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ABSTRACT 

In this project we solve solving some families of fractional order partial differential 

equations using Laplace transform Homotopy Perturbation methods. The aim of the 

methods is to find series analytic approximate solution by considering small parameter 

of differential equations. The method is used to find solutions of both fractional 

ordinary and fractional partial differential equations. 

 Perturbation methods are based on an assumption that a small parameter must exist in 

the equation. Determination of small parameter required special art of techniques. An 

appropriate choice of small parameters leads to ideal results. However, unsuitable 

choice of small parameter results in bad effects  

Using ideas of ordinary calculus, we can differentiate a function xxf )(  to the first or 

second order. We can also establish a meaning or some potential applications of the 

results. However, can we differentiate the same function, to say, the halves order? Can 

we establish a meaning or some potential applications of the results? We may not 

achieve that through ordinary calculus. But we can achieve through fractional calculus, 

which is a more generalized form of calculus. It is not mean calculus of fractions, rather 

is the name for the theory of derivatives and integrals of arbitrary order. 

Fractional derivatives have proven their capability to describe several phenomena 

associated with memory effects [2]. Their non-locality property is common in physical 

processes and cosmological problems. They are described by fractional derivatives. 

Thus fractional calculus is needed. 

Fractional partial differential equations (FPDEs) have been developed in many different 

fields of science. They are used to simulating natural physical process and dynamic 

systems [9]. Solutions of most fractional differential equations are usually nonlinear 

partial differential equations of science and engineering.  
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Chapter One 

Introduction and Preliminary Concepts  

1.1 General Introduction 

The concept of derivative is the main idea of calculus. It shows sensitivity to change of 

functions, which is rate or slope of quantity.  

The intuition of researchers from derivatives and integrals is based on their geometrical 

or physical meanings. Example of first and second order derivative of displacement 

with respect to time is called velocity and acceleration respectively. This form of 

classical calculus was developed extensively over centuries[4]. 

Many of the general laws of nature find their natural expressions in the language of 

differential equations. Differential equations allow us to study all kinds of evolutionary 

processes with the properties of finite dimensionality and differentiability.  

The study of differential equations started very soon after the invention of differential 

and integral calculus. In1671G.C, Newton had laid the foundation to the study of 

differential equations [11]. 

 Mathematics is the art of giving meaning to things having misleading names. The 

beautiful and at first look mysterious is name of the fractional calculus [4]. Fractional 

calculus is not mean calculus of fractions, rather is the name for theory of derivatives 

and integrals of arbitrary order. For many years, the subject of fractional calculus has 

been studied by many research scholars. This is an ongoing process and one can 

recognizes that within the study of fractional calculus, new techniques and mechanisms 

show up to find important challenging insights and unknown correlations between 

many areas of science [5]. 

Fractional calculus owes its origin to a question of whether the meaning of a derivative 

to an integer order 𝑛 could be extended to be valid when 𝑛 ∉ 𝑍. 

The history of fractional calculus started almost at the same time when classical 

calculus was established. The concept of differentiation is familiar to all who have 

studied elementary calculus. For instance, if   nxxf  for all n , then finding 

 
n

n

dx

xfd  is simple. Is the derivative valid for n is not an integer? In 1819G.C, Lacroix, 



 

2 

Bahir Dar University Department Of Mathematics 

the first Mathematician published the paper ‘fractional derivatives’ contributed a lot to 

theory of FDs. Start with
mxy  , ,m he found thn order derivative of

mxy  is: 

 
 


 nmnmx

nm

m

dx

yd nm

n

n

,,;
!

!
 [10].                                                                             (1.1)   

By letting 1m  and
2

1
n , Lacroix found,   

  
 Rx  , .

2

2

1

2

1



x
y

dx

d
                                                                                               (1.2)  

1.2 Gamma function and its properties 
One of the basic functions of the fractional calculus is Euler's Gamma function[17], 

which generalizes the factorial of n such that 𝑛𝜖𝑧+, (𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) … ), and 

allows n to take also non-integer and even complex values. We recall some results on 

the gamma function which are important for the subsequent sections and chapter two. 

Definition 1.1: The Gamma function 𝛤(𝑧) is defined by the integral: 

Γ(z)  = ∫ e−ttz−1dt,                                                                                                         (1.3) 

∞

0

  

it converges in the right half of the complex plane  𝑅𝑒(𝑧)  >  0.  

If
2

1
x , then  

 






 









0 2

1

0

2

1

0

1
2

1
1

2

1
dt

te

dttedtte
t

tt                                                     (1.4)   

let ydydtyt 22                                                                                                (1.5) 

.22
2

1

00

1 22








 







 dyeydyye yy

                                                  (1.6)  

  ,
0

1




 dttex xt x is real or complex  

Let .2
2

1

0

2 2












 dxext x                                                                                 (1.7)  
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 
 
 



















0 0

22

4
2

1

2

1
dxdye yx

                                                                           (1.8) 

.
2

1

4
2

1

2

1 2

0 0

2

































  



 rdrde r

                                                               

One of the basic properties of the Gamma function is that, it satisfies the following 

functional equation. 

Γ(z + 1) = zΓ(z),                                                                                                               (1.9) 

the integral in (1.9) can be easily proved by integrating by parts: 

 Γ(z +  1) = ∫ e−ttzdt =
∞

0
[−e−ttz]t=0

t=∞ + z ∫ e−ttz−1dt
∞

0
= zΓ(z). 

