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Abstract

In this dissertation, we investigate the well-posedness and persistence of spatial

analyticity of the solution for nonlinear evolution dispersive higher order KdV-

BBM-type equations which governs waves on shallow water surfaces.

We considered the initial value problem (IVP) associated with a fifth order

KdV-BBM type model that describes the propagation of the unidirectional water

wave. We show that the uniform radius of spatial analyticity σ(t) of solution at

time t cannot decay faster than 1/t for large t > 0, given initial data that is

analytic with fixed radius σ0. This significantly improve the previous result an

exponential decay rate of σ(t) for large t obtained in [28].

We also considered the initial value problem (IVP) associated with generalized

KdV-BBM equation and coupled system of generalized BBM equations, subject

to initial data which is analytic in modified Gevrey space with a fixed radius σ0.

It is shown that the uniform radius of spatial analyticity of solutions for both

problems can not decay faster than ct−2/3 as t→∞.

We proved the global well-posedness result of Kadomtsev, Petviashvili - Ben-

jamin, Bona, Mahony (KP-BBM II) equation in an anisotropic Gevrey space,

which complements earlier results on the well-posedness of this equation in anisotropic

Sobolev spaces. In addition, we analyzed the evolution of the radius of spatial an-

alyticity of the solution and we obtained asymptotic lower bound for the radius of

spatial analyticity of the solution for the KP-BBM II equation. We used the con-

servation law, contraction mapping principle and different multilinear estimates

to obtain the results.
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Chapter 1

Introduction

1.1 Background of the Study

Nonlinear evolution equations (NLEEs) are partial differential equations which

contain time derivative has become significant tool for investigating the natural

phenomena of science and engineering. NLEEs appear in an extensive diversity

of applications in solitary wave theory, water waves, propagation of shallow wa-

ter waves, theoretical physics, nuclear physics, plasma physics, chemical physics,

hydrodynamics, fluid dynamics, theory of turbulence, meteorology, optical fibers,

quantum mechanics, coastal engineering, ocean engineering, biomathematics and

such many other applications [8, 50, 72, 73, 77, 91].

Waves are among the most extensive phenomena to be studied and described

by partial differential equations (PDEs). Various fields in science such as optics,

fluid dynamics, especially hydrodynamics and particle physics are the applications

of wave theory and have been actively studied [46]. Waves can occur when a system

of medium is disturbed from its equilibrium state and the disturbance travel or

propagate from one region to another in the system. A wave with speed which is

not affected by its amplitude is usually categorized as linear wave, while the one

with the speed affected by its amplitude is categorized as nonlinear wave. Some

common nonlinear wave equations are the Korteweg-de Vries (KdV), Boussinesq,

Kadomtsev-Petviashvili (KP) and Benjamin-Bona-Mahony (BBM) equations.

Another interesting wave phenomena is the so-called soliton or sometimes

known as solitary wave. Soliton is localized nonlinear wave which maintains its

shape unchanged along the propagation with constant speed [1]. Soliton is one

of the natural phenomena which appear everywhere in daily life. The dynamics

of soliton have changed the daily lifestyle of all people across the world. For ex-

ample, all internet activities, phone conversations are due to soliton transmission,

over transcontinental and transoceanic distances, through optical fiber cables [60].

KdV and BBM equations generate soliton solutions, so does modified regularized

1



Chapter 1 1.1. BACKGROUND OF THE STUDY

long wave (MRLW) equation which represents the dispersed wave phenomenon

such as shallow water wave and phonon packet on nonlinear crystal [73].

Propagation of waves on the surface of an ideal fluid under gravitational force

is governed by the Euler equations [31]. But Euler equations frequently look to

be more complex than what is required for the undertaking of the modeling issue

in practice. Consequently, in literature several approximate models are derived,

among them, Boussinesq equations and its regularized version are the most well

known. In [18], the first and the second-order Boussinesq systems were derived

from the original Euler equations using the first and the second-order approxi-

mations respectively. Both systems describe the two-way propagation of waves.

In 1870 s, Boussinesq derived some model evolution equations that are applica-

ble in principle to describe motions. From the Boussinesq systems, several one

way models for long waves were derived. The most famous one way models are

Korteweg-de Vries (KdV) equation, Benjamin-Bona-Mahony (BBM) equations,

Korteweg-de Vries- Benjamin-Bona-Mahony (KdV-BBM) type model equations

and etc.

A dispersive partial differential equation is a type of mathematical equation

that describes how waves of different wavelengths travel at different speeds. Dis-

persive partial differential equations are often used to model phenomena such as

water waves, light waves, sound waves, and quantum mechanics. Some examples of

dispersive PDEs are the Schrödinger equation, which describes the wave function

of a quantum system, the Korteweg–de Vries equation, which describes the propa-

gation of long waves in shallow water, the sine–Gordon equation, which describes

the motion of a pendulum chain with nonlinear coupling. Dispersive PDEs also

model physical systems in which waves of different frequencies propagate through

a medium at different velocities. For instance, as theoretical models in nonlinear

optics [1], quantum many-body systems [38, 39], and water waves [87, 88].

The most illustrative consequence of dispersive effects is a rainbow, which

occurs when light passes through rain droplets and is split into different colors.

Definition 1.1.1. We say that an evolution equation defined on Rn+1 is dispersive

if its dispersive relation
ω(k)

k
= g(k), is a real valued function, such that g(k)→

±∞ as k → ±∞, where plane-wave solutions are of the form:

u(x, t) = aei(kx−ωt), x ∈ Rn, t ∈ R, (1.1.1)

with k is the wave number, ω is the angular frequency and a is the amplitude.

-2-



Chapter 1 1.1. BACKGROUND OF THE STUDY

As an example, consider the linearized Korteweg-de Vries (Airy) equation ap-

pears as a model for small-amplitude water waves with long wavelength

ut + uxxx = 0. (1.1.2)

If nonlinear effects uux add on the Airy equation, it gives nonlinear dispersive

PDE, which is KdV equation.

Substituting the plane-wave solutions (1.1.1) into the (1.1.2), we find that,

ω(k) = −k3,

and therefore,
ω(k)

k
= −k2,

which is called the dispersive relation and shows that the frequency is a real valued

function of the wave number.

A simple wave of the form (1.1.1) that satisfies the equation (1.1.2) if and only

if ω = −k3. If we denote the phase velocity by v = ω(k)
k

, the solution can be

written u(x, t) = aeik(x−v(k)t), and notice that the wave travels with velocity k.

Thus, the wave propagates in such a way that waves with large wave numbers

travel faster than smaller ones. For the heat equation ut − uxx = 0, we obtain

that ω is complex valued and the wave solution decays exponential in time. On

the other hand the transport equation ut− ux = 0, and the one dimensional wave

equation utt − uxx = 0, are traveling waves with constant velocity.

For developing algorithms or modeling engineering systems, analytical solu-

tions often offer important advantages. Analytical solutions are presented as math-

ematical expressions, they offer a clear view into how variables and interactions

between variables affect the result. Information about the domain of analyticity

of a solution to a partial differential equation can be used to gain understanding of

the structure of the equation, and to obtain insight into underlying physical pro-

cesses [37]. The study of real-analytic solutions to nonlinear PDE has developed

over the last three decades.

Starting with the works of Kato and Masuda [58] for dispersive wave-type

equations, and Foias and Temam [42] for the Navier-Stokes equations, analytic

function spaces have become popular tools to the study of a variety of questions

connected with nonlinear evolution PDEs. In particular, the use of Gevrey-type

spaces has given rise to a number of important results in the study of long time

-3-



Chapter 1 1.1. BACKGROUND OF THE STUDY

dynamics dissipative equation, such as estimating the asymptotic degrees of free-

dom, approximating the global inertial manifolds and a rigorous estimate of the

Reynold’s [70].

The analytic Gevrey space play an important role in various branches of partial

and ordinary differential equations as intermediate spaces between the spaces of

smooth functions C∞ and the analytic functions. In particular, whenever the

properties of a certain operator differ in the C∞ and in the analytic framework,

it is natural to test its behavior on the classes of the Gevrey function. A function

in Gσ,s(R) has radius of analyticity at least σ at every point on the real line. This

fact leads us to consider the following question. Given u0 ∈ Gσ0,s(R) for some

initial radius σ0 > 0, how does the radius of analyticity of the solution u evolve

in time?. The reason for considering initial data in Gσ0,s(R) space is due to the

analyticity properties of Gevrey functions. The main advantage of using Gevrey

space is that they allow us to compare and contrast different types of differential

operators or mappings that behave differently in smooth and analytic spaces. For

instance, we can use Gevrey classes to show that some differential operators are

stable under perturbations in one category but not in another. We can also use

Gevrey classes to find sharp estimates for the regularity or solvability of certain

differential equations.

Local and global well-posedness results of PDEs are important topics in the

theory of PDEs, as they provide information about the existence, uniqueness,

and regularity of solutions to various types of PDEs, as well as their stability

and continuity with respect to the initial and boundary data. There are many

methods and techniques to establish local and global well-posedness results for

different types of PDEs, such as energy methods, contraction principles, Strichartz

estimates, dispersive estimates, Nash-Moser iteration, and so on. These methods

often rely on exploiting some special structures or properties of the PDEs, such

as symmetries, conservation laws, scaling invariance, or integrability.

A global well-posedness result for a PDE is a mathematical statement that

asserts the existence, uniqueness, and regularity of a solution to the PDE for

all times, given some initial and boundary conditions. A global well-posedness

result usually requires some assumptions on the coefficients, the forcing term, and

the data of the PDE, as well as some compatibility conditions between them. It

also implies the stability and continuity of the solution with respect to the data.

Global well-posedness results are important for understanding the qualitative and

quantitative behavior of solutions to PDEs, as well as their physical and geometric

-4-



Chapter 1 1.1. BACKGROUND OF THE STUDY

interpretations.

Local well-posedness result is a weaker notion than well-posedness, which only

requires the existence, uniqueness, and stability of the solution in a small neigh-

borhood of the initial data. This means that the solution may blow up or become

ill-defined after some finite time, or that the solution may depend discontinuously

on the data outside of a small neighborhood.

Usually iterative methods are used to construct local-in-time solutions to non-

linear PDEs, given suitable regularity assumptions on the initial data. These

methods were perturbation in nature (Duhamel’s formula used to approximate

the nonlinear evolution by the linear) and thus do not work directly for large data

and long times. However, for the cases of large data, one can use non-perturbative

tools to gain enough control on the equation to prevent the solution from blowing

up. The most important tool used for doing this is the conservation law.

A conservation law is a principle that states a certain physical quantity does

not change in the course of time within an isolated system. A conservation law

of partial differential equation is a divergence expression which vanishes on so-

lutions of the PDE system. Furthermore, conservation laws have applications in

the study of PDEs such as in showing existence and uniqueness of solutions. The

partial differential equations, which arise in sciences, dynamics, fluid mechanics,

electromagnetism, economics and so forth, express conservation of mass, momen-

tum, energy, electric charge, or value of firm. All the conservation laws of partial

differential equations may not have physical interpretation, but are essential in

studying the integrability of the PDE. The high number of conservation laws for

a partial differential equation guarantees that the equation is strongly integrable

and can be linearized or explicitly solved [2]. Moreover, the conservation laws are

used for analysis, particularly, development of numerical schemes and study the

properties of partial differential equations.

Let us consider PDEs of the form:

∂tM(x, t, ux, uxx, . . . ) + ∂xN(x, t, ux, uxx, . . . ) = 0, (1.1.3)

where M(x, t, ux, uxx, . . . ) is a density, N(x, t, ux, uxx, . . . ) is the associated flux

and u is the solution of the PDE. Integrating equation (1.1.3) with respect to x,

then if N decays sufficiently at the ends, we have

d

dt

∫
R
M dx = 0, (1.1.4)

which implies that
∫
RM dx is a constant of motion. Conservation laws can be

-5-



Chapter 1 1.1. BACKGROUND OF THE STUDY

associated with this constants of the motion. One of the main ways of proving

global existence of solutions of dispersive PDEs is to use conserved quantities.

1.1.1 KdV and BBM Equations

The Korteweg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations

are two typical examples associated with the effects of dispersion, nonlinearity and

describe the propagation of water waves with small amplitude or soliton in other

liquid medium. The KdV equation is a nonlinear partial differential equation of

third order:

ut + ux + 6uux + uxxx = 0, (1.1.5)

where u(x, t) denotes the elongation of the wave at (x, t).

The KdV equation was used as a representation of the evolution of long waves

with a moderate amplitude that propagate in a single direction in shallow water

with uniform depth. Although equation (1.1.5) now bears the name KdV, it was

apparently first obtained by Boussinesq [26]. The study of compressible fluids

in fluid mechanics, the explanation of the characteristics of electron plasmas, the

study of oceanic water waves, and the investigation of mass transport issues related

to chemical compounds are all areas in which the KdV equation is crucial [89].

The KdV equation (1.1.5) is widely recognized as a paradigm for the description

of weakly nonlinear long waves in many branches of physics and engineering.

The KdV equation owes its name to the famous paper of Korteweg and de Vries

[63] published in 1895, in which they showed that small-amplitude long waves on

the free surface of water could be described by the equation

ut + cux +
3c

3h
uux +

ch2

6
υuxxx = 0, (1.1.6)

where u(x, t) is the elevation of the free surface relative to the undisturbed depth

h, c = gh/2 is the linear long wave phase speed, and υ = 1 − 3ρ
gh2 , is the bond

number measuring the effects of surface tension and ρ is the water density.

The Benjamin-Bona-Mahony (BBM) equation also known as the Regularized

Long-Wave equation (RLWE) is the partial differential equation given by

ut + ux + uux − uxxt = 0. (1.1.7)

This equation was studied by Benjamin, Bona, and Mahony in [10] as a modified

KdV equation for modeling long surface gravity waves of small amplitude propa-

gating unidirectionally in (1 + 1)-dimensions. The authors examined the stability

-6-



Chapter 1 1.1. BACKGROUND OF THE STUDY

and uniqueness of the solutions to the BBM equation. This contrasts with the

KdV equation, which is unstable in its high wave number components.

The BBM equation is well known in physical applications. It describes the

model for propagation of long waves which incorporates nonlinear and dissipative

effects. It is used in the analysis of the surface waves of long wavelength in liquid,

hydro magnetic waves, cold plasma, acoustic gravity waves in compressible fluids,

and acoustic waves in harmonic crystals [9]. In certain theoretical investigations,

the BBM equation is superior as a model for long waves, from the standpoint of

existence and stability, the equation offers considerable technical advantages over

the KdV equation. In addition to shallow water waves, the equation is applicable

to the study of drift waves in Plasma or the Rossby waves in rotating fluids. Under

certain conditions, it also provides a model of one-dimensional transmitted waves.

The main mathematical difference between KdV and BBM models is best un-

derstood by comparing the dispersion relation for the equivalent linearized equa-

tions. It is obvious that these linkages only result in similar reactions for waves

with low wave numbers and result in radically different reactions for waves with

high wave numbers. This is one of the reasons that the existence and regularity

theory for the KdV equation is more complex than the theory of the BBM equa-

tion. The BBM equation, replaces the third-order derivative in (1.1.5) by a mixed

derivative, −uxxt, which, inturn, results in a bounded dispersion relation. This

boundedness was utilized to prove existence, uniqueness, and regularity results for

solutions of the BBM equation (1.1.7). Further, while the KdV equation has an

infinite number of integrals of motion, the BBM equation has only three [69].

Bona and Smith [24] established another regularized long wave equation by the

addition of linear dispersion term −uxxt with KdV equation, namely, KdV-BBM

equation

ut + ux +
3

2
uux + νuxxx − (

1

6
− ν)uxxt = 0. (1.1.8)

1.1.2 KdV-BBM Equation and Coupled System of gener-

alized BBM Equations

The starting point of the derivation of higher-order Korteweg-de Vries- Benjamin-

Bona-Mahony (KdV-BBM) type equations are the papers [14] and [18], where

several-parameter variant of the classical Boussinesq coupled system of equations

was derived.

Formal derivations of first and second order Boussinesq systems depend on the
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Chapter 1 1.1. BACKGROUND OF THE STUDY

small parameters say α1 and β1. In dimensionless scaled variables, the family of

first-order Boussinesq system has the form{
ηt + wx + α1(wη)x + β1 (awxxx − bηxxt) = 0,

wt + ηx + α1wwx + β1 (cηxxx − dwxxt) = 0,
(1.1.9)

where the constants a, b, c and d satisfy the following relations{
a = 1

2

(
θ2

1 − 1
3

)
λ1, b = 1

2

(
θ2

1 − 1
3

)
(1− λ1),

c = 1
2

(1− θ2
1)µ1, d = 1

2
(1− θ2

1) (1− µ1),

so that a+ b+ c+ d = 1
3

.

The second-order Boussinesq system is given by
ηt + wx + β1 (awxxx − bηxxt) + β2

1 (a1wxxxxx + b1ηxxxxt)

= −α1(ηw)x + α1β1

(
b(ηw)xxx −

(
a+ b− 1

3

)
(ηwxx)x

)
wt + ηx + β1 (cηxxx − dwxxt) + β2

1 (c1ηxxxxx + d1wxxxxt)

= −α1wwx + α1β1 ((c+ d)wwxxx − c (wwx)xx − (ηηxx)x + (c+ d− 1)wxwxx)

(1.1.10)

where the additional constants a1, b1, c1 and d1 satisfy
a1 = −1

4

(
θ2

1 − 1
3

)2
(1− λ1) + 5

24

(
θ2

1 − 1
5

)2
λ11

b1 = − 5
24

(
θ2

1 − 1
5

)2
(1− λ11)

c1 = 5
24

(1− θ2
1)
(
θ2

1 − 1
5

)
(1− µ11)

d1 = −1
4

(1− θ2
1)

2
µ1 − 5

24
(1− θ2

1)
(
θ2

1 − 1
5

)
µ11,

(1.1.11)

with θ1 ∈ [0, 1], λ1, µ1, λ11 and µ11 are modeling parameters and can take any real

number.

From the second order Boussinesq system (1.1.10), Bona et al. in [14] derived

the unidirectional model, namely, fifth order KdV-BBM equation

ut + ux − γ1uxxt + γ2uxxx + δ1uxxxxt + δ2uxxxxx + 3
2
uux + γ(u2)xxx

− 7
48

(u2
x)x − 1

8
(u3)x = 0,

(1.1.12)

where u : R2 → R. The parameters γ1, γ2, δ1, δ2 and γ are constants that satisfy

the following conditions.

γ1 = 1
2
(b+ d− ρ),

γ2 = 1
2
(a+ c+ ρ),

δ1 = 1
4

[
2 (b1 + d1)− (b− d+ ρ)

(
1
6
− a− d

)
− d(c− a+ ρ)

]
,

δ2 = 1
4

[
2 (a1 + c1)− (c− a+ ρ)

(
1
6
− a
)

+ 1
3
ρ
]
,

γ = 1
24

[5− 9(b+ d) + 9ρ].

(1.1.13)
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Chapter 1 1.1. BACKGROUND OF THE STUDY

Such equation describes the unidirectional propagation of water waves.

From the first order Boussinesq system (1.1.9) Bona et al. in [14] derived, the

KdV-BBM equation. The generalized version of KdV-BBM equation is given by

ut + ux +
3

2
upux + νuxxx − (

1

6
− ν)uxxt = 0, (1.1.14)

where ν = 1
4

[
θ2

1(λ1 − µ1)− 1
3
λ1 + µ1

]
. θ1, λ1 and µ1 formally take any real value

and p is positive integer, (see, [14]).

The KdV-BBM equation analyses the evolution of long waves with modest am-

plitudes propagating in plasma physics and the motion of waves in fluids and other

weakly dispersive mediums. Moreover, rogue waves and lumps occur in several sci-

entific areas, such as fluid dynamics, optical fibers, dusty plasma, oceanography,

water engineering, and other nonlinear sciences [64].

To model two-way propagation of waves in physical systems where nonlinear

and dispersive effects are equally important, systems of nonlinear dispersive equa-

tions have been used. There are different nonlinear dispersive system of equations

that describe different phenomena, and their fundamental properties of solutions

are studied in different functional spaces. For instance, the model derived by Gear

and Grimshaw [43] describes the strong interaction of weakly nonlinear long waves,

the Majda-Biello system [66] arises as a model for the interaction of barotropic

and baroclinic equatorial Rossby waves, the Maxwell-Dirac equation describes the

interaction of an electron with its own electromagnetic field that play a major role

in quantum electrodynamics [11].

In particular, the coupled system of generalized BBM equations which arises in

water wave theory, climate modeling and other situations where wave propagation

is important, is given by . ut + ux − uxxt +
(
P (u, v)

)
x

= 0,

vt + vx − vxxt +
(
Q(u, v)

)
x

= 0,
(1.1.15)

where u and v are real-valued functions of x ∈ R and t ≥ 0. Here, P and Q are

arbitrary homogeneous quadratic polynomials in the variables u and v given by

P (u, v) = αu2 + βuv + γv2,

Q(u, v) = θu2 + λuv + ψv2,

with real valued coefficients α, β, γ, θ, λ and ψ.

-9-



Chapter 1 1.1. BACKGROUND OF THE STUDY

1.1.3 KP-BBM Equation

Consider the mathematical model equations, namely Kadomtsev-Petviashvili

(KP) equation

vt + vx + vxxx + vvx + α∂−1
x vyy = 0, (1.1.16)

and the regularized version, the Kadomtsev-Petviashvili, Benjamin-Bona-Mahony

(KP-BBM) equation

ut − utxx + ux + uux + α∂−1
x uyy = 0, (1.1.17)

where α = ±1. These equations occur naturally in many physical contexts as

universal models for unidirectional propagation of weakly nonlinear dispersive long

waves with weak transverse effects. If α = 1 in (1.1.16) and(1.1.17), the equations

are known as the KP II and KP-BBM II equation respectively, while α = −1,

they are the KP I and KP-BBM I equation.

The Kadomtsev–Petviashvilli (KP) equation, arises in various contexts where

nonlinear dispersive waves propagate principally along the x-axis, but with weak

dispersive effects being felt in the direction parallel to the y-axis perpendicular to

the main direction of propagation.

Note that, in case the wave motion does not vary at all with y, (1.1.16) and

(1.1.17) reduce to the Korteweg–de Vries equation

ut + ux +
3

2
uux +

1

6
uxxx = 0,

and the regularized long-wave equation or BBM-equation

ut + ux +
3

2
uux −

1

6
uxxt = 0,

respectively, which govern the unidirectional propagation of small-amplitude long

water waves in a channel where variation across the channel can be safely ig-

nored [12, 35]. Hence, KP equation is the two-dimensional extensions of the KdV

equation and KP-BBM equation is the two-dimensional extensions of the BBM

equation.

The KP-BBM equation can be used to describe the dynamics of surface gravity

waves in shallow water, such as tsunamis, tidal waves, and storm surges. It can

also be applied to model the propagation of ion-acoustic waves in plasma physics,

where the ions behave as a fluid and the electrons are assumed to be isothermal.

It also used for studying the optical solitons in nonlinear media, where the light

-10-



Chapter 1 1.1. BACKGROUND OF THE STUDY

pulses can maintain their shape and speed due to the interplay of nonlinearity and

dispersion.

In this dissertation, we study the well-posedness result and persistence of

spatial analyticity of the solution to the initial value problems associated with

nonlinear dispersive evolution equations we discussed above. The notion of well-

posedness which is featured here was put forward by the well-known French math-

ematician Hadamard a century ago [48]. In his study, a problem is well-posed sub-

ject to given auxiliary data when there corresponds a unique solution which de-

pends continuously on variations in the specified supplementary data. Hadamard

in [48] pointed out that if the problem is lacking well-posedness properties, it

will probably be useless in practical applications. Auxiliary data brought from

real-world situations typically features at least a small amount of error. The well-

posedness of PDE problems is an important concept in mathematics and physics.

Well-posed problems are important in real practical applications because they en-

sure the stability and regularity of the solutions. If a problem is not well-posed,

it may have no solution, infinitely many solutions, or solutions that are sensitive

to small changes in the data. Such problems are ill-posed and they may have no

real practical applications.

