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ABSTRACT 

  

Topic clustering is one of the methods to organize comments posted on Online Media Service 

(OMS) news. Online news such as social media news has many comments every day. However, 

most comments are not well-organized to easily find relevant information on a specific topic. And 

topic clustering for short text documents is a very challenging task, especially for comments that 

are very concise and contain few words per document. In addition, the short text has the problems 

of data sparsity and irregularity, and most words only appear once in a short text. To the best of 

our knowledge, there is no work for clustering short Amharic comments. To address the 

aforementioned problems, we have developed an Amharic comments topic clustering model using 

contextual sentence representation and partition-based algorithms. This thesis aims to design and 

develop a topic clustering model for Amharic comments on OMS news. We used BERT 

(Bidirectional Encoder Representations from Transformers) models for contextual sentence 

representation. The transfer learning method is used for sentence embedding of Amharic 

comments using English BERT. Finally, we applied mini-batch k-means and Fuzzy c-means 

clustering algorithms. We conducted experiments on the two models and the experiment results 

show that BERT embedding with mini-batch K-means clustering algorithm and BERT with fuzzy 

C-means clustering has equal values of 1.0 of the v-measure score, adjusted-rand-score, and 

adjusted-mutual- information-score. But fuzzy C-means have a lower silhouette-score value of 

0.996 than mini-batch K-means which have a 0.998 score value. Mini-batch K-means clustering 

is more accurate and takes less time to compute. Fuzzy C-means clustering shows similar results 

that are comparable to mini-batch K-means clustering, but it takes longer to compute. Therefore, 

the mini-batch K-means clustering algorithm was found to be more appropriate to cluster Amharic 

comments to news. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of the study 

 

Web-based information on news is essential to address many users in a short period without 

geographic barriers and computer network bandwidth load. News on websites has many comments 

every day from users. The comments are vast in number including volumes and a quality of 

information that is quite essential to various stakeholders in the media industry (Nunzio, 2016). 

However, most comments are not well-organized to easily find relevant information on a specific 

topic. Organizing these texts (e.g., grouping them by topic) is an important step toward discovering 

trends (political, economic) in conversations and Data Mining /Machine Learning tasks. Clustering 

the texts into groups in their similarity is the foundation for many of these organizational strategies 

(Rakib, 2017). 

 

Clustering is an unsupervised descriptive data mining technique that groups data instances into 

clusters, with related examples grouped and unrelated instances grouped apart (Waiyamai, 2020). 

It is essentially a grouping of items based on their similarity. Clustering is sometimes mistakenly 

referred to as automatic classification; however, this is incorrect because clusters are unknown 

before processing, whereas classes are predefined or well-known in classification. In contrast to 

classification, where the classifier learns the relationship between objects and classes from a so-

called training set, cluster membership is guided by the distribution and nature of data (Assefa, 

2020).   

 

Short text clustering has become an increasingly significant task of Natural Language Processing 

(NLP). The methods are particularly essential for grouping information retrieval results, primar ily 

to disclose different meanings within groupings of results. Short text can be organized into 

meaningful clusters (groups) by using various techniques and this facilitates the usage of short 

texts in different application areas. Clustering is done utilizing short text data such as tweets, 

Facebook comments, and various news feeds, among other things. Short text, as the name implies, 
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is a text that is only a few words long. for instance, a short text on Twitter is fewer than 140 

characters long (Siddiqui & Aalam, 2019). 

 

Small text is usually quite brief and contains few words per document. Problems with data 

irregularity and sparsity are present in the short text, where most terms only occur once. And this 

makes clustering of comments a very difficult operation. Text ambiguity and a lack of a substantia l 

number of features in document vectors are the causes of short text clustering challenges. As a 

result, the classical TF-IDF (term frequency- inverse document frequency) or bag-of-words leads 

to sparse vector representations. Using vector space for high dimensional data results in sparsity 

and results in a lot of computing and memory storage. And, other vector representations like 

word2vec, GloVe, and fastText, are word-level vector representations that cannot disambiguate 

the word senses based on the surrounding context and express all possible meanings of a word as 

a single vector representation; these properties did not match with the nature of the short text. In 

addition, directly applying normal text clustering methods may not work well when applied to 

short texts (Dai, 2020).  

 

Given the issues existing in short texts and traditional vector representation techniques. BERT 

(Bidirectional Encoder Representations from Transformers) has significant advantages in feature 

extraction. BERT a contextual word embedding is released in 2018 by a team at Google AI (Bao 

et al., 2021; Kenton, 2019). BERT can understand different embeddings for identical words 

according to the context. The word embedding differs if the word denotes several meanings in 

various phrases (Hui Yin, 2022).  

