧ y) → z → (x → z) ∨ (y → z)  

                = [((y → x) → y) → z] → [((y → z) → (x → z)) → (x → z]  

                = [z → ((y → x) → y)] → [((y → z) → (x → z)) → (x→ z)]  

                = [(y → x) → (z → y)] → [((y → z) → (x → z)) → (x → z)]  

                = [(y → x) → (y → z)] → [((y → z) → (x→ z)) → (x → z)]  

                = (y → z) → (x → z) → [((y→ x) → (y → z)) → (x → z)]   

                = x → ((y → z) → z) → [((y → x) → (y → z)) → (x → z)]  

                = x → ((z → y) → y) → [((y → x) → (y → z)) → (x → z)]  

                = (z → y) → (x → y) → [((y → x) → (y → z)) → (x → z)]  

                = (y → x) → (y → z) → [((z → y) → (x → y)) → (x → z)]  

                = (y → x) → (y → z) → [x → ((z → y) → y) → (x → z)]  

                = (y → x) → (y → z) → [x → ((y → z) → z) → (x → z)]  

                = (y → x) → (y → z) → [(y → z) → (x → z) → (x → z)]  

                = (y → x) → (y → z) → [(y → z) → m]  

                = (y → x) → (y → z) → m = m. 

      Hence (x ∧ y) → z → (x → z) ∨ (y → z) = m, then (x ∧ y) → z → (x → z) ∨ (y → z) .. (2)  

      Therefore, from (1) and (2), we have (x ∧   y) → z = (x → z) ∨ (y →z). 

20)  x → (y ∧ z) = x → ((y → z) → y) (by Definition 2.1(2)). 
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                     = ((y → z) → y) → x (by 6 Definition 2.1). 

                     = ((z → y) → y) → x (by 6 Definition 2.1). 

                     = (z ∨ y) → x (by 1 of Definition 1.2.1.1) 

                     = (y ∨ z) → x (commutativity of join) 

                     = (y → x) ∧ (z →x) (by 6 Definition 1.2.2.1) 

                     = (x → y) ∧ (x → z)  

21) x → (y ∨ z) = (y ∨ z) → x  (by 6 of Definition 2.1) 

                    = (y ∧ z) → x  

                    = (y → x) ∨ (z → x) (by 7 of Definition1.2.2.1) 

                    = (x → y) ∨ (x → z) (by Definition 2.1).                                                                                                                                                                                                                                                                                                                                                                       

Remark 2.9: By 8 of Theorem 2.8, x ≤ y, implies y ≤ x  for any x, y ∈ L. Such condition is 

called order reversing. 

Theorem 2.10. In L, the following conditions are equivalent for all x, y ∈ L. 

1) L is implicative algebra 

2) x ∧ y ≤ x, y ≤ x ∨ y 

3) x ∨ y is the least upper bound of {x, y} 

4) x ∧ y is the greatest lower bound for {x, y} 

Proof: Let x, y, z, t ∈ L. 

(1) ⇒ (2). Assume L is implicative algebra. 

Then (x ∧ y) → x = [(x → y) → x] → x = x→ [(x → y) → x] = (x → y) → (x → x )  

   = (x → y) → m = m. Therefore, x ∧ y ≤ x. 

Similarly, x ∧ y ≤ y implies x ∧ y → y = ([(x → y) → x] → y) = y→ [(x → y) → x]  

   = (x → y) → (y→x) = (x → y) → (x → y) = m.  

And x ≤ x ∨ y = x → (x ∨ y) = x → ((x → y) →y = (x → y) → (x → y) = m.   

Therefore, x ≤ x ∨ y.  

Similarly, y ≤ (x ∨ y) = y → (x ∨ y) = y → ((x → y) → y) = y → (((x → y) → y)  m) 

  = y → ((y → x) →x) = (y → x) → (y → x) = m. Therefore, y ≤ x ∨ y. 