The local well-posedness result can be extended to global well-posedness result

using almost conservation law for the problems we considered. We also study the

persistence of spatial analyticity to the solution of these higher order dispersive

partial differential equations in the class of analytic functions by providing explicit

formulas to lower bounds for the radius of analyticity of the solution.

The persistence of spatial analyticity of the solution means that the solution

remains analytic in space for some time, even if the initial data is only analytic

in a strip around the real axis. The persistence of spatial analyticity for the

solutions of PDE problems depends on several factors, such as the type of the

PDE (elliptic, parabolic, hyperbolic, etc.), the coefficients of the PDE, the initial

data, the boundary conditions, the dimension of space, conservation law etc.

The radius of analyticity of the solution is a measure of how smoothness of the

solution is in the complex domain. It is defined as the largest distance from the

real axis to the nearest complex singularity such that the solution can be extended

as a holomorphic function. Studying the radius of analyticity of the solution can

help us to understand the structure and properties of the equation, as well as the

underlying physical processes.

There are many studies that investigate the radius of analyticity of the solution

-11-



Chapter 1 1.2. OBJECTIVES OF THE STUDY

for different types of equations, such as the Navier-Stokes system [55], Schrödinger

equation [84] and the semi-linear parabolic system [32] etc. These studies use

various methods and techniques to obtain lower or upper bounds for the radius of

analyticity, and to analyze how it changes over time. Some of the results showed

that the radius of analyticity can decay exponentially or algebraically as time

increases, depending on the equation and the initial data.

The study of well-posedness and persistence of spatial analyticity of the so-

lutions of higher order nonlinear dispersive PDEs is challenging because of the

presence of nonlinear and dispersive terms, which can cause the solution to blow

up or lose regularity in finite time. Therefore, in this study we used various tech-

niques and tools to analyze the problems, such as Fourier analysis, multilinear

estimates, contraction mapping principle, and approximate conservation laws.

1.2 Objectives of the Study

In this study, the initial value problems associated with higher order KdV-

BBM type equations, coupled system of generalized BBM equations and KP-BBM

equation are taken into consideration. We investigate the well-posedness and

persistence of spatial analyticity of the solution for these higher order nonlinear

evolution dispersive PDEs. Lower bound for the radius of spatial analyticity of

solutions also established for the problems under consideration.

1.2.1 General Objective

The main objective of this study is to investigate the well-posedness proper-

ties and persistence of spatial analyticity of the solution of nonlinear evolution

dispersive higher order KdV-BBM- type equations in Gevrey space Gσ,s(R) and

modified Gevrey space Hσ,s(R).

1.2.2 Specific Objectives

The specific objectives of this study are:

v to obtain local and global well-posedness results of higher order KdV- BBM

type equations and coupled system of generalized BBM equations in Gevrey

space and modified Gevrey space ,

-12-



Chapter 1 1.3. SIGNIFICANCE OF THE STUDY

v to obtain local and global well-posedness results of KP-BBM equation in

modified anisotropic Gevrey space Hσ1,σ2,s1,s2(R2),

v to improve the exponential lower bound of the radius of spatial analyticity

to algebraic one for the solution of fifth order KdV-BBM equation,

v to analyze the evolution of radius of spatial analyticity to the solutions of

nonlinear dispersive coupled systems of generalized BBM equations in ana-

lytic modified Gevrey space,

v to construct asymptotic lower bound for the radius of spatial analyticity to

the solution of generalized KdV-BBM equation in modified Gevrey space

Hσ,s(R).

1.3 Significance of the Study

The concept of well-posedness and persistence of spatial analyticity of the

solution is a significant topic in the field of nonlinear partial differential equations.

The problems we considered in this dissertation are mathematical models of waves

on shallow water surfaces. They have many applications in physics, engineering,

biology, and other sciences. The well-posedness of these problems has important

property to ensure the stability and predictability of the problems. The results of

this study may have the following importance:

ã To provide good understanding and insight for models governing physical

process having a wave structure.

ã To study the well-posedness of other classes of differential equations in dif-

ferent classes of functions.

ã To identify well-posed problems which arise in practical applications.

ã To provide background information for postgraduate students and other re-

searchers who work on related area.

-13-



Chapter 2

Preliminaries

It is important to identify the functional spaces in which solutions to PDEs

belong and to define convergence in those spaces in order to establish Theorems

of existence, uniqueness, and continuous dependence. In this chapter, notations,

Definitions, function spaces, and known results are presented that will be used in

the subsequent sections and chapters.

Throughout this study, we use a positive constant C to denote a constant that

may vary from one line to the next. If A and B are two non-negative quantities,

the notation A . B stands for A ≤ CB, A ∼ B stands for A . B and B . A.

We also use A� B to mean A ≤ cB for some small constant c > 0.

2.1 Space of Functions

In this section, we introduce some well-known function spaces and the space-

time Fourier transform.

For 1 ≤ p <∞, Lp := Lp(R) denotes the set of pth-power Lebesgue-integrable

functions. The norm of a function f ∈ Lp(R) is given by

‖f‖Lp(R)=

(∫
R
|f |pdx

) 1
p

.

For the case p =∞, L∞(R) define with the norm

‖f‖L∞(R)= ess sup |f |,

where ess sup |f | is the essential supremum of |f | which is defined as the minimal

c ∈ R such that |f(x)| ≤ c, almost everywhere, that is,

ess sup |f | = inf{c ∈ R : |f(x)| ≤ c a.e}.

We also write ‖f‖Lp(Rd) if the dimension d is clear from the context. The Lp–space

is defined as

Lp(Rd) = {f : Rd → C : f is measurable and, ‖f‖Lp(Rd) <∞}.
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Chapter 2 2.1. SPACE OF FUNCTIONS

Theorem 2.1.1 (Hölder inequality [3]). Suppose that 1 6 p 6∞ and 1
p

+ 1
q

= 1.

If f and g are measurable functions on Rd, then

‖fg‖L1 6 ‖f‖Lp ‖g‖Lq ,

that is, if f ∈ Lp and g ∈ Lq, then fg ∈ L1.

More generally, if 1 6 p, q 6∞ and 1
p

+ 1
q

= 1
r
, then

‖fg‖Lr 6 ‖f‖Lp‖g‖Lq .

If f : Rd × R → R, and 1 ≤ q, p ≤ ∞, then the mixed space-time Lebesgue

space LqtL
p
x := LqtL

p
x(Rd × R) is defined via the norm

‖f‖LqtLpx(Rd×R) =
∥∥‖f(·, t)‖Lpx(Rd)

∥∥
Lqt (R)

=

(∫
R

(∫
Rd
|f(x, t)|pdx

) q
p

dt

) 1
q

,

with the usual modification when p or q is ∞, that is,

‖f‖L∞t Lpx(Rd×R) = sup
t∈R
‖f(·, t)‖Lpx(Rd),

and

‖f‖LqtL∞x (Rd×R) =
∥∥∥ sup
x∈Rd
|f(x, t)|

∥∥∥
Lqt (R)

.

An analogous definition is used for the other mixed norms LpxL
q
t , with the order of

integration in time and space interchangeably. If p = q, then we write LpxL
q
t = Lpx,t.

The space of square-integrable, measurable functions defined on a measurable

subset Ω of Euclidean space is denoted by L2(Ω). In fact, throughout, Ω will

always be R , R2 or R3 and we will usually not bother to display the set, but just

write L2 for L2(Rd), d = 1, 2, 3.

For any Banach space X and T > 0, C(0, T ;X) is the class of continuous maps

from [0, T ] into X with its usual norm

‖u‖C(0,T ;X)= sup
t∈[0,T ]

‖u‖X .

If X and Y are Banach spaces, then their Cartesian product X × Y is also a

Banach space with product norm defined by

‖(u, v)‖X×Y = ‖u‖X+‖v‖Y ,

and hence

‖(u, v)‖C(0,T ;X×Y )= sup
t∈[0,T ]

‖u‖X+ sup
t∈[0,T ]

‖v‖Y . (2.1.1)
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Chapter 2 2.1. SPACE OF FUNCTIONS

Definition 2.1.2. ([68]) Let (X, ‖.‖X) and (Y, ‖.‖Y ) be normed spaces.

A map T : X → Y is called a contraction mapping, if there exists a constant

θ ∈ [0, 1) such that

‖T (x)− T (y)‖Y ≤ θ‖x− y‖X ,

for all x, y ∈ X.

Theorem 2.1.3. (Banach’s fixed point theorem [68]). Let (X, ‖.‖X) be a Banach

space. If T : X → X is a contraction map, then the fixed point equation T (x) = x

has a unique solution.

Banach’s fixed point theorem (also called the contraction principle) is one of the

most important tool used to prove the well-posedness result of nonlinear evolution

equations. It is also called an existence and uniqueness theorem for fixed points

of certain mappings.

Definition 2.1.4. [51] We define a complex-valued smooth, rapidly decreasing

functions

S(Rd) = {u ∈ C∞(Rd) : ‖u‖α,β = sup
x∈Rd
|xα∂βu(x)| <∞, }

for all multi-indices’s α = (α1, α2, α3, ..., αd), β = (β1, β2, β3, ..., βd) ∈ Nd
0, where

N0 := N ∪ {0}. The space of all Schwartz functions on Rd is denoted by S(Rd).

Definition 2.1.5. [51] The dual space of the Schwartz space S(Rd) is called the

space of tempered distributions, denoted by S
′
(Rd).

We write

u(φ) = 〈u, φ〉,

for u ∈ S ′(Rd), φ ∈ S(Rd).

Definition 2.1.6. [83] The Fourier transform of f ∈ S
(
Rd
)

is denoted by Ff or

f̂ and defined by

Ff = f̂(ξ) =
1

(2π)
d
2

∫
Rd
f(x)e−ix·ξdx,

where x · ξ =
∑d

i=1 xiξi for x = (x1, x2, . . . , xd) , ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd.

Then, the mapping ·̂ : S(Rd)→ S(Rd) is an isomorphism with inverse transform,

given by

f(x) =
1

(2π)
d
2

∫
Rd
f̂(ξ)eix·ξdξ.
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The spatial Fourier transform f(x) 7→ f̂(ξ) brings into view the oscillation of

a function in space. In the analysis of dispersive PDE, it is also important to

analyze the oscillation in time, which leads to the introduction of the space-time

Fourier transform. If f : Rd ×R −→ C is a complex scalar field, we can define its

space-time Fourier transform f̂ : Rd × R −→ C, formally as

f̂(ξ, τ) =
1

(2π)
d
2

∫
Rd

∫
R
f(x, t)e−i(x·ξ+tτ)dtdx.

Definition 2.1.7. The convolution of the functions f, g ∈ L1(Rd) is denoted by

f ∗ g and defined as

(f ∗ g)(x) =

∫
Rd
f(y)g(x− y) dy.

Note that the following important properties of the Fourier transform

(i) Parseval’s relation∫
Rd
f(x)h(x)dx =

1

(2π)
d
2

∫
Rd
f̂(ξ)ĥ(ξ)dξ.

(ii) Convolution

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Proposition 2.1.8. [51] F(L2(Rd)) = L2(Rd). Moreover, F|L2(Rd) : L2(Rd) →
L2(Rd)is a unitary operator and in particular

‖Fu‖L2(Rd) = ‖u‖L2(Rd), u ∈ L2(Rd).

Natural spaces to measure the regularity of the initial data in Cauchy problems

are the classical Sobolev spaces Hs(Rd), s ∈ R. Sobolev spaces are named after

the Russian mathematician Sergei Sobolev. Their importance comes from the

fact that weak solutions of some important partial differential equations exist in

appropriate Sobolev spaces, even when there are no strong solutions in spaces of

continuous functions with the derivatives understood in the classical sense.

Definition 2.1.9. [62] Assume that Ω is an open subset of Rd , u ∈ L1
loc(Ω) and

α ∈ N0 be a multi-index. Then v ∈ L1
loc(Ω) is the αth weak partial derivative of

u, written Dαu = v, if ∫
Ω

uDαϕdx = (−1)|α|
∫

Ω

vϕdx

for every test function ϕ ∈ C∞0 (Ω).
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Definition 2.1.10. [62] Assume that Ω is an open subset of Rd. The Sobolev

space W k,p(Ω) consists of functions u ∈ Lp(Ω) such that for every multi-index α

with |α| ≤ k, the weak derivative Dαu exists and Dαu ∈ Lp(Ω). Thus

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k}.

If u ∈ W k,p(Ω), we define its norm

‖u‖Wk,p(Ω) =

( ∑
|α|≤k

∫
Ω

|Dαu|pdx
) 1

p

, 1 ≤ p <∞,

and for p =∞

‖u‖Wk,∞(Ω) =
∑
|α|≤k

‖Dαu‖L∞(Ω) =
∑
|α|≤k

ess sup
Ω
|Dαu|.

The Sobolev space Hk(Ω) is the space of functions u in L2(Ω) such that the

Dαu for any α = 0, 1, ..., k are also in L2(Ω), where the derivatives are interpreted

in the sense of distributions. Thus,

Hk(Ω) = {u ∈ L2 : Dαu ∈ L2,where α = 0, 1, 2, ..., k}.

The notation W k,2 is also frequently used instead of Hk. One then regards Hk as

a member of a more general family of Sobolev spaces W k,p.

We write 〈ξ〉 = (1 + |ξ|2)
1
2 and define the Bessel potential operator

Js : S
′
(Rd)→ S

′
(Rd), 〈FJsu, φ〉 = 〈Fu, 〈ξ〉sφ〉, φ ∈ C∞0 (Rd).

Definition 2.1.11. [51] Let s ∈ R. We define the L2- based inhomogeneous

Sobolev spaces Hs (R) as

Hs (R) =
{
u ∈ S ′ (R) : Jsu ∈ L2 (R)

}
,

and we have

‖u‖2
Hs(R) = ‖Jsu‖2

L2(R) = ‖〈ξ〉sû(ξ)‖2
L2(R) =

∫
R
〈ξ〉2s|û(ξ)|2dξ.

Definition 2.1.12. ([40]) Let s̄ = s1, s2, . . . , sd ∈ Rd. The anisotropic Sobolev

spaces H s̄
(
Rd
)

defined as

H s̄
(
Rd
)

=

{
u ∈ S ′

(
Rd
)

:
d∏
i=1

(
1 + |ξi|2

) si
2 û ∈ L2

(
Rd
)}

,

where ξi denotes the ith component of the Fourier variable ξi ∈ Rd.
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For s̄ = s1, s1 ∈ R2, we define anisotropic Sobolev space Hs1,s2(R2) via norm

‖u‖2
Hs1,s2 (R2) = ‖〈ξ1〉s1〈ξ2〉s2û(ξ1, ξ2, t)‖2

L2(R2)

=

∫
R2

〈ξ1〉2s1〈ξ2〉2s2|û(ξ1, ξ2, t)|2dξ1dξ2,

(2.1.2)

where û denotes the spatial Fourier transform

û(ξ1, ξ2, t) =
1

2π

∫
R2

e−i(xξ1+yξ2)u(x, y, t)dxdy.

Theorem 2.1.13. (Sobolev Embedding Theorem [61]). If s > k+1
2
, then Hs(Rd) is

continuously embedding in Ck(Rd), the space of functions with k times continuous

differentiable vanishing at infinity. In other words, if f ∈ Hs(Rd), s > k+ 1
2
, then

f ∈ Ck(Rd) and

‖f‖Ck(Rd) ≤ C‖f‖Hs(Rd).

Proposition 2.1.14 (Sobolev Lemma). ([74]). For s > 1
2
, we have

‖u‖L∞ ≤ C‖u‖Hs , u ∈ Hs,

for some positive constant C depending only on s.

Proposition 2.1.15 ([61]). Let s, s1, s2, s
′ ∈ R.

1. If 0 ≤ s < s′, then Hs′(Rd) ↪→ Hs(Rd).

2. Hs(Rd) is a Hilbert space with respect to the inner product 〈·, ·〉s defined as

follow. If f, g ∈ Hs(Rd), then

〈f, g〉s =

∫
Rd

(1 + |ξ|2)
s
2 f̂(ξ)(1 + |ξ|2)

s
2 ĝ(ξ)dξ.

3. The Schwartz space, S(Rd) is dense in Hs(Rd), ∀s ∈ R.

4. If s1 ≤ s ≤ s2, with s = θs1 + (1− θ)s2 for 0 ≤ θ ≤ 1, then

‖f‖Hs ≤ ‖f‖θHs1‖f‖1−θ
Hs2 , f ∈ Hs(Rd),

which is known as interpolation inequality.

Proposition 2.1.16 ([45]). Let 1 < p <∞.
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Chapter 2 2.1. SPACE OF FUNCTIONS

i. If 0 < s < d
p
, then the Sobolev space W s,p

(
Rd
)

embeds continuously in

Lq
(
Rd
)

for
1

p
− 1

q
=
s

d
. (2.1.3)

ii. If 0 < s < d
p
, then the Sobolev space W s,p

(
Rd
)

embeds continuously in

Lq
(
Rd
)

for any d
s
< q <∞.

iii. If d
p
< s < ∞, then every element of W s,p

(
Rd
)

can be modified on a set of

measure zero so that the resulting function is bounded and uniformly contin-

uous.

Theorem 2.1.17 (H-algebra). The Sobolev space, Hs(R) is an algebra for s > 1
2
.

i.e., if u, v ∈ Hs(R) then uv ∈ Hs(R) and there exists C = C(s) > 0, such that

‖uv‖Hs(R) ≤ C‖u‖Hs(R)‖v‖Hs(R).

In mathematics, an analytic function is a function that is locally given by

a convergent power series. There exist both real analytic functions and complex

analytic functions. Functions of each type are infinitely differentiable, but complex

analytic functions exhibit properties that do not generally hold for real analytic

functions. A function is analytic if, and only if, its Taylor series about x0 converges

to the function in some neighborhood for every x0 in its domain.

Definition 2.1.18. Let f be a real-valued function defined on an open set Ω ⊂ Rn.

We call f is real analytic at x0 if there is a neighborhood of x0 within which f can

be represented as a Taylor series

f(x) =
∞∑
i=0

Ci(x− x0)n, (2.1.4)

where the coefficients Ci, i = 1, 2, 3, · · · are real numbers and the series is conver-

gent to f(x) for x in a neighborhood of x0.

A function f(x) is said to be analytic at a point x0 if x0 is an interior point

of some region where f(x) is analytic. Hence the concept of analytic function at

a point implies that the function is analytic in some neighborhood at this point.

Thus, we say f is real analytic in Ω if it is analytic at every point in Ω. The

symbol Cω(Ω) is used to denote the class of functions which are analytic in Ω,

whereas C∞(Ω) denotes functions which have derivatives of all orders. Obviously

Cω(Ω) ⊂ C∞(Ω).
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Like holomorphic functions of a single complex variable, analytic functions have

a unique continuation property. Real analytic functions can also be characterized

as restrictions of complex analytic functions. Thus, every real analytic function

can be extended into a subset of the complex plane, and since power series can be

differentiated term by term, the extended function is differentiable.

Definition 2.1.19. Let σ ≥ 0, s ∈ R. Then Gevrey space Gσ,s(R) is defined as

the subspace of L2(R):

Gσ,s(R) =
{
u ∈ S ′(R) : 〈D〉seσ|D|f ∈ L2(R)

}
,

with the norm

‖f‖2
Gσ,s(R) = ‖〈ξ〉seσ|ξ|f̂(ξ)‖2

L2(R) =

∫
R
〈ξ〉2se2σ|ξ||f̂(ξ)|2dξ. (2.1.5)

where D = −i∂x with Fourier symbol ξ and 〈ξ〉 =
√

1 + |ξ|2.

For σ = 0, the Gevrey-space coincides with the Sobolev space Hs(R). Observe

that the Gevrey spaces satisfy the following embedding property:

Gσ,s(R) ⊂ Gσ′,s′(R), for all σ > σ′ ≥ 0, s, s′ ∈ R. (2.1.6)

This implies that, there exist a constant C such that

‖u‖Gσ′,s′ (R) ≤ C‖u‖Gσ,s(R), ∀u ∈ Gσ,s(R).

In particular, for σ′ = 0, we have the embedding Gσ,s(R) ⊂ Hs′(R), for all σ > 0

and s, s′ ∈ R, that is

‖u‖Hs′ (R) ≤ C‖u‖Gσ,s(R), ∀σ > 0, s, s′ ∈ R.

For s1, s2 ∈ R, let s̄ = s1, s2 and σ1, σ2 ≥ 0. We define anisotropic Gevrey

space, Gσ1,σ2,s̄(R2) via norm

‖u‖2
Gσ1,σ2,s̄(R2) = ‖eσ1|ξ1|eσ2|ξ2|〈ξ1〉s1〈ξ2〉s2û(ξ1, ξ2)‖2

L2(R2)

=

∫
R2

e2σ1|ξ1|e2σ2|ξ2|〈ξ1〉2s1〈ξ2〉2s2 |û(ξ1, ξ2)|2dξ1dξ2,
(2.1.7)

where û denotes the spatial Fourier transform.

One of the key properties of the analytic Gevrey space is that every func-

tion in Gσ,s(R) with σ > 0, has an analytic extension to the complex strip

Sσ = {z = x+ iy : x, y ∈ R, |y| < σ}. This property is contained in the follow-

ing theorem.
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Theorem 2.1.20 (Paley-Wiener Theorem,[59]). Let σ > 0, s ∈ R. Then the

following are equivalent:

(1) f ∈ Gσ,s(R).

(2) f is the restriction to the real line of a function F which is holomorphic in

the strip

Sσ = {z = x+ iy : x, y ∈ R, |y| < σ} ,

and satisfying

sup
|y|<σ
‖F (x+ iy)‖Hs(R)<∞. (2.1.8)

Proof : Let us start the proof for s = 0

(i). If f ∈ Gσ,s(R) then f is the restriction to the real line of a function F which

is holomorphic in the strip Sσ, to show this,

Write

F (z) =
1√
2π

∫
R
f̂(ξ)eiξzdξ. (2.1.9)

Then by the inversion formula F |R = f the function F is well defined and holomorphic in

{z : |y| < σ}. By Plancherel’s theorem, we have∫
R
|F (x+ iy)|2 dx =

1√
2π

∫
R
|f̂(ξ)|2e2ξydξ ≤

∥∥∥f̂ eσ|ξ|∥∥∥2

L2(R)
<∞. (2.1.10)

The converse of (i) also true, that means, if f is the restriction to the real line of

a function F which is holomorphic in the strip Sσ then f ∈ Gσ,s(R), to show this

Write

fy(x) = F (x+ iy).

Then, we want to show that

f̂y(ξ) = f̂(ξ)e−ξy. (2.1.11)

By Plancherel’s theorem and (2.1.8), we conclude that the integral
∫
R |f(ξ)|2e2ξydx

is uniformly bounded in |y| < σ , which clearly implies (2).

For λ > 0 and z in the strip {z : |y| < σ}, put

Gλ(z) = Kλ ∗ F =

∫ ∞
−∞

F (z − u)Kλ(u)du. (2.1.12)

where K denotes Fejer’s kernel.
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Clearly, Gλ is holomorphic in the strip {z : |y| < σ} and note that

gλ,y(x) = Gλ(x+ iy) = Kλ ∗ fy.

Hence

ĝλ,y(ξ) = K̂λf̂y(ξ).

Now, since ĝλ,y(ξ) has a compact support (contained in [−λ, λ]), we have

ĝλ,y(ξ) = ĝλ,0(ξ)e−ξy,

and consequently if |ξ| < λ, (2.1.11) holds. Since λ > 0 is arbitrary, (2.1.11) holds

for all ξ and the proof is complete. �

The modified Gevrey space, Hσ,s(R) is obtained from the Gσ,s(R) by replacing

the exponential weight eσ|ξ| with the hyperbolic weight cosh(σ|ξ|), equipped with

the norm

‖f‖2
Hσ,s(R) = ‖cosh(σ|ξ|)〈ξ〉sf̂(ξ)‖2

L2(R), σ ≥ 0, (2.1.13)

where

cosh(σ|ξ|) =
eσ|ξ| + e−σ|ξ|

2
.

