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Abstract 

In this poject, we understand the new equational class of algebra which we call MS-almost 

distributive lattice (MS-ADL) as a common abstraction of De Morgan ADLs and Stone 

ADLs. We observed that the class of MS-ADLs properly contain the class of MS-algebras 

and most of the properties of MS-algebras are extended to the class of MS-ADL. The main 

objective of this project is to develop a better understanding of the concept of MS-ADLs. 

Moreover, in this project we observed some basic properties, state and prove basic theorems, 

lemmas and corollaries related to MS-ADL. 
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CHAPTER–ONE 

 INTRODUCTION AND PRELIMINARIES 

1.1 Introduction 

The term lattice is one of the fundamental algebraic structures used in an abstract algebra as 

mathematical disciplines of order theory [4]. It consists of a partially order set P together with 

a binary relation “ ≤ ” in which every two elements have a unique supremum or a least upper 

bound called join( ) and a unique infimum or a greatest lower bound called meet( ). The 

lattice structure         and the operation called complementation (*) together with the 

nullary operations 0 and 1 gives another algebraic structure {            } is called Boolean 

algebra. In {            },        are binary operations and * is a unary operation. The 

general lattice theory was developed into another abstract structure called Almost 

Distributive Lattice (ADL) [13]. The concept of an almost distributive lattice (abbreviated as 

ADL) was introduced by U.M Swamy and G.C Rao [13] as a common abstraction of most of 

the existing ring theoretic and lattice theoretic generalization of a Boolean algebra and 

Boolean rings. An ADL is an algebra with two binary operations “ ” and “ ” which satisfies 

most of the properties of a distributive lattice with smallest element 0, except possibly the 

commutativity of the binary operations “ ” and “ ” , and the right distributivity of  “   ” over 

“   ”. The class of ADLs with pseudo-complementation was introduced in[16]. Later on, 

Swamy et. al.[17] introduced a more general class of ADLs called a Stone ADLs, which 

properly contains the class of pseudo-complemented ADLs. An Ockham algebra is a bounded 

distributive lattice with a dual endomorphism. The class of all Ockham algebras contain the 

well-known classes of algebras; for example Boolean algebras, De Morgan algebras, Kleene 

algebras and stone algebras [10]. Blyth and Varlet[11] defined a subclass of Ockham algebras 

so called MS-algebras which generalizes both De Morgan algebras and Stone algebras. These 

algebras belong to the class of Ockham algebras introduced by Berman[8]. The classes of 

MS-algebras form an equational class. Blyth and Varlet characterized the sub-varieties of 

MS-algebras in [12]. More recently, in the paper [6], the author defines De Morgan ADLs as 

a generalization of De Morgan algebras. In this project, we define a new equational class of 

algebras called MS-ADL as a common abstraction of De Morgan ADL and Stone ADL. The 

class of MS-ADL properly contains the class of MS-algebras and most of the properties of 

MS-algebras are extended to the class of MS-ADLs. 
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1.2 preliminaries 

This section contains some necessary definitions and results which will be used in the project. 

1.2.1 Partially Ordered Sets and Lattice Theory 

Definition 1.2.1.1[4, 5] A partially ordered set (abbreviated as Poset) or simply an ordered 

set is an algebraic system (P, ≤ ) where P is  a non-empty set with a binary relation ≤ on P 

which satisfies the following set of axioms:  

   [P1]: Reflexive law:        for all    .  

  [P2]: Anti-symmetric law:     and     implies that     for all       . 

 [P3]: Transitive law:      and     implies that     for all             

If (P, ≤ ) is a Poset and every two elements of P are comparable (in the sense that either 

    or      for all      ), then P is called a totally ordered set (also called a chain). 

The binary relation ≤ is called a total order or a linear order. 

Example 1.2.1.2 Let S be a non-empty set. Then, (        ) is a Poset. If the quotient 

relation     defines   divides    for all      ), then        defines a Poset. Also, since 

every two pairs of integers are comparable with respect to ≤ , the algebraic system (       is 

a totally ordered set or a chain. 

Definition 1.2.1.3[4,7] A lattice is an algebra       ) of type (2, 2) where L is a non- 

empty set with two binary operations join( ) and meet( ), satisfying the following axioms: 

 [L1]: Commutative law:      =     and     =     for all       L. 

[L2]: Associative law:   (      (   )   and   (   ) = (   )   for all        L. 

[L3]: Idempotent law:        and        for all     L. 

[L4]: Absorption law:    (       and   (       for all       L. 

A lattice L is a special type of Poset (    ) in which every pair of elements in L has the least 

upper bound or a unique suppremum called join ( ) and the greatest lower bound or a unique 

infimum called meet ( ). Let L be a lattice under the ordering relation    Then, we define 

    if and only if       (or equivalently;      ) for all        
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Note that: The lattice operations meet     and join     are binary operations on L; which 

means they can be applied on any two pairs of elements in a lattice L.   

Example 1.2.1.4 The natural example of lattice is the power set P(X) of a non-empty set X  

with set theoretic operations union and intersection. That is, (P(X),    ) is a lattice. 

Example 1.2.1.5 Let   {          } be a set. Define the binary operations   and    on L 

by;               and               for all         Then, (L     ) is a lattice.  

Definition 1.2.1.6 [7] A lattice         is said to be a distributive lattice if join ( ) and 

meet ( ) are distributive over each other. That is; 

  (DL1):     (   ) = (   )   (   ) for all           

 (DL2):         ) = (   )   (   ) for all           

Lemma 1.2.1.7[7] The axioms (DL1) and (DL2) of a distributive lattice are equivalent. 

Definition 1.2.1.8 [13] A lattice L is said to be bounded if it has least element 0 and greatest 

element 1. That is, a lattice (       is said to be bounded if     and      for all      

Definition 1.2.1.9 [13] A bounded lattice (            in which (L,      is a distributive 

lattice is called a bounded distributive lattice.  Let (            be a bounded distributive 

lattice and      Then, the complement of   is defined to be an element      such that 

       and         

Example 1.2.1.10 Let P(X) be the power set of a non-empty set X. Then, (P(X),             

is a bounded distributive lattice.  

Definition 1.2.1.11[4, 5] A Boolean algebra is an algebra (B,            ) where B is a non-

empty set with two binary operations (  and  ), one unary operation (complementation) and 

two nullary operations (0 and 1) which satisfies the following set of axioms: 

[B1]:  (       is a distributive lattice………………..….. [Distributive law] 

[B2]:            and          …………. [Identity law] 

[B3]:         and       ………………………….. [Complement law] 

 [B4]:            and          ………… [Null law] 
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[B5]:               and              …………. [De Morgan's law] 

[B6]:  (      ……………………………………………. [Involution law] 

Note that: By a Boolean algebra we mean complemented distributive lattice. 

