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ABSTRACT

In this project report, we consider Volterra integral equations. We show the application of Elzaki
transform method to solve Volterra integral equations, in particular linear Volterra integral equation of
the first kind. We also examine properties of Elzaki transform and scope of the application of the
proposed method. To show the applicability and efficiency of Elzaki transform we apply this method to

some illustrative examples.
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CHAPTER ONE
INTRODUCTION AND PRELIMINARY CONCEPTS

1.1 Introduction

An integral equation is defined as an equation in which the unknown function to be determined
appears under the integral sign. The subject of integral equations is one of the most useful
mathematical tools in both pure and applied mathematics. It has enormous applications in many
physical problems [1]. Many initial and boundary value problems associated with ordinary
differential equation and partial differential equation can be transformed into problems of solving
some approximate integral equations [2]. The most frequently used integral equations fall under
two major classes, namely Volterra and Fredholm integral equations. Of course, we have to

classify them as homogeneous or nonhomogeneous; and also linear or nonlinear [3].

The name integral equation was given by du Bois-Reymond in (1888). However, the Volterra
integral equations can be derived from initial value problems. Volterra started working on integral
equations in 1884, but his serious study began in 1896. The name Volterra integral equation was
first coined by Lalesco in 1908. Fredholm integral equations can be derived from boundary value
problems. Erik Ivar Fredholm(1866-1927) is best remembered for his work on integral equations

and spectral theory [2, 4, 5].

The origin of the integral transforms including the Laplace and Fourier transforms can be traced
back to celebrated the works of Laplace (1749-1827) on probability theory in the 1780s [11]. The
method of integral transforms is one of the most easy and effective methods for solving problems
arising in applied mathematics, mathematical physics, and engineering science which are defined
by differential equations, difference equations and integral equations. The main idea in the
application of the integral transform methods is to transform the associated higher order
differential equation to either a differential equation of lower order or an algebraic equation [13].

Literature showed that various problems of integral equations can be solved by different integral
transform methods such as Laplace transform method, Elzaki transform method, Aboodh
transform method, Mohand transform method, Kamal transform method, Mahgoub transform

method, Sawi transform method, Shehu transform method, Tarig transform method, etc.
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Aggarwal & Sharma [6] applied Laplace transform method for solving linear Volterra integral
equation of the first kind. Aggarwal et.al [7, 8] used Kamal and Mahgoub transform method for
solving linear Volterra integral equation of the first kind. Kumar et.al [9] applied Mohand
transform method for solving linear Volterra integral equation of the first kind. The main purpose
of this project is to determine the exact solution of a linear Volterra integral equation of the

first kind using Elzaki transform without large computational work.

Elzaki transform is derived from the classical Fourier integral transform. It was introduced by
Tarig Elzaki to facilitate the process of solving ordinary and partial differential equations in the

time domain [10].

This project consists of two chapters. In the first chapter, we will present basic concepts on integral
equations, particularly linear VVolterra integral equations of the first kind, definitions and properties
of Elzaki transform method and definitions and Elzaki transforms of Bessel’s function of order
zero, one, and two. The second chapter deals with applications of Elzaki transform method for

solving linear Volterra integral equations of the first kind.
1.2 Integral Equation
Integral equation is an equation in which an unknown function appears under the integral sign.

The general form of an integral equation is given by:

b(x)

ax)u(x) =f(x) + A f k(x, t)h(u(t))dt, x,t ER, (1.1)
a(x)

where, a(x) and b(x) are the limits of integration, A is a nonzero constant parameter, k(x, t) is a
known function of two variables x and t called the kernel of the integral equation, u(x) the unknown

function to be determined, f(x) and a(x) are known functions.

An integral equation can be classified as a linear or nonlinear integral equation, homogenous or

non-homogenous, Fredholm or Volterra, etc.
1.2.1 Fredholm integral equation

An integral equation is said to be Fredholm integral equation if both the limits of integrations are

constant.
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The general form of Fredholm integral equation is given by:
b
a(u() = fG) + A f kG Oh(u®)dt, xteR (1.2)
a

Remark 1.2.1

1) If his linear in u, then (1.2) is called linear Fredholm integral equation, otherwise, it is
nonlinear Fredholm integral equation.
2) Iff(x) =0, then (1.2) is homogeneous Fredholm integral equation, otherwise, it is

inhomogeneous.
3) A Fredholm integral equation can be classified as first kind, second kind, and third kind

depending on a(x) is zero, nonzero constant, and non-constant respectively.