Obviously, Γ(l) =1, and using (1.9) we obtain for z = 2, 3, 4, …  

𝛤(2) = 𝛤(1 + 1) = 1𝛤(1) = 1 

𝛤(3) =  Γ(2 + 1) = 2 𝛤(2) =  2(1) = 2! 

𝛤(4) = Γ(3 + 1) =  3𝛤(3)  =  3 (2!)  = 3! 

 Continuing in the same way leads to 

      𝛤(𝑛 +  1) =  𝑛 𝛤(𝑛) =  𝑛 (𝑛 −  1)!  =  𝑛!                                                           (1.10) 

In addition, we have the following properties of Gamma function. 

1. 









2

1
 

2.      
 

0,
1

11 


 



   

3.  
 


!2

!12
1

2

1
12 k

k
k

k











 , 𝑘 =  0, 1, 2 , … 

Gamma function is equal to the generalization of factorial of the integer numbers. As a 

result, it could be considered as an extension of factorial function to real numbers.                

Another important property of the Gamma function is that, it has simple poles at the 

points, z = -n, (n = 0, 1, 2 . . .). To demonstrate this, let us rewrite (1.3) in the form: 

  Γ(z) =  ∫ e−ttz−1dt + ∫ e−ttz−1dt

∞

1

 

1

0

 .                                                                 (1.11) 
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 The first integral in (1.11) can be evaluated by using the series expansion for the 

exponential function.  

∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡 
1

0

= ∫ ∑
(−𝑡)𝑘

𝑘!
𝑡𝑧−1𝑑𝑡

∞

𝑘=1

1

0

= ∑
(−1)𝑘

𝑘!
 ∫ 𝑡𝑘+𝑧−1𝑑𝑡               

1

0

∞

𝑘=0

 

= ∑
(−1)𝑘

𝑘! (𝑘 + 𝑧)

∞

𝑘=0

 .                                                                         (1.12) 

The second integral in (1.11) defines an entire function of the complex variable z. 

Indeed, let us rewrite the second integral of (1.11) as: 

 ∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡 = ∫ 𝑒−𝑡+(𝑧−1) ln 𝑡𝑑𝑡 
∞

1

∞

1

.                                                   (1.13) 

The function 𝑒−𝑡+(𝑧−1) ln 𝑡 is a continuous function of z and t for arbitrary z & t ≥ 1. 

Moreover, if 𝑡 ≥ 1 and therefore ln 𝑡 ≥ 0, then it is an entire function of z. 

Bringing together (1.12) &(1.13) we obtained: 

Γ(z) = ∑
(−1)𝑘

𝑘! (𝑘 + 𝑧)

∞

𝑘=0

+ ∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡
∞

1

             

= ∑
(−1)𝑘

𝑘! (𝑘 + 𝑧)

∞

𝑘=0

+  entire function. 

Thus, Γ(z) has only simple poles at the points z = - k, k = 0, 1, 2, … 

1.3 Mittage-Leffler function  

  

Mittag-Leffler function naturally occurs as the solution of fractional order differential 

equation or fractional order integral equations. In 1903, the Swedish mathematician 

Gosta Mittag-Leffler (Mittag-Leffler, 1903) introduced the function 𝐸𝛼(𝑧) defined as: 

             𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 1)

∞

𝑘=0

 ,   𝛼 ≥ 0,                                                        (1.14) 

where z is a complex variable and Γ(z) is a Gamma function. The Mittag-Leffler 

function is a direct generalization of the exponential function to which it reduces for α 

= 1. For 0 < α <1, it interpolates between the pure exponential and a hypergeometric 

function  
1

1−𝑧
 . 

The generalizations of 𝐸𝛼(𝑧)  was studied by Wiman in 1905 and he defined the 

function as: 
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  𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑛

Γ(𝛼𝑛 + 𝛽)

∞

𝑛=0

,                                                                                         (1.15)  

(𝛼, 𝛽 ∈ ℂ;   𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0),                                              

is known as Wiman’s function or generalized Mittag-Leffler function. 

For particular values of parameters, the Mittag-Leffler function coincides with some 

elementary functions and simple special functions. For instance, 

1. 𝐸0(𝑧) =
1

𝑧
,   |𝑧| < 1 

2. 𝐸1,1(𝑧) = 𝐸1(𝑧) = 𝑒𝑧 

3. 𝐸1,2(𝑧) =
𝑒𝑧−1

𝑧
 

4. 𝐸2,1(𝑧2) = 𝐸2(𝑧2) = 𝑐𝑜𝑠ℎ𝑧 

5. 𝐸2,1(−𝑧2) = 𝐸2(−𝑧2) = 𝑐𝑜𝑠𝑧 

6. 𝐸𝛼,1(𝑧) = 𝐸𝛼(𝑧), ∀𝛼 > 0 

1.4 Fractional Partial Differential Equations 

Definition 1.2: For a continuous function the Caputo (was introduced by Caputo in 

1960s,[12]) fractional order partial derivative of order nn   1, , is defined, 

 
 

 
 

.
,1,

0

1

 









 
x

n

n
n

dt
t

txf
tx

nt

txf 






                                                      (1.16)  

Definition 1.3: For 𝑚 to be the smallest positive integer that exceeds 𝛼, the Caputo 

time fractional partial derivative of   0,, txu  is defined as: 

   
 





t

txu
txuDt






,
,  

                     

 
 

 


























Nmmmdt

t

txu
t

m

Nm
t

txu

m

mt
m

m

m

,1,
,1

,
,

0

1








                        (1.17)  

Partial differential equations, like other one variable counterpart ordinary differential 

equations, are important throughout the scientific spectrum. However, they are more 
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difficult to solve. We apply the Laplace transform method to solve PDEs by reducing 

the initial problem to a simpler ODE. 