Example1.2.1.12 The algebraic system (P(X)            '       X) is a Boolean algebra. 

1.2.2 Almost Distributive Lattice (ADL) 

 Definition 1.2.2.1[13] An almost distributive lattice with zero or simply an ADL is an     

algebra (L,  ,      of type (2, 2, 0) which satisfies the following axioms; for all         L. 

 [ADL1]:     =  ……………………………... (  join  ) 

[ADL2]:      =  ……………………………... (0 meet  ) 

[ADL3]: (   )     = (   )   (   ) ……….. (right distributivity of meet over join) 

[ADL4]:     (   ) = (   )   (   ) ……….. (left distributivity of meet over join) 

[ADL5]:     (   ) = (   )   (   ) …….… (left distributivity of join over meet) 

(ADL6):  (   )     ……………………..... (absorption law)  

 Definition 1.2.2.2[13] Let (L,        be an ADL. For any      L, we say that a is less 

than or equals to b written as a ≤ b and define a ≤ b if and only if       (or equivalently 

      . Then, the binary relation ≤ is called a partial ordering on L. Throughout this 

paper L denotes an ADL unless otherwise stated. 

Definition 1.2.2.3 [13] An ADL             is said to be discrete if every non-zero element 

is maximal. That is, an ADL              is called discrete if and only if       or  

      for all        Moreover, every discrete ADL is an associative. 

Example 1.2.2.4[13] Let X be a non-empty set with a fixed arbitrarily chosen element    X. 

If for all      X, we define the binary operations       on X as follows: 

       {
             
         

    and       {
          
         

 

Then, (X,        is an ADL with 0 as its zero element. This is also called a discrete ADL. 
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Example 1.2.2.5 [13] Every distributive lattice with zero (0) is an ADL.  

Lemma 1.2.2.6 [13] Let (          be an ADL. Then, the following hold for all        : 

(1).                  

(2).                  

(3).                                              

(4).                         

(5).             and              

 (6).                      is associative in L) 

(7).              

(8).                      

 (9).                              

(10).                         

 (11). If                                  

(12).        {   }                  {   }  

(13).                 and                 

(14).                                          . 

Definition 1.2.2.7 [13] An ADL, L with 0 is said to be directed above (also called bounded 

above) if L has an upper bound. More precisely, an ADL (        ) is called directed above if 

for all      there exists an element     such that       

 Theorem 1.2.2.8 [13] Let (         ) be an ADL. Then, the following are equivalent. 

 (1).                is a distributive lattice. 

 (2).   is commutative.     

 (3).   is commutative.                              
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 (4).   is right distributive over   in L. 

 Definition 1.2.2.9[13] Let L be an ADL. Then, an element m of L is called a maximal 

element if it is maximal in the partially ordered set (L, ≤ ). That is, an element     (of an 

ADL) is called a maximal element in (    ) if for any               

Notation: For a maximal element m in L, we write    to denote the closed interval [0, m]. It 

was observed in [13] that    is a bounded distributive lattice. Moreover, the members of    

are characterized as follows:      {        }. 

Theorem 1.2.2.10 [13] Let L be an ADL and    L. Then, the following are equivalent: 

(1). m is maximal with respect to ≤ .          (3).        for all    L. 

(2).         for all    L.                    (4).     is maximal for all    L. 

Definition 1.2.2.11[13] Let L be an ADL. Then, A non-empty subset I of L is said to be an 

ideal of L if                , for all        and for all      A non-empty subset F 

of L is said to be a filter of L if                 for all        and for all      

Definition 1.2.2.12[13] Let          be any two ADLs. Then, a mapping        is called 

an ADL homomorphism if                                     and         

for all         If        is an isomorphism, then           are called isomorphic. The 

notation      can be read as   is isomorphic to   .  

Definition 1.2.2.13[13] An ADL (           is called relatively complemented if the 

interval [0, b] is a Boolean algebra for all      A Boolean algebra is the algebra of a 

relatively complemented ADL with maximal elements. 

Theorem 1.2.2.14[13] An ADL = (           is said to be a relatively complemented if and 

only if for all        there exists a unique element in L denoted by    such that        

and         . 

Definition 1.2.2.15 [16] Let           be an ADL. Then, a unary operation      on L is 

called a pseudo-complementation, if for any       L, it satisfies the following conditions: 

[PC-1]:     b = 0          

[PC-2]:       = 0 
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[PC-3]:                  

Then, the algebraic system               in which every element has a pseudo-complement 

is called a pseudo-complemented ADL. By this definition, the unary operation   is called a 

pseudo-complementation on L and    is called a pseudo-complementation of   in L. An 

element   of a pseudo-complemented ADL, L is called a dense element of L if       

Theorem 1.2.2.16[16] Let L be an ADL and   be a pseudo-complementation on L. Then, the 

following conditions hold for all          

 (1).    is maximal.                                         (9).             

(2). If   is maximal, then                        (10).               

 (3).                                                         (11).            and                                                                                                    

(4).                                                      (12).            and                                                                                                                                                             

(5).                                                      (13).                                                              

(6).                                                         (14).           is maximal                                                                                          

(7).                                             (15).                

(8).                                                          (16).            

Definition1.2.2.17[15, 17] Let L be an ADL and   be a pseudo-complementation on L. Then, 

L is said to be a Stone ADL if L is a pseudo-complemented ADL            0) with a 

maximal element m which satisfies the condition;           for all       

Lemma1.2.2.18 [17] Let L be a Stone ADL. Then, the following conditions hold: 

    (1).                                      (3).               