For example, the equation

1
u(x) =x+ f(x —t)u(t)dt,
Z1

is non-homogenous linear Fredholm integral equation of the second kind.

1.2.2 Volterra integral equation

An integral equation is said to be Volterra integral equation if at least one of the limits of

integrations is non-constant.

The general form of Volterra integral equation is given by

b(x)
ax)u(x) = f(x) + 7\] k(x, t)h(u(t))dt, XERt=>0 (1.3)

where b(X) is non constant function of x.

Remark 1.2.2

1) If his linear in u, then (1.3) is called linear Volterra integral equation, otherwise, it is
nonlinear Volterra integral equation.
2) Iff(x) =0, then (1.3) is homogeneous Volterra integral equation, otherwise, it is

inhomogeneous.
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3) A Volterra integral equation can be classified as the first kind, second kind, and third kind
depending on a(x) is zero, nonzero constant, and non-constant respectively.
4) An integral equation that contains both Fredholm and Volterra integral is called Volterra-

Fredholm integral equation.

For example, the equation

X

xe X = f e tu(t)dt,
0

is inhomogeneous linear Volterra integral equation of the first kind, whereas the equation

X 1

u(x) = f(x —t)u(dt + f sin(u(t)) dt,

0 0
is inhomogeneous nonlinear Volterra-Fredholm integral equation of the second kind.
1.3 Elzaki transform

Integral transforms are defined by integrals, which play an important role in solving linear
differential equations, integral equations, integro-differential equations, etc. An integral transform
maps an equation from its original domain into another domain. Manipulating and solving the
equation in the target domain can be much easier than manipulating and solving in the original
domain. The solution is then mapped back to the original domain with the inverse of the integral

transform.

An integral transform is any transform T of the following form:

b
T{f()}(v) = ff(t)k(t, v)dt VvtER (1.4)

where k(t,v) is called its kernel. The function f and Tf are the input and output of its transform

respectively. An integral transform is a particular kind of mathematical operator.

There are numerous useful integral transforms. Each is specified by a choice of the kernel function

of the integral operator and the limits of integration. For example, (1.4) defines

1. Laplace transform if (k(t,v) = e™"Y, a=0, b = +),
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_1 .
2. Fourier transform if (k(t, v)=02mze ™, a=-0, b=+40, i= \/—1),

-t
3. Sumudu transform if (k(t, V) = %eT, a=0 b= +oo),
4, Mohand transform if (k(t,v) =v?e ™', a=0, b= +),
5. Aboodh transform if (k(t, V) = %e“’t, a=0 b= +oo),

6. Mahgoub transform if (k(t,v) = ve™ ', a=0, b= +m),

t

7. Kamal transform if (k(t, V) = ev, a=0, b= +oo),

-t
8. Elzaki transform if (k(t, v)=vev, a=0, b= +oo)),

Some kernels of the integral operator have an associated inverse kernel,k~1(t, v) which yields an

inverse integral transform:

f(t) = J(Tf)(v)k"1 (t, v)dv (1.5)

This transform is used to map the solution back to the original domain of the problem of the
differential equation.

Definition 1.3.1: A function f is said to be piecewise continuous in any interval, if it is continuous
in each subinterval of the given interval. Then this gives a finite jumps as the only possible

discontinuities.

Definition 1.3.2: A function f is said to be exponential order “a > 07, if there exists a finite

positive constant M, that satisfies the growth restriction
[f(t)] < Me?t, forallt >0

Definition 1.3.3: Let f be of exponential order and piece-wise continuous on t > 0. Then the Elzaki

transform of f exists and is defined as

co

E(FO}(v) = T(V) = v J f(t)e v dt, (1.6)

0
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If E{f(t)} = T(v), then f(t) is called the inverse Elzaki transform of T(v) and mathematically it

can be expressed as

f(t) = E1(T(v))
where E~1 is the inverse Elzaki transform operator.
1.3.1 Elzaki transform of some elementary functions

As stated shown below, we have the following Elzaki transform of some elementary functions,

which can be derived using the definition and properties of integrals.

f(t) E{f(D} = F(v)
¢ (constant) cv?
t, n ez n! y+2
eat V2
1—av
sin(at) av3
1+ a?v?
cos(at) v?
1+ a?v?
sinh(at) av?
1 —a?v?
cosh(at) v?
1 —a?v?