            0,...,,, 21 tututututF m
 

is an example of ODE of order m, and 

 

is PDE of order two. ODE is a special case of a partial differential equation. But the 

behavior of solutions is quite different in general.  

Solutions to PDEs typically depend not on several arbitrary constants but also on one 

or several arbitrary functions, initial and boundary conditions.  

1.5 Fractional Order Derivatives 

Fractional order derivative of a constant function, unlike the ordinary derivative, is not 

always zero. It is sought to answer the aforementioned questions and to construct a 

comprehensive picture of what fractional calculus is, and how it can be utilized for 

different purposes.  

The concept of FD was introduced after 1695 as a simple academic generalization of 

integer derivative. It generalizes the order of differentiation from positive integers to 

set of real numbers, or even to set of complex numbers[4].  

Fractional differential equations are equations that relate some functions with their 

fractional derivatives. They involve fractional derivatives of the form 
𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼
 which are 

defined for  𝛼 > 0, where α is not an integer. Fractional differential equations of order 

α are given by: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝑢𝑥

𝛼(𝑥, 𝑡),   .  .  .  ),      𝑛 − 1 < 𝛼 < 𝑛,                     (1.18) 

Where  𝑛 is a positive integer.  

Most fractional differential equations do not have exact solutions. Approximation 

techniques, therefore, are used extensively. Recently, the Adomian decomposition 

method and variational iteration method have been used to solve fractional differential 

equations [6,9]. we adopt Caputo’s definition of fractional derivatives which has 

advantage of dealing properly with initial value problems. It is also bounded, meaning 

the derivative of a constant is equal to 0. 

               0,,,,,,,,,,,,,,, yxuyxuyxuyxuyxuyxuyxuyxF yyyxxyxxyx
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Definition 1.4: A function is said to be piecewise continuous on a closed interval [𝑎, 𝑏] 

if this closed interval can be divided into a finite number of subintervals in each of 

which a function is continuous and has finite left hand and right hand limits. 

Definition 1.5: A function  tf  is of exponential order of   if there exist constants 

0M  and 0  such that for some 00 t  such that    ., 0ttMetf t  
 

Definition 1.6: Fractional calculus is a generalization of integration and differentiation 

to non-integer order operators. 

Definition 1.7: For a continuous function  xf , the fractional derivative of  xf in the 

Caputo sense is defined as: 

 
 

     .0,,1,
1

0

1



 


xNmmmdtxftx

m
xfD

x

mm





    

1.6 Laplace Transform and its Properties 

The Laplace transform  T  is a widely used integral transform and named for Pierre-

Simon Laplace (1749- 1827) who introduced the transform in his work on probability 

theory[7]. It works efficiently for relatively simple equations, because of difficulty of 

calculating inverse of Laplace transform. It converts integral and differential equations 

into algebraic equations.  

To solve differential equations using )( T , each term in the differential equation is 

taken. If the unknown function is  txy , , then on taking the Laplace transform, an 

algebraic equation involving     txysxY ,,   is obtained. This equation is solved for 

 sxY ,  which is then inverted to produce the required solution,     sxYtxy ,, 1   

Definition 1.8: For a given function )(tf , the Laplace transform of )(tf  is defined, 

      






 
0

0
00

lim)(

t

st

t

st dttfedttfesFtf .                                                      (1.19) 

s is a parameter, may be real or complex number and  is the symbol to Laplace 

transform. 

Definition 1.9: The Laplace transform of the thn  order derivative of 
nyxf )(   
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is given by: 
   Nny n ,   

                      00,...,0''0'0 12321   nnnnnnn ysyysysysysy                       

    0
1

0

1 k
n

k

knn ysys 




                                                                       (1.20) 

Definition 1.10: The Laplace transform of Caputo fractional partial derivative of

 




t

txu



 ,
, 

 is given by: 

  
 

 
 

k

kn

K

k

t

xu
ssxFss

t

txu






















 0,
,;

, 1

0

1





 ,                                                        (1.21)   

    );,, stxusxF 
, 0 .                

Let   txf ,  be a function of two independent variables x and t, then 

       tsFdxtxfetxf sx

x ,,,
0




  ,  0 <  𝑥 < ∞                                                        (1.22)  

    


 
0

,),(),( sxFdttxfetxf st

t ,  0 <   𝑡 < ∞                                                       (1.23) 

Subscripts in the transform indicate the variable to be transformed. It must satisfy the 

condition that     0 ≤ 𝑥 < ∞ ,  0 ≤ 𝑡 < ∞.Among x and t, only 𝑡 satisfies the condition. 