   (2).                                      (4).                  for all        

Proof: (1). Let L be a stone ADL  Then by definition1.2.2.1 of [ADL3] it follows that 

                                      for all      

(2). Since   is the minimal element of L, it follows that     for all      

         ……………………… by definition1.2.2.1 of [ADL2] 
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            ……………………. by definition1.2.2.15 of [PC-1] 

           .…………………….. by [lemma1.2.2.6 (5)] 

(3). It is known that                0 for all        … by definition1.2.2.15 [PC-2] 

Let            Then,         0…….. [Since         by theorem1.2.2.16 (4)] 

               …………………........ by definition1.2.2.15 of [PC-1] 

Also                ……………….… by [theorem1.2.2.16 of (5)] 

                 ………………… by definition1.2.2.15 of [PC-1] 

                      ………… by [step (4) and (5) above] 

But                          …….. by [lemma1.2.2.6 (13)] 

                   ………………….. by definition1.2.2.15 of [PC-1] 

                 ……………………… by [lemma1.2.2.6 (5)] 

Now                         

                        =                       

                        =                        

                        =                           ……… by [lemma1.2.2.6 (8)] 

                        =                     ……………… [Since L is a Stone ADL] 

                        =                  ……………........... [Since    is maximal] 

                        =             ………………………….. [Since    is maximal] 

Thus                          

                                                   …………. by definition1.2.2.1 of [ADL3] 

                                 =          ……………………….. by definition1.2.2.1 of [ADL6] 

                                 =  …………………………………... by [lemma1.2.2.6 (3)] 
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So that                      

                                                   …….. by definition1.2.2.1 of [ADL3] 

                                                             ............... [Since         ]               

                                                          …… by definition1.2.2.15 of [PC-3] 

                                                                  ….. by axiom [ADL5] 

                                                         ………………. by [lemma1.2.2.6 (1)] 

                                         ………………………………………... by [lemma1.2.2.6 (3)] 

Hence,               for all        

 (4).         =                 …….. by (3) above and definition1.2.2.15 of [PC-3] 

Definition 1.2.2.19 [10-11] An MS-algebra is an algebra (            0  1) of type (2, 2      ) 

such that              is a bounded distributive lattice and the unary operation      on L 

satisfying the following set of axioms: 

 [M1]:    ≤                                         [M3]:                                                                 

 [M2]:                               [M4]:       for all          

Definition 1.2.2.20 [4, 5, 7, 9] A De Morgan algebra is an MS-algebra                    of 

type (2, 2, 1, 0, 0) such that the unary operation      satisfying the following condition; 

 [M5]:        for all      which is called the involution law.      

Lemma 1.2.2.21 [10,11] Let L be an MS-algebra. Then, the following hold for all        

     (1).                                                  (4).                 

     (2).                                     (5).                 

      (3).                    

Proof: (1). Let L be an MS-algebra. This implies that              is a bounded distributive 

lattice with least element   and greatest element  …………… by definition1.2.2.19. 

This implies that      and     …………………………. by definition1.2.2.19 of [M4] 
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Hence,       

(2). Suppose that      This implies that       (or equivalently;         

Then, by definition1.2.2.19 of [M2] it follows that                 .  

Hence,       for all      ………………………………………… by definition1.2.2.2 

(3). Let L be an MS-algebra. Then,        for all    ……. by definition1.2.2.19 of [M1]. 

So that by lemma1.2.2.21 of (2) above, this implies that        …………...….. ( ) 

Also, since L is an MS-algebra, by a similar argument of definition1.2.2.19 of [M1], for any 

     it follows that         …….…………………………..………………….. (  ) 

Hence, ( ) and (  ) imply that           for all      

(4).                   =        ………… by definition1.2.2.19 of [M3] and [M2] 

(5).                  =        …………. by definition1.2.2.19 of [M2] and [M3] 

Definition 1.2.2.22[13]. Let A be a non-empty set and   be a binary relation on A      

    Then,   is said to be an equivalence relation on A if   satisfies the following axioms: 

[1]. Reflexive law:            for all    A. 

[2]. Symmetric law:          implies that          for all    A. 

[3]. Transitive law:          and          implies that          for all        A. 

Definition 1.2.2.23[13] Let L be an ADL. Then, an equivalence relation   on L is said to be a 

congruence relation on L if                                        for all 

           

Remark: For any congruence relation   on L and      we define the congruence class 

     {           } and it is called the congruence class containing    
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CHAPTER-TWO 

 MS-ALMOST DISTRIBUTIVE LATTICES (MS-ADL) 

2.1 Definitions, Examples and Theorems on (MS-ADL) 

 In this section, we define MS-ADLs and investigate some of their properties with examples. 

Definition 2.1.1[6] An MS-almost distributive lattice (abbreviated as MS-ADL) is an algebra  

            ) of type (2, 2, 1, 0) such that          ) is an ADL with a maximal element m 

and a unary operation      on L which satisfies the following axioms; for all      L. 

  [MS-A1]:                                                           

  [MS-A2]:                                

  [MS-A3]:              

  [MS-A4]:   = 0, for all maximal elements m of L. 

Definition 2.1.2[6] An MS-ADL (L,           of type (2, 2, 1, 0) satisfying the condition 

[MS-A5]:     =       is called a De Morgan ADL, for all maximal element m of  MS-ADL. 

Example 2.1.3 Let             be a discrete ADL with at least two elements. Choose a non-

zero element m    and define a unary operation      on L as follows: 

                        { 
         
            

   , for all         

Then, (L           is an MS-ADL and it is called the discrete MS-ADL. 

Example 2.1.4 Let   {          }. Define the two binary operations        on L by the 

following tables:           
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Then,             is an ADL which is neither a distributive lattice nor a discrete ADL. But if 

we define a unary operation      on L as follows: 

     

    

    

    

    

 

Then,              ) is an MS-ADL, which is also a De Morgan ADL. Moreover, if we 

define another unary operation       on L as follows: 

 

 

 

 

 

Then, (L            is an MS-ADL but not a De Morgan ADL. Since   and   are  maximal 

elements of L as given from the table above, by definition2.1.2 of [MS-A5], it follows that 

               . Hence, L is not a De Morgan ADL. 

Example 2.1.5 Let   {             } and define binary operations   and   on L as follows: 
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Then,         ,0) is an ADL with maximal elements c and d, which is neither a distributive 

lattice nor a discrete ADL. But if we define a unary operation      on L as follows: 

 

 

 

 

 

 

Then,             becomes an MS-ADL. 

Example 2.1.6 Let             ) be an MS-ADL and X be a non empty set. If     denotes 

the class of all functions from X to L, then (                   is an MS-ADL where 

                 are defined on    as follows:  

                (1).                     

               (2).                       

               (3).                 and                   for all      

Proof: For each functions                       we have the following results: 

(i).                                        ...by definition2.1.1 of [MS-A1] 

(ii).                                                    

(iii).                        (    )
 
 (    )

 
             

(iv).   
               …………………………….. by definition2.1.1 of [MS-A4] 

Hence, (                   is an MS-ADL whenever             ) is an MS-ADL 

Lemma 2.1.7 [6] The following conditions hold in an MS-ADL with maximal element m. 

(1).    is maximal.                             (5).                  

(2).                                 (6).           
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(3).                                               (7).                for all           

(4).                                   (8).        for all maximal elements n of L. 