(2) ⇒ (3). Assume (2). From 2, we get x ≤ x ∨ y and y ≤ x ∨ y. Thus x ∨ y is an upper bound 

of {x, y}. Let t be any other upper bound of {x, y}. Then x ≤ t and y ≤ t. By Theorem 2.8 and 

our assumptions (x ∨ y) → t = (x → t) ∧ (y → t) = m ∧ m = m. Thus, x ∨ y ≤ t. Hence, x ∨ y is 

least upper bound of {x, y} 
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(3) ⇒ (2). Since x ∨ y is least upper bound of {x, y}, we have x, y ≤ x ∨ y and then x ∧ (x ∨ y)               

= x, y ∧ (x ∨ y) = y. Now x ∧ y = x ∧ (y ∧ (x ∨ y)) = y ∧ x ∧ (x ∨ y) = y ∧ x. 

This implies ∧ is commutative and hence by Theorem 1.2.1.10 L is distributive lattice so that  

x ∧ y ≤ x, y. 

(2) ⇒ (4). Assume (2). From 2, x ∧ y is lower bound of {x, y}. Let t be any other lower bound 

of {x, y}. Then t → x = m and t → y = m. Now from conditions of Definition 2.1, Lemma 2.4, 

and Theorem 2.8, it follows that 

 t → (x ∧ y) = (x ∨ y ) → t = (x ∨ y ) → (m → t) = (x ∨ y )→ (t → y) → t 

    = (x ∨ y ) → ((y → t ) → t) = (x ∨ y ) → ((t → y) → y) = (t → y) → ((x ∨ y) → y) 

    = (t → y) → (((x → y) → y) → y) = (t → y) → ((x → y) = ((x → (y → t) → t) 

    = (y → t) → (x → t  ) = (t → y) → (t → x) = m. 

That is, t ≤ x ∧ y. Hence, x ∧ y is the greatest lower bound of {x, y}. 

(4) ⇒ (1). Assume 4 holds. From 4, it follows x ∧ y ≤ x and x ∧ y ≤ y. 

1)  x ∧ x ≤ x implies x ≤ x. Therefore, ≤ is reflexive. 

2)  Let x ≤ y and y ≤ x. Then x → y = y → x = m. We have x = y. Therefore, ≤ is anti symmetric. 

3) Let x ≤ y and y ≤ z. Since ∧ associative in L and x ∧ y = x and y ∧ z = y. 

We have, x ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ y = x. Therefore, ≤ is transitive. 

Thus, (L, ≤) is a poset. And also, x ∧ y ≤ x implies x ∧ y = (x ∧ y) ∧ x = y ∧ x. By Theorem 

1.2.1.13, L is distributive lattice. Hence, L is an implicative algebra. 

Theorem 2.11: For any x, y, z ∈ L, the following are equivalent. 

1) L is implicative algebra 

2) The poset (L, ≤) is directed above 

3) (L, ∨, ∧) is a distributive lattice 

4) ∨ is commutative 

5) ∧ is commutative 

6) ∨ is right distributive over ∧ 

7) The relation θ: = {(x, y) ∈ L × L: y ∧ x = x} is anti symmetric. 

Proof. Let x, y, z ∈ L.  

(1) ⇒ (2): Assume L is an implicative algebra. Then L is a lattice and for all x, y ∈ L, there 

exists 1 ∈ L such that x ≤ 1 and y ≤ 1. This implies the poset (L, ≤) is directed above. 

(2) ⇒ (3): Assume the poset (L, ≤) is directed above. For every pair x, yL, there exists a least 

upper bound x  y, and since L is lattice, there is also greatest lower bound x  y. For to be 

distributive, we need to show that for all x, y, z  L. x  (y  z) = (x  y)  (x  z). This implies 
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(L, ∨, ∧) is a distributive lattice. (3) ⇒ (4), Assume (L, ∨, ∧) is a distributive lattice, in 

distributive lattice both, both ∨ (join) and ∧ (meet) area commutative by definition. For any 

elements x, y L, we have x ∨ y = y ∨ x. 