Because x can be real. Thus we use the following. 

   
dt

t

txf
e

t

txf st

t 





























0

,,
                                                                                                                                                      

Using integration by parts, 

     





 












0
0

),(|),(
),(

dttxfsetxfe
t

txf stst

t                                                                

                            txfdttxfes st ,,
0

 


                                                                               
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                0,, xfsxsF  
.                                                                                    (1.24)                                  

    txfsxF ,, 
  

Likewise we have:  

 
     0,'0,,

, 2

2

2

xfxsfsxFs
t

txf
t 











                                                               (1.25)  

Definition 1.11: If  sF  is the Laplace transform of  tf , then the Laplace transform of 

its integral is given by: 

   sF
s

dttf

t
1

0









   ,          dttf

s
sF

s
dttf

11
 . 

Laplace transform constitutes an important tool in solving linear ordinary and partial 

differential equations with constant coefficients under suitable initial and boundary 

conditions. We first find the general solution and then evaluating it from the arbitrary 

constants. It is the powerful tool in applied mathematics and engineering. The technique 

is considered as an efficient way in solving differential equations with integer and 

fractional orders[7]. 

When Laplace transform is applied to any differential equations, it converts differential 

equations into algebraic manipulation. In case of partial differential equations involving 

two independent variables, Laplace transform is applied to one of the variables and the 

resulting differential equation in the second variable is then solved by the usual method 

of ordinary differential equations. Therefore, inverse Laplace transform of the resulting 

equation is the solution of the given PDE [1] . 

Laplace transform does not exist for all functions. If it exists, it is uniquely determined. 

For existence of Laplace transform, the given function has to be continuous on every 

finite interval and of exponential order. If these conditions are not satisfied, the Laplace 

transform may or may not exist. 

Example 1.1: let  
t

tf
1

 .                                                                                                (1.26) 

as 𝑡 → 0+, 𝑓(𝑡) → ∞  , as  𝑡 → ∞, 𝑓(𝑡) → 0.  precisely means, 
t

tf
1

)(   is not 

continuous on every finite interval in the domain 0t . But, 𝑓(𝑡) is integrable from 0 
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to any positive values, say, 0t and also   tMetf   for all 𝑡 ≥ 1 with 𝑀 = 1  and

0 Thus:    0,  s
s

tf


  exists even if 𝑓(𝑡)  is not continuous in the given 

domain. Based on the parameter, there are two types of Laplace transform. 

1.       






 
0

0
00

lim)(

t

st

t

st dttfedttfesFtf ,  

where 𝑠 is real is unilateral or one sided transform. 

2.        .lim)(
0

0
00








 

t

st

t

st dttfedttfesFtf  

 𝑠 is complex, is bilateral or two sided transform. 

Let     sFtf   and     sGtg   

such that 𝑎, 𝑏 are constants, then the following holds. 

1) Linearity:         .sbGsaFtbgtaf   

2)    
1,

1
)1(













s
x    

3)         .1 sFtfx nnn   

4)  
 

.
0

s

sF
dttf

x









  

5) Scaling:    0,
1









 a

a

s
F

a
atf  

6) Initial value:    ,lim0 ssFf
s 

   if  ssF
s 
lim exists. 

7) Final value: if  ssF
s 0
lim


exists ,then    ssFf
s 0
lim


  

8) Time shifting:      0,   asFeatf as  

9) Frequency shift:      RaasFtfe at  ,  

10)  One to one: if      ,tgtf    then    tgtf   

11)    .sin
22 bs

b
bx


  
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12)    .cos
22 bs

s
bx


  

Theorem 1.1: If we assume that  xf '  is continuous on [0, ∞) and also of exponential 

order, then it follows that the same is true of  xf . 

Proof: Suppose that   tMexf '  such that 0,0  tt  

, Then      0

0

' tfdttftf

t

t

                                             

   





 M
cttcetf

Me
tfdteMtf t

tt

t

t   ,,)( 000

0

 

 Theorem 1.2: If  xf  is piecewise continuous on  [0, ∞)  and of exponential order 𝛼 

then the Laplace transform   xf   exists for 𝑅𝑒(𝑠)  >  𝛼 and converges absolutely. 

Proof:   0, ttMetf t  
for some real 𝛼 , )(tf  is continuous on [0, 𝑡0]  and hence 

bounded. Since 𝑒𝛼𝑡  has positive minimum on  [0, 𝑡0] , a constant M can be chosen 

sufficiently large so that   0, 0  tMetf t
. 

        


 
00

00

t

ts

t

st dteMdttfe   

                            

 
0

0

|
)(

ttx

ax

Me




 

 

                            

 

,
0













x

Me

x

M
tx

                                                         

As 0t , nothing that  axs )Re(   

  

 

0
0











x

Me
tx

  

  







0
x

M
dttfe st ,  

this shows Laplace integral converges absolutely. 
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1.7 Perturbation method  

Definition 1.12: Perturbation methods are a class of analytical methods used for 

determining approximate solutions of non-linear equations. It leads to an expression for 

the desired solution in terms of a formal power series in small parameter (𝜀),  those 

quantities are deviation from the exactly solvable problem. The leading term in this 

power series is the solution of the exactly solvable problem and further terms describe 

the deviation in the solution.  

Consider, x = x0 + εx1 + ε2x2 + ⋯ 

Here, x0 be the known solution to the exactly solvable initial problem and x1, x2… are 

the higher order terms. For small ε these higher order terms are successively smaller. 