By using definitions of Elzaki transform and properties of integral, we can proof the above as

follows
[ =t [ -t —t o0
1. E{c}zvfcethzcvfev dt=cv(—vev O)zcvz
0 0
2. Using integration by parts
Forn =1,
(ot “tleo [ =t [ -t —t] 00
E{t}=vjte th=V[—VteV] 0 +vfeth=v2Jeth=—v3[eV] 0 =v3
0 0 0
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t
Forn =2, E{t?} = Vf t?e vdt=v [—t

Forn = 3,

By continuing in

[oe]

(E-a)
3.E{e?'} = Vf edte vt = Vf e W dt =

0

eiat _ e—iat ° eiat _ e—iat
4, E{sin(at)} =E{—— ¢ = Vf —] e
2i 2i
0

5.E{cos(at)} = E{

1 [ =t
=§[v] eltevdt+ v
0

2_1—iav+1+iavl:

(o8] (°9)

-t
+ ZVZf tevdt = 2vE{t} = 2v*
0

-t
2yev

(0]

0
0

|

o -t
] 0 + 3V2f t?evdt = 3vE{t’} = 6V°

0

t
E{t3} = vf tde"vdt=v [—t

0

-t
3pev

E{t"} = n!v"+2

)

the same pattern, we get the result

(o)
—v v?

T 1-—av

1
v

0 —a

-t

vdt

(o]

[ . . 1 . .
Vf e‘ateTtdt — Vf e“atthdt] =5 (E{e‘at} - E{e_‘at})

- |

B av3
|1+ a?v?

s eiat_l_e—iat
=[]
0

(o]

J e"iate_Ttdt] = %(E{eiat} _ E{e—iat})

e

(0]

2

% 2

\% 1

2i

v +iavd — v? +iav3
1 + iav — iav + a2v?2

1—iav  1+iav
[ 2iav3
1+ a2v?

-t

eiat + e—iat —t
—_— evdt

2

2 iav

v 2

v 3

v2 +iav3 +v? —

1 + iav — iav + a?v?

1

2

1[ 2v? B v?
2|1 +a2v? |1+ a2v?
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0o 0o 0o
at

edt — et 1 -t
6.E{sinh(at)}=vf eth— 3 Vf e? eth— fe_ateth]

2
0 0

v? v? l

—av 1+av

3 B~ Bl =35

1lv2+av3—v2+avl l 2av3 l

2|1+ av—av—a?v? 1 —a2v?

B av3
~[1 = a2v2

0o
-t

at + e at
7.E{cosh(at)} = v] cosh(at) ev dt = v] le—l evdt

[0e]

1 r ¢ 1
[v ] etev dt + v j atevdt] = = (B(e) + E{e ™)
0

1 v?2 v? 1[v? +avd +v?—avd
T 2l1-av 1+av_2

e

Inverse Elzaki transform of some elementary functions

1+ av —av — a?v?

F(v) f(t) = ETH{F(v)}

v? 1

v3 t

vt t?

2!

vi*2 neN t"
n!

vit2 n > —1 t"

'(n+1)
V2 oat
1—av
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v3 sin(at)
1+ a?v? a

v? cos(at)
1+ a?v?

v3 sinh(at)

v? cosh(at)
1 — a?v?

Example: Consider the function

f(t) = sin(t) + cosh(3t) — 3e ™ 2' +t* + 6

By definition of Elzaki transform

E{f(t)} = E{sin(t) + cosh(3t) — 3e~2t + t* + 6}

oo

—t
= Vj (sin(t) + cosh(3t) —3e 2t +t* + 6) evdt
0

[o9] [o9] o o (o]

-t -t -t -t -t
= Vf sin(t) evdt + Vf cosh(3t) evdt — 3Vf e 2tevdt+ Vf ttevdt+ vf 6evdt
0 0 0 0 0

By Elzaki transform of hyperbolic, trigonometric, exponential and polynomial functions, we know
that

i . =t _ v3 ( —t v?
v ] sin(t) evdt = Efsin()} = 7——, v f cosh(3t) evdt = E{cosh(3t)} = ——
0 0

[00] (0]

-t 3v? :
3v] e~ 2tevdt = 3E{e %} = , VJ t*evdt = E{t*} = 24v®
1+ 2v
0

oo

—t
Vf 6evdt = E{6} = 6v?
0

0

Therefore, by adding and re arranging the above terms we obtain

3 2

v v 3v2
E{f(0)} = _ 24v6 + 6v2
WOy =Tzt T ooy " T3y T 24V HOV
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1.3.2 Properties of Elzaki transform

The following properties of Elzaki transform are derived from the definition and properties of

integrals.