Observe that, for large values of ξ we have, e−|ξ| ≈ 0. From this fact and the

definition of cosh(ξ), we have

1

2
eσ|ξ| ≤ cosh(σ|ξ|) ≤ eσ|ξ|. (2.1.14)

Thus, the associated Hσ,s(R) and Gσ,s(R)–norms are equivalent. That is

‖f‖Hσ,s(R) ∼ ‖f‖Gσ,s(R). (2.1.15)

Paley-Wiener Theorem still holds for functions in Hσ,s(R). Note also that,

G0,s(R) = H0,s(R) = Hs(R).

The reason for considering the modified Gevrey space, Hσ,s(R) is due to the

decay rate of exponential weight inGσ,s(R)-norm. In fact, in Gevrey space, Gσ,s(R)

the desired decay rate-in-time of the radius of analyticity σ is obtained from the

algebraic estimate

eσ|ξ| − 1 ≤ (σ|ξ|)ρeσ|ξ|, ρ ∈ [0, 1],

which could provide a decay rate of order t−1/ρ for ρ ∈ (0, 1]. In the new space

Hσ,s(R), the desired decay rate-in-time of the radius of analyticity σ is obtained

from the estimate
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cosh(σ|ξ|)− 1 ≤ (σ|ξ|)2ρ cosh(σ|ξ|), ρ ∈ [0, 1], (2.1.16)

which could provide a decay rate of order t−1/2ρ for ρ ∈ (0, 1].

The estimate (2.1.16) follows from

coshx− 1 ≤ coshx and coshx− 1 ≤ x2 coshx, x ∈ R.

From the embedding property (2.1.6) and (2.1.15), we have

‖f‖Hs(R) ≤ C‖f‖Hσ,s(R), σ > 0. (2.1.17)

2.2 Cauchy Problems and Well-posedness

A PDE with its domain and all required boundary and/or initial conditions is

called a PDE problem. The condition at initial time t = 0 for a time-dependent

problem are also known as initial conditions. Some boundary conditions are un-

suitable for certain types of PDE in that they can lead to unphysical behaviour.

For example, Cauchy type conditions are unsuitable for the Laplace equation and

Dirichlet conditions are unsuitable for the wave equation. This leads to the notion

of a well-posed problem. Problems which arise in practical applications are usu-

ally well-posed boundary value problems (for PDEs in space only) or well-posed

Cauchy problems (for PDEs in time and space).

Definition 2.2.1. [48] A problem for PDEs is well-posed if and only if

(i) a solution exists (existence),

(ii) for given data there is only one solution (uniqueness), and

(iii) a small change in the data (boundary data, initial data, source terms) pro-

duces only a small change in the solution(continuous dependence on the

data).

Hadamard, 1902 pointed out that, if the problem is lacking conditions in the

Definition 2.2.1, it will probably be useless in practical applications.

Definition 2.2.2 (Local well-posedness (LWP)). The Cauchy problem with initial

data u0 is said to be locally well-posed in Hs(Rd) if the following conditions are

satisfied:
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(i) For every u0 ∈ Hs(R), there exists a time T > 0, and a solution u in some

Banach subspace X of C([0, T );Hs(R)), i.e.,

u ∈ X ⊂ C([0, T );Hs(R)).

(ii) The solution is unique in X.

(iii) The map from data to solution, u0 7→ u defined from Hs(R) to X is contin-

uous.

A PDE is said to be locally well-posed if there exists a time interval and a

unique solution that depends continuously on the initial data which belongs to

given class of functions. This means that small perturbations in the initial data

will result in small changes in the solution.

Remark 2.2.3. In Definition 2.2.2,

(i) If the data to the solution map, u0 → u is uniformly continuous, we call

the problem is semilinear. If it is only continuous, the problem is called a

quasilinear problem.

(ii) If T is arbitrarily large, we say that the problem is globally well-posed.

(iii) If X = C([0, T );Hs(R)), the problem is said to be unconditionally well-

posed.
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Chapter 3

Literature Reviews

In this chapter, we investigate previous studies conducted on different nonlinear

partial differential equations that describe the propagation of long waves in shallow

water. The aim of this review is to answer the following research question: Under

what conditions does the solution of the given problems remain spatially analytic

for all time?

Here, we analyze the existing literature on the initial value problems for fifth

order KdV-BBM equation, generalized KdV-BBM equation, coupled system of

generalized BBM equations and KP-BBM equation. We identify previous well-

posedness results and persistence of spatial analyticity to the solution of these

problems, as well as the gaps and limitations of the study.

3.1 Fifth Order KdV-BBM Equation

Local and global well-posedness of the initial value problem (IVP) associated

to a fifth order KdV-BBM type model was proved in the space of the analytic

functions, so called Gevrey space. They also analyze the evolution of radius of

analyticity in such class by providing explicit exponential upper and lower bound

formulas for the radius of analyticity of the solution.

Consider the IVP for fifth order KdV-BBM equation [14]
ut + ux − γ1uxxt + γ2uxxx + δ1uxxxxt + δ2uxxxxx + 3

2
uux + γ(u2)xxx

− 7
48

(u2
x)x − 1

8
(u3)x = 0,

u(x, 0) = u0(x),

(3.1.1)

where u is real valued functions of x and t and u0(x) is the initial data at t = 0.

In the case, γ = 7
48

, the energy of the solution given by

E [u(t)] =
1

2

∫
R

(
u2 + γ1u

2
x + δ1u

2
xx

)
dx, (3.1.2)

is conserved [14], that is,

E [u(t)] = E [u(0)] ∀t ∈ R.
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For the local well-posedness theory of fifth order KdV-BBM equation, it is

important that the coefficients γ1 and δ1 appearing, respectively, in front of uxxt

and uxxxxt terms be nonnegative [29]. The problem (3.1.1) is ill-posed if this is

not the case. The special cases where δ1 = 0 and γ1 > 0 is also locally well-posed

[14]. The local theory does not depend upon special choices of the parameters in

the problem other than the positivity of γ1 and δ1.

In general, the fifth order KdV-BBM equation does not have an obvious Hamil-

tonian structure. However, by suitably choosing the parameters, it can be put into

Hamiltonian form. The Hamiltonian structure allows one to infer bounds on so-

lutions that lead to global well-posedness. As seen in [17], lack of Hamiltonian

structure often seems to go along with lack of global well-posedness for arbitrarily

sized data. To obtain a global well-posedness result for initial data with lower-

order Sobolev regularity, the authors in [6, 76] used a high-low frequency splitting

technique. This technique was applied in [13, 15] in the context of BBM - type

equations, to obtain sharper well-posedness results.

For γ1, δ1 > 0, the local well-posedness of (3.1.1) in Sobolev space Hs(R) for

s ≥ 0 was studied by the authors in [14]. For γ = 7
48

, the conservation energy

(3.1.2) was used to prove the global well-posedness for data in Hs(R) for s ≥ 2, in

the case γ 6= 7
48

, the corresponding energy has no positive sign, and therefore not

useful to prove global well-posedness of (3.1.1). While, for data with regularity
3
2
≤ s < 2, splitting to high-low frequency technique was used in [14] to get

the global well-posedness result. This global well-posedness result was further

improved in [27] for initial data with Sobolev regularity s ≥ 1. Furthermore, the

authors in [27] showed that the well-posedness result is sharp by proving that the

mapping data-solution fails to be continuous at the origin for s < 1. For similar

results in the periodic case, we refer to [30].

Most recently, an exponential lower bounds on the width of the strip was

presented in [28] via a Gevrey-class technique. The authors studied the property of

spatial analyticity of the solution u(x, t) to (3.1.1) given that the initial data u0(t)

is real-analytic with uniform radius of analyticity σ0, so there is a holomorphic

extension to a complex strip

Sσ0 = {x+ iy : x, y ∈ R |y| < σ0} .

The authors proved that, for short times, the radius of analyticity σ(t) of the

solution remains at least as large as the initial radius, i.e, one can take σ(t) = σ0.

On the other hand, for large times, they proved that σ(t) decays exponentially in
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t and they got, exponential lower bounds given by

σ0 exp

{
−
(
‖u0‖Gσ,2 + 2 ‖u0‖2

Gσ,2)

)
t− 3

2
t3/2

(
‖u0‖3/2

H2 + ‖u0‖2
H2

)}
exp

{
−t2

(
‖u0‖3/2

H2 + ‖u0‖2
H2

)2
}
,

and exponential upper bound given by

Cσ0 exp
{
−‖u0‖2

H2 t
}
.

Moreover

‖u(t)‖Gσ,2 ≤ ‖u0‖Gσ,2 + Ct1/2
(
‖u0‖3/2

H2 + ‖u0‖2
H2

)
.

As stated previously, (3.1.1) is well-posed in Sobolev spaces as well as in the

spaces of analytical functions, the so-called Gevrey class of functions and explicit

exponential lower bound for the radius of analyticity to the solution has also been

obtained. However, the exponential lower bound for the radius of analyticity σ(t),

decays more quickly as t approaches infinity, so we are interested to improve the

result from exponential lower bound to algebraic lower bound for σ(t).

Particularly, our main interest is to find solutions u(x, t) of the IVP (3.1.1)

with real-analytic initial data u0 which admit extension as an analytic function

to a complex strip Sσ0 = {x+ iy : x, y ∈ R |y| < σ0}, for some σ0 > 0 at least

for a short time. After getting this result, a natural question one may ask is

whether this property holds globally in time, but with a possibly smaller radius of

analyticity σ(t) > 0. In other words, is the solution u(x, t) of the IVP (3.1.1) with

real-analytic initial data u0 analytic in Sσ(t) for all t?. What is the lower bound of

σ(t) ?. These questions will also be addressed in chapter four of this dissertation.

The present work, presuming that a specific Sobolev norm of the solution

remains finite, focuses on examining the asymptotic of the breadth σ of the strip

of analyticity for large t. Fixed point principle and different multilinear estimates

used to prove the local well-posedness of the solution in analytic Gevrey space.

Several scholars applied the method approximate conservation law to prove the

global well-posedness results for various problems [4, 5, 56, 79, 81, 85, 86].

The approximate conservation law enable us to repeat the local result on suc-

cessive short time intervals to reach any target time T > 0, by adjusting the

strip width parameter σ according to the size of T , and to analyze the evolution

of radius of analyticity in Gevrey space by providing explicit formulas for lower

bound.
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3.2 Generalized KdV-BBM Equation

Another interesting initial value problem is generalized KdV-BBM equation

ut + ux +
3

2
upux + νuxxx − (

1

6
− ν)uxxt = 0, (3.2.1)

subject to

u(x, 0) = u0(x), (3.2.2)

where u : R2 → R, the parameter ν is constant that satisfy certain constraints

[14] and p is positive integer. Equation (3.2.1) is generalized BBM equation when

ν = 0 and generalized KdV equation when ν = 1
6
.

The energy of the solution of (3.2.1) is conserved for ν < 1
6
, that is

A[u(t)] =
1

2

∫
R

[
u2 + (

1

6
− ν)u2

x

]
dx = A[u(0)], ∀t ∈ R. (3.2.3)

The KdV-BBM equation can be derived by expanding the Dirichlet–Neumann

operator [65].

Mancas and Adams in [67] studied the local and global well-posedness of the

solution for KdV–BBM type equation. The locally well-posedness was proved in

Sobolev space Hs(R) for s ≥ 1 and p = 1. This local well-posedness is established

using a contraction mapping type argument combined with multilinear estimates.

For ν < 1
6
, the conserved energy (3.2.3) was used to prove the global well-posedness

of (3.2.1)-(3.2.2) with initial data in Hs(R) for s ≥ 1. The global well-posedness

of (3.2.1)-(3.2.2) is established in Sobolev spaces Hs(R), which relies on the local

results with energy type estimates.

The global analytic theory of nonlinear evolution PDE started with the work

of Kato and Masuda [58] and has recently received a lot of attention for the

Korteweg-de Vries (KdV) equation [20, 22, 56, 79, 85]. See also a recent related

result for the quartic generalized KdV equation [82], periodic Benjamin-Bona-

Mahony (BBM) equation [52]. For earlier studies concerning properties of spatial

analyticity of solutions for a large class of nonlinear partial differential equations

[21, 22, 41, 44, 53, 54, 59, 71, 81]. But as far as we know, there is currently

no research being done on the persistence of spatial analyticity of the solution

for gKdV-BBM. Motivated by the work of Kato and Masuda, we are concerned

with the persistence of spatial analyticity for the solutions of (3.2.1)-(3.2.2), given

initial data in analytic modified Gevrey space Hσ,s(R) introduced by Foias and

Temam [42]. We focus on the situation where we consider a real-analytic initial
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data with uniform radius of analyticity σ0 > 0, so there is a holomorphic extension

to a complex strip

Sσ0 = {x+ iy : x, y ∈ R |y| < σ0} .

We need to show whether analyticity of the initial data can continue or not to a

solution at all later time t in complex strip Sσ(t). We examine the well-posedness

result for (3.2.1)-(3.2.2), given data in Hσ,s and analyze how σ = σ(t) evolves in

time. We also find the explicit algebraic lower bound for the radius of analyticity

σ(t) by applying approximate conservation law introduced in [80]. The reason for

considering initial data in the space Hσ0,s(R) is due to the analyticity properties

of modified Gevrey functions. A function in Hσ,s(R) is a restriction to the real

axis of a function analytic on a symmetric strip of width 2σ.

3.3 Coupled System of Generalized BBM Equa-

tions

Consider the initial value problem for coupled system of generalized BBM

equations 
ut + ux − uxxt +

(
P (u, v)

)
x

= 0,

vt + vx − vxxt +
(
Q(u, v)

)
x

= 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

(3.3.1)

where u and v are real-valued functions of x ∈ R and t ≥ 0 and u0, v0 are the

initial data. P and Q are arbitrary homogeneous quadratic polynomials in the

variables u and v given by

P (u, v) = αu2 + βuv + γv2,

Q(u, v) = θu2 + λuv + ψv2,

with real valued coefficients α, β, γ, θ, λ and ψ. This type of system arises in water

wave theory, climate modeling and other situations where wave propagation is

important.

The energy obtained from (3.3.1) is given by

E(u, v) :=

∫
R
(au2 + buv + cv2 + du2

x + euxvx + fv2
x) dx, (3.3.2)

where a, b, c, d, e and f are real numbers that will be determined later.
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Differentiating the energy of the solution E(u, v) in (3.3.2) with respect to the

time t and applying integration by parts with the assumption that (u, v) is the

solution of the system, u, v and their derivatives do not make any contribution as

|x| → ∞, leads to

d

dt
E(u, v) =

∫
R

(2auut + butv + buvt + 2cvvt + 2duxuxt + euxtvx + euxvxt + 2fvxvxt) dx

=

∫
R

(2auut + butv + buvt + 2cvvt − 2duuxxt − euxxtv − euvxxt − 2fvvxxt) dx

=2

∫
R
u (aut − duxxt) dx+

∫
R
v (but − euxxt) dx

+

∫
R
u (bvt − euvxxt) dx+ 2

∫
R
v (cvt − fvxxt) dx

=2

∫
R
(a− d)uutdx− 2d

∫
R
uPxdx+

∫
R
(b− e)vutdx− e

∫
R
vPxdx

+

∫
R
(b− e)uvtdx− e

∫
R
uQxdx+ 2

∫
R
(c− f)vvtdx− 2f

∫
R
vQxdx.

For simplicity, assume a = d, b = e and c = f . Expanding the spacial derivative

of quadratic polynomials P and Q the terms in the sum above may be rewritten

in the form

d

dt
E(u, v) =− 2a

∫
R

(
2αu2ux + βuvux + βu2vx + 2γuvvx

)
dx

− b
∫
R

(
2αuvux + βuvvx + βv2ux + 2γv2vx

)
dx

− b
∫
R

(
2θu2ux + λu2vx + λuvux + 2ψuvvx

)
dx

− 2c

∫
R

(
2θuvux + λv2ux + λuvvx + 2ψv2vx

)
dx

=

∫
R
(−4αa− 2θb)u2uxdx+

∫
R
(2γb− 4ψc)v2vxdx

−
∫
R

[
(2βa+ λb+ 2αb+ 4θc)uvux + (2βa+ λb)u2vx

]
dx

−
∫
R

[
(βb+ 2λc+ 4γa+ 2ψb)uvvx + (βb+ 2λc)v2ux

]
dx.

In the fifth line, the two integrals tends to zero at infinity (|x| → ∞), for smooth
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solutions without further assumptions. The last two integrals in the sum would

vanish, if and only if the following hold.

2βa+ λb = 2αb+ 4θc,

βb+ 2λc = 4γa+ 2ψb.

Rearrange these equations{
2βa+ (λ− 2α)b− 4θc = 0,

4γa+ (2ψ − β)b− 2λc = 0.
(3.3.3)

Thus, a, b and c must solve the system (3.3.3). For the solution {(a,b,c)} of (3.3.3),

the time derivative of the energy E(u, v) is zero
(
d
dt
E(u, v) = 0

)
, which implies the

energy of the solutions is conserved. This system always has a non-trivial solution.

Set, the coefficient matrix of the system (3.3.3) by

S =

(
2β λ− 2α −4θ

4γ 2ψ − β −2λ

)
.

Then, for s ≥ 0, the BBM system (3.3.1) with initial data in Hs(R)×Hs(R) has

global solutions in the following two cases (see, [49])

The first case, if rank S = 2 and

4ac =βλ(λ− 2α)(β − 2ψ) + 2γλ(λ− 2α)2 + 2βθ(β − 2ψ)2

+ 4γθ(λ− 2α)(β − 2ψ)

=(βλ+ 4γθ)(λ− 2α)(β − 2ψ) + 2γλ(λ− 2α)2 + 2βθ(β − 2ψ)2

> (βλ− 4γθ)2 = b2,

which implies 4ac− b2 > 0.

The second case, if rank S = 1 and either

(λ− 2α)2 + 8βθ ≥ 0,

or

(2ψ − β)2 + 8γλ ≥ 0.

If rankS = 2, then a, b, c are given by a

b

c

 =

 λ(λ− 2α) + 2θ(β − 2ψ)

−2βλ+ 8γθ

β(β − 2ψ) + 2γ(λ− 2α)

 .
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The global well- posedness result of (3.3.1) depends on the solution {(a,b,c)}
of the system (3.3.3) [49].

A few particular examples of the choices of coefficients are given below.

If β = γ = θ = λ = 0 and α, ψ 6= 0, then both quantities (λ − 2α)2 + 8βθ and

(2ψ − β)2 + 8γλ are strictly positive, and the IVP (3.3.1) is decoupled to BBM

equations.

ut + ux − uxxt + α(u2)x = 0,

vt + vx − vxxt + ψ(v2)x = 0.
.

By choosing a = 1, b = 0 and c = 1, one obtains a time invariant energy E(x, t) un-

der the flow generated by (3.3.1). In this case, the local and global well-posedness

results hold true.

If α = 1
2
, β = γ = θ = ψ = 0, and λ = 1, then both quantities (λ − 2α)2 + 8βθ

and (2ψ − β)2 + 8γλ are equal to zero. The IVP (3.3.1) reduced to
ut + ux − uxxt + uux = 0,

vt + vx − vxxt + (uv)x = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

for which the local and global well-posedness results hold true.

If α = 1
2
, β = θ = ψ = 0, γ = −1

2
and λ = 1, then (λ − 2α)2 + 8βθ and

(2ψ − β)2 + 8γλ are negative. The IVP (3.3.1) becomes
ut + ux − uxxt + uux − vvx = 0,

vt + vx − vxxt + (uv)x = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

which is not globally well-posed.

Bona et al.[34] improved the global existence results obtained by Ash et al.[7]

for system of KdV equations with quadratic nonlinearities. They established con-

ditions on the coefficients of the quadratic nonlinear terms so that the problem

is globally well-posed in the L2-based Sobolev spaces Hs(R) × Hs(R) for any

s > −3/4. In [34], the authors also improved the global existence results of the

Gear–Grimshaw system [43] and the Majda–Biello system [66]. The global well-

posedness of the BBM equation in Sobolev space Hs(R) for s ≥ 0 was studied

in [13]. In [16], the authors studied the well-posedness results for generalized

BBM-type equations in Lp spaces.

The local well-posedness of (3.3.1) does not depend on the coefficients α, β, γ,

θ, λ and ψ, but, global in time well-posedness depends on the choices of α, β, γ, θ, λ
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and ψ. The local well-posedness of (3.3.1) was proved in [49] in the Sobolev

spaces Hs(R) × Hs(R) for s ≥ 0. The authors established conditions on the

coefficients α, β, γ, θ, λ and ψ so that (3.3.1) is globally well-posed in the L2-

based Sobolev space Hs(R) ×Hs(R) for s ≥ 0. The time derivative of E(u, v) is

zero, for nontrivial solutions {(a, b, c)} of the system (3.3.3) for 4ac− b2 > 0, with

assumption a = d, b = e and c = f , ( see, [49]). The invariants of E(u, v) was used

in [33, 49] to prove global well-posedness of (3.3.1) in the space Hs(R) × Hs(R)

for s ≥ 0, with different choice of the coefficients α, β, γ, θ, λ and ψ.

The persistence of spatial analyticity for the solution of nonlinear evolution

PDEs introduced in [58] applied to numerous single nonlinear dispersive PDEs,

including the Kadomtsev-Petviashvili equation, KdV type equations, BBM equa-

tion, Schrödinger equation, and Klein-Gordon equation, among others. Moreover,

there have been research on the spatial analyticity of the solutions of nonlinear

dispersive systems, such as the Dirac-Klein-Gordon system in 1d and 2d [78, 81].

However, to the best of our knowledge, the persistence of spatial analyticity of the

solution for nonlinear dispersive systems is not being looked into anymore. Thus,

our focus is on the persistence of spatial analyticity to the solutions of coupled

system of generalized BBM equations, given initial data in modified Gevrey space

Hσ,s(R)×Hσ,s(R).

3.4 KP-BBM Equation

Now, consider the IVP associated with KP-BBM II equation, which was de-

rived by Wazwaz in [90]{
ut − utxx + ux + uux + ∂−1

x uyy = 0,

u(x, y, 0) = u0(x, y) ∈ Hσ1,σ2(R2),
(3.4.1)

where u = u(x, y, t) and (x, y, t) ∈ R3.

The energy obtained from (3.4.1) is conserved, that is

A[u(x, y, t)] =

∫
R2

(
u2(x, y, t) + u2

x(x, y, t)
)
dxdy = A[u(x, y, 0)], (3.4.2)

for all t ∈ R.

The well-posedness of (3.4.1) were studied in [23]. It has been proven that

(3.4.1) can be solved by iteration, yielding to local and global well-posedness

results. Saut and Tzvetkov in [75] proved the global well-posedness results in

Sobolev space Hs(R2) by using the conservation law in (3.4.2).
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The well-posedness of (3.4.1) in Sobolev space Hs(R2) is well developed, but

to the best of our knowledge the radius of analyticity of the solution is yet not

studied. Thus, the main concern is to study the persistent of spacial analyticity

of the solution u(x, y, t) to (3.4.1), given a real analytic initial data u0(x, y) in

anisotropic modified Gevrey spaces Hσ1,σ2(R2) with uniform radius of analyticity

σ0, so that there is a holomorphic extension to a complex strip

Sσ0 = {x+ iy ∈ C : |y| < σ0} .

The approach we used was first introduced by Selberg and Tesfahun [81] in the

context of the Dirac-Klein-Gordon equations, which is based on an approximate

conservation laws and Bourgan’s Fourier restriction technique.

In applications of PDEs to physical problems, the dependent variable u is

usually real-valued. However, for several reasons, complex-valued solutions have

attracted interest lately. It should be noted that there are situations where analytic

solutions emanate from non-analytic initial data [36, 57].

In [57], it is proved that for the KdV equation, a certain class of initial data

with a single point singularity yields analytic solutions. However, these results do

not produce explicit estimates on a radius σ of spatial analyticity of solutions. On

the other hand, if the initial datum u0 is analytic in a symmetric strip around the

real axis, it has recently been established that the solution will remain analytic in

the same strip at least for a small time interval [47].

Jean Bourgain has been the first to observe the local smoothing effect related

to the bilinear estimate and establish the well-posedness result for low regularity.