An approximation “perturbation solution” is obtained by truncating the series, usually 

by keeping only the first two terms. Perturbation methods have their own limitations. 

At first, almost all perturbation methods are based on an assumption that a small 

parameter must exist in the equation. Secondly, the determination of small parameter 

seems to be a special art requiring special techniques. An appropriate choice of small 

parameters leads to ideal results. However, unsuitable choice of small parameter results 

in bad effects, sometimes seriously. Furthermore, the approximate solutions are valid, 

in most cases, only for small values of the parameters. It is obvious that all these 

limitations come from the small parameter assumption.                                                            

1.8 Homotopy Perturbation Method  

Two continuous functions from one topological space to another topological space are 

called Homotopic (Greek, homos = identical, same, similar and topos = place) if one 

can be continuously deformed into the other and such a deformation is called a 

Homotopy between the two functions [18]. 

Definition 1.13: A Homotopy between two continuous functions 𝑓(𝑥) and 𝑔(𝑥) from 

a topological space 𝑋 to topological space 𝑌 is formally defined to be a continuous 

function  𝐻: 𝑋 × [0,1] → 𝑌  such that, if 𝑥 ∈ 𝑋, then  𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 1) =

𝑔(𝑥) for all  𝑥 ∈ 𝑋 . 

Example 1.2: For continuous real valued functions 𝑓, 𝑔: ℝ → ℝ with𝑓(𝑥) ≠ 𝑔(𝑥), 

define a function  𝐻: ℝ × [0,1] → ℝ by:  
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𝐻(𝑥, 𝑝) = (1 − 𝑝)𝑓(𝑥) +  𝑝𝑔(𝑥), 𝑝 ∈ [0,1]. 

As H is a composite of continuous functions, it is continuous and satisfied: 

𝐻(𝑥, 0) = (1 − 0)𝑓(𝑥) + 0. 𝑔(𝑥) = 𝑓(𝑥), 

𝐻(𝑥, 1) = (1 − 1)𝑓(𝑥) + 1𝑔(𝑥) = 𝑔(𝑥). 

Thus, H is Homotopy between 𝑓(𝑥) and 𝑔(𝑥). 

Definition 1.14: Homotopy perturbation Method (HPM) is the coupling of the 

perturbation and the Homotopy methods.  

 Perturbation methods assume a small parameter. Many methods such as Adomian 

decomposition method, variational iteration method and others are proposed to 

eliminate the short comings arising in the small parameter assumptions. Recently, the 

applications of Homotopy perturbation method have appeared in the works of many 

authors which has become a powerful mathematical tool [18].   

Homotopy perturbation method (HPM) is a widely applied techniques[6]. The method 

has been found to be very efficient for solving nonlinear differential equations with 

known initial or boundary value problems which are governed by the nonlinear ordinary 

(partial) differential equations. In this method, the solution is given in an infinite series 

usually converges to an accurate solution. 

To describe the Homotopy perturbation method, we consider a general nonlinear 

differential equation of the type: 

    XxxfuA  ,0                                                                                                  (1.27) 

with boundary conditions 











 x

x

u
u ,0, , A is a general differential operator, 

B is boundary operator,  xf  is known analytic function, X is domain and  is the 

boundary of the domain. 

The operator A can be divided into two parts L and N, where L is linear while N is 

nonlinear. Thus equation (1.43) can be written as: 
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      .0 xfuNuL                                                                                                  (1.28) 

Next construct Homotopy 

   ]1,0[:, XpxH ℝ , satisfied; 

                .01, 0  xfuNuLpuLuLppuH                                           

Thus,              .0, 00  xfuNpupLuLuLpuH  (1.29)  

Where,  1,0p  is embedding parameter, 0u  is an initial approximation of (1.28) from 

(1.29) we have     .0)(0, 0  uLuLuH                                                              (1.30)                               

        .01,  xfuNuLuH                                                                                (1.31) 

 It is obvious that when 𝑝 = 0, equation (1.29) becomes a linear equation (1.30); when 

𝑝 = 1, it becomes the original nonlinear equation (1.31). So the changing process of p 

from zero to unity is just that of     00  uLuL  to       0 xfuNuL . 

The imbedding parameter p monotonically increase from zero to unity as the trivial 

problem     00  uLuL  is continuously deformed to the problem 

      0 xfuNuL , is basic idea of Homotopy method which is to continuously 

deform a simple problem easy to solve difficult problem under the study. According to 

HPM, we can first use the embedding parameter p as a small parameter, and assume 

that the solution of equation (1.28) can be written as power series in p as: 

....2

210

0






pupuuupu
i

i

i
,                                                                        (1.32) 

as 1P , the approximate solution of (1.32) is obtained as follows 












00

1
lim

i

i

i

i

i
p

upuu                                                                                                 (1.33) 

the series in equation (1.33) is convergent for most cases. However, the convergent rate 

depends on the nonlinear operator𝐴(𝑢).  

          0][ 00  uNuLxfpuLuL .                                                                (1.34) 

Substituting equation (1.33) into equation (1.34) leads to: 
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    .)(
0

00

0

































 i

i

i

i

i

i puNuLxfpuLpuL                                     (1.35) 

By linearity property of L, it follows that;  

        .
0

00

0

















 







 i

i

ii

i

i puNuLxfpuLuLp                                                   (1.36) 

According to McLaurin expansion of 










0i

i

i puN with respect to p we have, 

 .
!