Let E{f(t)} = F(v) and E{g(t)} = G(v), then for arbitrary constant a and b, we have the following

properties.
Property 1(Linearity property):
E{af(t) + bg(t)} = aF(v) + bG(v)

Proof: By the definition of Elzaki transform, we obtain

oo (0] (0]

t t t
E{af(t) + bg(t)} =v j [af(t) + bg(t)]e vdt =v f af(t)e vdt+ v f bg(t)e vdt
0 0 0
- t - t
=av | f(t)e vdt+bv | g(t)e vdt
Jromacn]

= aF(v) + bG(v)

Property 2 (Change of scale property):
1
E{f(at)} = a_zF(aV)

Proof: By the definition of Elzaki transform, we have

(o]

t
E{f(at)} =v J f(at)e vdt,

0

Put p = at :»dtz%p

[00] (o]

- 1 - 1
E{f(at)} == j f(p)eav dp = —av J f(p) eavdp = —F(av)
0 0

Property 3 (Shifting property):

E{e™'f(t)} = (1 —av)F (1 — av)

Proof: By the definition of Elzaki transform, we have
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o o [o9) —t

E{e®'f()} = v f eatf(t)e_%dt =v f f(t) e‘(%‘a)tdt =v f f(t) eTawdt

0 0 0
—t

=(1-—av) v f f(t) el—UWdt =(1- aV)F(

1—av l—av)
0

Property 4 (Elzaki transform for derivatives):

F( ) n-1
\'%
E{f(n)(t)} =—- Z y2-n+k £(K) (0)
M k=0

Proof: Proof by mathematical induction
Incase of n =1,

R to 1t )\ 1
E{f'(t)} = vj f'(t)e vdt = v| f(t)e v 0 +;f f(t)e vdt | = ;F(v) — vf(0).

0 0

Now suppose it holds for n=m, i.e.,

m-—1

1
E(fM©) = SSF@) = Y v2 mk0(0)
v k=0
and suppose n=m+1:

Effm+ D) = E{(f™ @)} = %E{f(m)(t)} — vf(™(0)

m-—1

1/ 1
== W) - Z v2-mk £ (0) | — yf(m) ()
k=0
1 1 m-1
= B =2 ) VAR (0) — v (0)
k=0
1 m-1
= B = ) VIR (0) — v (0)
k=0
1

Vm

m

— - k ¢(k

- +1F(V)—Zv1 m+k £(0) ()
k=0

Hence, this property is valid at an arbitrary natural number n.
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Property 5 (Elzaki transform for integrals):

E{ | f(x)dx p = VF(V)
o]

Proof: By definition of Elzaki transform, Elzaki transform for derivatives and fundamental

theorem of calculus, we have

Let h(t) = J.f(x)dx = h'(t) = f(t) and h(0) = 0, then
0
1 1

E(h' (9} = S E(h() - vh(0) = ZE{h(v)

= E { j f(x)dx} = E{h(t)} = VE{h'(O)} = VE{f(O)} = VF(v

0

Property 6 (Elzaki transforms of multiplication by t™):

oo

Let,  E{f()}=v j f(t)evdt = F(v) )
0

Forn =1, E{tf(t)} = v? (% — %) F(v)

Proof:

By differentiating (i) with respect to v, we have

oo

e =3 (et = [ 1o (S vet)a
J— = — \% = _— \%
W) = | ve vf(H) O (g Ve

0 0

[00] (o] (o] [ee]

1 _t _t 1 _t 1 _t
=;j tf(t)e th+J f(t)e th=ﬁvj tf(t)e th+;vf f(t)e vdt

0 0 0 0

_ 1 E{tf 1F
= S E{tf(0)} + - F(V)

d 1
E{tf(0)} = v? (E - ;) F(v)
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d2
Forn =2, E{t’f(t)} = V4mF(V)

Proof:

By differentiating (i) twice with respect to v, we have

co

d? dz _t 1002 t 1002 t 1_
WF(V) = f f(t) mve v dt=V—3f t*f(t)e thzﬁvf t*f(t)e thng{t f(t)}
0

0 0
d2
= E{t?f(t)} = V4WF(V)

By continuing in the same manner, we can determine E{t"f(t)}, n € N.
Property 7(Elzaki transform for convolution):

1
E((f » 9)(0)) = J E(HOIELE() = FWG)

where the convolution (f * g)(t) is defined as

t t
(F+g)(O) = f f(Wg(t — wdu = f f(t — wg(u)du
0 0

Proof:

[0e] [00]

Let, F(v) = E{f(t)} = vj f(t) e_%dt, and G(v) = E{g(x)} = VJ g(x) e_édx,

0 0

F(v)G(v) = <V j f(t) e_‘t/dt> <V j g(x) e_‘);dX) = v? J f(t) J g(x) e_(x—‘tt)dxdt
0

0 0 0

Letusputt =x +¢t,x =7 — ¢, we get

FWV)GW) =v2 | f(t) | gt —1t) e_%drdt = v? e_% dr | f(H)g(r —t) dt
[©] [ e

o

= VZJ e_%J f(H)g(r — t) dtdt = VZJ e_% (f * g)dt = VE{(f * g) (©)}
0 0

0

1
= E{(f» ) (0} = F()G(V)
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Example: Consider the following function
t
g(t f(0), f (D) = f() — 3f'® + e'? + cos 2t + f(x —s)eSds — 4t
0

Let, E{f()} = F(v)

By definition of Elzaki transform

E{g(t f(v),f(t))} = EXf(t) — 3f'(t) + e't? + cos 2t + f(x —s)eSds — 4t

Applying linearity property of Elzaki transform gives

t

E{g(t, f(0), f'(©))} = E{f(©)} — 3E{f'(©} + E{e't?} + E{cos 2t} + E f (x —s)eSds ; — E{4t}
0
By Elzaki transform for derivatives, we have

1
E{f'(0)} = ;F(v) — vf(0)
By change of scale property for Elzaki transform, we have

2

\'%
E{COS Zt} = m

By shifting property for Elzaki transform, we have

2v*

E{e't?} = FEE

By convolution theorem for Elzaki transform, we have

4

t
E j(t— Jet ds b =~ E{gE(e") = —
s)e*ds e = et =1
0
By property 6, we obtain
d 1
— 2 2 _Zy2) =3
E{4t} =v (dvv vv) \4

Therefore, by adding and rearranging all the above terms, we have

vt N v? N vt 5
1-v)3 144v? 1-—vw v

E{g(t, f(0), (1))} = F(v) — %F(V) + 3vf(0) +
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1.4 Elzaki transform of Bessel’s functions

Bessel’s function of order n, where n € N is given by

t
O = " 2T 2 24 n s D@t D) 246 Znr DEnF H@nre) T

(1.7)

In particular, when n = 0, we have Bessel’s function of zero order and it is denoted by J,(t) and
it is given by the infinite power series
2 t4 £6

27 g T igzgr T

Jo( =1-

For n = 1, we have Bessel’s function of order one and it is denoted by J; (t) and it is given by
t3 t° t’

T 24t 26 22azerg

t
J1(©) =3

t3 t> t7
BT TR T TR T TIL

For n = 2, we have Bessel’s function of order two and it is denoted by J,(t) and it is given by
2 t4 t6 8

t) = — — — e
J2(0 2.4 22.4.6+22.42.6.8 22.42.62.8.10+

In the same manner, we can determine J,(t),n > 2.
Remark 1.4.1: We have the following relation of Bessel’s functions

1. Relation between J,(t) and J, (t) [14, 15].

d

J1(©) = —%]o(t)

2. Relation between J,(t) and ], (t) [15].

d2
J.(0) =Jo(D + Zﬁlo(t)

Elzaki transform of Bessel’s functions of zero order, order one and order two

1. Elzaki transform of J,(t)
2 tt t®
Jo® =12+ o~ Joargr T
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t? t* t®
> B} = B{1 = 55+ 3oz~ g+ |