Proof: (1). Let L be an MS-ADL with a maximal element m. Since   is the minimal element 

in L, this gives      This implies      . Put     … by definition2.1.1 of [MS-A4] 

So that                 ………………………….. by definition2.1.1 of [MS-A3] 

This implies that      ……………………………………... by definition1.2.2.2 

Hence,    is maximal. 

Moreover, if L is a De Morgan ADL with maximal element m of L, then by definition2.1.2 of  

[MS-A5] it follows that           Put      and this gives that           .  

So that                  ………………………… by definition2.1.1 of [MS-A3] 

                                               …………………….. by definition2.1.2 of [MS-A5] 

                                     =      …………………………… [Since      ] 

                                      …………….…………………… [Since m is maximal]. 

Hence,    is also maximal whenever L is a De Morgan ADL.  

(2). Suppose that      This implies that       (or equivalently;         Then, by 

definition 2.1.1 of [MS-A3] it follows that                   So that        

Hence,     implies       for all         

(3). Let L be an MS-ADL. Then,         for all    …. by definition2.1.1 of [MS-A1] 

This implies that              This gives           …. by definition2.1.1 of [MS-A3]  

So that by definition1.2.2.2, This shows that         for all     ……………………. (1) 

Also, since L is an MS-ADL with maximal element m, by a similar argument of definition 

2.1.1 [MS-A1] this gives that            for all      This implies that            

                           ………………………….. by [lemma1.2.2.6 (13)] 

So that by definition1.2.2.2, this gives that         for all    …………………….. (2) 

Hence, (1) and (2) imply that           for all      
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Moreover, if L is a De Morgan ADL, then      =    …. by definition2.1.2 of [MS-A5]. 

So that                       ….. by definition2.1.1 of [MS-3] and [MS-A4] 

                                                              …….. by definition1.2.2.1 of [ADL1] 

(4).                   =          ………. by definition2.1.1 of [MS-A3] and [MS-A2]. 

(5).                  =        ……........ by definition2.1.1 of [MS-A2] and [MS-A3]. 

(6).                   ..................... by definitionn2.1.1 of [MS-A3] and [MS-A4]  

                                           ………………… by definition1.2.2.1 of [ADL1] 

 (7).         =          ………………... by [lemma2.1.7 (6)] 

                       =         ……………….... by [lemma1.2.2.6 (13)] 

                        =       ……………………... by [lemma2.1.7 (6)] 

(8). Let n be the maximal element of L. Clearly, we have       for all      So that 

                        …… by definition2.1.1 of [MS-A2] and [MS-A4] 

Hence,      for all maximal elements n of L. 

Corollary 2.1.8 Let L be an MS-ADL. Then,       if and only if                

But if L is a De Morgan ADL, then       if and only if         for all        

Proof: let L be an MS-ADL with maximal element m such that        Then, for any 

      we have                     …………….. by [lemma2.1.7 (6)] 

Conversely, suppose that                This is equivalent to              

Since       this implies that            This gives that       for all        

To prove the second part, let L be a De Morgan ADL such that        This implies that 

          So that                ………….. by definition2.1.2 of [MS-A5] 

Conversely, suppose          Then,                                 

Hence, the equivalences hold for all       . 
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Theorem 2.1.9 Any relatively complemented ADL with a fixed maximal element m of L can 

be made into an MS-ADL by defining the unary operation      on L as follows: 

                                      for all      

Proof: Suppose that L is a relatively complemented ADL with maximal elements m. Then, 

for each       there exists a unique element in L denoted by    such that        and 

        . Choose a maximal element    L and define a unary operation      on 

L by;        for all    L. Then, by definition1.2.2.8 and lemma1.2.2.6 (13) it follows that         

                                              . 

Also,                                         

Moreover, by definition 2.1.1 of [MS-A2] and [MS-A3] we have               

            and                           for all      . 

Hence, any relatively complemented ADL together with maximal element m and the unary 

operation      is an MS-ADL. 

Similarly, one can easily verify that the unary operation      which makes an ADL, L a 

Stone ADL that respects all the axioms of MS-ADL. So that every Stone ADL is an MS-

ADL. The following example presents a natural way to obtain an MS-ADL from De Morgan 

ADL and Stone ADL. 

Example 2.1.10 If D is a De Morgan ADL and S is a Stone ADL, then D S is an MS-ADL 

such that the unary operation    on D S is defined by;           ̅      for all    D and for 

all    S, where    ̅ is the unary operation on D and      is the unary operation on S.  

Theorem 2.1.11 Let D be a De Morgan ADL and S be a Stone ADL. Then,  

(1). D S is a De Morgan ADL if and only if S is relatively complemented. 

(2). D S is a Stone ADL if and only if D is a relatively complemented. 

Proof: (1)      Suppose D S is a De Morgan ADL. Then, by definition2.1.2 of [MS-    

for every    D and    S we have                          where m and n are maximal 

elements in D and S respectively. So that by definition2.1.2 of axiom [MS-A5] this gives  

that          for all    S. In this case, the maximal element n of S is precisely   .  



  

  

17 
 

Claim:  S is relatively complemented.  

Let       S.                Then, we have the following results:  

     (i).               =                  

    (ii).      =                        …………….. by definition1.2.2.1 [ADL5] 

                                                               ………. [Since    is maximal in S] 

                                                               ……….. by [lemma1.2.2.6 (13)] 

                                                                  …. by definition1.2.2.1 [ADL3] 

                                                            

                                                    ……………………….. [Since S is Stone ADL] 

                                               ……………………………….. [Since    is maximal]  

Hence, S is relatively complemented. 

Conversely, suppose that S is relatively complemented. Then, for any       S, there exists a 

unique element in S denoted by    such that        and           Hence, the 

maximal element   =    exists in S. Also, since S is a Stone ADL, there is a unary operation 

     on S defined by;            for all    S. This is equivalent to that         

Again, since D is a De Morgan ADL, there is a unary operation    ̅ on D such that 

 ̿       for all    D and for all maximal element m of D. So that              

             , which defines a De Morgan ADL…….. by definition2.1.2 of [MS-A5]. 

Therefore, D S is a De Morgan ADL, for all    D and for all    S. 

(2).      Suppose that D S is a Stone ADL. Then, by definition1.2.2.15 of [PC-2] it follows 

that                       for all    D and    S. This gives;  ̅      for all    D.  

This is equivalent to;  ̅   ̿   ̅…………………….. by definition2.1.1 of axiom [MS-A3]. 

Claim:  D is relatively complemented 

Let       D.        ̅    . Then, we have the following results: 

 (i).          ̅         ̅            
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(ii).     =      ̅           ̅           ̅      ̅         

                                                                                ̅    ̅         

                                                                                ̅    ̅    ̅         

                                                                              ̿   ̅         

                                                                              ̅        

                                                                                  

Therefore, D is relatively complemented. 