(4) ⇒ (5) if ∨ is commutative, then the lattice properties ensure that ∧ is also commutative. 

This follows directly from the duality between operations ∨ and ∧. 

(5) ⇔ (6) are clear from theorem 1.2.1.10. (6) ⇔ (7) Assume (6), the relation θ defines a partial 

order if it is anti symmetric, that is if x ∧ y = x and x ∧ y = y, then x = y. Hene θ anti symmetric. 

We finish the theorem by establishing (7) ⇒ (1): Assume (7) and suppose x, y ∈ L. Then (x ∧ 

y) ∧ (y ∧ x) = y ∧ x and (y ∧ x) ∧ (x ∧ y) = x ∧ y so that the elements (x ∧ y, y ∧ x), (y ∧ x, x 

∧ y) belongs to θ, and hence x ∧ y = y ∧ x. Now, by theorem 2.10, we have (L, ≤) is a poset in 

which, for any x, y ∈ L, x ∧ y is greatest lower bound (glb) of x and y and x ∨ y is the least 

upper bound (lub) of x and y so that L is a lattice and hence a distributive lattice. This implies 

(L, ≤) is directed above by (1). Hence, L is an implicative algebra.  

The following is also a characterization of an IADL. If L is an ADL with 0, then for any a ∈ L, 

the interval [0, a] is a bounded distributive lattice. Hence, we can extend many concepts 

existing in the class of distributive lattices to the class of ADLs. The following theorem justifies 

the definition of IADL given in Definition 2.1. 

Theorem 2.12: Let L be an ADL with 0 and a maximal element m. Then the following are 

equivalent. 

1) L is IADL 

2) [0, a] is implicative algebra for all a ∈ L 

3) [0, m] is implicative algebra. 

Proof. Let L be an ADL with 0 and maximal element m and a ∈ L. 

(1) ⇒ (2). Assume that L is an IADL and a ∈ L. We know that [0, a] is a bounded 

distributive lattice. 

Now, define a binary operation → a on [0, a] by x → a y = (x → y) ∧ a for any x, y ∈ [0, a]. 

Suppose c = d and e = f, then c → a e = (c → e) ∧ a = (d → f) ∧ a = d → a f for all c, d, e, f ∈ 

[0, a]. Thus → a on [0, a] is well defined. Let x, y, z ∈ [0, a]: 

1) Since x = x ∧ a, and y ∧ a = y, we have, 

x → a (y → a z) = [x → (y → a z)] ∧ a  

    = [x → ((y → z) ∧ a] ∧ a  

    = [x → (y → z)] ∧ a  

    = [y → (x → z)] ∧ a  
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    = [y → ((x → z) ∧ a)] ∧ a  

    = [y → (x → a z)] ∧ a  

    = y → a (x → a z). 

2) a → a x = (a → x) ∧ a = x ∧ a = x. 

3) x → aa = (x → a) ∧ a = a ∧ a = a. 

4) x → a y = (x → y) ∧ a = (y → x ) ∧ a = y → a x. 

5) (x → a y) → a y = ((x → a y) → y) ∧ a = [((x → y) ∧ a) → y] ∧ a = [(x → y) → y] ∧ a  

      = [(y → x) → x] ∧ a = (y → a x) → a x. 

6) 0 = 0 → a 0 = (0 → 0) ∧ a = a ∧ a = a. 

Therefore, [0, a] is an implicative algebra for all a ∈ L. 

(2) ⇒ (3). Assume [0, a] is implicative algebra, since a = m is an element of L, and we are 

given that [0, a] is implicative for all a ∈ L, it follows trivially that [0, m] is implicative. The 

condition applies to all a ∈ L, and m is specific element in L. Therefore [0, m] is implicative. 

(3) ⇒ (1). Assume that [0, m] is an implicative algebra in which the binary operation (→) is 

denoted by → m. Define x → y = x ∧ m → m y ∧ m for any x, y ∈ L. Let x, y, z ∈ L, 

1) x ∨ y = [x ∧ m → m y ∧ m] ∧ m → m y ∧ m = (x → y) → y. 