In [25], he showed global well-posedness for initial data in Hs for s ≥ 0. More

precisely, this has been the first well-posedness result in Hs with s < 3/2 for

periodic KdV equation. This result improved in [61] and obtained local well-

posedness results in Hs for s > −1/2. Well-posedness for the non-periodic gKdV

equation in spaces of analytic functions, Gσ,s(R) has been proved by Gruji´c and

Kalisch [47]. They showed that for given real initial data that are analytic in a

symmetric strip Sσ(t) = {z = x + iy : |y| < σ} in the complex plane of width 2σ,

there exists a time T such that the corresponding KdV solution is analytic in the

same strip in the time interval [0,T].

Generally, in this dissertation, we deal with the nonlinear evolution dispersive

PDEs discussed above, with real analytic initial data at t = 0, if this data has

a uniform radius of analyticity σ0, in the sense that there exists a holomorphic

extension to the complex strip of width σ0, then we ask whether the solution at
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some later time t > 0 also has a uniform radius of analyticity σ = σ(t) > 0, in

which case we have an explicit lower bound for the radius σ(t).

In particular, our interest is focused on the solutions of higher order KdV-

BBM type equations, coupled system of generalized BBM equations and KP-BBM

equations which admit an extension as an analytic function to a complex strip

Sσ(t) = {x+ iy : x, y ∈ R, |y| < σ} at least for small values of σ. It also focused

on studying the asymptotic property of the width σ of the strip of analyticity for

large t, assuming that a certain Sobolev norm of the solution remains finite.

The main tools in the proof of our results are contraction mapping principle,

multilinear estimates and approximate conservation law in Gevrey spaces and

modified Gevrey spaces.
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Fifth Order KdV-BBM Equation

In this chapter, we study the well-posedness of the initial value problem (IVP)

associated with the fifth order KdV-BBM equation. We prove the local well-

posedness in the space of the analytic functions. We also analyze the evolution of

radius of analyticity of the solution in analytic Gevrey space.

4.1 Problem Statement

Consider initial value problem associated with the fifth order KdV-BBM equa-

tion, given by
ut + ux − γ1uxxt + γ2uxxx + δ1uxxxxt + δ2uxxxxx + 3

2
uux + γ(u2)xxx

− 7
48

(u2
x)x − 1

8
(u3)x = 0,

u(x, 0) = u0(x),

(4.1.1)

where the unknown function u : R1+1 → R. The parameters appearing in (4.1.1)

satisfy

γ1 + γ2 =
1

6
,

γ =
1

24
(5− 18γ1),

δ2 − δ1 =
19

360
− 1

6
γ1,

γ1 + δ1 + γ2 + δ2 =
1

3
,

with γ1, δ1 > 0.

The propagation of unidirectional water waves is described by a higher order

model, equation (4.1.1). It was recently introduced by Bona et al. [14] by using

the second order approximation in the two-way model, the so -called abcd - system

derived in [18, 19].

37



Chapter 4 4.2. MULTILINEAR ESTIMATES

For γ = 7
48

, a solution to (4.1.1) satisfies the the following conservation of

energy [14]

E [u(t)] =
1

2

∫
R

(
u2 + γ1u

2
x + δ1u

2
xx

)
dx = E [u(0)], ∀t ∈ R. (4.1.2)

The main result of this work gives an algebraic lower bound on the radius of

analyticity σ(t) of the solution as the time t tends to infinity. More precisely, we

have the following global well-posedness result.

Theorem 4.1.1. Assume that γ1, δ1 > 0 and γ = 7
48

. Suppose that u is the global

solution of (4.1.1) with u0 ∈ Gσ0,2(R) for σ0 > 0 . Then

u(t) ∈ Gσ(t),2(R), ∀t > 0,

with the radius of analyticity σ(t) satisfying the asymptotic lower bound

σ(t) ≥ c

t
as t→ +∞,

where c > 0 is a constant depending on ‖u0‖Gσ0,2(R).

Thus, the solution u(t) is analytic in the strip Sσ(t) at any time t.

The first step in the proof of Theorem 4.1.1 is to show that in a short time

interval 0 ≤ t ≤ T , where T > 0 depends on the norm of the initial data, the

radius of analyticity remains strictly positive. This is proved by a contraction

argument and a multilinear estimate which will be given in the next section.

The next step is to improve the control on the growth of the solution in the

time interval [0, T ]. The approximate conservation law will allow us to iterate the

local result and prove Theorem 4.1.1.

4.2 Multilinear Estimates

Various multilinear estimates are now established that will be useful in the

proof of the local well-posedness results. We start by writing (4.1.1) in an equiva-

lent integral equation. Taking the Fourier transform of the first equation in (4.1.1)

with respect to the spatial variable and rearranging terms gives

(1+γ1ξ
2 +δ1ξ

4)iût = ξ(1−γ2ξ
2 +δ2ξ

4)û+
1

4
(3ξ−4γξ3)û2− 1

8
ξû3− 7

48
ξû2

x. (4.2.1)

The fourth-order polynomial

ϕ(ξ) = 1 + γ1ξ
2 + δ1ξ

4,
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is strictly positive because γ1, and δ1 are taken to be positive.

Now, we define the Fourier multiplier operators φ(Dx), ψ(Dx) and τ(Dx) as follow

φ(Dx)f(ξ) = F−1
(
φ(ξ)f̂(ξ)

)
,

ψ(Dx)f(ξ) = F−1
(
ψ(ξ)f̂(ξ)

)
,

τ(Dx)f(ξ) = F−1
(
τ(ξ)f̂(ξ)

)
,

(4.2.2)

where the Fourier symbols are given by

φ(ξ) =
ξ(1− γ2ξ

2 + δ2ξ
4)

ϕ(ξ)
, ψ(ξ) =

ξ

ϕ(ξ)
, τ(ξ) =

3ξ − 4γξ3

4ϕ(ξ)
.

With this notation, (4.1.1) can be rewritten as{
iut = φ(Dx)u+ τ(Dx)u

2 − 1
8
ψ(Dx)u

3 − 7
48
ψ(Dx)u

2
x,

u(x, 0) = u0(x).
(4.2.3)

Consider first the following linear IVP associated to (4.2.3){
iut = φ(Dx)u,

u(x, 0) = u0(x),
(4.2.4)

whose solution is given by

u(t) = S(t)u0,

where

Ŝ(t)u0 = e−iφ(ξ)tû0,

is defined via its Fourier transform. S(t) is a unitary operator on Hs(R) and

Gσ,s(R) for any s ∈ R, since the modulus of e−iφ(ξ)t equal to one, so that

‖S(t)u0‖Hs(R) = ‖u0‖Hs(R), ‖S(t)u0‖Gσ,s(R) = ‖u0‖Gσ,s(R),∀t > 0. (4.2.5)

Duhamel’s formula allows us to rewrite (4.2.3) in an equivalent integral equation

of the form,

u(x, t) = S(t)u0 − i
∫ t

0

S(t− t′)
(
τ(Dx)u

2 − 1

8
ψ(Dx)u

3 − 7

48
ψ(Dx)u

2
x

)
(x, t

′
) dt

′
.

(4.2.6)

The following Lemmas gives multilinear estimate for nonlinear terms in the above

integral
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Lemma 4.2.1. For s ≥ 0, there is a constant C = Cs for which

‖ω(Dx)(uv)‖Gσ,s ≤ C‖u‖Gσ,s‖v‖Gσ,s , (4.2.7)

where ω(Dx) is the Fourier multiplier operator with symbol

ω(ξ) =
|ξ|

1 + ξ2
.

Proof: Using the definition of the Gσ,s-norm and convolution of functions, one

can obtain

‖ω(Dx)(uv)‖2
Gσ,s = ‖〈ξ〉seσ〈ξ〉 ̂ω(Dx)(uv)‖2

L2

= ‖〈ξ〉seσ〈ξ〉ω(ξ)û ∗ v̂(ξ)‖2
L2

=

∫
R
〈ξ〉2se2σ〈ξ〉 ξ2

(1 + ξ2)2

(∫
R
û(ξ − ξ1)v̂(ξ1)dξ1

)2

dξ.

(4.2.8)

Now, for s ≥ 0, we have

〈ξ〉s ≤ 〈ξ − ξ1〉s〈ξ1〉s,

and

eσ〈ξ〉 ≤ eσ〈ξ−ξ1〉eσ〈ξ1〉.

Using these facts from (4.2.8), we get

‖ω(Dx)(uv)‖2
Gσ,s ≤

∫
R

ξ2

(1 + ξ2)2

(∫
R
〈ξ − ξ1〉2se2σ〈ξ−ξ1〉û(ξ − ξ1)〈ξ1〉2se2σ〈ξ1〉v̂(ξ1)dξ1

)2

dξ.

(4.2.9)

Then, using ξ2

(1+ξ2)2 ≤ 1
1+ξ2 , the Cauchy-Schwartz inequality and the definition of

the Gσ,s norm, we obtain from (4.2.9) that

‖ω(Dx)(uv)‖2
Gσ,s ≤

∫
R

1

(1 + ξ2)
dξ‖u‖2

Gσ,s‖v‖2
Gσ,s

≤ C‖u‖2
Gσ,s‖v‖2

Gσ,s ,

(4.2.10)

and this completes the proof of Lemma 4.2.1. �

Lemma 4.2.2. For any s ≥ 0 and σ > 0, there is a constant C = Cs such that

the inequality

‖τ(Dx)u
2‖Gσ,s ≤ C‖u‖2

Gσ,s (4.2.11)

holds, where the operator τ(Dx) is defined as in (4.2.2).
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Proof: Since δ1 > 0, one can easily verify that |τ(ξ)| ≤ ω(ξ) for some constant

C > 0. Using this fact, definition of the Gσ,s norm and the estimate (4.2.7), one

can obtain

‖τ(Dx)u
2‖Gσ,s = ‖〈ξ〉seσ〈ξ〉 ̂τ(Dx)u2‖L2

≤ ‖〈ξ〉seσ〈ξ〉τ(ξ)û ∗ û‖L2

≤ ‖〈ξ〉seσ〈ξ〉ω(ξ)û ∗ û(ξ)‖L2

≤ ‖u‖2
Gσ,s .

Lemma 4.2.3. For s ≥ 1
6
, there is a constant C = C(s) such that

‖ψ(Dx)u
3‖Gσ,s ≤ C‖u‖3

Gσ,s . (4.2.12)

Proof: Consider first the case 1
6
≤ s < 5

2
, In this case, it appears that

|(1 + |ξ|)sψ(ξ)| =
∣∣∣ (1 + |ξ|)sξ
(1 + γ1ξ3 + δ1ξ4)

∣∣∣ ≤ C
1

(1 + |ξ|)3−s .

From the definition of Gevrey space norm and the last inequality, we have

‖ψ(Dx)u
3‖Gσ,s =

∥∥∥(1 + |ξ|)sψ(ξ)eσ〈ξ〉û3(ξ)
∥∥∥
L2

≤ C
∥∥∥ 1

(1 + |ξ|)3−s e
σ〈ξ〉û3(ξ)

∥∥∥
L2

≤ C
∥∥∥ 1

(1 + |ξ|)3−s

∥∥∥
L2

∥∥∥eσ〈ξ〉û3(ξ)
∥∥∥
L∞
.

(4.2.13)

Set

f̂(ξ) = eσ〈ξ〉û(ξ).

Using eσ〈ξ〉 ≤ eσ〈ξ−ξ1−ξ2〉eσ〈ξ1〉eσ〈ξ2〉, we get

eσ〈ξ〉û3(ξ) ≤
∫
R2

eσ〈ξ−ξ1−ξ2〉û(ξ − ξ1 − ξ2)eσ〈ξ1〉û1e
σ〈ξ2〉û2dξ1dξ2 = f̂ 3(ξ). (4.2.14)

By (4.2.13) and the fact that
∥∥∥ 1

(1 + |ξ|)3−s

∥∥∥
L2

is bounded for s < 5
2
, we obtain

from (4.2.14) that

‖ψ(Dx)u
3‖Gσ,s ≤ ‖f̂ 3(ξ)‖L∞ ≤ ‖f‖3

L3 . (4.2.15)
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From one dimensional Sobolev embedding, we have

‖f‖L3 ≤ C‖f‖
H

1
6

= C‖u‖Gσ,s . (4.2.16)

Therefore, for 1
6
≤ s < 5

2
, from (4.2.15) and (4.2.16), we obtain

‖ψ(Dx)u
3‖Gσ,s ≤ ‖u‖3

Gσ,s . (4.2.17)

For the case s ≥ 5
2
, we observe that Gσ,s is a Banach algebra. Also, note that

|ψ(ξ)| ≤ C |ξ|
1+ξ2 . So, using the same procedure as in Lemma 4.2.2, we obtain

‖ψ(Dx)uu
2‖Gσ,s ≤ C‖u‖Gσ,s‖u2‖Gσ,s ≤ C‖u‖3

Gσ,s .

Lemma 4.2.4. For s ≥ 1, the following inequality holds

‖ψ(Dx)u
2
x‖Gσ,s ≤ C‖u‖2

Gσ,s . (4.2.18)

Proof: Observe that

ψ(ξ) ≤ Cω(ξ)
1

1 + |ξ|
.

Since s− 1 ≥ 0, the inequality (4.2.7) allows the conclusion

‖ψ(Dx)u
2
x‖Gσ,s ≤ C‖ω(Dx)u

2
x‖Gσ,s−1 ≤ C‖ux‖Gσ,s−1‖ux‖Gσ,s−1 ≤ ‖u‖2

Gσ,s .

4.3 Local Well-posedness Result in Gevrey Space

In what follows, we use the multilinear estimates in section 4.2 to prove local

well-posedness result in the Gσ0,s space for s ≥ 1.

Theorem 4.3.1. Let s ≥ 1, σ0 > 0 and u0 ∈ Gσ0,s(R) be given. Then there exist

a time T = T (‖u0‖)Gσ0,s > 0 and a unique solution

u ∈ C([0, T ];Gσ0,s),

satisfying (4.1.1), and we have

T ∼ (1 + ‖u0‖)−2
Gσ0,s . (4.3.1)

Moreover,

‖u‖L∞T Gσ0,s . ‖u0‖Gσ0,s . (4.3.2)

Here we use the notation

L∞T G
σ0,s = L∞t G

σ0,s
(
[0, T ]× R

)
.
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Proof: Taking into account the Duhamel’s formula (4.2.6), we define a mapping

Ψu(x, t) = S(t)u0 − i
∫ t

0

S(t− t′)
(
τ(Dx)u

2 − 1

8
ψ(Dx)u

3 − 7

48
ψ(Dx)u

2
x

)
(x, t

′
) dt′.

(4.3.3)

Now, we choose the Banach space

X = C([0, T ];Gσ,s).

equipped with norm

‖u‖X = sup
0≤t≤T

‖u(t)‖Gσ,s

where T is to be determined later.

The strategy is to prove that Ψ is a contraction map in the space X for T sufficiently

small. To this end, consider the ball Br of radius r in X:

Br = {u ∈ X : ‖u‖X ≤ r} .

Then, Br is a closed subset of the Banach space X and hence it is a Banach space.

The goal is to prove the following

(1) Ψ maps Br into Br i.e,

‖Ψ(u)‖X ≤ r, u ∈ X,

(2) Ψ is a contraction map i.e,

‖Ψ(u)−Ψ(µ)‖X ≤ θ‖u− µ‖X ,

for all u,µ ∈ Br and some θ ∈ [0, 1).

From (4.2.5), we know that S(t) is a unitary group in Gσ,s(R). Using this fact, we

obtain

‖Ψu‖Gσ,s= ‖u0‖Gσ,s + CT
∥∥∥τ(Dx)u

2 − 1

8
ψ(Dx)u

3 − 7

48
ψ(Dx)u

2
x

∥∥∥
X
. (4.3.4)

In view of the inequalities (4.2.11), (4.2.12) and (4.2.18), we obtain from (4.3.4)

that

‖Ψu‖Gσ,s≤ ‖u0‖Gσ,s + CT
[
‖u‖2

X + ‖u‖3
X + ‖u‖2

X

]
. (4.3.5)

Now, consider u ∈ Br, then (4.3.5) yields

‖Ψu‖Gσ,s≤ ‖u0‖Gσ,s + CT [2r + r2]r.
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If we choose

r = 2‖u0‖Gσ,s , T =
1

2Cr(2 + r)
,

then ‖Ψu‖Gσ,s≤ r, showing that Ψ maps the closed ball Br onto itself.

With the same choice of r and T and the same estimates, one can easily show that

Ψ is a contraction map on Br

Let u, µ ∈ X = C([0, T ] : Gσ,s). Then

‖Ψu−Ψµ‖Gσ,s ≤ CT
[
‖u− µ‖X‖u+ µ‖+ ‖u2 + uµ+ µ2‖X

]
≤ CT‖u− µ‖X(2r + r2)

≤ 1

2
‖u− µ‖X .

Thus, Ψ is a contraction map on Br with a contraction constant 1
2
. So by con-

traction mapping principle (4.1.1) has a unique solution. �

Remark 4.3.2. The following properties follow immediately from the proof of the

Theorem 4.1.1:

(1) The maximal existence time T ∗ of the solution satisfies

T ∗ ≥ T =
1

8Cs‖u0‖Gσ,s(1 + ‖u0‖Gσ,s)
, (4.3.6)

where the constant Cs depends only on s.

(2) The solution can not grow too much on the interval [0, T ] since

‖u(·, t)‖Gσ,s ≤ r = 2‖u0‖Gσ,s , (4.3.7)

for t in this interval, where T is as above in (4.3.1).

4.4 Evolution of Radius of Analyticity

Evolution of radius of analyticity deals with how the size of the region where

a function is analytic changes over time. The radius of analyticity of the solution

of PDEs is a measure of how smooth the solution is in the complex plane. It

is defined as the largest radius of a disk centered at a point where the solution

is analytic. The radius of analyticity can depend on both the initial data and

the time evolution of the solution.The radius of analyticity can be used to study
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the regularity and stability of the solutions of PDEs, that arise from physical

phenomena, such as fluid dynamics, wave propagation, heat conduction, etc.

One of the interesting problem is to investigate how the radius of analyticity

evolves in time for different initial data. If the radius of analyticity shrinks to zero

in finite time, then the solution becomes singular and loses its physical meaning.

On the other hand, if the radius of analyticity remains positive for all time, then

the solution stays smooth and well-defined.

Almost conservation law will allow us to repeat the local result on successive

short-time intervals to reach any target time T ∗ > 0, by adjusting the strip width

parameter σ according to the size of T ∗.

Lemma 4.4.1 ([79]). Let 0 ≤ ρ ≤ 1, σ > 0 and α , β ∈ R, then

eσ|α|eσ|β| − eσ|α+β| ≤
(

2σmin{|α|, |β|}
)ρ
eσ|α|eσ|β|.

Let as fix γ1, δ1 > 0 and γ = 7
48

in (4.1.1) and set

v(x, t) := Λσu(x, t),

where

Λσ := eσ|Dx|.

Then u(x, t) = Λ−σv(x, t). Note also that v0 := v(x, 0) = Λσu0.

Applying the operator Λσ to the first equation of (4.1.1) gives

vt + vx − γ1vxxt + γ2vxxx + δ1vxxxxt + δ2vxxxxx + 3
2
vvx + γ(v2)xxx

− 7
48

(v2
x)x − 1

8
(v3)x = N(v),

(4.4.1)

where

N(v) =
(3

4
+ γ∂2

x

)
∂xN1(v)− γ∂xN2(v)− 1

8
∂xN3(v) (4.4.2)

with
N1(v) = v2 − Λσ

[
(Λ−σv)2

]
,

N2(v) = v2
x − Λσ

[
(Λ−σvx)

2
]
,

N3(v) = v3 − Λσ

[
(Λ−σv)3

]
.

(4.4.3)

Define the modified energy

Eσ[v(t)] =
1

2

∫
R

(
v2 + γ1(vx)

2 + δ1(vxx)
2
)
dx.
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Observe that for σ = 0, we have v = u, and therefore the energy is conserved, i.e.,

E0[v(t)] = E0[v(0)], for all t.

However, this fails to hold for σ > 0. In what follows we will nevertheless prove

almost conservation law

sup
0≤t≤T

Eσ[v(t)] ≤ Eσ[v(0)] + σC
(

1 + E
1
2
σ0 [v(0)]

)
E

3
2
σ0 [v(0)],

we have for T as in Theorem 4.3.1.

Thus, in the limit as σ → 0, we recover the conservation

E0[v(t)] = E0[v(0)].

Indeed, using integration by parts and (4.4.1)-(4.4.3),

d

dt
Eσ[v(t)] =

∫
R

(
v∂tv + γ1∂xv∂t∂xv + δ1∂

2
xv∂t∂

2
xv
)
dx

=

∫
R
v
(

(∂tv − γ1∂t∂
2
xv + δ1∂t∂

4
xv
)
dx

= −
∫
R
v
(
∂xv + γ2∂

3
xv + δ2∂

5
xv +

3

4
∂x(v

2) + γ∂3
x(v

2)

− γ∂x(ux)2 − 1

8
∂x(v

3)
)
dx+

∫
R
vN(v) dx.

(4.4.4)

The third integral of (4.4.4) is zero due to the following identities

v∂xv =
1

2
(v)2

x, v∂3
xv = (vvxx)x −

1

2
(v2
x)x,

v∂5
xv = (v∂4

xv)x − (∂xv∂
3
xv)x +

1

2
(v2
xx)x,

v∂x(v
2) =

2

3
(v3)x, v∂x(v

3) =
3

4
(v4)x,

and

v∂3
x(v

2) = 2(v2vxx)x + v(v2
x)x.

Therefore,
d

dt
Eσ[v(t)] =

∫
R
vN(v) dx. (4.4.5)

Consequently, integrating (4.4.5) in time interval [0, t] yields

Eσ[v(t)] = Eσ[v(0)] +

∫ t

0

∫
R
v(x, s)N(v(x, s)) dxds. (4.4.6)

The following Lemma gives the estimate of the inner integral in (4.4.6).
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Lemma 4.4.2. Let N(v) is as in (4.4.2)-(4.4.3). Then we have∣∣∣∣ ∫
R
vN(v)dx

∣∣∣∣ ≤ Cσ
[
1 + ‖v‖H2

x

]
‖v‖3

H2
x
, (4.4.7)

for all v ∈ H2
x.

Proof: Using (4.4.1)-(4.4.3), Plancherel Theorem and Cauchy-Schwartz inequal-

ity, we get∫
R
vN(v) dx =

∫
R
v

(
3

4
+ γ∂2

x

)
∂xN1(v) dx− γ

∫
R
v∂xN2(v) dx− 1

8

∫
R
v∂xN3(v) dx

=

∫
R

(
3

4
+ γ∂2

x

)
v.∂xN1(v) dx+ γ

∫
R
∂xv.N2(v) dx+

1

8

∫
R
∂xv.N3(v) dx

≤
∥∥∥∥(3

4
+ γ∂2

x

)
v

∥∥∥∥
L2
x

‖∂xN1(v)‖L2
x

+ γ‖∂xv‖L2
x
‖N2(v)‖L2

x
+

1

8
‖∂xv‖L2

x
‖N3(v)‖L2

x

≤ ‖v‖H2
x
‖∂xN1(v)‖L2

x
+ γ‖v‖H1

x
‖N2(v)‖L2

x
+

1

8
‖v‖H1

x
‖N3(v)‖L2

x

≤ ‖v‖H2
x
‖∂xN1(v)‖L2

x
+ γ‖v‖H2

x
‖N2(v)‖L2

x
+

1

8
‖v‖H2

x
‖N3(v)‖L2

x
.