1

0 00

 







































i I

i

i

n

p

I

i

i puND
n

puN                                                                          (1.37) 

Now set ,...3,2,1,0,)(
!

1
),...,,,(

00

210 















 nupN
pn

uuuuH
p

n

i

i

i

n

n

n                               (1.38) 

where  𝐻𝑛 is called He’s polynomial, then 

.)],([
0







i

i

iHptxuN                                                                                                  (1.39)  

 Substituting (1.39) into (1.34), 

         .
0

00

0

















 







 i

i

i

i

i

i HpNuLxfpuLuLp                                                (1.40) 

Now equating identical powers of p of (1.40) we obtained: 

    0: 00

0  uLuLp ,       001

1 : HuLxfuLp  , 12

2 )(: HuLp  ,  

Continuing in the same way we obtained;   nn

n HuLp 



1

1 :  

Solving for ,...3,2,1,0, iui  ,00 uu       0

1

0

1

1 Huxfu     1

1

2 Hu   , 

and continuing the same manner, we obtained:    nn Hu 1

1



    Thus, the series 

solution of the given FPDE is given by: 

          .,...,,,, 1210 txutxutxutxutxu n                                               (1.41)  
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Chapter Two 

Applications of Laplace Transform Homotopy Perturbation 

Methods to Solve FOPDEs 

2.1 Introduction    

Fractional partial differential equations (FPDEs) have been developed in many different 

fields of science such as physics, finance, fluid mechanics, engineering and biology. 

They are used to describe models of different phenomena [5].  

Due to frequent appearance of FPDEs in different disciplines of engineering and 

science, the scholars have added a lot of research contributions to both theory of 

mathematical science and technology. They are used to simulating natural physical 

process and dynamic systems. Find general solutions of most fractional differential 

equations which are usually nonlinear partial differential equations of science and 

engineering is too difficult. 

There are many integral transforms used in solving differential equations and integral 

equations by converting a problem into a simpler one. Laplace transform is one type of 

integral transform and it is insufficient to handle the nonlinear equations due to 

nonlinear terms. Various ways have been proposed recently to deal with these 

nonlinearities, one of these are combinations of Homotopy perturbation method and 

Laplace transform. The linear terms in the equation can be solved by using Laplace 

transform method and the nonlinear terms in the equation can be handled by using 

Homotopy perturbation method (HPM). 

,0),...,,,,,...,,( ,...,21 21211


nxxx

n

xxxn uuuuxxxF 
                                                  (2.1) 

,,10 Nn  is FPDE. 

FPDE with boundary or initial conditions is well formed, if its solution exists globally, 

is unique and depends continuously on the assigned domain. 

 FPDEs are used to simulating natural physical processes and dynamic systems. In the 

current study, the researcher implemented Laplace transform-Homotopy perturbation 

methods to find series solutions of some families of FPDEs. 
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We followed the following steps or procedures to apply Laplace transform-Homotopy 

perturbation method to solve some families of FPDEs. 

Step 1: Apply the Laplace transform to each term of differential equation to get a 

simpler equation. 

Step 2: Solve the transformed differential equation with respect to transformed variable 

using differential property and given initial condition. 

Step 3: Take the inverse of the Laplace transform which gives term arising from the 

known function, the prescribed initial conditions and inverse of the nonlinear part. 

Step 4: Apply the Homotopy perturbation method to decompose the nonlinear part and 

solve it. 

 Step 5: Set series solution to a given differential equation. 

2.2 Description of the Method 

To illustrate the method, we considered a general nonlinear nonhomogeneous partial 

differential equation with initial conditions of the form[12]: 

       ,,,,, txgtxNutxRutxDu         xfxuxhxu t  0,,0,                      (2.2) 

 
0,

,





 





t

txu
D , R is the linear differential operator, N is the general nonlinear 

differential operator and ),( txg  is source term. 

 Taking Laplace transform on both sides of (2.2) we obtained: 

           .,,,, txgtxNutxRutxDu                                                                

 
   

        .,,,,
2222

txNu
s

txg
s

txRu
ss

xf

s

xh
txu


                                    (2.3) 

Operating inverse Laplace transform to (2.3) we have: 

         








  txNutxRu
s

txAtxu ,,,,
2

1 
 ,                                                            (2.4)  

 where,  txA ,  represents the term arising from the source term and prescribed initial 

conditions. Next by Homotopy perturbation method we have:  
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 ,,),(
0







n

n

n txuptxu                                                                                                   (2.5)                                                                                            

then the non-linear operator is decomposed as: 

    .,
0







n

n

n uHptxuN                                                                                             (2.6) 

where  uH n  are He’s polynomial and defined as: 

    ,...2,1,0,,
!

1
,...,,,

0
0

210 







































 ntxupN
pn

uuuuH

p

n

i

i

i

n

n

nn                                                                                                       

Substituting (2.6) and (2.5) into (2.4) we obtained: 

       




























 







 0
2

1

0

,,,,
n

n

n

n

n

n txHptxRu
s

ptxAtxup


  ,                      

which is coupling of the Laplace transform and Homotopy perturbation method using 

He’s polynomial. Comparing the coefficients of linear powers of p, the following 

approximations are obtained. 