2) x ∧ y = [(x ∧ m → m y ∧ m) ∧ m → m x ∧ m] = [(x → y) → x]. 

3) x → (y → z) = x ∧ m → m (y ∧ m → m z ∧ m) ∧ m = x ∧ m → m (y ∧ m → m z ∧ m)  

= y ∧ m → m (x ∧ m → m z ∧ m) = y ∧ m → m (x ∧ m → m z ∧ m) ∧ m = y → (x → z). 

4) x → y = x ∧ m → m y ∧ m = (y ∧ m) → m (x ∧ m)) = y → x. 

5) m → x = m ∧ m → m x ∧ m = x. 

6) x → m = x ∧ m → mm ∧ m = m. 

7) 0 = 0 → 0 = 0 ∧ m → m 0 ∧ m = m. 

Therefore, L is IADL 

Lemma 2.13: Let x, y ∈ L. Then the following are equivalent. 

1) (x] ⊆ (y] 

2) y ∧ x = x 

3)  x ∧ t ≤ y ∧ t all t ∈ L. 

Proof.  Let x, y, z ∈ L. We can easily prove using Lemma 2.4 and Theorem 2.8 as follows, 

(1) ⇒ (2). Since x ∈ (x] ⊆ (y], then x ∈ (y] so that x = y ∧ t for some t ∈ L. 

Thus, y ∧ x = y ∧ (y ∧ t) = (y ∧ y) ∧ t = y ∧ t = x (since ∧ is associative). 

(2) ⇒ (3). If y ∧ x = x, then for any t ∈ L, (x ∧ t) → (y ∧ t) = (y ∧ x ∧ t) → (y ∧ t) =  

(x ∧ y ∧ t) → (y ∧ t) = (x → (y ∧ t)) ∨ ((y ∧ t → (y ∧ t)) (By 7 of Definition 1.2.2.1)  
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   = (x → (y ∧ t)) ∨ m = m. Thus, x ∧ t ≤ y ∧ t. 

(3) ⇒ (1).  Let x ∈ (x] such that x ∧ t ≤ y ∧ t all t ∈ L. Put t = x, x ∧ x ≤ y ∧ x ≤ x so that x = y 

∧ x. Thus, x ∈ (y]. Therefore, (x] ⊆ (y]. 

Theorem 2.14: Let L be an ADL with zero and maximal element m. Then L is an IADL if and 

only if the set of principal ideal P I(L) is an implicative algebra. 

Proof. Let L be an ADL with zero and maximal element m. Suppose L is an IADL, then since 

(0] and (m] are least and greatest element of P I(L), (P I(L), ∨, ∧) is bounded. Clearly (P I(L), 

⊆) is a poset under set inclusion ⊆.  For (x], (y] ∈ P I(L), (x] ∧ (y] = (x ∧ y] = inf {(x], (y]} 

and (x] ∨ (y] = (x ∨ y] = sup{(x], (y]}. Therefore, (P I(L), ∨, ∧) is a bounded lattice. Now we 

define (x] → (y] = (x → y] for any x, y ∈ L. Using Lemma 2.13 we prove that the binary 

operation → on P I(L) is well defined. If (a] = (b] and (c] = (d], then a ∧ b = b, b ∧ a = a, c ∧ d 

= d, d ∧ c = c. 

Now a → c = a → (d ∧ c) = (a → d) ∧ (a → c) = ((a ∨ b) → d) ∧ (a → c) 

  = (a → d) ∧ (b → d) ∧ (a → c) ≤ (b → d) ∧ (a → c) ≤ a → c. 

Hence (b → d) ∧ (a → c) = (a → c). This implies that (a → c] ⊆ (b → d] and similarly we get 

(b → d] ⊆ (a → c]. Therefore, (a → c] = (b → d]. 