= E{1} - 2%E{tz} + E{t*} — 1 E{t®} + -

2242 224262
1 1 1
= v?2 —2—2(2!v4) + oo (4!1v®) — 74747 (6!v®) + -
1 1.3 1.3.5
2 2 - 2\2 __ 2\3
-V (1 2V a2V Togs (v )
2(1 4 v2)7 = —
=v(l4+v?)2 =
V1i+v2

2. Elzaki transform of J; (t)
d
J1(D) = —alo(t)

= B0, (0) = ~E{TJo(®)]

Now applying the property, Elzaki transform of derivative of the function on equation, we have

1 1
B0} = =[S Eo(0) ~ vIo(0)| = — B0} +v = v

1+ v2

3. Elzaki transform of |, (t)
J2(6) = Jo (D +2]"4(D)
= E{J.(0} = E{Jo(® + 2], (D}
= E{Jo(D} + 2E{J", (D}

Now applying the property, Elzaki transform of derivative of the function on equation, we have

1
E2(0) = EQo(0) + 2| EJo (9 = 16(0) = v1'6(0)]

LA I ] (0)]
= s - —V
V1 +v2 V21 + v2 !
V2 2

= + ~2
Vi+vZ V1+v2
VP2 -2Vl +v?
V1 +v?
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CHAPTER TWO

APPLICATIONS OF ELZAKI TRANSFORM METHOD

In this chapter, we use Elzaki transform method to solve linear Volterra integral equation of the

first kind involving difference kernels.
2.1 Description of the method

The Elzaki transform method, whose fundamental properties are presented in the first chapter plays

a great role in solving differential equations, integral equations, integro-differential equations etc.

Consider the general linear Volterra type integral equation of the first kind involving difference

kernel

f(x) = f k(x — Hu(t)dt (2.1)
0

To solve the linear Volterra integral equation of the first kind given by (2.1) using Elzaki transform

method, we can follow the following steps.

Step 1: Applying Elzaki transform to both sides of equation (2.1), we have

X
E{f(x)} =E {f k(x — t)u(t)dt} (2.2)
0
Step 2: By using convolution theorem of Elzaki transform to equation (2.2), we have

E(109) = - ECO}EQ())

vE{f(x)}
Efux)} = EkGO] (2.3)
Step3: Operating Inverse Elzaki transform on both sides of (2.3), we have
_; [VE{f()}
u(x) =E {E{k(x)}}' (2.4)

which is the required solution of (2.1).

Page | 17



2.2. Application of the method

In this section, we consider some examples whose kernels containing exponential function,
hyperbolic function, trigonometric function, and polynomial function, and Bessel’s function in
order to demonstrate the effectiveness of Elzaki transform for solving linear Volterra integral

equations of the first kind.

Example 2.1. Consider the linear Volterra integral equation of the first kind whose kernel contains
exponential function

X

X = fex_tu(t)dt (2.5)
0
Applying the Elzaki transform to both sides of (2.5), we have

E{x} = E {f ex_tu(t)dt} (2.6)

0

Using convolution theorem of Elzaki transform on (2.6), we have

v3 = 1E{eX}E{u(X)} => v3= 1( v’ )E{u(x)}

\4 vil—v
Efu)}=v?-v3 2.7)
Operating inverse Elzaki transform on both sides of (2.7), we have
ux) =1-x,
which is the required exact solution of (2.5).

Example 2.2: Consider the linear Volterra integral equation of the first kind whose kernel

contains exponential function
X
sinx = f 3 y(t)dt (2.8)
0
Applying the Elzaki transform to both sides of (2.8), we have

E{sinx} = E {f e3(x—t) u(t)dt} (2.9)

0
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Using convolution theorem of Elzaki transform on (2.9), we have

v3 1.
—— = ZE{e™Bu()
v3 1 v?
“1+v v <1 - 3v> E{uC0)
Efu®)} = - _ v 3V (2.10)

14+vZ  1+vZ2 1+v2

Operating inverse Elzaki transform on both sides of (2.10), we have

(VP v
uG) =E {1 + Vz} -3k {1 +V2}

u(x) = cosx — 3sinx,

which is the required exact solution of (2.8).