 

Clustering techniques have a high impact on the effectiveness of topic clustering and various 

techniques have been proposed. Such as affinity propagation, density-based clustering, 

hierarchical clustering, partitioning clustering, and topic modeling. Density-based A cluster in data 

space is defined as a contiguous region of high point density that is isolated from other clusters by 

contiguous regions of low point density. This is the foundational idea behind clustering. 

Sometimes, data points in the low point density dividing regions are referred to as noise or outliers. 

The disadvantage of density-based clustering is that, particularly if clusters have different 

densities, it is vulnerable to the choice of epsilon and minimum points. If eps is set too low, sparser 
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clusters will be misinterpreted as noise. If eps are very big, denser clusters may be joined. This 

implies that if there are clusters with varied local densities, a single eps value might not be 

sufficient (Lasek, 2019). Clusters are produced in a hierarchical tree-like structure using 

hierarchical clustering (also called a Dendrogram). This describes how a subset of linked data 

is arranged into a tree-like structure, with the root node representing the entire data set and 

branches going to other clusters. Since the similarity matrix must be saved in RAM, the 

Hierarchical Clustering Technique requires a lot of space when there are many data points  

(Team, 2020). 

 

A common clustering technique is partitioning clustering, which divides a collection of N data 

points into a set of k non-overlapping subsets (clusters), each of which only contains one data 

point. For short texts, partitioning-based clustering is preferable because it is unaffected by 

high dimensionality data and requires less time than other algorithms (Waiyamai, 2020). A 

technique called topic modeling uses unsupervised machine learning to automatically cluster 

word groupings that best describe a batch of papers by scanning them for word and phrase 

patterns (Pascual, 2019). 

 

The stimulation and promotion of real-world applications can be greatly increased by a well-

designed short text topic grouping technique. They include subject detection, answering service 

recommendations, image or video tagging, and information retrieval. And it would be very helpful, 

allowing users to get a broad view of the conversation and focus on areas of interest to themselves, 

especially if high-quality and narrowly-focused topics were associated with the clusters, allowing 

them to easily understand what the comments within a cluster were about. 

 

1.2  Statement of the Problem 

 

Short text, as the name implies, is a text that is only a few words long. for instance, a short text on 

Twitter is fewer than 140 characters long (Siddiqui & Aalam, 2019). And microblogs, Tweets, 

news headlines, comments, etc. are also short texts (Dai, 2020). Newly posted comments are 

constantly published on users' timelines and it's difficult to find useful information from a huge 

group of comments. So, clustering those constantly posted comments to their related topic is a 
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significant task. But no prior work was conducted to cluster Amharic comments to news. As a 

result, to find the most fascinating information, stakeholders must go through all the newly posted 

content. The task of clustering short texts is more difficult than long texts. This is because of 

instantaneous features and briefness of the text brings sparsity, noise, and high dimensionalit ies 

throughout the text analytics process. Short text clustering has issues due to text ambiguity and a 

dearth of significant document vector properties. In addition, no prior work was conducted to 

cluster Amharic comments to news and it's difficult to find useful information from a huge group 

of Amharic comments. 

 

Short text clustering is a difficult problem to solve using traditional methods. For instance, TF-

IDF has less significance, due to the lower number of words in a sentence compared to a paragraph. 

If the frequency of each word in a sentence is one, the sentence is considered complete (because 

the sentence is short with no repeating words). Sparsity is the effect of using vector space for high-

dimensional data. This results in a significant increase in computation and memory storage 

requirements. When there is no contextual information and only a small number of words in the 

content, it is challenging to achieve acceptable semantic comparisons because most words only 

appear once in a short text. 

 

Previously various short text clustering techniques have been proposed. The research which 

focused on using topic modeling particularly LDA for short Amharic text topic clustering was 

proposed by (Assefa, 2020). But it doesn’t perform well for short texts since these models suffer 

from data sparsity when applied to short documents (estimating reliable word co-occurrence 

statistics. Additionally, these techniques typically need at least a few hundred words to be precise.  

 

Authors (Heu, 2018; Nunzio, 2016; Waiyamai, 2020; Wang, 2016) applied a method to expand 

short texts to long texts by the use of external knowledge sources to solve the sparsity issue of 

short texts. However, it has the following three drawbacks. The first is, that creating and 

maintaining such resources may be highly costly. Second, this poses a new problem in terms of 

determining how to best utilize those external resources. The third is the lack of those resources 

for the Amharic language. In most circumstances, fixing this new difficulty is time-consuming and 
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difficult in and of itself. Another method (Jiaming, 2015) takes a lot of practice and fine-tuning of 

various parameters and hyper-parameters. 

 

Following the above paragraph, the research questions are summarized as follows.  

➢ How effective are Cross-Lingual Transfer learning models for the contextual embedding 

of Amharic comments?  