Thus, the binary operation → on P I(L) is well defined. Now we can routinely verify that P 

I(L) is an implicative algebra. Let (x], (y], (z] ∈ P I(L). 

1) (x] → ((y] → (z]) = ((x → (y → z)]) = ((y → (x → z)]) = (y] → ((x] → (z]). 

2) (m] → (x] = (x] 

3) (x] → (m] = (m] 

4) (x] → (y] = (y] → (x] 

5) ((x] → (y]) → (y] = ((y] → (x]) → (x] 

6) (0] = (m]. 

Conversely, Let L be an ADL with zero and maximal element m. Suppose P I(L) is an 

implicative algebra. For all x, y ∈ L, define x → y = z ∧ m where (x] → (y] = (z] for some z ∈ 

L. Let (s] = (t], for some s, t ∈ L. Then s ∧ t = t and t ∧ s = s. 

Now s ∧ m = t ∧ s ∧ m = s ∧ t ∧ m = t ∧ m. Thus, the binary operation → on L is well defined. 

Let x, y, z ∈ L. 

1) (x] ∨ (y] = ((x] → (y]) → (y] = (r] → (y] so that x → y = r ∧ m for some r ∈ L, 

      where (x] → (y] = (r] and r → y = v ∧ m for some v ∈ L, where (r] → (y] = (v]. 

      Therefore, (x → y) → y = v ∧ m where ((x] → (y]) → (y] = (v]. 

2) (x] ∧ (y] = (((x] → (y]) → (x]) = ((r] → (x]) where (x] → (y] = (r] for some r ∈ L and 
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((r] → (x]) = (v] for some v ∈ L. Therefore, [(x → y) → x] = v ∧ m. 

3) Let (x], (y], (z] ∈ P I(L) and PI(L) is an implicative algebra. 

(x] → ((y] → (z]) = (y] → ((x] → (z]) such that x → r = v ∧ m where (x] → (r] = (v] and 

 y → z = r ∧ m, where (y] → (z] = (r] for some r, v ∈ L. This implies x → (y → z) = v ∧ m 

where (y] → ((x] → (z]) = (x] → ((y] → (z]) = (v] for some v ∈ L. This also implies  

y → (x → z) = v ∧ m where (y] → ((x] → (z]) = (v] for some v ∈ L.  

Therefore, x → (y → z) = y → (x → z). 

4) (x] → (y] = (r] implies x → y = r ∧ m for some r ∈ L, 

Now y → x = ((y → 0) → (x → 0)) = x → ((y → 0) → 0) = x → y = r ∧ m  

where (y]  →  (x] = (r]. Therefore, x → y = y → x. 

5) (m] → (x] = (x] implies m → x = x ∧ m = x. 

6) (x] → (m] = (m] implies x → m = m ∧ m = m. 

7) (0] = (m] implies 0 → 0 = m ∧ m = m. Therefore, L is an IADL. 

Remark 2.15: In L with 0 ≠ m, → can never be associative. 

Proof. Suppose → on L is associative and 0 ≠ m. 

Let a = b = c ∈ L. Then, by condition 3 of Definition 2.1, we have 

⇒ (a → a) → a = a → (a → a)  

⇒ m → a = a → m  

⇒ a = m (This implies m → a = a → m and thus a = m),  

Hence, 0 = m, leads to a contradiction.  

Therefore, → can never be associative 
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Conclusion 

In this project we have discussed about the concept of implicative almost distributive lattice 

and studied some of their properties. As a result, we have identified gaps between IAs and 

ADLs, we have proved theorems which was not proved, give additional examples regarding to 

our project. Therefore, we are motivated to extend IAs to implicative ADLs in the class of 

ADLs. We have introduced implicative ADLs (IADLs) as a generalization of implicative 

algebras in the class of ADLs. 

 In this project, the theory of implicative almost distributive lattices (IADLs) is introduced and 

we have developed different results related with IADLs. We discussed about necessary and 

sufficient condition to IADLs 
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