Conversely; Suppose D is relatively complemented. Then, for any       D there exists a 

unique element in D denoted by    such that        and            Also, since S 

is a Stone ADL, there is a unary operation      on S defined by;            for all 

   S. This is equivalent to        ……………......... by definition2.1.1 of [MS-A3] 

So that                        …………………. by definition1.2.2.15 of [PC-2]. 

Therefore, D S is a Stone ADL, for all    D and for all    S. 

Note that: This theorem confirms that the class of De Morgan ADLs and the class of Stone 

ADLs are proper subclasses of the class of MS-ADLs.  

The following theorem shows that a set of necessary and sufficient conditions for which an 

MS-ADL to be an MS-algebra.  

Theorem 2.1.12 Let (          ) be an MS-ADL. Then the following are equivalent: 

(1). L is an MS-algebra. 

(2). The Poset (L, ≤ ) is directed above (bounded above).  

(3). (L,         is a distributive lattice. 

(4).   is commutative. 

(5).   is commutative. 

(6).   is right distributive over meet   in L. 
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 (7). The relation   {                } is anti-symmetric. 

(8). For each    , the relation    given by; 

          if and only if         and            is a congruence relation on L. 

Proof: (1)        Suppose L is an MS-algebra. Since L is an MS-ADL with maximal 

element m, for any       we have     and    . This implies L has an upper bound 

m with respect to the partial ordering     Hence, the Poset        is directed above. 

(2)        Suppose the Poset (L, ≤ ) is directed above (bounded above by m). Since L is an 

MS-ADL, we have a maximal element     such that      and     for all          

 Claim: (          is a distributive lattice.  

(i).                                                                                              

(ii).                                                . 

Therefore,            is a distributive lattice. 

(3)       Suppose            is a distributive lattice.  

Claim:   is commutative. 

    =                     ……………………… by [lemma1.2.2.6 (3)] 

                     …................................................... by definition1.2.2.1 of [ADL3] 

                             ……………………… by definition1.2.2.1 of [ADL4] 

            ………………………………………………… by definition1.2.2.1 of [ADL6] 

Hence,   is commutative for all         

(4)       Suppose   is commutative. 

 Claim:    is commutative. 

                                   ….. by definition1.2.2.1 [ADL5]       

                                           =                     …… [Since   is commutative] 
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                                           =             …………….. by definition1.2.2.1 of [ADL5] 

                                           =                   ……… [Since m is maximal] 

                                           =                   ……… [Since   is commutative] 

                                           =         ……………….. by definition1.2.2.1 of [ADL6]   

                                           =           

                                           =      

 Hence,   is commutative. 

 (5)       Suppose   is commutative.  

Claim:   is right distributive over    That is,                      

        =                      …………… [Since m is maximal] 

                                            =                ……… by definition1.2.2.1 [ADL5] 

                                            =                 

                                            =            ……… by [lemma1.2.2.6 (13)] 

                                            =             ..…… [Since    is commutative] 

Therefore,   is right distributive over   in L. 

 (6)       Suppose   is right distributive over    That is,                      

Claim: The relation defined by   {                } is anti-symmetric. 

By a relation   on L is anti-symmetric, we mean          and              

 Assume that                and                . This is equivalent to  

      and      . Then, since the relation   on L is defined by;      , we have 

                       …… [Since m is maximal in L]. 

Therefore, the relation   {                 } is anti-symmetric.  

(7)     . Suppose   {                 } is anti-symmetric.  
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Claim: For each    , the relation    given by; 

         if and only if         and            is a congruence relation on L. 

Let L be an MS-ADL with maximal element m. A relation     is called a congruence relation 

on L if     is a congruence relation on the ADL, (L,        , that is                 

                         and                        for all            

 Given that the relation    {                 } is anti-symmetric.  

 Equivalently; this gives that       for all         

 Assume that                   and             By the same argument 

assume that                   and            for all            

Then, this gives that                     and                       

Hence,    is a congruence relation on the ADL              

 Also, if          then        for all      ………………… by [theorem2.1.12 (7)] 

So that                    ………………....................... by [lemma2.1.7 (7)] 

Moreover,       implies           So that for each      we have           and 

              That is,              

Hence, for each    , the relation    given by;          if and only if         and  

          is a congruence relation on L.   

(8)     . Suppose that for each    , the relation    given by; 

         if and only if         and            is a congruence relation on L. 

Claim: L is an MS-algebra. 

Since,    is a congruence relation on L, for any           such that          and 

          we have                               and             This gives 

that                   and                     Also,              

This is equivalent to                     and                        

Hence, L is an MS-algebra. 
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Therefore, (                                   hold. 

Theorem 2.1.13 Let          ) be an ADL. Then, the following conditions are equivalent: 

(1). L is an MS-ADL. 

(2).     is an MS-algebra for all maximal element n of L. 

(3).     is an MS-algebra for some maximal element m. 

Proof: (1)        Suppose that L is an MS-ADL. Let n be a maximal element of L.  

Define a unary operation      on     by;                for all      where   is the 

unary operation on L. Consequently, this gives the following results: 

                                               This implies 

that           Hence,           for all      

Also, let        such that      =       

 Claim:                   

For this we consider the following implications: 

      =            =         

                                     ……….. by definition2.1.1 of axiom [MS-A3] 

                                   …………. [Since n is maximal]. 

                               …………………. by definition1.2.2.1 of axiom [ADL1] 

                                     for all maximal element   of L. 

                                         . 

Note that: This confirms that the unary operation      is well defined as a mapping. 

Moreover, let           Then, it can be easily verified that    together with this unary 

operation      is an MS-algebra as follows:  

(i).                                      .  
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(ii).                                      

                                                                                         

                                                                                          

                                                                                 

Particularly, if      then since the unary operation      on    is defined by;        

        this gives that                     ….. by definition1.2.2.19 of [M4] 

Therefore,    is an MS-algebra for all maximal element n of L. 

 (2)  (3). Suppose    is an MS-algebra for all maximal element n of L. So that we can  

generate a unary operation      on    for some fixed maximal element m defined by: 

              for all      where   is the unary operation on L.  

Hence, by (2)     becomes an MS-algebra for some fixed maximal element m. 

 (3)  (1). Suppose that    is an MS-algebra for some fixed maximal element m. 

Define a unary operation      on L by;             for all      where   is the unary 

operation on   .   

Claim: L is an MS-ADL.  