The estimate (4.4.7) follows from the following estimates

‖∂xN1(v)‖L2
x
≤ Cσ‖v‖2

H2
x
. (4.4.8)

‖N2(v)‖L2
x
≤ Cσ‖v‖2

H2
x
. (4.4.9)

‖N3(v)‖L2
x
≤ Cσ‖v‖3

H2
x
. (4.4.10)

Proof of (4.4.8): By taking the Fourier transform of ∂xN1(v), where N1(v) is as

defined in (4.4.3), we obtain

̂∂xN1(v)(ξ) = i

∫
ξ=ξ1+ξ2

ξ

(
eσ(|ξ1|+|ξ2|) − eσ|ξ|

)
û(ξ1)û(ξ2) dξ1dξ2

= i

∫
ξ=ξ1+ξ2

ξPσ(ξ1, ξ2)v̂(ξ1)v̂(ξ2) dξ1dξ2,

(4.4.11)

where

Pσ(ξ1, ξ2) = 1− exp
[
− σ

(
|ξ1|+ |ξ2| − |ξ1 + ξ2|

)]
.
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Since 1− e−r ≤ r, for all r ≥ 0, we have

|Pσ(ξ1, ξ2)| ≤ σ[(|ξ1|+ |ξ2|)− |ξ1 + ξ2|]

= σ
(|ξ1|+ |ξ2|)2 − |ξ1 + ξ2|2

|ξ1|+ |ξ2|+ |ξ1 + ξ2|

≤ 2σmin
{
|ξ1|, |ξ2|

}
.

(4.4.12)

By symmetry, we may assume |ξ1| ≤ |ξ2|. This implies that

|ξ| ≤ 2|ξ2|.

Let

V = F−1
x (|v̂|).

Now, using (4.4.12),from (4.4.11), we get

| ̂∂xN1(v)(ξ)| = 4σ

∫
ξ=ξ1+ξ2

|ξ1||v̂|(ξ1).|ξ2||v̂|(ξ2) dξ1dξ2

= 4σ

∫
ξ=ξ1+ξ2

|ξ1|V̂ (ξ1).|ξ2|V̂ (ξ2) dξ1dξ2

= 4σFx{|Dx|V.|Dx|V }(ξ).

Using Plancherel Theorem, Hölder inequality and Sobolev inequality, we get

‖ ̂∂xN1(v)(ξ)‖L2
x

= ‖∂xN1(v)(ξ)‖L2
x
≤ 4σ‖|Dx|V.|Dx|V ‖L2

x

≤ 4σ‖|Dx|V ‖L2
x
‖|Dx|V ‖L∞x

. σ‖V ‖2
H2
x
∼ σ‖v‖2

H2
x
,

as desired.

Proof of (4.4.9): By taking the Fourier transform of N2(v), we have

N̂2(v)(ξ) =

∫
ξ=ξ1+ξ2

(
eσ(|ξ1|+|ξ2|) − eσ|ξ|

)
ûx(ξ1)ûx(ξ2) dξ1dξ2

=

∫
ξ=ξ1+ξ2

ξ1ξ2Pσ(ξ1, ξ2)v̂(ξ1)v̂(ξ2) dξ1dξ2.

(4.4.13)

By symmetry |ξ1| ≤ |ξ2|, we have

|ξ1ξ2Pσ(ξ1, ξ2)| ≤ 2σ|ξ1|2|ξ2|.
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Thus, from (4.4.13), we get∣∣N̂2(v)(ξ)
∣∣ ≤ 2σ

∫
ξ=ξ1+ξ2

|ξ1|2|̂v|(ξ1)|ξ2||̂v|(ξ2) dξ1dξ2

= 2σ

∫
ξ=ξ1+ξ2

|ξ1|2V̂ (ξ1).|ξ2|V̂ (ξ2) dξ1dξ2

= 2σFx{|Dx|2V.|Dx|V }(ξ).

By applying Plancherel Theorem, Hölder inequality and Sobolev inequality we get

‖N̂2(v)(ξ)‖L2
x

= ‖N2(v)(ξ)‖L2
x
≤ 2σ‖|Dx|V.|Dx|V ‖L2

x

≤ 2σ‖|Dx|2V ‖L2
x
‖|Dx|V ‖L∞x

. σ‖V ‖2
H2
x
∼ σ‖v‖2

H2
x
,

which shows (4.4.9).

Proof of (4.4.10): Taking the Fourier transform of N3(v), we get

N̂3(v)(ξ) =

∫
ξ=ξ1+ξ2+ξ3

(
e
∑3
j σ(|ξj | − eσ|ξ|

)
û(ξ1)û(ξ2)û(ξ3) dξ1dξ2dξ3

=

∫
ξ=ξ1+ξ2+ξ3

Kσ(ξ1, ξ2 , ξ3)v̂(ξ1)v̂(ξ2)v̂(ξ3) dξ1dξ2dξ3,

(4.4.14)

where

Kσ(ξ1, ξ2, ξ3) = 1− exp
[
− σ

( 3∑
j=1

|ξj| − |
3∑
j=1

ξj|
)]
.

Using similar argument as (4.4.12), we estimate

Kσ(ξ1, ξ2, ξ3) ≤ σ

[ 3∑
j

|ξj| − |
3∑
j=1

ξj|
]

= σ
(
∑3

j |ξj|)2 − |
∑3

j=1 ξj|2∑3
j |ξj|+ |

∑3
j=1 ξj|

≤ 12σmed
{
|ξ1|, |ξ2|, |ξ3|

}
.

(4.4.15)

where med
{
|ξ1|, |ξ2|, |ξ3|

}
= |ξ2|

By symmetry, assume |ξ1| ≤ |ξ2| ≤ |ξ3|. Using (4.4.15), from (4.4.14), we set
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|N̂3(v)(ξ)| = 12σ

∫
ξ=ξ1+ξ2+ξ3

|v̂|(ξ1).|ξ2||v̂|(ξ2)|v̂|(ξ3) dξ1dξ2dξ3

= 12σ

∫
ξ=ξ1+ξ2+ξ2

V̂ (ξ1).|ξ2|V̂ (ξ2).V̂ (ξ3) dξ1dξ2dξ3

= 12σFx{V.|Dx|V.V }(ξ).

Applying, Plancherel Theorem, Hölder inequality and Sobolev inequality gives

‖N̂3(v)(ξ)‖L2
x

= ‖N3(v)(ξ)‖L2
x
≤ 12σ‖V.|Dx|V.V ‖L2

x

≤ 12σ‖V ‖L∞x ‖|Dx|V ‖L2
x
‖V ‖L∞x

. σ‖V ‖3
H2
x
∼ σ‖v‖3

H2
x
,

which completes the proof of (4.4.10) �

Therefore, in view of (4.4.6) and (4.4.7), we have the apriori energy estimate

Eσ[v(t)] ≤ Eσ[v(0)] + σTC
[
1 + ‖v‖L∞T H2

x

]
‖v‖3

L∞T H
2
x
, (4.4.16)

where

v ∈ L∞T H2
x := L∞t H

2
x([0, T ];R).

Combing the estimate in (4.4.16) with the local existence result in Theorem 4.3.1

gives an almost conservation law to the modified energy.

Lemma 4.4.3. [Almost conservation law] Let u0 ∈ Gσ,2. Suppose that u ∈
C
(
[0, T ];Gσ,2

)
is the local-in-time solution to the Cauchy problem (4.1.1). Then

sup
0≤t≤T

Eσ[v(t)] ≤ Eσ[v(0)] + Cσ
(

1 + E
1
2
σ [v(0)]

)
E

3
2
σ [v(0)]. (4.4.17)

Proof: By Theorem 4.3.1, we have the bound

‖v‖L∞T H2
x

= ‖u‖L∞T Gσ,2 ≤ C‖u0‖Gσ,2 = C‖v0‖H2
x
. (4.4.18)

where T is as in (4.3.1).

On the other hand, for fixed constants γ1, δ1 > 0, we have

Eσ[v(t)] =
1

2

∫
R

(
v2

0 + γ1(v′0)2 + δ1(v′′0)2
)
dx ∼ ‖v0‖2

H2
x
. (4.4.19)
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which implies that ‖v0‖H2
x

= E
1
2
σ [v(t)].

Then, combining (4.4.18) and (4.4.19) with (4.4.16) yields the desired estimate

(4.4.17). �

Proof of Theorem 4.1.1: In this subsection, we study the evolution of the radius

of analyticity σ(t) as the time t grows. We have established the existence of local

solutions, and apply the local result repeatedly using almost conservation law to

cover time intervals of arbitrary length.

To prove the Theorem, first we consider the case s = 2, then the general case ,

s ∈ R will essentially reduce to the case s = 2.

The Case s = 2: Suppose that u0 = u(x, 0) ∈ Gσ0,2(R) for some σ0 > 0. Then

there exists a unique solution

u(x, t) ∈
(

[0, T ];Gσ0,2(R)
)
,

of (4.1.1) constructed in Theorem 4.3.1 with existence time T as given in (4.3.1).

Note that

v0 = eσ0|Dx|u0 ∈ H2
x.

and we have

Eσ[v0] ∼ ‖v0‖2

H2
<∞.

Now, following the argument in [84], we can construct a solution on [0, T ∗] for

arbitrarily large time T ∗, by applying the almost conservation law in Lemma

4.4.3, so as to repeat the local result on successive short time intervals of size T

to reach T ∗ by adjusting the strip width parameter σ according to the size of T ∗.

Doing so, we establish the bound

sup
t∈[0,T ∗]

Eσ[v(t)] ≤ 2Eσ0 [v(0)], (4.4.20)

for σ satisfying

σ(t) >
c

T ∗
, (4.4.21)

where c > 0 is a constant depending on ‖u0‖Gσ0,2 and σ0. By Theorem 4.3.1, there

is a solution u to (4.1.1) satisfying

u(x, t) ∈ Gσ0,2, ∀t ∈ [0, T ],

where

T ∼ (1 + ‖u0‖)−2
Gσ0,s .
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Thus, Eσ[v(t)] <∞ for t ∈ [0, T ∗], which inturn implies

u(x, t) ∈ Gσ(t),2, for all t ∈ [0, T ∗].

It remains to prove (4.4.20). Choose n ∈ N so that T ∗ ∈ [nT, (n + 1)T ]. Using

induction we can show for any k ∈ {1, 2, 3, ..., n+ 1} that

sup
t∈[0,kT ]

Eσ[v(t)] ≤ Eσ[v(0)] + kCσE
3
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
, (4.4.22)

sup
t∈[0,kT ]

Eσ[v(t)] ≤ 2Eσ0 [v(0)], (4.4.23)

provided that σ satisfies

2T ∗

T
CσE

1
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
≤ 1, (4.4.24)

Indeed, for k = 1, from Lemma 4.4.3, we have

sup
t∈[0,T ]

Eσ[v(t)] ≤ Eσ[v(0)] + CσE
3
2

σ [v(0)]
(

1 + E
1
2
σ [v(0)]

)
≤ Eσ0 [v(0)] + CσE

3
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
.

For σ < σ0,

Eσ[v(0)] ≤ Eσ0 [v(0)].

This inturn implies (4.4.23) holds provided that

CσE
1
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
≤ 1.

Now, assume that (4.4.22) and (4.4.23) hold for some k ∈ {1, 2, 3, ..., n} and σ

satisfies (4.4.24).

Then, we need to show that (4.4.22) and (4.4.23) hold for k = n+ 1.

Applying Lemma 4.4.3, (4.4.23) and (4.4.22) for k = n+1, respectively, we obtain

sup
t∈[kT,(k+1)T ]

Eσ[v(t)] ≤ Eσ[v(kT )] + CσE
3
2
σ [v(kT )]

(
1 + E

1
2
σ [v(kT )]

)
≤ Eσ[v(kT )] + CσE

3
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
≤ Eσ[v(0)] + Cσ(k + 1)E

3
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
.

(4.4.25)

Combining (4.4.25) with the induction hypothesis (4.4.22), we obtain

sup
t∈[0,(k+1)T ]

Eσ[v(t)] ≤ Eσ[v(0)] + Cσ(k + 1)E
3
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
,
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which proves (4.4.22) for k = n+ 1. This also implies (4.4.23) holds for k = n+ 1

provided that

Cσ(k + 1)E
1
2
σ0 [v(0)]

(
1 + E

1
2
σ0 [v(0)]

)
≤ 1.

However, the later follows from (4.4.22), since

k + 1 ≤ n+ 1 ≤ T ∗

T
+ 1 ≤ 2T ∗

T
.

Finally, the condition (4.4.24) is satisfied for σ such that

σ =
c1

T ∗
,

where

c1 =
T

CE
1
2
σ0 [v(0)]

(
1 + (E

1
2
σ0

[v(0)])
) ,

which gives (4.4.21) if we choose c ≤ c1.

The general case s ∈ R: For any s ∈ R, we use the embedding (2.1.6) to get

u0 ∈ Gσ0,s ⊂ G
σ0
2
,2.

From the local result, there is a time T = T (Eσ0
2

[v(0)]) such that

v(t) ∈ G
σ0
2
,2, 0 ≤ t ≤ T.

Fix an arbitrarily large T ∗. From the case s = 2, we have

v(t) ∈ G2a0T ∗,2, 0 ≤ t ≤ T ∗,

where a0 > 0 depends on Eσ0
2

[v(0)]) and σ0.

Applying again the embedding (2.1.6) we conclude that

u(x, t) ∈ Ga0T−1,s, 0 ≤ t ≤ T ∗.

This completes the proof of Theorem 4.1.1. �
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Chapter 5

Generalized KdV-BBM Equation

and Coupled System of

Generalized BBM Equations

In this chapter, we study the evolution of the radius of spatial analyticity to

the solutions of generalized KdV-BBM equation and coupled system of generalized

BBM equations, subject to initial data in modified Gevrey space Hσ0,s with a

fixed radius σ0. It is shown that the uniform radius of spatial analyticity of

solutions for both problems can not decay faster than ct−2/3 as t→∞. We used

contraction mapping principle, multilinear estimates and higher order approximate

conservation law in modified Gevrey space to establish the results.

5.1 Problem Statement

Consider the Cauchy problem for generalized KdV-BBM equation{
ut + ux + 3

2
upux + νuxxx − (1

6
− ν)uxxt = 0, p ≥ 1

u(x, 0) = u0(x),
(5.1.1)

and for coupled system of BBM equations
ut + ux − uxxt + 1

2
(v2)x = 0,

vt + vx − vxxt + (uv)x = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

(5.1.2)

where u and v are real-valued functions of x ∈ R and t ≥ 0.

The energy obtained from (5.1.1) is conserved for ν < 1
6
, that is

A[u(t)] =
1

2

∫
R

[
u2 + (

1

6
− ν)u2

x

]
dx = A[u(0)], ∀t ∈ R. (5.1.3)
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The Cauchy problem (5.1.2) is the particular case of the coupled system of

generalized BBM equations
ut + ux − uxxt + (αu2 + βuv + γv2)x = 0

vt + vx − vxxt + (θu2 + λuv + ψv2)x = 0

u(x, 0) = u0(x), v(x, 0) = v0(x),

(5.1.4)

where α = β = θ = ψ = 0, γ = 1
2
, λ = 1.

The energy obtained from (5.1.2) also conserved, which is given by

E(u, v) :=

∫
R
(u2 + v2 + u2

x + v2
x) dx = E(u(0), v(0)). (5.1.5)

This chapter focuses on analyticity properties of solutions of (5.1.1) and (5.1.2).

For a given real analytic initial data that has analytic extension to complex strip

Sσ0 = {x + iy, x, y ∈ R, |y| < σ0}, we need to check whether the solution is

analytic or not in complex strip Sσ(t) for t → ∞. We also analyze the evolution

of the radius of spacial analyticity σ(t) at each time t. The space of functions

we used to study the spatial analyticity of the solution is modified Gevrey space,

Hσ,s(R) which was introduced in [37].

A function in the Gevrey class Gσ,s(R) is a restriction to the real axis of a

function which is analytic in a symmetric strip of width 2σ. This property is

described in the Paley-Wiener Theorem (see,Theorem 2.1.20).

The modified Gevrey space, Hσ,s(R) is obtained from the Gevrey space, Gσ,s(R)

by replacing the exponential weight eσ|ξ| with the hyperbolic weight cosh(σ|ξ|),
equipped with the norm

‖f‖2
Hσ,s(R) = ‖cosh(σ|ξ|)〈ξ〉sf̂(ξ)‖2

L2(R), σ ≥ 0. (5.1.6)

Observe that, for large values of ξ we have, e−|ξ| ≈ 0. From this fact and the

definition of cosh(ξ), we have

1

2
eσ|ξ| ≤ cosh(σ|ξ|) ≤ eσ|ξ|. (5.1.7)

Thus, the associated Hσ,s(R) and Gσ,s(R)–norms are equivalent.That is

‖f‖Hσ,s(R) ∼ ‖f‖Gσ,s(R). (5.1.8)

Paley-Wiener Theorem still holds for functions in Hσ,s(R). Note also that,

G0,s(R) = H0,s(R) = Hs(R). The reason for considering the Hσ,s(R) is due to its

advantage, since cosh(σ|ξ|) satisfies the estimate

cosh(σ|ξ|)− 1 ≤ (σ|ξ|)2ρ cosh(σ|ξ|), ρ ∈ [0, 1]. (5.1.9)
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The estimate (5.1.9) follows from

coshx− 1 ≤ coshx and coshx− 1 ≤ x2 coshx, x ∈ R.

From the embedding property (2.1.6) and (5.1.8), we have

‖f‖Hs(R) ≤ C‖f‖Hσ,s(R), σ > 0. (5.1.10)

By virtue of (5.1.10) and the existing well-posedness theory in Hs(R), (5.1.1)

and (5.1.2) have a unique and global in time solution, with initial data u0 ∈
Hσ0,s(R) and (u0, v0) ∈ Hσ0,s(R)×Hσ0,s(R) respectively for all σ0 ≥ 0 and s ∈ R.

Our main results of this chapter are given in the following Theorems.

Theorem 5.1.1. Let ν < 1
6
, σ0 > 0 and u0 ∈ Hσ0,1(R). Then, the solution u of

(5.1.1) with initial data u0 remains analytic in complex strip Sσ(t) for all t > 0(
u(t) ∈ Hσ(t),1(R), ∀t > 0

)
with the radius of analyticity σ(t) satisfying the lower

bound

σ(t) ≥ ct−2/3 as t→ +∞,

where c > 0 is a constant depending on ‖u0‖Hσ0,1(R) and σ0.

Theorem 5.1.2. Let σ0 > 0 and (u0, v0) ∈ Hσ0,1(R)×Hσ0,1(R). Then, the solu-

tion (u, v) of (5.1.2) with initial value (u0, u0) is analytic in the space Hσ(t),1(R)×
Hσ(t),1(R) for all time t→∞, where σ(t) satisfying the lower bound

σ(t) ≥ ct−2/3, ∀t ≥ 0,

where c > 0 is a constant depending on ‖(u0, v0)‖Hσ0,1(R)×Hσ0,1(R) and σ0.

Remark 5.1.3. If (3.3.3) has a non zero solution { (a, b, c) } such that 4ac−b2 > 0,

then (5.1.4) is globally well-posed in the space Hσ(t),1(R)×Hσ(t),1(R) for all t→∞.

The radius of analyticity of the solution has the same lower bounds as in Theorem

5.1.2.

The first step in the proof of Theorem 5.1.1 and Theorem 5.1.2 is to show that

in a short time interval 0 ≤ t ≤ T , where T > 0 depends on the norm of the

initial data, the radius of analyticity remains strictly positive. This is proved by

a contraction mapping argument and a multilinear estimate which will be given

in the next section.

The next step is to prove the approximate conservation law in the time interval

[0, T ], measured in the data norm Hσ,s(R). This approximate conservation law

will allow us to iterate the local results and obtain the results in Theorem 5.1.1

and 5.1.2.
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5.2 Local Well-posedness Results

Before stating and proving local well-posedness of (5.1.1) and (5.1.2), let us

recall bilinear estimate stated and proved in Lemma 4.2.1 of chapter 4. This

estimate will be useful in the proof of the local well-posedness results.

Lemma 5.2.1. For s ≥ 0 and σ > 0, there is a constant C = C(s) such that

‖ϕ(Dx)(uv)‖Gσ,s(R) ≤ C‖u‖Gσ,s(R)‖v‖Gσ,s(R), (5.2.1)

and

‖ϕ(Dx)u‖Gσ,s(R) ≤ C‖u‖Gσ,s(R), (5.2.2)

where ϕ(Dx) is the Fourier multiplier operator with symbol

ϕ(ξ) =
|ξ|

1 + ξ2
.

By (2.1.5) and the multiplier estimate |ξ|
1+ξ2 ≤ 1, the estimate in (5.2.2) holds.

Remark 5.2.2. By virtue of (5.1.8), the estimates in Lemma 5.2.1 hold in Hσ,s.

Local Well-posedness of Cauchy Problem for Generalized KdV-BBM

Equation

In this subsection, we will study the local well-posedness of the Cauchy problem

(5.1.1) in the modified Gevrey space Hσ,s(R). The theory begins by converting

the original initial-value problem into an associated integral equation. By taking

the Fourier transform of (5.1.1) with respect to the spatial variable, we get

ût + iξû+
3iξ

2(p+ 1)
ûp+1 − iξ3νû+ (

1

6
− ν)ξ2ût = 0.

Now, for ν < 1
6
, we have

(
1 + (1

6
− ν)ξ2

)
> 0. Then, rearranging the terms gives(

1 + (
1

6
− ν)ξ2

)
iût − ξ(1− νξ2)û =

3ξ

2(p+ 1)
ûp+1.

Dividing by
(

1 + (1
6
− ν)ξ2

)
, we get

iût − φ(ξ)û = ψ(ξ)ûp+1, (5.2.3)

where

φ(ξ) =
ξ(1− νξ2)

1 +
(

1
6
− ν
)
ξ2
, ψ(ξ) =

3ξ

2(p+ 1)
[
1 + (1

6
− ν)ξ2

] .
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Next, we define the Fourier multiplier operators φ(Dx) and ψ(Dx) as follows

φ(Dx)f(ξ) = F−1
(
φ(ξ)f̂(ξ)

)
, ψ(Dx)f(ξ) = F−1

(
ψ(ξ)f̂(ξ)

)
. (5.2.4)

By the inverse Fourier transform of (5.2.3), equation (5.1.1) can be rewritten in

an operator form as {
iut − φ(Dx)u = ψ(Dx)u

p+1,

u(x, 0) = u0(x).
(5.2.5)

First, consider the following linear initial value problem associated with (5.2.5){
iut − φ(Dx)u = 0,

u(x, 0) = u0(x),
(5.2.6)

whose solution is given by

u(t) = S(t)u0,

where S(t) = e−itφ(∂x) and

Ŝ(t)u0 = e−iφ(ξ)tû0 =

∫
R
e−i
(
xξ+tφ(ξ)

)
u0(x) dx.

The operator S(t) is unitary in Hσ,s(R) for any s ∈ R and hence

‖S(t)u0‖Hσ,s(R) = ‖u0‖Hσ,s(R), ∀t > 0. (5.2.7)

By Duhamel’s principle, the integral form of (5.2.5) is given by

u(x, t) = S(t)u0 − i
∫ t

0

S(t− s′)ψ(Dx)u
p+1(x, s′) ds′. (5.2.8)

Theorem 5.2.3. Suppose that ν < 1
6
. Let σ0 > 0 and u0 ∈ Hσ0,1(R) be given.

Then, there exist a time T = T
(
‖u0‖Hσ0,1(R)

)
> 0, and a unique solution u(t) ∈

C([0, T ];Hσ(t),1(R)) of (5.1.1), where

T =
1

2p+1C(‖u0‖Hσ0,1(R))p
(5.2.9)

where C is a constant depends on s.

Moreover, the map from u0 ∈ Hσ0,1(R)→ u ∈ C([0, T ];Hσ(t),1(R)) is continuous.

That is

‖u(·, t)‖X = sup
0≤t≤T

‖u(·, t)‖Hσ(t),1(R) ≤ C‖u0‖Hσ0,1(R), (5.2.10)

where

X := C
(

[0, T ];Hσ(t),1(R)
)
,

is Banach space.
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Since S(t) is a unitary group in Hσ,s(R), applying cosh(σ|Dx|) to the integral

(5.2.8) and taking the H1-norm on both sides yields the energy inequality

sup
0≤t≤T

‖u‖Hσ,1 ≤ ‖u0‖Hσ,1 +

∫ t

0

‖ψ(Dx)u
p+1‖Hσ,1 ds′, (5.2.11)

Now, we use the following Lemma to estimate the nonlinear term in (5.2.11).