➢ How to sequence BERT embeddings with partition-based Algorithms to enhance the 

performance of the Amharic comments’ topic clustering? 

➢ To what extent the proposed model enhances the performance of Amharic comments topic 

clustering? 

 

1.3  Objective 

 

1.3.1 General objective 

 

The general objective of this thesis is to design the Amharic comments topic clustering model 

using BERT embedding and partition-based algorithms. 

 

1.3.2 Specific objectives 

 

➢ To augment BERT-based embeddings on short Amharic text vector representation using 

online news comments. 

➢ To sequence BERT-based embeddings with partition clustering Algorithms for an 

enhancement of clustering performance and accuracy.  

➢ To Test and Evaluate the proposed topic clustering model. 

 

1.4 Scope and Limitation of the Study 

 

Short texts include news headlines, comments, status updates, web page snippets, tweets, 

question/answer pairs, etc. But the focus of this work is Amharic comments on the news only 
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because a vast number of comments are available freely and they are not in a well-organized 

format. In this thesis, we collect text files only and cluster them into different categories based on 

their semantic similarity.  

 

Due to the time limit, the scope of this thesis work is limited to collecting Amharic comments on 

the news only from Amharic news agencies' websites (i.e., Facebook, Twitter, Instagram). For this 

research, we are not considering documents that are in an image, video, or audio format.  

 

1.5  Significance of the Study 

 

The most popular type of communication today is short text documents, particularly for user-

generated content on social media. The number of such documents increases together with the 

popularity of social media use. Therefore, grouping those often-submitted comments by topic is a 

challenging process. For example, it enables the extraction of knowledge from a mass of text data: 

It is one of the most crucial text analysis approaches for drawing knowledge from the voluminous 

text data available online, such as Facebook comments and tweets. Easy access to the numerous 

topics discussed within a huge set of comments would benefit all user groups interested in online 

news commenting. Real-world applications can all benefit from a well-designed short text topic 

clustering method such as answering service recommendations, image or video tagging, and 

information retrieval. 

 

At the end of the study, Users, Journalists, and Editors can get the following benefit: 

 

➢ For Users: it allows quickly understand what the comments within each cluster were about  

and get a broad overview of the conversation and select sections of interest to them. 

➢ Journalists and Editors: they would have access to several conversation topics sparked by 

their article, allowing them to engage with their audience in a more concentrated manner . 

They would be able to monitor the topics that are most interesting to readers or they can 

easily identify which topic is mostly discuses by readers. 

➢ Governments:  keep the public informed and updated about the idea of people on important 

issues and engage with an audience on a deeper level. 
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1.6 Organization of the Thesis 

 

The remaining part of this thesis is presented as follows; Chapter two presents related works of 

short text topic clustering and different text clustering approaches. Chapter three presents the 

research methodology followed by development tools, data set collection, the architecture of the 

proposed thesis, clustering algorithms, and performance evaluation metrics for evaluating the 

performance of the clustering model. Chapter four presents the experimentation, results, and 

discussion. This chapter includes dataset description, experimentation setups, the performance 

result of the selected models with experiments, and discussion. Chapter five presents the 

conclusion and future works of the proposed work. in the end, the references and appendix are 

presented. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Text Clustering 

 

The goal of cluster analysis also referred to as clustering, is to group objects into clusters that are 

more similar (in some ways) to those in other clusters (clusters). It is a common technique for 

statistical data analysis used in many domains, including pattern recognition, image analysis, 

information retrieval, bioinformatics, data compression, computer graphics, and machine learning, 

and it is the main role of exploratory data analysis (Caiyan, 2018). Since it establishes the natural 

grouping among the unlabeled data, clustering is important. For effective clustering, no conditions 

must be met. The user oversees selecting the criteria they will utilize to meet their needs. 

 

The method of creating groupings from unlabeled data is known as text clustering. The number of 

cluster groups is typically predefined by the user in most clustering algorithms, however, in this 

situation, the number of cluster groups must fluctuate dynamically. The main idea is that 

documents can be quantitatively represented as feature vectors. One way to compare text similar ity 

is by measuring the distance between these feature vectors. Nearby objects ought to belong to the 

same cluster. Things that are far apart ought to be arranged in different groups. Any text clustering 

approach involves text pre-processing, feature extraction, and clustering (Wang, 2016). 

 

➢ Text pre-processing: Information can be obscured by the noise of text, which might include 

stop words, inflections, and sparse representations. Once the dataset has been pre-

processed, handling it is simpler. 

➢ Feature extraction: For extracting vector representations from textual data. 

➢ Clustering: grouping of distinct text documents using the features produced. 