 Since    has a fixed maximal element m, we have the following results: 

                               …….... by [lemma2.1.7 (6)] 

                                                                      …..… [Since   is associative] 

                                                                      ……... by [lemma1.2.2.6 (13)] 

                                                                 …………….. by definition1.2.2.15 of [PC-2] 

                                                               …………….…… by definition1.2.2.1 of [ADL2] 

Also, for any         we have the following characterizations and results: 



  

  

24 
 

 (i).                            …………... by definition2.1.1 of [MS-A3] 

                                                            …………… by definition2.1.1 of [MS-A4] 

                                                        ………………….. by definition1.2.2.1 of [ADL1] 

                                                               ……… by [lemma2.1.7(6)] 

                                                                        

(ii).                                 ……. by definition1.2.2.1 of [ADL3] 

                                                                ……… by definition2.1.1 of [MS-A2] 

                                                          

Hence, L is an MS-ADL, for some fixed maximal element m.  

Definition 2.1.14 [11-13] Let L be an MS-ADL. Then, the set of all closed elements of L 

denoted by     is called the skeleton of L and it is defined by      {        }. 

The skeleton     of an MS-ADL is a De Morgan algebra under the induced operations on L. 

Theorem 2.1.15 Let L be an MS-ADL. Then, the map        defined by:  

             for all     forms a closure operator on L.  

Proof: Let        such that      This implies       (or equivalently,         

Then,                                         and             

                             So that     implies            or   is an order 

preserving on L. Moreover, for any        we have                          

           and                                    This shows that   is a 

lattice homomorphism and it preserves the unary operation   on L. 

Hence, the map       defined by          for all     forms a closure operator on L. 

Definition 2.1.16 [13] Let L be an MS-ADL. An element     L is called dense element if 

    . The set of all dense elements is denoted by      such that      {          }.  

Theorem 2.1.17 Let L be an MS-ADL. Then, the set      {          } is a filer of L. 
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Proof: Let L be an MS-ADL with maximal element m. Then, by definition2.1.1 of [MS-A4] 

it follows that       This implies that          Hence,      is a non-empty subset of L. 

Also, let           and      Then, by definition2.1.16 we have      and       

Claim:                      ………………………. by [definition1.2.2.11] 

Since L is an MS-ADL with maximal element m, then by definition2.1.1 of [MS-A3] and 

[MS-A2] we have the following results: 

(i).                     This implies that           

(ii).                      This implies that         . 

Therefore, the set      {          } is a filer of L. 

2.2 Congruence Relations on MS-algebras and MS-ADLs 

 In this section, we give some important congruence relations which are using to characterize 

MS-ADLs and MS-algebras. 

Definition 2.2.1[18] Let                ) be an MS-ADL. Then, an equivalence relation   

on L is said to be a congruence relation on L if and only if   is a congruence relation on the 

ADL             that is                                         and if it 

satisfies the substitution property: 

                       for all             

Note that: An equivalence relation   on the MS-ADL                ) is a congruence 

relation on L if   is closed under the binary operations   and   and the unary operation    

A congruence relation on the MS-algebra (L,          ) is a lattice congruence   such that 

                   for all         

Example 2.2.2 Let L be an MS-ADL and   be a binary relation on L defined by;          

if and only if       for all          Then, show that   is a congruence relation on L. 

Proof: First let us show that   is an equivalence relation on L.  

 (1).           since        for all      



  

  

26 
 

(2).          implies          since,       implies        for all         

(3).          and          implies          since,       and       implies   

             for all            

 Hence,   is an equivalence relation (that is, reflexive, symmetric and transitive) on L.  

Also, let          implies       and          implies        Then, by definition 

2.2.1 we have              and               This is equivalent to        

       and                This implies that              and            

  for all              Moreover,       implies that           So that            

Therefore,   is a congruence relation on L. 

Definition 2.2.3 [14] Let               ) be an MS-ADL and   be a binary relation on L. 

Then, for each         consider that                                           

Lemma 2.2.4 Let L be an MS-ADL. Then,   is a congruence relation on L. 

Proof: (1).           since       and        for all     …    is reflexive on L]. 

(2).          implies          since [                 implies that 

                         ……………………………… [  is symmetric on L]. 

(3).          and          implies           since                   and 

                  implies                  ……….. [  is transitive on L]. 

Hence,   is an equivalence relation on L. 

(i). Let          and           Then, by definition2.2.1 it follows that            

         and                       

So that   is a congruence relation on the ADL             

(ii). Let           Then, by definition2.2.3 we have        and         So that by 

lemma2.1.7 (7) it follows that    =                   This implies that              

Hence,   is a congruence relation on L. 
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Lemma 2.2.5 [18]   is the smallest congruence on L for which the quotient L   is an MS-

algebra.  

Proof: First let us consider a congruence relation   on L (as given in example 2.2.2). That is, 

         if and only if       for all         Let m be the maximal element of L. Then, 

by lemma2.1.7 (6) it follows that                                  This 

implies that             for all        That is,   commutes on       Therefore,     is 

an MS-algebra.                  

 Claim:      

For any        we have                       …………. by [lemma2.1.7 (7)]. 

 So that              That is,   commutes on       Hence,     is also an MS-algebra.  

Let           Then,       and      ………………………. by definition2.2.5. 

Also, by lemma2.1.7 (7) this gives that                      This shows that 

             for all           Hence,       

Therefore,   is the smallest congruence on L for which the quotient L   is an MS-algebra. 

Definition 2.2.6 [18] Let               ) be an MS-ADL and   be a binary relation on L. 

Then, for each       consider that         if and only if             

Lemma 2.2.7[18] Let L be an MS-ADL. Then,   is a congruence relation on L. 

Proof: (1).          since         for all    ……………....    is reflexive on L]. 

(2).                     since                 …      is symmetric on L]. 

(3).          and                    since,         and                      

for all         …………………………………………………. [  is transitive on L]. 

Hence,   is an equivalence relation on L. 

(i). Let          implies         and          implies         for all             

Then, by definition1.2.2.23 it follows that                  and                   

This is equivalent to                 and                   So that         

     and                Hence,   is a congruence relation on the ADL              
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(ii). Moreover,         implies that          .  This shows that              

Therefore,   is a congruence relation on L. 

Lemma 2.2.8[18]   is the smallest congruence relation on L such that its quotient L   is a 

De Morgan algebra.  

Proof: Since                    is a De Morgan ADL. Also,      This 

implies that L   is also a De Morgan ADL.  

It suffices to show that one of the binary operations (either   or   ) commutes on L     

Let       and m be the maximal element of L. Then, by lemma2.1.7 (6) it follows that  

                               . That is,                

This implies that                   So that               That is,    commutes on 

L     Hence,      is a De Morgan algebra.  