Lemma 5.2.4. For σ > 0, we have nonlinear estimate

‖ψ(Dx)u
p+1‖Hσ,0 . ‖u‖p+1

Hσ,1 . (5.2.12)

Proof: Note that, ψ(ξ) ≤ Cω(ξ) for some constant C > 0. From (5.2.2) and

(5.1.8), we have

‖ψ(Dx)u
p+1‖Hσ,0 . ‖up+1‖Hσ,0 , (5.2.13)

which is also equivalent to

‖ψ(Dx)u
p+1‖Gσ,0 . ‖up+1‖Gσ,0 . (5.2.14)

Setting U := eσ|Dx|u in (5.2.14) and applying Plancherel Theorem, leads to

‖(e−σ|Dx|U)p+1‖Gσ,0 =
∥∥∥eσ|Dx|(e−σ|Dx|U)p+1

∥∥∥
L2
x

=
∥∥∥Fx(eσ|Dx|(e−σ|Dx|U)p+1

)
(ξ)
∥∥∥
L2
ξ

=
∥∥∥∫

ξ=
∑p+1
i=1 ξi

e
σ

(
|ξ|−

∑p+1
i=1 |ξi|

)
p+1∏
i=1

Û(ξi)dξ1 . . . dξp+1

∥∥∥
L2
ξ

≤
∥∥∥∫

ξ=
∑p+1
i=1 ξi

p+1∏
i=1

|Û(ξi)|dξ1 . . . dξp+1

∥∥∥
L2
ξ

= ‖W p+1‖L2
x
,

(5.2.15)

where W = F−1(|Û |) and |ξ| ≤
∑p+1

i=1 |ξi|, which follows from the triangle inequal-

ity.

Now, by Sobolev embedding, we obtain

‖W p+1‖L2
x

= ‖W‖p+1

L
2(p+1)
x

≤ ‖W‖p+1
H1 = ‖u‖p+1

Hσ,1 .

Thus, from (5.2.13) and (5.2.15) the estimate (5.2.12) holds.
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Proof of Theorem 5.2.3. Taking into account the Duhamel’s formula (5.2.8),

we define a mapping

Γu(x, t) = S(t)u0 − i
∫ t

0

S(t− s′)ψ(Dx)u
p+1(x, s′) ds′. (5.2.16)

Consider the closed ball Br in X:

Br =

{
u ∈ X : sup

0≤t≤T
‖u‖Hσ(t),1 ≤ 2‖u0‖Hσ0,1

}
,

where

X := C
(

0, T ;Hσ(t),1(R)
)
.

Using the energy estimate (5.2.11) and Lemma 5.2.4, we obtain

sup
0≤t≤T

‖Γu‖Hσ(t),1(R) ≤ ‖u0‖Hσ0,1(R) +

∫ t

0

‖ψ(Dx)u
p+1‖Hσ(t),1

≤ ‖u0‖Hσ0,1(R) + CT sup
0≤t≤T

‖u‖p+1

Hσ(t),1(R)
.

(5.2.17)

For u ∈ Br, (5.2.17) becomes

sup
0≤t≤T

‖Γu‖Hσ(t),1(R)≤ ‖u0‖Hσ0,1(R) + CT2p+1‖u0‖p+1

Hσ0,1(R)
.

Now, choose T so small, such that

T =
1

2C(2‖u0‖Hσ0,1(R))p
.

Then, ‖Γu‖X≤ 2‖u0‖Hσ0,1 showing that Γ maps Br into itself.

Next, with the same choice of T , we can show that Γ is a contraction map on

Br. For u, v ∈ Br, by (5.2.11) and Lemma 5.2.4, we have

sup
0≤t≤T

∥∥∥Γu− Γv
∥∥∥
Hσ(t),1

≤
∥∥∥∥∫ t

0

S(t− s)ψ(∂x)
(
up+1 − vp+1

)
(x, s) ds

∥∥∥∥
X

≤ CT sup
0≤t≤T

‖u− v‖Hσ,1(R)‖up + up−1v + ...+ vp‖Hσ,1(R)

≤ CT (2‖u0‖Hσ0,1)p sup
0≤t≤T

‖u− v‖Hσ,1(R)

≤ 1

2
sup

0≤t≤T
‖u− v‖Hσ,1(R).

(5.2.18)
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Hence, Γ is a contraction map on Br.
Therefore by contraction mapping principle, (5.1.1) has unique solution in X.

Continuous dependence on the initial data can be shown in a similar way using

the difference estimate. This concludes the proof of Theorem 5.2.3.

Local Well-posedness of Cauchy Problem for Coupled System of BBM

Equations

Here, we will prove the local well-posedness of (5.1.2) by converting the system to

an equivalent system of integral equations.

Let us denote vector of dependent variables, vector of initial data and vector

of nonlinearities of (5.1.2) respectively as follows:

W =

(
u

v

)
, W0 =

(
u0

v0

)
, M(W ) =

(
1
2
v2

uv

)
.

Then, the system (5.1.2) can be rewritten as{
Wt +Wx −Wxxt + ∂xM(W ) = 0,

W (x, 0) = W0(x).
(5.2.19)

By rearranging terms in the first equation of (5.2.19) and taking its Fourier trans-

form, we get

(1− ∂2
x)Wt + ∂xW = −∂xM(W )

iWt −
Dx

1 +D2
x

W =
Dx

1 +D2
x

M(W )

iŴt − ϕ(ξ)Ŵ = ϕ(ξ)M̂(W ), (5.2.20)

where Dx = −i∂x with Fourier symbol ξ and ϕ(ξ) is given by

ϕ(ξ) =
ξ

1 + ξ2
.

Now, define the Fourier multiplier operator ϕ(Dx) as

ϕ(Dx)f = F−1
(
ϕ(ξ)f̂(ξ)

)
,

By taking the inverse Fourier transform of (5.2.20), and using the resulting equa-

tion, (5.2.19) can be rewritten as{
iWt − ϕ(Dx)W = ϕ(Dx)M(W ),

W (x, 0) = W0(x).
(5.2.21)
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First, let us solve the linear part of (5.2.21),i.e{
iWt − ϕ(Dx)W = 0,

W (x, 0) = W0(x).
(5.2.22)

Set S(t) = e−itϕ(Dx) be the unitary group in Gσ,s(R). Then S(t)W0(x) solves

(5.2.22). Using Duhamel’s formula, (5.2.21) can be rewritten as the integral equa-

tion

W (x, t) = S(t)W0(x)− i
∫ t

0

S(t− τ)ϕ(Dx)M(W (x, τ)) dτ. (5.2.23)

Define the operator K by

K(W (x, t)) = S(t)W0(x)− i
∫ t

0

S(t− τ)ϕ(Dx)M(W (x, τ)) dτ. (5.2.24)

We have the following local well posedness result.

Theorem 5.2.5. Let σ0 > 0, s ≥ 0 and the initial data W0 ∈ Hσ0,s(R)×Hσ0,s(R).

Then, there exist a time T = T
(
‖W0‖Hσ0,s(R)×Hσ0,s(R)

)
> 0 and a unique solution

W ∈ X = C
(

[0, T ];Hσ(t),s(R)×Hσ(t),s(R)
)

of the Cauchy problem (5.2.21), and we have

T =
1

4C‖W0‖Hσ0,s(R)×Hσ0,s(R)

, (5.2.25)

where C > 0 is a constant depends on s.

Moreover, the map from W0 ∈ Hσ0,s(R)×Hσ0,s(R)→ W ∈ C
(

[0, T ];Hσ(t),s(R)×

Hσ(t),s(R)
)

is continuous.i.e.,

‖W (., t)‖X = sup
0≤t≤T

‖W (., t)‖Hσ,s(R)×Hσ,s(R) ≤ C‖W0‖Hσ0,s(R)×Hσ0,s(R). (5.2.26)

This implies for short time interval 0 ≤ t ≤ T , the solution remains analytic in

the initial strip Sσ0 with radius of analyticity σ(t) = σ0.

Proof: Using similar procedure as in the proof of Theorem 5.2.3, applying the

contraction mapping argument to (5.2.24) and using bilinear estimates (5.2.1) and

(5.2.2), we can prove the local well-posedness in analytic space Hσ,s(R)×Hσ,s(R).

Denote

X := C
(

0, T ;Hσ,s(R)×Hσ,s(R)
)
,
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equipped with norm

‖W‖X = sup
t∈[0,T ]

‖W‖Hσ,s(R)×Hσ,s(R) = sup
t∈[0,T ]

‖u‖Hσ,s(R) + sup
t∈[0,T ]

‖v‖Hσ,s(R).

Note that, (X, ‖.‖X) is a Banach space. To establish local existence via the con-

traction mapping principle the domain for the operator K will be restricted to the

closed subset Br(0) of X, given by

Br = {W ∈ X : ‖W‖X ≤ r} .

Our claim is to show the nonlinear operator K defined in (5.2.24) is a contraction

or not in the closed ball Br for T sufficiently small, which means K maps Br into

Br. i.e,

‖KW‖X ≤ r,

and

‖K(W )−K(W̄ )‖X ≤ ϑ‖W − W̄‖X ,

where W, W̄ ∈ X and ϑ ∈ [0, 1).

Next, we go back to (5.2.24) and its norm

‖KW (x, t)‖X = ‖S(t)W0‖Hσ,s(R)×Hσ,s(R) +
∥∥∥∫ t

0

S(t− τ)ϕ(Dx)M(W (x, τ)) dτ
∥∥∥
X
.

(5.2.27)

Since S(t) is a unitary operator on Hσ,s(R)×Hσ,s(R) for any s ∈ R, we have

‖S(t)W0‖Hσ,s(R)×Hσ,s(R) = ‖W0‖Hσ,s(R)×Hσ,s(R), ∀t > 0. (5.2.28)

By virtue of Lemma 5.2.1, we have

‖KW (x, t)‖X ≤ ‖W0‖Hσ,s(R)×Hσ,s(R) +

∫ t

0

∥∥∥ϕ(Dx)M(W (x, τ))
∥∥∥
X
dτ

≤ ‖W0‖Hσ,s×Hσ,s + T
∥∥∥ϕ(Dx)M(W (x, τ))

∥∥∥
X

≤ ‖W0‖Hσ,s×Hσ,s + T
∥∥∥ϕ(Dx)

(1

2
v2, uv

)∥∥∥
X

≤ ‖W0‖Hσ,s×Hσ,s + T sup
0≤t≤T

∥∥∥ϕ(Dx)
(1

2
v2, uv

)∥∥∥
Hσ,s×Hσ,s

≤ ‖W0‖Hσ,s×Hσ,s + T
[

sup
0≤t≤T

∥∥∥ϕ(Dx)(
1

2
v2)
∥∥∥
Hσ,s

+ sup
0≤t≤T

∥∥∥ϕ(Dx)(uv)
∥∥∥
Hσ,s

]
≤ ‖W0‖Hσ,s×Hσ,s + TC sup

0≤t≤T

[
‖v‖2

Hσ,s+‖u‖Hσ,s(R)‖v‖Hσ,s

]
≤ ‖W0‖Hσ,s×Hσ,s + TCr2.

(5.2.29)
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If we choose

r = 2‖W0‖Hσ,s×Hσ,s , T =
1

2Cr
=

1

4C‖W0‖Hσ,s×Hσ,s

.

Then, ‖KW (x, t)‖X ≤ r showing thatKmaps the closed ballBr(0) in C
(
[0, T ];Hσ,s×

Hσ,s
)

onto itself.

To show the map K : X −→ X be contraction mapping, let W, W̄ ∈ X =

C
(
0, T ;Hσ,s×Hσ,s

)
, With the same choice of T as above, by applying (5.2.2), we

obtain∥∥∥KW −KW̄∥∥∥
X

=
∥∥∥∫ t

0

S(t− τ)
[
ϕ(Dx)M(W (x, τ))− ϕ(Dx)M(W̄ (x, τ))

]
dτ
∥∥∥
X

≤
∫ t

0

∥∥∥ϕ(Dx)M(W (x, τ))− ϕ(Dx)M(W̄ (x, τ))
∥∥∥
X
dτ

≤
∫ t

0

∥∥∥ϕ(Dx)

[(1

2
v2, uv

)
−
(1

2
v̄2, ūv̄

)]∥∥∥
X
dτ

≤ T

[∥∥∥ϕ(Dx)
(1

2
(v − v̄)(v + v̄)

)∥∥∥
Hσ,s

+
∥∥∥ϕ(Dx)

(
v(u− ū) + ū(v − v̄)

)∥∥∥
Hσ,s

]

≤ CT
[1

2
‖v − v̄‖Hσ,s‖v + v̄‖Hσ,s

+ ‖u− ū‖Hσ,s‖v‖Hσ,s + ‖v − v̄‖Hσ,s‖ū‖‖Hσ,s

)]
≤ CTr

[
‖u− ū‖Hσ,s + ‖v − v̄‖Hσ,s

]
≤ CTr‖W − W̄‖Hσ,s×σ,s .

(5.2.30)

Hence

‖KW −KW̄‖X ≤
1

2
‖W − W̄‖Hσ,s×Hσ,s .

This shows that K is a contraction on Br with a contraction constant 1
2
. So by

contraction mapping principle, initial value problem (5.2.19) has unique solution.

To see the continuous dependence of the solution on the initial data, let W

and W̄ be the solutions with initial data W0 and W̄0 respectively, then

‖W − W̄‖X ≤ ‖W0 − W̄0‖Hσ,s×Hσ,s + 1
2
‖W − W̄‖Hσ,s×Hσ,s ,

≤ 2‖W0 − W̄0‖Hσ,s×Hσ,s .
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5.3 Almost Conservation Law

Almost conservation law enables us to prove the existence of global solution

by repeating the local result obtained in section 5.2

Almost Conservation Law to (5.1.1): Let u be the solution of (5.1.1).

Define

w(x, t) = cosh(σ|Dx|)u.

Applying the operator cosh(σ|Dx|) to the first equation in (5.1.1), we obtain

wt + wx +
3

2(p+ 1)
(wp+1)x + νwxxx − (

1

6
− ν)wxxt = f(w), (5.3.1)

where

f(w) =
3

2(p+ 1)
∂x

[
wp+1 − cosh(σ|Dx|)

(
sech(σ|Dx|)w

)p+1
]
. (5.3.2)

The modified energy, given by

Aσ[w(t)] =
1

2

∫
R

[
w2 + (

1

6
− ν)w2

x

]
dx. (5.3.3)

For σ = 0, we have w = u, and therefore the energy is conserved. i.e.

A0[w(t)] = A0[w(0)].

However, this fails to hold for σ > 0.

Differentiating Aσ[w(t)] with respect to t, then applying integration by parts

and using (5.3.1) and (5.3.2), gives

d

dt
Aσ[w(t)] =

∫
R

(
wwt + (

1

6
− ν)wxwxt

)
dx

=

∫
R

(
wwt − (

1

6
− ν)wwxxt

)
dx

= −
∫
R

(
wwx +

3

2(p+ 1)
w(wp+1)x + νwwxxx − wf(w)

)
dx

= −1

2

∫
R

[
(w2)x −

3

(p+ 1)(p+ 2)
(wp+2)x − ν(w2

x)x
]
dx+

∫
R
wf(w) dx.

By assumption, w and its all spatial derivatives decay to zero as |x| → ∞.

Consequently, the first integral in the last line is vanished. Therefore

d

dt
Aσ[w(t)] =

∫
R
wf(w) dx.
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Integrating over [0, t], gives

Aσ[w(t)] = Aσ[w(0)] +

∫ t

0

∫
R
w(x, s)f(w(x, s)) dxds. (5.3.4)

The following Lemmas are important to prove an almost conservation law to

(5.1.1) and (5.1.2) .

Lemma 5.3.1. Let ξ =
∑p

i=1 ξi for ξi ∈ R and p is positive integer. Then∣∣∣∣1− cosh |ξ|
p∏
i=1

sech |ξi|
∣∣∣∣ ≤ 2p

p∑
i 6=j=1

|ξi||ξj|. (5.3.5)

The proof is found in [37].

Lemma 5.3.2. Let f(w) be defined as in (5.3.2), then we have∣∣∣∣ ∫
R
wf(w)dx

∣∣∣∣ ≤ Cσ
3
2‖w‖p+2

H1(R), (5.3.6)

for all w ∈ H1(R).

Proof: Using Hölder inequality and Sobolev embedding, we get∣∣∣∣ ∫
R
wf(w) dx

∣∣∣∣ =

∣∣∣∣ ∫
R
〈Dx〉w〈Dx〉−1f(w) dx

∣∣∣∣
≤ ‖〈Dx〉w‖L2(R)‖〈Dx〉−1f(w)‖L2(R)

≤ ‖w‖H1(R)‖〈Dx〉−1f(w)‖L2(R).

(5.3.7)

By the Fourier transform of 〈Dx〉−1f(w) where f(w), we obtain∣∣∣Fx(〈Dx〉−1f(w)
)

(ξ)
∣∣∣ =

∣∣∣∣〈ξ〉−1 3iξ

2(p+ 1)

∫
ξ

[
1− cosh(σ|ξ|)

p+1∏
j=1

sech(σ|ξj|)
] p+1∏
j=1

ŵ(ξj)dξ

∣∣∣∣
≤ 3

2(p+ 1)

∫
ξ

∣∣∣∣1− cosh(σ|ξ|)
p+1∏
j=1

sech(σ|ξj|)
∣∣∣∣ p+1∏
j=1

∣∣ŵ(ξj)
∣∣ dξ

≤ 3

2(p+ 1)

∫
ξ

∣∣K∣∣ p+1∏
j=1

∣∣ŵ(ξj)
∣∣ dξ,

(5.3.8)

where

ξ =

p+1∑
j=1

ξj, dξ =

p+1∏
j=1

dξj,
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and

K = 1− cosh(σ|ξ|)
p+1∏
j=1

sech(σ|ξj|). (5.3.9)

Note that |K| ≤ 1.

By symmetry, we may assume |ξ1| ≤ |ξ2| ≤ |ξ3| ≤ · · · ≤ |ξp| ≤ |ξp+1|. Then by

Lemma 5.3.1, we have

|K| =
∣∣∣∣1− cosh(σ|ξ|)

P+1∏
j=1

sech(σ|ξj|
∣∣∣∣

≤ σ22P+1

p+1∑
i 6=j=1

∣∣∣ξi∣∣∣∣∣∣ξj∣∣∣
≤ C(p)σ2|ξp||ξp+1|,

where

C(p) = 2p+1(p2 − p).

For 0 ≤ β ≤ 1

|K| ≤ C(p)σ2|ξp||ξp+1| ≤ C(p)σ2β|ξp|β|ξp+1|β.

Choosing β = 3
4
, we get

|K| ≤ C(p)σ
3
2 |ξp|

3
4 |ξp+1|

3
4 . (5.3.10)

Now, let

W = F−1
x (|ŵ|).

From (5.3.8) and (5.3.10), we obtain

∣∣∣Fx(〈Dx〉−1F (w)
)

(ξ)
∣∣∣ ≤ C(p)σ

3
2

∫
ξ

( p−1∏
j=1

∣∣∣ŵ(ξj)
∣∣∣)∣∣∣ξp∣∣∣ 3

4
∣∣∣ŵ(ξp)

∣∣∣∣∣∣ξp+1

∣∣∣ 3
4
∣∣∣ŵ(ξp+1)

∣∣∣ dξ
≤ C(p)σ

3
2

∫
ξ

( p−1∏
j=1

Ŵ (ξj)
)∣∣∣ξp∣∣∣ 3

4
Ŵ (ξp)

∣∣∣ξp+1

∣∣∣ 3
4
Ŵ (ξp+1) dξ

≤ C(p)σ
3
2Fx

[
W p−1 · |Dx|

3
4W · |Dx|

3
4W
]
(ξ).
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Using Plancherel Theorem , Hölder inequality and one dimensional Sobolev em-

bedding, we get∥∥∥Fx(〈Dx〉−1F (w)
)

(ξ)
∥∥∥
L2
x(R)
≤ C(p)σ

3
2‖W p−1(|Dx|

3
4W )2‖L2

x(R)

≤ C(p)σ
3
2‖W p−1‖L∞x (R)‖(|Dx|

3
4W )2‖L2

x(R)

≤ C(p)σ
3
2‖W‖p−1

L∞(R)‖|Dx|
3
4W‖2

L4(R)

≤ C(p)σ
3
2‖W‖p−1

H1(R)‖|Dx|
3
4W‖2

H
1
4 (R)

≤ C(p)σ
3
2‖W‖p−1

H1(R)‖W‖
2
H1(R)

∼ C(p)σ
3
2‖w‖p+1

H1(R)

(5.3.11)

Then, the desired result (5.3.6) followed from (5.3.7) and (5.3.11). �

In view of (5.3.4) and (5.3.6), we have energy estimate

Aσ[w(t)] ≤ Aσ[w(0)] + Cσ
3
2T‖w(t)‖p+2

H1(R). (5.3.12)

Lemma 5.3.3. [Almost conservation law]. Let w0 ∈ H1(R). Suppose that w ∈
C
(
[0, T ];H1(R)

)
is the local-in-time solution to the Cauchy problem (5.1.1). Then

sup
0≤t≤T

Aσ[w(t)] ≤ Aσ[w(0)] + Cσ
3
2‖w‖p+2

L∞T H
1(R), (5.3.13)

sup
0≤t≤T

Aσ[w(t)] ≤ Aσ[w(0)] + Cσ
3
2

(
Aσ[w0]

) p+2
2

, (5.3.14)

where C is a positive constant depends on ‖w0‖H1(R) , s and p.

Proof: By combining (5.3.12) with the local existence theory, we obtain (5.3.13).

By (5.2.10), we have the bound

‖w‖L∞T H1(R = ‖u‖
L∞T H

σ,1(R)
) ≤ C‖u0‖Hσ0,1(R) = C‖w0‖H1(R), (5.3.15)

where T is as in (5.2.9) and

L∞T H
1(R) = L∞t H

1
(

[0, T ]× R
)
.

For ν < 1
6
, we have

Aσ[w0] =
1

2

∫
R

[
w2

0 + (
1

6
− ν)(w′0)2

]
dx ∼ ‖w0‖2

H1(R). (5.3.16)
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Hence

‖w0‖H1(R) ∼ (Aσ[w0])
1
2 .

Then, using (5.3.15) and (5.3.16), we obtain the desired estimate (5.3.14). �

Almost Conservation Law to (5.1.2): For α = β = θ = ψ = 0, γ = 1
2
, λ = 1,

the solution of (3.3.3) is a = 1, b = 0 and c = 1, that satisfy 4ac− b2 > 0. In this

case, the energy of (5.1.2)

E
(
u(t), v(t)

)
:=

∫
R

(
u2 + v2 + u2

x + v2
x

)
dx (5.3.17)

is conserved. i.e.,

E
(
u(t), v(t)

)
= E

(
u(0), v(0)

)
, ∀t ≥ 0.

Let (u, v) be the solution of (5.1.2). Then define

uσ(x, t) = cosh(σ|Dx|)u(x, t),

vσ(x, t) = cosh(σ|Dx|)v(x, t), σ ≥ 0,

The modified conserved energy is given by

Eσ
(
uσ(t), vσ(t)

)
=

∫
R

(
u2
σ + v2

σ + (∂xuσ)2 + (∂xvσ)2
)
dx. (5.3.18)

For σ = 0, uσ = u and vσ = v, then

E0

(
u0(t), v0(t)

)
= E

(
u(t), v(t)

)
= E

(
u(0), v(0)

)
. (5.3.19)

However, for σ > 0, the energy is not conserved.

Theorem 5.3.4 (Almost conservation law). Let σ0 > 0,
(
u(0), v(0)

)
∈ Hσ0,1(R)×

Hσ0,1(R) and suppose that (u, v) ∈ Hσ(t),1(R)×Hσ(t),1(R) is the local solution of the

Cauchy problem (5.1.2) that is constructed in Theorem 5.2.5 on the time interval

[0, T ]. Then we have the estimate

sup
t∈[0,T ]

Eσ
(
uσ(t), vσ(t)

)
≤ Eσ

(
uσ(0), vσ(0)

)
+ σ

3
2C∗‖uσ(t)‖L∞T H1(R)‖vσ(t)‖2

L∞T H
1(R).