Example 2.3: Consider the linear Volterra integral equation of the first kind whose kernel is a

linear function

2 _ 1 [
X% = §f(x —tu(t)dt (2.11)
0

Applying the Elzaki transform to both sides of (2.11), we have

1 X
E{x?} = §E{](x— t)u(t)dt} (2.12)
0
Using convolution theorem of Elzaki transform on (2.12), we have

11 11
Iyt =—_— 4 _ — " [y3
2lv 3V E{x}E{u(x)} = 2v 37 [V]E{u(x)}
E{u(x)} = 6v? (2.13)
Operating inverse Elzaki transform on both sides of (2.13), we have

u(x) = 6E"1{v?} = 6,

which is the required exact solution of (14).
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Example 2.4: Consider a linear Volterra integral equation of the first kind whose kernel contains
hyperbolic function

X

sinx = f cosh(x — t) u(t)dt (2.14)

0

Applying the Elzaki transform to both sides of (2.14), we have

X
E{sinx} = E {f cosh(x — t) u(t)dt} (2.15)
0
Using convolution theorem of Elzaki transform on (2.15), we have
V3
1+ v?

e e L)

- =
1+vZ2 v\1l-—v2

= %E{coshx}E{u(X)}

vi(1—-v?)  2v?
(1+v2) 1+v2

=SEux)} = v2 (2.16)

Operating inverse Elzaki transform on both sides of (2.16), we have

2v? v?
u(x) =E! {1 i VZ} =2E1 {1 " Vz} — E~}{v?}

u(x) = 2cosx — 1,
which is the required exact solution of (2.14).
Example 2.5: Consider linear Volterra integral equation of the first kind whose kernel contains

trigonometric function

X

X = f cos(x — t) u(t)dt (2.17)

0

Applying the Elzaki transform to both sides of ((2.17)), we have

E{x} = E {f cos(x —1t) u(t)dt} (2.18)

0
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Using convolution theorem of Elzaki transform on (2.18), we have

V2

1+ v2

v3 = 1E{cosx}E{u(X)} > v3i= 1( > E{u(x)}
v v

=E{u)} =v? +v* (2.19)
Operating inverse Elzaki transform on both sides of (2.19), we have
u(x) = E7Y{v? + v} = E"1{v?} + E"1{v*!}

2

) =1+
u(x) = >

which is the required exact solution of (2.17).

Example 2.6: Consider a linear Volterra integral equation of the first kind whose kernel contains
Bessel function of zero order

Jo(X) —cosx = fIO(X —tu(t)dt (2.20)
0

Applying the Elzaki transform to both sides of (2.20), we have

E{Jo(x) —cosx} = E {f Jox—1) u(t)dt} (2.21)
0
By applying linearity property of Elzaki transform to (2.21), we have
X
E{Jo(x)} — E{cosx} = E {f Jox—1) u(t)dt} (2.22)
0
Using convolution theorem of Elzaki transform on (2.22), we have
v? v? 1
m - 1 + VZ = ;E{]O(X)}E{u(x)}
v? v? 1 v?

T 1+v2 vyiaer )

E{lux)} =v-— (2.23)

\%
V1 +v?
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Operating inverse Elzaki transform on both sides of (2.23), we have

uG) = B v - f=100,

v
VI+vZ
which is the required exact solution of equation (2.20).

Example 2.7: Consider linear Volterra integral equation of first kind whose kernel containing

Bessel function of order one

Jo(X) — cosx = f]l(x —tu(t)dt (2.24)
0

Applying the Elzaki transform to both sides of (2.24), we have

E{Jo(x) —cosx} = E {f Ji(x—1t) u(t)dt} (2.25)
0

By applying linearity property of Elzaki transform to (2.25), we have

E{Jo(x)} — E{cosx} = E {f Ji(x—1) u(t)dt} (2.26)
0

Using convolution theorem of Elzaki transform on (2.26), we have

VZ 2

Vitv: L1+vE
v? v? 1( v
- =—|v —
Vi+vz 1+4v2 v V1+v?

E{, (OJE((0)

)Euco)

VZ

V1 +v?2

Operating inverse Elzaki transform on both sides of (2.27), we have

Efux)} =

(2.27)

-1 VZ —
u() = E { m} =Jo®)

which is the required exact solution of equation (2.24).
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CONCLUSION

In this project, we have successfully discussed the application of Elzaki transform method for
solving linear Volterra integral equations of the first kind involving difference kernel .The given
applications showed that very less computational work and a very little time needed for finding
the exact solution of linear Voltera integral equations of the first kind. The proposed method can

be applied for other linear VVolterra integral equations and their systems.
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