Suppose   is a congruence relation on L (as given in example 2.2.2) such that     is a De 

Morgan algebra. That is,              for all           

Claim:      

Let           Then, by definition2.2.6 this gives that          This implies             

This is equivalent to      ……... by lemma2.1.7 (3).  Also, by lemma2.1.7 (7) this gives 

that                      That is,       and         So that             

This shows that        

Therefore,   is the smallest congruence relation on L such that its quotient L   is a De 

Morgan algebra.  

The following theorem characterizes MS-ADLs using the congruence relation    

Theorem 2.2.9 Let L be an MS-ADL. Then, L is a De Morgan ADL if and only if      

Proof: ( ). Suppose that L is a De Morgan ADL.    

 Claim:       

Let           Then,                 for all       …… by [Definition2.2.3] 
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Since L is a De Morgan ADL with maximal element m of L, this gives that          

                    ………………. by definition2.1.2 of [MS-A5]. 

     That is,        . This implies that            

     So that    ……………………………………………………………… (1) 

To prove the converse inclusion, let           Then,        ........... by definition2.2.8 

 Put       Since L is a De Morgan ADL, by definition2.1.2 of [MS-A5] it follows that 

                 That is,           This gives                . 

  This implies that           So that     …………………………………. (2) 

 Hence, the two inclusions (1) and (2) imply that      

 ( ). Suppose that            

 Claim: L is a De Morgan ADL. 

Since L is an MS-ADL, it suffices to show that L satisfies the property          for some 

maximal element m of L.         . Then by lemma2.1.7 (6) it follows that            

This implies                           …………….. [Since            

This shows that       for all       Also, since           , we have               

That is,            This gives that           and        .… by [definition 2.2.3] 

  So that       =          ……………………………… [Since           

                                   ………………………………. by [lemma1.2.2.6 (13)] 

                                 …………………………………… [Since          ] 

                               ……………………………………….. [Since         

Therefore, L is a De Morgan ADL. 

Corollary 2.2.10 Let L be an MS-ADL. Then, L is a De Morgan algebra if and only if    

   (the diagonal of L). For an MS-ADL, L to be a Stone ADL it is necessary and sufficient 

that         
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Proof:      Suppose that L is a De Morgan algebra. Then, for any         we have 

      and      ……………………………….…….. by definiton1.2.2.20 of [M5]. 

Claim:        

Let           This implies that        ……………..………… by [definition2.2.6]  

This implies that            ……………….... [Since L is a De Morgan algebra]. 

This gives that     and         So that             

That is,      ……………………………………………………………. (1) 

Similarly, let          . Then,     and        Also,       implies            

So that           That is,      ……………………………………… (2) 

Hence, the two inclusions (1) and (2) imply that        

( ). Suppose that          

 Claim: L is a De Morgan algebra.  

Since L is an MS-ADL, for any      we have              So that                That 

is,              This implies that        for all      

Therefore, L is a De Morgan algebra. 

To prove the second part, it is known that an MS-ADL, L is a Stone ADL if           

for all      Given that          So that by definition2.1.1 of axiom [MS-A3] it follows 

that                      Hence, L is a Stone ADL whenever          

Definition 2.2.11 let L be an MS-ADL and          be binary relations on L. Then, for 

each      consider the following definitions:                     

 (1).          if and only if         and           

 (2).          if and only if         and           

By these two definitions, we have the following characterizations and results: 

Theorem 2.2.12 For each               are congruence relations on L. 
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Proof: (1). Let           Then,          and             

Also, let           Then,         and          ….. by [definition2.2.11 (1)] 

So that (i).                                  

 Also,                                          

This implies that              and               

Hence,    is a congruence relation on the ADL           . 

(ii). Let           Then,         and            Also, Since L is an MS-ADL 

with maximal element m, we have         for all    … by definition2.1.1 of [MS-A1] 

Claim:            .  For this, we consider the following implications: 

                                 

                                               

                                                   

                                          ……………….. by definition2.1.1 of [MS-A1]. 

                                         

Therefore,     is a congruence relation on L. 

(2). Let           Then,          and          ….. by [definition2.2.11 (2)] 

Also, let           Then,         and          ..… by [definition2.2.11 (2)] 

So that (i).                                 

Also,                                        . 

This implies that              and                

So that    is a congruence relation on the ADL           . 

(ii). Let         . Then,                      …. by [definition2.2.11 (2)] 

Also, since L is an MS-ADL with maximal element m, we have          for all      
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Claim:            .  For this, we consider the following implications: 

                          

                                           

                                               

                                              ……… by [lemma1.2.2.6 (13)] 

                                        …………………. by definition2.1.1 of [MS-A1] 

                                       

Therefore,    is also a congruence relation on L. 

Corollary 2.2.13 If L is a De Morgan ADL, then    and    are congruence relations on L. 

Proof: Suppose L is a De Morgan ADL. Put         and         for all       

and for all maximal element m of L.………………………... by definition2.1.2 of [MS-A5] 

Let           Then          and           ……… by [definition2.2.11 (1)] 

Also, let           Then                       ….. by [definition2.2.11 (2)] 

Claim:  (i).            .      (ii).            . 

Since L is a De Morgan ADL, by definition2.1.2 of [MS-A5] we have the following results: 

 (i).                                        

  Hence,           . 

 (ii).                              

Hence,             

Therefore, if L is a De Morgan ADL, then    and    are congruence relations on L. 

Theorem 2.2.14 The quotient L    is an MS-algebra. If   is maximal, then     . The 

converse holds whenever       . 

Proof: To prove the first part, it suffices to show that        
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Let (        Then                   Equivalently;       and        

 Also, we have                     ………………….. by [lemma 2.1.7 (7)] 

Hence,                     and           

This implies that            So that     .  

Therefore, L    is an MS-algebra. 

To prove the second part, suppose that   is maximal.  

Claim:       

Let (         Then,         and           …. by [definition2.2.11 (1)] 

If   is maximal, then         and           are reduced to     and        

Put       and        This implies that (      …………… by [definition2.2.3]. 

  This shows that      ……………………………………………………………… (1) 

Similarly, let (        This gives that       and      …… by [definition2.2.3] 

Also,                    ………………………………… by [lemma2.1.7 (7)] 

  Then,                     and          … [Since   is maximal] 

This implies that (       …………………………….......... by [definition2.2.11 (1)] 

This shows that      ………………………………………………………………… (2) 

So that the two inclusions (1) and (2) yield that       

Hence, if   is maximal, then        

Conversely, suppose that          

Claim:   is maximal. 