   ,,,: 0

0 txAtxup   

       ,,,: 00

1

1

1 uHtxutxup                                                                              

       ,,,: 11

1

2

2 uHtxutxup     

       uHtxutxup 22

1

3

3 ,,:    ,… 

       .,,: 11

1 uHtxutxup nnn

n



    

Then the solution of the given DE is given by: 

          ...,,,,lim, 210
1




txutxutxutxutxu
p

                       

           





0

,
n

n txu ,                                                                                                       (2.7) 

  is series solution and converges very rapidly. 
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2.3 Solving Ordinary Differential Equations Using Laplace 

Transform 

Laplace transform to each term in the given differential equation is taken. If the 

unknown function is  𝑦(𝑡) , then we have  

    tysY )( .                                                                                                      (2.8) 

     sYty 1  .                                                                                                            

Example 2.1: Solve the following ODE. 

  30,122 3  yey
dt

dy t                                                                                            (2.9) 

Solution: To solve this problem by using Laplace transform, we have the following. 

Taking the Laplace transform of every term in (2.9), 

   tey
dt

dy 3122  








                                                                                        

)0()( yssY
dt

dy










                                                                                              

  )(22 sYy   , 

 
3

12
12 3




s
e t                                                                

   
3

12
23




s
sYssY                                                                                           

    .
3

33
3

3

12
2









s

s

s
sYs                                                

 
 

  32

13






ss

s
sY                                                                                         
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   
.

35

12

25

3
)(







ss
sY                                                                                              

     ,
5

12

5

3

3

1

5

12

2

1

5

3 32111 tt ee
ss

sYty 




















                                                

is the solution to the given initial value problem. 

2.4 Laplace Transform to Solve Partial Differential Equations 

PDEs are used to formulate problems involving functions of several variables. Laplace 

transform is used to solve PDEs. 

Example 2.2: Consider the partial differential equation  

 
xe

yx

yxu y cos
, 



.                                                                                                    (2.10) 

    0,0,00,  yuxu y  

Taking Laplace transform on both sides of (2.10) with respect to 𝑥, we gate: 

      xeyuyssu y

x cos,0,                                                                                  

 
 21

1
,

ss
eysu y


 

                                                                               

    xeyxu y sin,                                                                                                

 
,sin

,
xe

y

yxu y



                                                                                                (2.11) 

the equation (2.11) is again the PDE of first order in the variables 𝑥 and 𝑦. Taking 

Laplae transform of it with `respect to variable 𝑦 we get 

   
 s

xxusxsu



1

1
sin0,,                                                                                     

 
 ss

xsxu



1

1
sin,                                                                                   

   yexyxu  1sin, , is the solution to the given DE.   
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2.5 Illustrative Examples  

We have used the following examples to illustrate. 

Example 2.3: Consider the following initial-boundary linear nonhomogeneous FPDE, 

   
 

.cossin
2

,, 1

xtx
t

x

txu

t

txu












 









                                                               (2.12)

,10,10,0  xt    00, xu ,   0,0 tu . 

Solution: Taking Laplace transform to both sides to (2.12) we have:  

 
   

 
.cossin

2

,, 1




























 

xtx
t

x

txu

t

txu









  

   
 

 xt
xt

x

txu

t

txu
cos

2

sin,, 1

 















































                                              

     
 




























x

txu
xt

xt
xussxus

,
cos

)2(

sin
0,,

1
1 






                                      

 
 

  
 


















































x

txu

s
xt

s

xt

s
sxu

,1
cos

1

2

sin1
,

1






 
        

 
 































 x

txu

ss

x

s

x

s
sxu

,1cossin1
,

22



 

 
 























 x

txu

ss

x

s

x
sxu

,1cossin
,

22


                                                                (2.13) 

Take inverse Laplace transform to both sides to (2.13) we obtained: 

 
 

 
.

,1

2

cos
sin, 1

1































 



x

txu

s

xt
xttxu 






                                               (2.14) 

Apply Homotopy perturbation to (2.14) we have the following.  

 

 

 
 

 
.

,

2

cos
sin,

0

1

0

1

































 












n

n

n

n

n

n

x

txup

s
p

xt
xttxup









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Comparing the coefficients of linear powers of p, the following approximations are 

obtained.  
 

,
2

cos
sin,:

1

0

0








 xt
xttxup  

 
   

,
2

cos

22

sin
,:

112

1

1











 xtxt
txup  

 
   

,
22

sin

23

cos
,:

1213

2

2











 xtxt
txup  

 
   

,...
24

sin

23

cos
,:

1413

3

3











 xtxt
txup  

       





0

10 ...,,,,
n

n txutxutxutxu  

 
         

   
...,

24

sin

23

cos

22

sin

23

cos

2

cos

22

sin

2

cos
sin,

1413

12131121


































































xtxt

xtxtxtxtxt
xttxu

 is the required series solution to the given FPDE. 

 Example 2.4: Consider the following initial-boundary value FPDE, 

   
,

,

2

,
2

22

x

txux

t

txu













                                                                                      (2.15) 

0,10  xt , ,21    0,0 tu ,   xxu 0, .          

 
,

0, 2x
t

xu





 

 









0

1

2
1,1

k

k

k

t
tu





 

Solution: Take Laplace transform to both sides of (2.15) we obtained:  

   
.