(5.3.20)

Moreover, by (5.2.26), we get

sup
t∈[0,T ]

Eσ(uσ(t), vσ(t)) ≤ Eσ
(
uσ(0), vσ(0)

)
+ σ

3
2C∗‖uσ0(0)‖H1(R)‖vσ0(0)‖2

H1(R).

(5.3.21)
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Proof: Applying the operator cosh(σ|Dx|) to the first equation of (5.1.2) with

uσ = cosh(σ|Dx|)u, û(ξ) = sech(σ|ξ|)ûσ(ξ).

and

vσ = cosh(σ|Dx|)v, v̂(ξ) = sech(σ|ξ|)ûσ(ξ).

we have

∂tuσ + ∂xuσ − ∂t∂2
xuσ + vσ∂xvσ = F1(vσ), (5.3.22)

where

F1(vσ) =
1

2
∂x

[
v2
σ − cosh(σ|Dx|)

(
sech(σ|Dx|)vσ

)2]
. (5.3.23)

Similarly, applying the operator cosh(σ|Dx|) to the second equation of (5.1.2),

yields

∂tvσ + ∂xvσ − ∂t∂2
xvσ + ∂x(uσvσ) = F2(uσ, vσ), (5.3.24)

where

F2(uσ, vσ) = ∂x

[
uσvσ − cosh(σ|Dx|)

(
sech(σ|Dx|)uσ sech(σ|Dx|)vσ

)]
. (5.3.25)

Now, differentiating Eσ(uσ, vσ) with respect to t, then applying integration by

parts and using (5.3.22) and (5.3.24), gives

d

dt
Eσ
(
uσ(t), vσ(t)

)
=

∫
R

(
2uσ∂tuσ + 2vσ∂tvσ + 2∂xuσ∂t∂xuσ + 2∂xvσ∂t∂xvσ

)
dx

=

∫
R

(
2uσ∂tuσ + 2vσ∂tvσ − 2uσ∂t∂

2
xuσ − 2vσ∂t∂

2
xvσ

)
dx

= −2

∫
R

[
uσ

(
∂xuσ + vσ∂xvσ − F1(vσ)

)
+ vσ

(
∂xvσ + ∂x(uσvσ)− F2(uσ, vσ)

)]
dx

= −
∫
R

(
∂x(u

2
σ) + ∂x(v

2
σ) + 2∂x(uσ)v2

σ + 2uσ∂x(v
2
σ)
)
dx

+

∫
R

(
2uσF1(vσ) + 2vσF2(uσ, vσ)

)
dx

= 2

∫
R
uσF1(vσ) dx+ 2

∫
R
vσF2(uσ, vσ)

]
dx.

(5.3.26)

Due to integration by parts of smooth functions, the integral in the fifth line is

vanished.
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Now, integrating (5.3.26) over [0, t], we get

Eσ
(
uσ, vσ

)
= Eσ

(
uσ(0), vσ(0)

)
+2

∫ t

0

∫
R
uσF1(vσ) dx dt+2

∫ t

0

∫
R
vσF2(uσ, vσ)

]
dx dt.

(5.3.27)

Let

I1 =

∫
R
uσF1(vσ) dx, I2 =

∫
R
vσF2(uσ, vσ)

]
dx.

By Hölder inequality, we get

|I1| =
∣∣∣ ∫

R
〈Dx〉uσ〈Dx〉−1F1(vσ) dx

∣∣∣
≤ C‖〈Dx〉uσ‖L2(R)‖〈Dx〉−1F1(vσ)‖L2(R)

≤ C‖uσ‖H1(R)‖〈Dx〉−1F1(vσ)‖L2(R).

(5.3.28)

By taking the Fourier Transform of 〈Dx〉−1F1(vσ), where F1(vσ) is as stated in

(5.3.23), we obtain∣∣∣∣Fx(〈Dx〉−1F1(vσ)
)

(ξ)

∣∣∣∣ =

∣∣∣∣〈ξ〉−1 iξ

2

∫
ξ

(
1− cosh(σ|ξ|)

cosh(σ|ξ1|) cosh(σ|ξ2|)

)
v̂σ(ξ1)v̂σ(ξ2) dξ

∣∣∣∣
≤ 1

2

∫
ξ

∣∣∣1− cosh(σ|ξ|)
cosh(σ|ξ1|) cosh(σ|ξ2|)

∣∣∣∣∣∣v̂σ(ξ1)
∣∣∣∣∣∣v̂σ(ξ2)

∣∣∣ dξ,
(5.3.29)

where

ξ =
2∑
j=1

ξj, dξ =
2∏
j=1

dξj

M := 1− cosh(σ|ξ|)
cosh(σ|ξ1|) cosh(σ|ξ2|)

. (5.3.30)

Note that, |M | ≤ 1.

Next, we estimate |M | by applying Lemma 5.3.1, for p = 2.

|M | =
∣∣∣∣1− cosh(σ|ξ|)

2∏
j=1

sech(σ|ξj|)
∣∣∣∣

≤ 4σ2

2∑
i 6=j=1

|ξi||ξj|

≤ 8σ2|ξ1||ξ2|

For 0 ≤ ρ ≤ 1

|M | ≤ 8σ2|ξ1||ξ2| ≤ 8σ2ρ|ξ1|ρ|ξ2|ρ.
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By choosing ρ = 3
4
, we get

|M | ≤ 8σ
3
2 |ξ1|

3
4 |ξ2|

3
4 . (5.3.31)

From (5.3.29) and (5.3.31), we have∣∣∣∣Fx(〈Dx〉−1F1(vσ)
)

(ξ)

∣∣∣∣ ≤ 1

2

∫
ξ

∣∣M ∣∣∣∣v̂σ(ξ1)
∣∣∣∣v̂σ(ξ2)

∣∣ dξ
≤ 4σ

3
2

∫
ξ

∣∣ξ1

∣∣ 3
4
∣∣v̂σ(ξ1)

∣∣∣∣ξ2

∣∣ 3
4
∣∣v̂σ(ξ2)

∣∣ dξ. (5.3.32)

Set

V := F−1
x |v̂σ(ξ)|, V̂ = |v̂σ(ξ)|.

Then ∣∣∣∣Fx(〈Dx〉−1F1(vσ)
)

(ξ)

∣∣∣∣ ≤ 4σ
3
2

∫
ξ

|ξ1|
3
4 V̂ (ξ1).|ξ2|

3
4 V̂ (ξ2) dξ

≤ 4σ
3
2Fx

(
|Dx|

3
4V.|Dx|

3
4V
)
(ξ).

(5.3.33)

Using Plancherel Theorem and one dimensional Sobolev embedding

Hs ⊂ LP , s =
1

2
− 1

p
(2 ≤ p <∞)

we obtain∥∥∥Fx(〈Dx〉−1F1(vσ)

)
(ξ)
∥∥∥
L2(R)

≤ 4σ
3
2‖|Dx|

3
4V.|Dx|

3
4V
)
‖L2(R)

. σ
3
2‖|Dx|

3
4V ‖2

L4(R)

. σ
3
2‖|Dx|

3
4V ‖2

H
1
4 (R)

. σ
3
2‖V ‖2

H1(R)

∼ σ
3
2‖vσ‖2

H1(R).

(5.3.34)

From (5.3.28) and (5.3.34), we get

|I1| =
∣∣∣∣ ∫

R
uσF1(vσ) dx

∣∣∣∣ . σ
3
2‖uσ‖H1(R)‖vσ‖2

H1(R). (5.3.35)

Similarly, by Hölder inequality, we have

|I2| =
∣∣∣∣ ∫

R
vσF2(uσ, vσ) dx

∣∣∣∣ =

∣∣∣∣ ∫
R
〈Dx〉vσ〈Dx〉−1F2(uσ, vσ) dx

∣∣∣∣
≤ C‖〈Dx〉vσ‖L2(R)‖〈Dx〉−1F2(uσ, vσ)‖L2(R)

≤ C‖vσ‖H1(R)‖〈Dx〉−1F2(uσ, vσ)‖L2(R).

(5.3.36)
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Taking the Fourier Transform of 〈Dx〉−1F2(uσ, vσ), where F2 as stated in (5.3.25)∣∣∣∣Fx(〈Dx〉−1F2(uσ, vσ)(ξ)
)∣∣∣∣ =

∣∣∣∣〈ξ〉−1iξ

∫
ξ

(
1− cosh(σ|ξ|)

cosh(σ|ξ1|) cosh(σ|ξ2|)

)
ûσ(ξ1)v̂σ(ξ2) dξ

∣∣∣∣
≤
∫
ξ

∣∣∣1− cosh(σ|ξ|)
cosh(σ|ξ1|) cosh(σ|ξ2|)

∣∣∣∣∣∣ûσ(ξ1)
∣∣∣∣∣∣v̂σ(ξ2)

∣∣∣ dξ
≤
∫
ξ

∣∣∣M(ξ1, ξ2)
∣∣∣∣∣∣ûσ(ξ1)

∣∣∣∣∣∣v̂σ(ξ2)
∣∣∣ dξ

≤ 8σ
3
2

∫
ξ

∣∣ξ1

∣∣ 3
4
∣∣ûσ(ξ1)

∣∣∣∣ξ2

∣∣ 3
4
∣∣v̂σ(ξ2)

∣∣ dξ,
(5.3.37)

where M is as stated in (5.3.30) and the same choice of ρ = 3
4
.

|M | ≤ 8σ2ρ|ξ1|ρ|ξ2|ρ ≤ 8σ
3
2 |ξ1|

3
4 |ξ2|

3
4 .

Let

U = F−1
x |ûσ(ξ)|, V = F−1

x |v̂σ(ξ)|.

Then ∣∣∣∣Fx(〈Dx〉−1F2(uσ, vσ)(ξ)
)∣∣∣∣ ≤ 8σ

3
2

∫
ξ

|ξ1|
3
4 Û(ξ1).|ξ2|

3
4 V̂ (ξ2) dξ

≤ 8σ
3
2Fx

(
|Dx|

3
4U.|Dx|

3
4V
)
(ξ).

(5.3.38)

By using Plancherel Theorem, Hölder inequality and one dimensional Sobolev

embedding, we obtain∥∥∥∥Fx(〈Dx〉−1F2(uσ, vσ)(ξ)
)∥∥∥∥

L2(R)

≤ 8σ
3
2‖|Dx|

3
4U.|Dx|

3
4V
)
‖L2(R)

. σ
3
2‖|Dx|

3
4U‖L4(R)‖|Dx|

3
4V ‖L4(R)

. σ
3
2‖|Dx|

3
4U‖

H
1
4 (R)
‖|Dx|

3
4V ‖

H
1
4 (R)

. σ
3
2‖U‖H1(R)‖V ‖H1(R)

∼ σ
3
2‖uσ‖H1(R)‖vσ‖H1(R).

(5.3.39)
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From (5.3.36) and (5.3.39), we obtain

|I2| =
∣∣∣∣ ∫

R
vσF2(uσ, vσ) dx

∣∣∣∣
=

∣∣∣∣ ∫
R
〈Dx〉vσ〈Dx〉−1F2(uσ, vσ) dx

∣∣∣∣
. σ

3
2‖uσ‖H1(R)‖|vσ‖2

H1(R).

(5.3.40)

Therefore, the inequality in (5.3.20) follows from local well-posedness result, (5.3.27),

(5.3.35) and (5.3.40). �

5.4 Evolution of Radius of Analyticity

This section is devoted to prove the maim Theorems stated in chapter 5 of

section 5.1

Proof of Theorem 5.1.1: Let u0 = u(0) ∈ Hσ0,1(R) for some σ0 > 0 and note

that

w0 = cosh(σ0|Dx|)u0 ∈ H1(R).

By Theorem 5.2.3, there is a solution u to (5.1.1) satisfying

u(t) ∈ Hσ0,1(R), ∀t ∈ [0, T ],

where T is as in (5.2.9).

For arbitrarily large Tl , we want to show that the solution u to (5.1.1) satisfies

u(t) ∈ Hσ(t),1(R), ∀t ∈ [0, Tl], (5.4.1)

for

σ(t) >
c

T
2/3
l

, (5.4.2)

where c > 0 is a constant depending on ‖u0‖Hσ0,1 and σ0.

From (5.3.15) and (5.3.16), we have

Aσ[w(t)] ≤ CAσ0 [w0] <∞,

for all t ∈ [0, Tl].

Now, fix Tl arbitrarily large. It suffices to show that

sup
t∈[0,Tl]

Aσ[w(t)] ≤ 2Aσ0 [w0], ∀t ∈ [0, Tl], (5.4.3)
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for σ satisfying (5.4.2), which inturn implies u(t) ∈ Hσ(t),1 for all t ∈ [0, Tl] as

desired.

To prove (5.4.3), we apply almost conservation law and local well-posedness

result repeatedly on successive short time intervals to reach Tl.

Now, choose n ∈ N so that Tl ∈ [nT, (n+ 1)T ]. Using induction, we can show

for any k = n+ 1, n ∈ N that

sup
t∈[0,kT ]

Aσ[w(t)] ≤ Aσ[w(0)] + kCσ
3
2

(
Aσ[w(0)]

) p+2
2 , (5.4.4)

which implies

sup
t∈[0,kT ]

Aσ[w(t)] ≤ 2Aσ0 [w(0)], (5.4.5)

provided that σ satisfies

2Tl
T
Cσ

3
2

(
Aσ0 [w(0)]

) p
2 ≤ 1. (5.4.6)

For k = 1, by virtue of Lemma 5.3.3 and the fact Aσ[w(0)] ≤ Aσ0 [w(0)] for σ < σ0,

we have

sup
t∈[0,T ]

Aσ[w(t)] ≤ Aσ[w(0)]) + Cσ
3
2

(
Aσ[w(0)]

) p+2
2

≤ Aσ0 [w(0)] + Cσ
3
2

(
Aσ0 [w(0)]

) p+2
2
.

This implies (5.4.5) holds by (5.4.6) provided that σ satisfies

Cσ
3
2

(
Aσ0 [w(0)]

) p
2 ≤ 1.

Now, assume that (5.4.4) implies (5.4.5) for k = n and σ satisfies (5.4.6). Then

our claim is to show that (5.4.4) and (5.4.5) hold for k = n+ 1.

Applying Lemma 5.3.3, (5.4.5) and (5.4.4) within time interval nT ≤ t ≤ (n+1)T ,

we obtain

sup
t∈[nT,(n+1)T ]

Aσ[w(t)] ≤ Aσ[w(nT )] + Cσ
3
2

(
Aσ[w(nT )]

) p+2
2

≤ Aσ[w(nT )] + Cσ
3
2

(
2Aσ0 [w(0)]

) p+2
2

≤ Aσ[w(0)] + Cσ
3
2 (n+ 1)

(
Aσ0 [w(0)]

) p+2
2
.

(5.4.7)

Combining (5.4.7) with the induction hypothesis of (5.4.4) for k = n, we obtain
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sup
t∈[0,(n+1)T ]

Aσ[w(t)] ≤ Aσ[w(0)] + Cσ
3
2 (n+ 1)

(
Aσ0 [w(0)]

) p+2
2
.

This proves (5.4.4) for k = n + 1. Consequently, (5.4.5) holds for k = n + 1

provided that

Cσ
3
2 (n+ 1)

(
Aσ0 [w(0)]

) p
2 ≤ 1,

which follows from (5.4.6).

Since

n+ 1 ≤ Tl
T

+ 1 =
2Tl
T
,

we have
2Tl
T
Cσ

3
2

(
Aσ0 [w(0)]

) p
2 = 1.

Thus

σ(t) =

(
c1

Tl

) 2
3

,

where

c1 =
T

2C
(
Aσ0 [w(0)]

) p
2

,

Therefore,

σ(t) ≥
(
c

Tl

) 2
3

for c ≤ c1 which gives (5.4.2), where T is as in (5.2.9). This completes the proof

of Theorem 5.1.1. �

Proof of Theorem 5.1.2: In the course of the proof, we need to apply

repeatedly the local result obtained in Theorem 5.2.5 using the approximate con-

servation law obtained in Theorem 5.3.4 to cover time intervals of arbitrary length.

To construct a solution on [0, T ∗] for arbitrarily large T ∗, consider the following

two possible cases.

The first case is T ∗ = ∞, which means that (u, v) ∈ C
(
[0,∞);Hσ0,1(R) ×

Hσ0,1(R)
)
. In this case the uniform radius of spatial analyticity of (u, v) persistence

for all time t. That is, σ(t) = σ0 which proves Theorem 5.1.2.

The second case is T ∗ <∞, which means (u, v) ∈ C
(
[0, T ∗];Hσ,1(R)×Hσ,1(R)

)
and

1

4C∗‖W0‖Hσ,s(R)×Hσ,s(R)

= T ≤ T ∗ <∞.

To prove Theorem 5.1.2 in the second case, we apply the approximate conservation

law in Theorem 5.3.4, so as to repeat the local result on successive short time
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intervals to reach T ∗ by adjusting the strip width parameter σ according to the

size of T ∗.

First, we consider the case s = 1. By the embedding (2.1.6) the general case,

s ∈ R will essentially reduce to s = 1.

The Case: s = 1: Let (u(0), v(0)) ∈ Hσ0,1(R)×Hσ0,1(R), for some σ0 > 0. Then

there is a unique solution

(u, v) ∈ Hσ(t),1(R)×Hσ(t),1(R), ∀t ∈ [0, T ],

of (5.1.2) constructed in Theorem 5.2.5 with existence time T as in (5.2.25).

Note that, since

(uσ0 , vσ0) = eσ0|Dx|u0 × eσ0|Dx|v0 ∈ H1(R)×H1(R),

from (5.2.26) and (5.3.18) we have

Eσ(uσ, vσ) =

∫
R
u2
σ + v2

σ + (∂xu
2
σ) + (∂xv

2
σ) dx

. ‖(u(0), v(0))‖2
Hσ0,1(R)×Hσ0,1(R) <∞.

(5.4.8)

For arbitrarily large T ∗, we want to show that the solution (u, v) to (5.1.2) satisfies

(u, v) ∈ Hσ(t),1(R)×Hσ(t),1(R), ∀t ∈ [0, T ∗]. (5.4.9)

and

σ(t) >
c

T ∗
, (5.4.10)

where c > 0 is a constant depending on the norm of the initial data (u0, v0) and

σ0.

From (5.4.8), we have

‖(u, v)‖2
Hσ(t),1(R)×Hσ(t),1(R) <∞, t ∈ [0, T ∗].

Now, fix T ∗ arbitrarily large. It suffices to show that

sup
t∈[0,T ∗]

‖(u, v)‖2
Hσ,1(R)×Hσ,1(R) ≤ 2‖(u(0), v(0))‖2

Hσ0,1(R)×Hσ0,1(R), (5.4.11)

which inturn implies (u, v) ∈ Hσ(t),1(R)×Hσ(t),1(R), for σ satisfying (5.4.10). To

prove (5.4.11), we use induction as follows.
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Choose n ∈ N, so that T ∗ ∈ [nT, (n+ 1)T ]. Using induction, we can show for any

k ∈ {1, 2, 3, ..., n+ 1} that

sup
t∈[0,kT ]

‖(u, v)‖2
Hσ,1(R)×Hσ,1(R) ≤ ‖(u(0), v(0))‖2

Hσ,1(R)×Hσ,1(R)

+ kσC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R),

(5.4.12)

sup
t∈[0,kT ]

‖(u, v)‖2
Hσ,1(R)×Hσ,1(R) ≤ 2‖(u(0), v(0))‖2

Hσ0,1(R)×Hσ0,1(R), (5.4.13)

provided that σ satisfies

2T ∗σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R)

T‖(u(0), v(0))‖2
Hσ0,1(R)×Hσ0,1(R)

≤ 1. (5.4.14)

For k = 1, from Theorem 5.3.4 we have

sup
t∈[0,T ]

‖(u, v)‖2
Hσ,1(R)×Hσ,1(R) ≤ ‖(u(0), v(0))‖2

Hσ,1(R)×Hσ,1(R)

+ σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R),

(5.4.15)

Since σ < σ0, we have

‖(u(0), v(0)))‖2
Hσ,1(R)×Hσ,1(R) ≤ ‖(u(0), v(0))‖2

Hσ0,1(R)×Hσ0,1(R).

Then, it follows that

σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R)

‖(u(0), v(0))‖2
Hσ0,1(R)×Hσ0,1(R)

≤ 1, (5.4.16)

which holds by (5.4.14).

Now, combining (5.4.15) and (5.4.16) leads to

sup
t∈[0,kT ]

‖(u, v)‖2
Hσ,1(R)×Hσ,1(R) ≤ ‖(u(0), v(0))‖2

Hσ0,1(R)×Hσ0,1(R)

+ ‖(u(0), v(0))‖2
Hσ0,1(R)×Hσ0,1(R),

≤ 2‖(u(0), v(0)‖2
Hσ0,1(R)×Hσ0,1(R),

(5.4.17)

which proves (5.4.13).

Next, assume that (5.4.12) and (5.4.13) hold for some k ∈ {1, 2, 3, ..., n}. Then,

we need to show that (5.4.12) and (5.4.13) hold for k = n+ 1 .
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By applying Theorem 5.3.4, (5.4.13) and (5.4.12), we obtain

sup
t∈[kT,(k+1)T ]

‖(u(t), v(t))‖2
Hσ,1(R)×Hσ,1(R) ≤ ‖(u(kT ), v(kT ))‖2

Hσ,1(R)×Hσ,1(R)

+ σC∗‖u(kT )‖Hσ0,1‖v(kT )‖2
Hσ0,1

≤ ‖(u(kT ), v(kT )‖2
Hσ,1(R)×Hσ,1(R)

+ σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R)

≤ ‖(u(0), v(0))‖2
Hσ,1(R)×Hσ,1(R)

+ (k + 1)σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R)

(5.4.18)

Combining (5.4.18) with the induction hypothesis (5.4.12) for k = n, we obtain

sup
t∈[0,(k+1)T ]

‖(u(t), v(t))‖2
Hσ,1(R)×Hσ,1(R) ≤ ‖(u(0), v(0))‖2

Hσ,1(R)×Hσ,1(R)

+ (k + 1)σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R),

(5.4.19)

which proves (5.4.12) for k = n+ 1.

Since

k + 1 ≤ n+ 1 ≤ T ∗

T
+ 1 ≤ 2T ∗

T
,

inequality (5.4.13) follows from (5.4.14) for k = n+ 1, provided that

(k + 1)σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R)

‖(u0, v0)‖2
Hσ0,1(R)×Hσ0,1(R)

≤ 1.

Finally, the condition (5.4.14) is satisfied for σ such that

2T ∗σC∗‖u(0)‖Hσ0,1(R)‖v(0)‖2
Hσ0,1(R)

T‖(u(0), v(0))‖2
Hσ0,1(R)×Hσ0,1(R)

= 1.

Thus

σ(t) =
c1

T ∗
,

where

c1 =
T‖(u(0), v(0))‖2

Hσ0,1(R)×Hσ0,1(R)

σC∗2
5
2‖u0‖Hσ0,1(R)‖v0‖2

Hσ0,1(R)

.
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Therefore, (5.4.10) holds for c ≤ c1, and T is as in (5.2.25).

The general case s ∈ R: For any s ∈ R, we use the embedding (2.1.6) to get

(u(0), v(0)) ∈ Hσ0,s(R)×Hσ0,s(R) ⊂ H
σ0
2
,1(R)×H

σ0
2
,1(R).

From the local existence theory for every (u(0), v(0)) ∈ H
σ0
2
,1(R)×H

σ0
2
,1(R), there

exist

T = T
(
‖(u0, v0)‖

G
σ0
2 ,1(R)×G

σ0
2 ,1(R)

)
> 0,

and a solution

(u(t), v(t)) ∈ C
(
[0, T ];H

σ0
2
,1(R)×H

σ0
2
,1(R)

)
.

For arbitrarily large T ∗, from the case s = 1, we have

(u(t), v(t)) ∈ H2b∗(T ∗)−1,1(R)×H2b∗(T ∗)−1,1(R), 0 ≤ t ≤ T ∗,

where b∗ > 0 depends on ‖(u(0), v(0))‖
H
σ0
2 ,1(R)×H

σ0
2 ,1(R)

.