Given that         This shows that                  

That is,           satisfies both the equalities         and            
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So that we have              and               …… by definition2.2.11(1). 

But                       ………………. [Since   is associative] 

 So that                      

                                            is maximal……… by definition 2.1.1 of [MS-A4]. 

Therefore,      implies   is maximal whenever            

Remark 2.2.15 The quotient L    is an MS-ADL but not necessarily be an MS-algebra. This 

can be verified by using the following example. 

Example 2.2.16 Let   {     } be the discrete MS-ADL (as given in example2.1.3) and  

consider the congruence relation    on L. Then, the quotient L    is an MS-ADL but not an 

MS-algebra. 

Proof: Since L is not a distributive lattice, it suffices to show that L    is isomorphic to L. 

For this, consider the canonical map         of L onto L    which is an epimorphism. 

We show that this map is an injective map.  

Now, for any      , we have                         

                                                                                        . 

Since L is a discrete MS-ADL, every non-zero element in L is maximal. Thus,         

yields that    . This shows that    L   . 

Therefore, L    is not an MS-algebra. 

Lemma 2.2.17 For each                 . 

Proof: Let            . Then, by definition2.2.11 (2) we have the following conditions: 

                                                    . 

So that                                   (      . 

Also,                                                  

Hence,            …………………………………............................ (1) 
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To prove the converse inclusion, let           . Then, by definition2.2.11 (2) this gives 

the following conditions: 

                                       . 

So that                                             

                                                                                              

                                                                                         

                                                                                         

                                                                                   ……………………… (EQ1) 

        Also,                                             

                                                                                                  

                                                                                              

                                                                                               

                                                                                       ………………… (EQ2) 

Hence, (EQ1) and (EQ2) imply that        . 

Similarly,                                               

                                                                                                         

                                                                                                      

                                                                                                      

                                                                                                 ……………… (EQ3) 

Also,                                                  
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                                                                                         ………………… (EQ4) 

Thus, (EQ3) and (EQ4) imply that              So that            

Now, we remain to show that           

Since                , by interchanging   and   each other and by repeating the 

above argument, we can show that          as follows: 

Let             Then, by definition2.2.11 (2) this gives the following conditions: 

                and                    

So that                                             

                                                                                            

                                                                                        

                                                                                        

                                                                                  ………………………… (EQ5) 

       Also,                                            

                                                                                                 

                                                                                             

                                                                                             

                                                                                      ………………………. (EQ6) 

Hence, (EQ5) and (EQ6) show that        . 

Similarly,                                                

                                                                                                        

                                                                                                    

                                                                                                     

                                                                                              ………………….. (EQ7) 
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Also,                                                  

                                                                                                  

                                                                                              

                                                                                              

                                                                                       ………………… (EQ8)  

Thus, (EQ7) and (EQ8) show that              So that            

Hence, we have             …………………………………………… (2). 

Therefore, the two inclusions (1) and (2) imply that           .   

Lemma 2.2.18 In an MS-ADL L, if   is maximal, then      (the diagonal of L). 

Proof:           Then,         and          ….. by [Definition 2.2.11 (2)]. 

 If   is maximal, then         and           are reduced to     and        

This implies           That is,      ……………………………………..(1) 

Conversely, let            Then, for any        we have     and          

This gives         and          ……………. [Since   is maximal] 

This implies that            So that      …………………......................(2) 

Hence, (1) and (2) imply that        

Therefore, if   is maximal, then        

Note that: The converse of this lemma need not necessarily be true. This can be verified by 

using the following example: 

Example 2.2.19 In an MS-ADL given in example2.1.5,      (the diagonal of L) but   is 

not maximal. Because from the given table it can be observed that       That is;       

Hence,   is not maximal. 

Lemma 2.2.20 If          then          That is,       implies       
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Proof: It suffices to show that             . Since L is an MS-ADL with maximal 

element m, we have          for all   …………… by definition2.1.1 of [MS-A1]. 

Let           Then          and          ……. by [Definition2.2.11 (2)]. 

So that by definition2.2.11 (2), we have the following results: 

 (i).                          ………….…… [Since    is associative]. 

 (ii).                    ……………………….. by [lemma2.1.7 (7)] 

                                          ……………………... by defintion2.1.1 of [MS-A3] 

                                              ……..………… by definition2.1.1 of [MS-A1] 

                                              ………………. by [lemma1.2.2.6 (13)] 

                                     …………………………….. by [lemma1.2.2.6 (3)]  

  Hence,             .   

Therefore,          whenever         

Definition 2.2.21 Let L be an MS-ADL and consider    be the binary relation on L. Then, 

for each      consider that           if and only if                          

By this definition, we have the following characterization and results: 

Theorem 2.2.22 Let L be an MS-ADL. If L is  –associative, then the binary relation    is a 

congruence relation on L. 

  Proof: Suppose that L is  –associative. Since L is an MS-ADL with maximal element m, by 

definition2.1.1 of [MS-A1] we have          for all      Equivalently;            

Let            Then,                       ……….... by [definition2.2.21] 

Also, let            Then,                       ……. by [definition2.2.21] 

So that (i).                                            

Also,                                                  . 

This implies that                and                 for all            
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Hence,     is a congruence relation on the ADL           .  

(ii). Let            Then,                        ……. by [definition2.2.21] 

Claim:                 For this, we consider the following implications: 

                         

                                         ……………………. by [lemma2.1.7 (5)] 

                                                 ……….. [Since          ] 

                                                 ……….. [Since, L is  –associative] 

                                      

                                       

Hence,    is a congruence relation on L. 

Lemma 2.2.23 Let L be an associative MS-ADL. If   is zero, then        But       

implies       That is,       implies           

Proof: Let            Then,                       …… by [definition2.2.21] 

If      then                        are reduced to                 

 So that            Hence, if      then        

To prove the second part, suppose that            

Claim:               

Let L be an MS-ADL with maximal element m such that L is  - associative. So that we have  

the following results:   

(i).                        ……… [Since L is  -associative MS-ADL].  

(ii).                                     
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           So that                

Hence,       implies       That is,       implies          
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Conclusion 
 

In this project, we discussed the concept of an almost distributive lattice (ADL) which is a 

generalization of posets and lattice theory. Consequently, a new equational class of algebras 

called MS-ADL is understand as a common abstraction of De Morgan ADLs and Stone 

ADLs. It can also be observed that the class of MS-algebras and most of the properties of 

MS-algebras are extended to the class of MS-ADLs. Moreover, we discussed the congruence 

relations which characterize MS-algebras and MS-ADLs. 
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