,

2

,
2

22


























x

txux

t

txu





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 
   

























 







2

221

0

1 ,

2

0,
,

x

txux

x

xu
ssxus

n

k
k

k
k 

   
   

























 

2

22
21 ,

2

0,
0,,

x

txux

t

xu
sxussxus 

 
 














 2

22

2

2

1

,

2
,

x

txux

s

x

s

x
sxus 




 

 
 

.
,

2

1
,

2

22

2

2




























x

txux

ss

x

s

x
sxu 

                                                                   (2.16) 

Take inverse Laplace transform to (2.16) we obtained: 

 
 

.
,

2

1
,

2

22
12
































 

x

txux

s
txxtxu 


                                                              

  Using Homotopy perturbation method we obtained: 

  
 

.
,

2

1
,

0 0
2

22
12 







































































n n

nn

n

n

x

txux
p

s
ptxxtxup 


                               (2.17) 

 Comparing coefficients of linear powers of p we obtained, 

   txxtxup 2

0

0 ,:  ,  
 2

,:
12

1

1








tx
txup ,  

 
,

22
,:

122

2

2








tx
txup  

 
 

,...
23

,:
132

3

3








tx
txup  

Thus, the series solution of the given FPDE is given by; 

         
     

...
23222

,
13212212

2 













 txtxtx
txxtxu  

                 
     

....
23222

13121
2
























 ttt
txx  











1

1
2

)2(k

k

k

t
xx




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In particular, if 2 ,  
 

 
....

12
...

!5!3!1
,

1253
2
















n

tttt
xxtxu

n

 

As   xtxun  ,,   

Example 2.5: Consider the following initial value FPDE problem, 

 
 

 






















x

txu
txu

xt

txu ,
,

,




.                                                                                 (2.18)                                                                   

  ,21,0,0,  txxu 𝑥 ∈ ℝ 

Solution: Taking the Laplace transform to both sides to (2.18) we have: 

 
 

 
.

,
,

,







































x

txu
txu

xt

txu






 

   
 

























 

x

txu
txu

x
xssxus

,
,, 1 

 

   
 




































x

txu
txu

xss

x
sxu

,
,

1
, 


                                                                  (2.19) 

Taking the inverse Laplace transform to (2.19) we obtained, 

   
 

.
,

,, 1

































 

x

txu
txu

xs
xtxu




  

Using Homotopy perturbation method we have the following; 

   
 

.
,

,
1

,
0 0

1 


















































































n n

nn

n

n

x

txu
txu

x
p

s
pxtxup 


                  (2.20) 

Comparing the coefficients of linear powers of p of (2.20) the following approximations 

are obtained. 

  xtxup ,: 0

0
 

 
 1

,: 1

1






t
txup , 
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  0,: 2

2 txup , 

  0,: 3

3 txup ,   ,...0,: 4

4 txup  

        ...,,,, 210  txutxutxutxu  

 
 

,...,00
1

, 





t
xtxu                                                                               (2.21) 

is the required series solution to the given FOPDEs. 

  
 1

,





t
xtxu . 

 Example 2.6:  Given that,
       .12

,,, 2

2

2















xt

x

txu

x

txu
x

t

txu 





                   (2.22) 

2)0,(,10,10,10 xxuxt     

Solution: Taking Laplace transform to both sides to (2.22) we obtained; 

 
   



















 2

2

1121

22 ,,222
,

x

txu

x

txu
x

sss

x

s

x
sxu 

                                      (2.23) 

Using inverse Laplace transform of (2.23) we get: 

 
     

   















































 

2

2
1

22
2 ,,1

1

2

12

2

1

2
,

x

txu

x

txu
x

s

tttx
xtxu 






,  

using Homotopy perturbation method we obtained: 

 

 
     

   
.

,,1

1

2

12

2

1

2
,

0
2

2
1

22
2

0

























































































n

n

n

n

n

x

txu

x

txu
xp

s
p

tttx
xtxup







                                                   (2.24) 

Comparing the coefficients of linear powers of p to (2.24) the following approximations 

are obtained. 
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 
       12

4

1

2

12

4

1

2
,:

222

1

1





















 tttxtx
txup , 

 
       

,...
13

8

12

4

13

8

12

4
,:

323222

2

2















 tttxtx
txup  

        ...,,,, 210  txutxutxutxu  

Thus, the series solution to the given FPDE is given by: 

 
           

         
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



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


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
















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2 2
2
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

t
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 
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SUMMARY 

There are many integral transforms used in solving differential equations and integral 

equations by converting a problem into a simpler one. Laplace transform is one type of 

integral transform and it is insufficient to handle the nonlinear equations due to 

nonlinear terms. Various ways have been proposed recently to deal with these 

nonlinearities, one of these are combinations of Homotopy perturbation method and 

Laplace transform. The linear term in the equation can be solved by using Laplace 

transform method and the nonlinear terms in the equation can be handled by using 

Homotopy perturbation method (HPM). 

Solutions of FPDEs showed to be of exponential order. Based on that, the fractional 

order and integer order derivatives are all estimated to be of exponential order. 

Consequently, the Laplace transform is proved to be valid for fractional order partial 

differential equations under general conditions. Homotopy-Laplace transform is used 

to solve FPDEs. So the validity of Laplace transform of fractional-order partial 

differential equations is justified. It is used to find series solutions of FPDEs. 
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