Applying again the embedding property (2.1.6), we get

(u(0), v(0)) ∈ Hσ0,s(R)×Hσ0,s(R) ⊂ H
σ0
2
,1(R)×H

σ0
2
,1(R) ⊂ H

σ0
3
,1(R)×H

σ0
3
,1(R),

for 0 ≤ σ0

3
< σ0

2
.

Now, from Theorem 5.2.5, for every (u(0), v(0)) ∈ G
σ0
3
,1(R)×G

σ0
3
,1(R), there exist

T = T
(
‖(u(0), v(0))‖

H
σ0
3 ,1(R)×H

σ0
3 ,1(R)

)
> 0

and

(u(t), v(t)) ∈ H
σ0
3
,1(R)×H

σ0
3
,1(R), t ∈ [0, T ].

For arbitrarily large T ∗, again from the case s = 1, we have

(u(t), v(t)) ∈ H3b∗(T ∗)−1,1(R)×H3b∗(T ∗)−1,1(R), t ∈ [0, T ∗],

where b∗ > 0 depends on ‖(u0, v0)‖
H
σ0
3 ,1(R)×H

σ0
3 ,1(R)

.

Applying the embedding property (2.1.6) again and again, we reduce the gen-

eral case to the case s = 1, and conclude that

(u(t), v(t)) ∈ Hb∗(T ∗)−1,1(R)×Hb∗(T ∗)−1,1(R), t ∈ [0, T ∗].

This completes the proof of Theorem 5.1.2. �
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Chapter 6

KP-BBM Equation in

Anisotropic Gevrey Spaces

6.1 Problem Statement

Consider a Cauchy problem for Kadomtsev, Petviashvili - Benjamin, Bona,

Mahony (KP-BBM) equation with data in anisotropic Gevrey spaces{
ut − uxxt + ux + uux + ∂−1

x uyy = 0,

u(x, y, 0) = u0(x, y) ∈ Gσ1,σ2s̄(R2),
(6.1.1)

where u = u(x, y, t) ∈ R2+1. KP-BBM equation describes the unidirectional

propagation of dispersive long waves with weak transverse effects. It was derived

by Wazwaz in [90].

Recall, conservation law obtained from (6.1.1) is given by

A[u(x, y, t)] =

∫
R2

(
u2(x, y, t) + u2

x(x, y, t)
)
dxdy = A[u(x, y, 0)], (6.1.2)

for all t ∈ R.

In the present chapter, we will study the property of spatial analyticity of the

solution u(x, y, t) to (6.1.1), given that the initial data u0(x, y) is real-analytic

with uniform radius of analyticity σ0, so there is a holomorphic extension to a

complex strip

Sσ0 = {x+ iy ∈ C : |y| < σ0} .

Since the radius of analyticity can be related to the asymptotic decay of the

Fourier transform, it is natural to use Fourier methods to study spatial analyticity

of solution to problem of type (6.1.1).

For s1, s2 ∈ R, let s̄ = s1, s2 and σ1, σ2 ≥ 0. We define anisotropic Gevrey

space, Gσ1,σ2,s̄(R2) via norm
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‖u‖2
Gσ1,σ2,s̄(R2) = ‖eσ1|ξ|eσ2|η|〈ξ〉s1〈η〉s2û(ξ, η, t)‖2

L2(R2)

=

∫
R2

e2σ1|ξ|e2σ2|η|〈ξ〉2s1〈η〉2s2|û(ξ, η, t)|2dξdη,
(6.1.3)

where û denotes the spatial Fourier transform, given by

û(ξ, η, t) =

∫
R2

u(x, y, t)e−i(xξ+yη)dxdy. (6.1.4)

For functions in anisotropic Gevrey Gσ1,σ2,s̄(R2), if one of the variables is fixed,

the resulting function in the other variable will have a holomorphic extension

satisfying the stated bounds in Paley-Wiener Theorem (see, Theorem 2.1.20).

In addition to the holomorphic extension property, anisotropic Gevrey spaces

satisfy the embeddings Gσ1,σ2,s̄(R2) ↪→ Gσ′1,σ
′
2,s̄
′
(R2) for 0 ≤ σ′i < σi, for i = 1, 2

and s1, s2 ∈ R which follow from the corresponding estimate

‖f‖
Gσ
′
1,σ
′
2,s̄
′
(R2)
. ‖f‖Gσ1,σ2,s̄(R2). (6.1.5)

In particular, for σ′1 = σ′2 = 0, ‖f‖H ŝ′ . ‖f‖Gσ1,σ2,ŝ , H
s̄ is anisotropic Sobolev

space.

Our main result yields an estimate on how the width of the strip of the radius

of the spatial analyticity decay with time in the x - direction.

Theorem 6.1.1 (Lower bound for radius of spatial analyticity). Let σ10 > 0 and

σ20 ≥ 0, and assume u0 ∈ Hσ10 ,σ20 ,s̄. Then, the solution u to (6.1.1) is globally

well-posed in time, and for any T ∗ > 0, we have

u ∈ C
(
[0, T ∗];Hσ1(t),0,s̄(R2)

)
with lower bound for radius of spatial analyticity

σ1(t) ≥ ct−1,

where c > 0, is a constant depending on ‖u0‖Gσ10
,σ20

,s̄, σ10 and σ20.

The method used here for proving lower bounds of the radius of analyticity

was introduced in [81] in the study of the 1D Dirac-Klein-Gordon equations.

Theorem 6.1.2 (Sobolev embedding theorem [45] ). Let 1 < p <∞ and 0 < s <
d
p
. Then, the Sobolev space W s,p

(
Rd
)

embeds continuously in Lq
(
Rd
)

for q such

that
1

p
− 1

q
=
s

d
, (6.1.6)
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or for any
d

s
< q <∞.

Let σi ≥ 0, for i = 1, 2 and define a Fourier multiplier operator

Iσ1,σ2u = F−1
(
m(ξ)m(η)û(ξ, η, t)

)
, (6.1.7)

where F−1 denotes the inverse of Fourier transform, and the symbol

m(ξ) = cosh(σ1|ξ|) =
1

2

(
eσ1|ξ| + e−σ1|ξ|

)
,

m(η) = cosh(σ2|η|) =
1

2

(
eσ2|η| + e−σ2|η|

)
, ξ, η ∈ R

The modified anisotropic Gevrey space, Hσ1,σ2,s̄(R2) is obtained from the anisotropic

Gevrey space, Gσ1,σ2,s̄(R2) by replacing the exponential weight eσ1|ξ|eσ2|η| with the

hyperbolic weight cosh(σ1|ξ|) cosh(σ2|η|), equipped with the norm

‖f‖2
Hσ1,σ2,s̄(R) = ‖cosh(σ1|ξ|) cosh(σ2|η|〈ξ〉s1〈η〉s2 f̂(ξ, η)‖2

L2(R2), (6.1.8)

for σ1, σ2 ≥ 0.

Clearly, we have the bound

1

2
eσ|ξ| ≤ m(ξ) ≤ eσ|ξ|, ξ ∈ R.

Then, it follows that

1

2
‖u‖Gσ1,σ2 (R2) ≤ ‖Iσ1,σ2u‖L2(R2) ≤ ‖u‖Gσ1,σ2 (R2),

which implies that ‖Iσ1,σ2u‖L2(R2) is an equivalent norm with ‖u‖Gσ1,σ1 (R2).

6.2 Local Well-posedness Result

Consider the integral form of (6.1.1), which is given by

u(t) = S(t)u0 −
1

2

∫ t

0

S(t− τ)ϕ (Dx)
(
u2(τ)

)
dτ, (6.2.1)

where

ϕ(Dx) := ∂x
(
1− ∂2

x

)−1
,
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and S(t) is a Fourier multiplier given by

S(t) = F−1
x,y

(
eit(1+ξ2)

−1
(ξ+ξ−1η2)

)
.

Since the modulus of eit(1+ξ2)
−1

(ξ+ξ−1η2) is 1, we have

‖S(t)u‖H s̄(R2) = ‖u‖H s̄(R2), ∀t ∈ R, s̄ = s1, s2 ∈ R2.

We need the following bilinear estimate to prove local well-posedness results.

Lemma 6.2.1. For s̄ = s1, s2 such that s1, s2,≥ 0 and σ1, σ2 ≥ 0, we have

‖ϕ(Dx)u
2‖2
Gσ1,σ2,s̄(R2) ≤ C‖u‖2

Gσ1,σ2,s̄(R2). (6.2.2)

Proof: Using (2.1.7), we have

‖ϕ(Dx)u
2‖2
Gσ1,σ2,s̄(R2) = ‖〈ξ〉s1eσ1|ξ|〈η〉s2eσ2|η| ̂ϕ(Dx)(u2)(ξ, η)‖2

L2(R2)

= ‖〈ξ〉s1eσ1|ξ|〈η〉s2eσ2|η|ϕ(ξ)(û ∗ û)(ξ, η)‖2
L2(R2)

=

∫
R2

[
〈ξ〉2s1e2σ1|ξ|〈η〉2s2e2σ2|η| ξ2

(1 + ξ2)2

(∫
R2

û(ξ − ξ1, η − η1)û(ξ1, η1) dξ1dη1

)2]
dξdη.

(6.2.3)

Now, for s1, s2 ≥ 0, we have

〈ξ〉s1 ≤ 〈ξ − ξ1〉s1〈ξ1〉s1 , 〈η〉s2 ≤ 〈η − η1〉s2〈η1〉s2 .

and

eσ1|ξ| ≤ eσ1|ξ−ξ1|eσ1|ξ1|, eσ2|η| ≤ eσ2|η−η1|eσ2|η1|,

for ξ1, η1 ∈ R.

Then, it follows that

‖ϕ(Dx)u
2‖2
Gσ1,σ2,s̄(R2) ≤

∫
R2

[
ξ2

(1 + ξ2)

∫
R2

(
〈ξ − ξ1〉2se2σ|ξ−ξ1|

〈η − η1〉2se2σ|η−η1|û2(ξ − ξ1, η − η1)

)
(
〈ξ1〉2s〈η1〉2se2σ1|ξ1|e2σ2|η1|û2(ξ1, η1) dξ1 dη1

)]
dξ dη.

(6.2.4)

-84-



Chapter 6 6.3. ALMOST CONSERVATION LAW

Since ξ2/(1 + ξ2)2 ≤ 1/(1 + ξ2), by the Cauchy-Schwartz inequality, we obtain

‖ϕ(Dx)u
2‖2
Gσ1,σ2,s̄(R2) ≤

∫
R2

‖u‖Gσ1,σ2,s̄(R2)‖u‖Gσ1,σ2,s̄(R2)

1

1 + ξ2
dξ dη

≤ C‖u‖Gσ1,σ2,s̄(R2)‖u‖Gσ1,σ2,s̄(R2)

≤ C‖u‖2
Gσ1,σ2,s̄(R2),

(6.2.5)

which completes the proof of Lemma 6.2.1. �

Theorem 6.2.2. Let σi ≥ 0 and s̄ = si ≥ 0 for i = 1, 2. Then for all initial

data u0(x, y) ∈ Gσ1,σ2,s̄ (R2), there exist T = T
(
‖u0‖Gσ1,σ2,s̄(R2)

)
> 0 and a unique

solution u of (6.1.1) in the time interval [0, T ] for T > 0 such that

u ∈ C
(
[0, T ], Gσ1,σ2,s̄(R2)

)
.

Moreover the solution depends continuously on the data u0 . In particular, the

time of existence can be chosen to satisfy

T =
c0(

1 + ‖u0‖Gσ1,σ2,s̄(R2)

) , (6.2.6)

for some constants c0 > 0. And the solution u satisfies

sup
t∈[0,T ]

‖u(t)‖Gσ1,σ2,s̄(R2) ≤ 2‖u0‖Gσ1,σ2,s̄(R2). (6.2.7)

It is straightforward to prove Theorem 6.2.2. Applying the contraction mapping

principle and multilinear estimate in Lemma 6.2.1 for the integral equation (6.2.1)

and following similar argument as the proof of Theorem 4.3.1 and 5.2.3, leads to

the desired result.

6.3 Almost Conservation Law

In this section, we will prove an almost conservation law of the KP-BBM

equation (6.1.1) in modified an isotropic Gevrey space Hσ1,σ2,s̄(R2). This plays

a key role in the proof of Theorem 6.1.1. The method we used here previously

applied in [37] for the Beam equation.

To proof almost conservation law, let us first state the following lemma.

Lemma 6.3.1 ([37]). Let ξ =
∑p

i=1 ξi for ξi ∈ R and p is positive integer.

Then ∣∣∣∣1− cosh |ξ|
p∏
i=1

sech |ξi|
∣∣∣∣ ≤ 2p

p∑
i 6=j=1

|ξi||ξj|. (6.3.1)
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Theorem 6.3.2 (Almost conservation law). Let σ1 > 0, σ2 ≥ 0, u0 ∈ Hσ1,σ2,s̄(R2)

and Iσ1,σ2 be the Fourier multiplier given by (6.1.7) and u ∈ C ([0, T ];Hσ1,σ2,s̄(R2))

be the local solution obtained in Theorem 6.2.2. Then the solution of KP-BBM

equation satisfies

sup
t∈[0,T ]

‖u(t)‖2
Hσ1,0,1,0(R2) ≤ ‖u0‖2

Hσ1,0,1,0(R2) + Cσ1 ‖u0‖3
Hσ1,0,1,0(R2) . (6.3.2)

Proof: By the embedding property in (6.1.5) it suffices to consider the case

σ2 = 0, since

Hσ1,σ2,s̄(R2) ↪→ Hσ1,0,s̄(R2), σ1, σ2 > 0, s̄ ∈ R2.

Applying the operator Iσ1,0 to (6.1.1) and set

λ = Iσ1,0u,

then (6.1.1) becomes

λt − λxxt + λx + ∂−1
x λyy + λλx = F (λ), (6.3.3)

where

F (λ) = λλx − Iσ1,0
(
I−(σ1,0)

)2
λλx. (6.3.4)

Multiplying (6.3.3) by λ and integrating with respect to the spatial variables,

we obtain∫
R2

(
λλt − λλxxt + λλx + λ∂−1

x λyy + λ2λx

)
dxdy =

∫
R2

λF (λ)dxdy. (6.3.5)

If we apply integration by parts, we may rewrite (6.3.5) as∫
R2

(
λλt + λxλxt + λλx − λy∂−1

x λy + λ2λx

)
dxdy =

∫
R2

λF (λ)dxdy,

which implies that

d

dt

1

2

∫
R2

(
λ2 + λ2

x

)
dxdy +

d

dx

∫
R2

(1

2
λ2 − 1

2
(∂−1
x λy)

2 +
1

3
λ3
)
dxdy =

∫
R2

λF (λ)dxdy.

For λ and its spatial derivatives vanishing at infinity, we thus obtain

d

dt

∫
R2

(
λ2 + λ2

x

)
(x, y, t)dxdy = 2

∫
R2

λF (λ)(x, y, t)dxdy. (6.3.6)

Integrating (6.3.6) with respect to time interval [0, t], yields∫
R2

(
λ2 + λ2

x

)
(x, y, t)dxdy =

∫
R2

(
λ2 + λ2

x

)
(x, y, 0)dxdy

+ 2

∫ t

0

∫
R2

λ (x, y, τ)F (λ) (x, y, τ) dxdydτ.

(6.3.7)
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Using Hölder inequality and Sobolev embedding, we obtain∣∣∣∣ ∫
R2

λF (λ)dxdy

∣∣∣∣ =

∣∣∣∣ ∫
R2

〈Dx〉λ〈Dx〉−1F (λ)dxdy

∣∣∣∣
≤ ‖〈Dx〉λ‖L2

x,y(R2)‖〈Dx〉−1F (λ)‖L2
x,y(R2)

≤ ‖λ‖H1,0(R2)‖〈Dx〉−1F (λ)‖L2
x,y(R2).

(6.3.8)

Taking the Fourier Transform of 〈Dx〉−1F (λ), we obtain∣∣∣∣F(〈Dx〉−1F (λ)
)

(ξ, η)

∣∣∣∣ =

∣∣∣∣〈ξ〉−1 iξ

2

∫
ξ,η

(
1− cosh(σ1|ξ|)

cosh(σ1|ξ1|) cosh(σ1|ξ2|)

)
λ̂(ξ1, η1)λ̂(ξ2, η2) dξ dη

∣∣∣∣
≤ 1

2

∫
ξ,η

∣∣∣1− cosh(σ1|ξ|)
cosh(σ1|ξ1|) cosh(σ1|ξ2|)

∣∣∣∣∣∣λ̂(ξ1, η2)
∣∣∣∣∣∣λ̂(ξ2, η2)

∣∣∣ dξ dη,
(6.3.9)

where

ξ =
2∑
j=1

ξj, η =
2∑
j=1

ηj, dξdη =
2∏
j=1

dξjdηj.

Note that ∣∣∣∣1− cosh(σ1|ξ|)
cosh(σ1|ξ1|) cosh(σ1|ξ2|)

∣∣∣∣ ≤ 1.

By applying Lemma 6.3.1, for p = 2, we obtain∣∣∣∣1− cosh(σ1|ξ|)
cosh(σ|ξ1|) cosh(σ1|ξ2|)

∣∣∣∣ =

∣∣∣∣1− cosh(σ1|ξ|)
2∏
j=1

sech(σ1|ξj|)
∣∣∣∣

≤ 4σ2
1

2∑
i 6=j=1

|ξi||ξj| ≤ 8σ2
1|ξ1||ξ2|.

(6.3.10)

By choosing θ = 1
2

in [0, 1]

8σ2|ξ1||ξ2| ≤ 8σ2θ|ξ1|θ|ξ2|θ ≤ 8σ|ξ1|
1
2 |ξ2|

1
2 . (6.3.11)

Plugging (6.3.11) in to (6.3.9), we obtain

∣∣∣∣F(〈Dx〉−1F (λ)
)

(ξ, η)

∣∣∣∣ ≤ 1

2

∫
ξ,η

∣∣∣1− cosh(σ1|ξ|)
cosh(σ2|ξ1|) cosh(σ|ξ2|)

∣∣∣∣∣∣λ̂(ξ1, η1)λ̂(ξ2, η2) dξdη

∣∣∣∣
≤ 4σ1

∫
ξ,η

|ξ1|
1
2 |λ̂(ξ1, η1)|ξ2|

1
2 |λ̂(ξ2, η2)| dξdη,

(6.3.12)
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Set

Λ := F−1
x,y |λ̂(ξ, η)|, Λ̂ = |λ̂(ξ, η)|.

Then

∣∣∣∣F(〈Dx〉−1F (λ)
)

(ξ, η)

∣∣∣∣ ≤ 4σ1

∫
ξ,η

|ξ1|
1
2 Λ̂(ξ1, η1)|ξ2|

1
2 Λ̂(ξ2, η2) dξdξ

≤ 4σ1Fx,y
(
|Dx|

1
2 Λ.|Dx|

1
2 Λ
)
(ξ, η).

(6.3.13)

Using Plancherel Theorem and Sobolev embedding Theorem,

Hs(Rd) ⊂ LP (Rd),
s

d
=

1

2
− 1

p
, (1 < p <∞),

we obtain

∥∥∥∥F(〈Dx〉−1F (λ)
)

(ξ, η)

∥∥∥∥
L2
x,y(R2)

≤ 4σ1

∥∥∥Fx,y(|Dx|
1
2 Λ.|Dx|

1
2 Λ
)
(ξ, η)

∥∥∥
L2
x,y(R2)

. σ1‖|Dx|
1
2 Λ‖2

L4
xL

2
y(R2)

. σ1‖|Dx|
1
2 Λ‖2

H
1
2
x H0

y(R2)

. σ1‖Λ‖2
H1,0(R2)

∼ σ1‖λ‖2
H1,0(R2).

(6.3.14)

From (6.3.7),(6.3.8) and (6.3.14), we obtained the desired result (6.3.2)

sup
t∈[0,δ]

‖u(t)‖2
Hσ1,0,1,0 ≤ ‖u0‖2

Hσ1,0,1,0 + CTσ1 ‖u0‖3
Hσ1,0,1,0 .

which complete the proof of Theorem 6.3.2 �

6.4 Lower Bound for the Radius of Analyticity

Proof of Theorem 6.1.1: Suppose u0(x, y) ∈ Gσ10 ,σ20 ,s̄ (R2), for σ10 , σ20 > 0.

Then there exist a unique solution of (6.1.1) constructed in Theorem 6.2.2 with

existence time T as in (6.2.6).
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Note that

λ0 = cosh(σ10|Dx)| cosh(σ10|Dy)u0.

and

u ∈ Hσ1(t),0,1,0(R2), ∀t ∈ [0, T ].

From (6.2.7) and the modified energy, we have

E[λ(t)] =

∫
R2

(
λ2(x, y, t) + λ2

x(x, y, t)
)
dxdy ≤ 2‖u0‖Gσ10

,σ20
,s̄0 (R2) <∞. (6.4.1)

Now, we can construct a solution on [0, T ∗] for arbitrarily large time T ∗ by applying

the almost conservation law so as to repeat the local result on successive short time

intervals [0, T ], [T, 2T ], [2T, 3T ] etc of size T to reach large time T ∗ by adjusting

the strip width parameter σ1 according to the size of T ∗. Doing so, we establish

the bound

sup
t∈[0,T ∗]

‖u‖2
Hσ1,0,1,0(R2) ≤ 2‖(u(0)‖2

H
σ10

,0,1,0 , (6.4.2)

for σ1 satisfying

σ1(t) ≥ ct−1, ∀t ≥ 0. (6.4.3)

Thus, from (6.4.1), we have

‖u‖2
Hσ1(t),0,1,0(R2)

<∞, t ∈ [0, T ∗],

which inturn implies u ∈ Hσ1(t),0,1,0(R2) for all t ∈ [0, T ∗]. �
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General Conclusion and Future

Work

General Conclusion

In this dissertation, we examined the existence of local and global well-posedness

results of higher order KdV-BBM type equations in Gevrey spaces Gσ,s(R) and

modified Gevrey spaces Hσ,s(R). We established the existence of local solutions

using the contraction mapping principal and different multi-linear estimates. The

local well-posedness result can be extended to global well-posedness result using

almost conservation law for the problems we considered. We also study the persis-

tence of spatial analyticity to the solution of these higher order dispersive partial

differential equations in the class of analytic functions by providing explicit for-

mulas to lower bounds for the radius of spatial analyticity of the solution. The

persistence of spatial analyticity for the solutions of PDE problems depends on

several factors, such as the type of the PDE (elliptic, parabolic, hyperbolic, etc.),

the coefficients of the PDE, the initial data, the boundary conditions, the dimen-

sion of space, conservation law etc. We used various techniques and tools to prove

persistence of spatial analyticity of the solution of the problems we considered,

such as Fourier analysis, multilinear estimates, contraction mapping principle,

and approximate conservation laws.

The lower bound of the radius of analyticity of the solution for higher order

KdV-BBM type equations and coupled system of generalized BBM equations in

modified Gevrey spacesHσ,s(R) also analyzed. The local and global well-posedness

of KP-BBM equation in anisotropic Gevrey space were studied. For existence of

global solution, we apply approximate conservation law to repeat the local result

on successive short-time intervals to reach any large time T ∗, by adjusting the

strip width parameter σ according to the size of T ∗.

Studying the radius of analyticity of the solution can be used to prove the

regularity and stability of the solutions of PDEs, since the radius of analyticity of

the solution is a measure of how smooth the solution is in the complex plane. It

is defined as the largest radius of a disk centered at a point where the solution is
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analytic.

Analytical solutions are presented as mathematical expressions, they offer a

clear view into how variables and interactions between variables affect the result.

Information about the domain of analyticity of a solution to a partial differential

equation can be used to gain understanding of the structure of the equation, and

to obtain insight into underlying physical processes. For developing algorithms or

modeling engineering systems, analytical solutions often offer important advan-

tages.

Future Work

In future work, we recommend to examine the well-posedness of problems for

the KdV-BBM equation with initial data u0 ∈ Gσ,s(T) that are analytic on the

torus T = R/2πZ. It is also interesting to study the global well-posedness of the

coupled system of generalized BBM equations whose nonlinearities are cubic and

nonhomogeneous polynomials.
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