 

2.2  Text Clustering Approaches 

 

Techniques for clustering can be divided into partition-based, hierarchical, density-based, and 

grid-based algorithms. These approaches differ in how similarity is measured (both within and 
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between clusters), how thresholds are used to create clusters, how objects are clustered, whether 

they allow objects to belong strictly to a single cluster, or whether they can belong to mult ip le 

clusters to varying degrees and algorithmic structure. Regardless of the technique, the cluster 

structure that is created is then used to assist in object retrieval or for user inspection (Suyal, 2016). 

 

Clustering is divided into two groups: hard clustering and soft clustering, depending on whether 

they let objects belong solely to one cluster or can belong to several clusters. Data objects are 

grouped using a procedure called hard clustering, where each item is only assigned to one cluster. 

For instance, we want the algorithm to examine every tweet and determine if it is positive or 

negative. In hard clustering, each data point is a whole or partial member of a cluster. A popular 

hard clustering technique called K-Means separates the data into K clusters, with each item only 

belonging to one cluster. We do not always need a yes or no answer. On the other hand, soft 

clustering is a method of grouping data items so that any item can reside in more than one cluster. 

The process of arranging data objects into multiple clusters is known as soft clustering. One well-

known soft clustering approach is fuzzy C-means. FCM works by giving things probabilit ies, 

which are essentially expressions of how strong the items in the cluster are (Malik, 2019; Sukemi, 

2019). 

 

Clustering approaches can be divided into document-based and keyword-based clustering. The 

distinction lies in the features that were used to group the documents. The clusters created by 

keyword-based clustering algorithms only choose specific document attributes and a small number 

of them. Those few traits were chosen since they are the most important differences between the 

documents. Similar documents have the same qualities. Choosing the most important feature is 

thus a crucial stage in keyword-based clustering. The document vector space model is used to 

apply document-based clustering methods, with each entry presenting the word weighting of a 

term in the matched document. As a result, each term serves as an axis and each document is 

represented as a data point in an extremely high-dimensional space. In this space, the distance 

between points can be calculated and compared. It is essential to map the documents into the 

correct space and employ the right distance computation algorithms because document-based 

clustering is based on "document distance" (Assefa, 2020). 

 



10 
 

2.3 Algorithms for Word Embedding 

 

The ultimate level of data for any machine learning or deep learning model must be in numerica l 

form because models do not immediately comprehend a word or visual data like individuals do. 

We need sophisticated ways in the NLP field to describe the conversion of text input into numerica l 

data. Vectorization, also referred to as word embeddings in the NLP field, is a complex method of 

converting text input into numerical data. Word embedding is a collective term for a variety of 

language modeling and feature learning techniques used in natural language processing (NLP), in 

which words or phrases from a lexicon are translated into real-number vectors. Using a real-valued 

vector to capture the meaning of the word, word embedding is a technique for expressing words 

in text analysis. Words that are near each other in the vector space are taken to have similar 

meanings (Heidenreich, 2018; Waiyamai, 2020). 

 

By converting words or phrases from a lexicon to real-number vectors using a variety of language 

modeling and feature learning algorithms, word embeddings are produced. A multidimensiona l 

space must be mathematically embedded into a continuous vector space with a much smaller 

dimension. Then, several machine learning models are built using the numerical vectors. We 

describe this as extracting features from text to create models for various natural languages and 

processing. We can transform text data into numerical vectors in a variety of ways (Brownlee, 

2019). The most popular word embedding methods to extract features from the text are Bag of 

words, TF-IDF, Word2vec, Glove embedding, FastText, and the recent one BERT. 

 

Bag of Words 

 

The bag of words technique is simple to comprehend and use. Text classification and language 

modeling are the two main applications of this technique. This approach has a simple notion behind 

it. We'll use this strategy to turn sentences into vectors based on the frequency of terms that appear 

in them. It is a format that counts how many times each word appears in arbitrary text to generate 

fixed-length vectors. A bag of words functions as a baseline model and can thus be used to test the 

findings and learn more about the data that is fed into the model. After that, deep learning 

approaches can be pursued further. When the data is context specific, a bag of words can also be 
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used. The arrangement of the words in the sentence, as well as how the word is related to other 

sentences, are not recorded in the bag of words. The bag of words is mostly determined by the 

text's vocabulary. In this case, as the number of phrases grows, the vocabulary grows 

exponentially, making the model complicated and both computations more difficult (Kabaap, 

2019). 

 

TF-IDF 

 

The TF-IDF (term frequency- inverse document frequency) statistic assesses a word's significance 

to a document within a group of documents. This is done by averaging two metrics—the frequency 

with which a word appears in a document and its inverse document frequency—across a set of 

documents (Heidenreich, 2018; H. Yin et al., 2021).   

 

The TF*IDF logarithm is a calculation of the term frequency and inverse document frequency: 

➢ TF: Term Frequency- this measures how frequently the term is used in a single document. 

The higher the phrase frequency, the longer the document. The total number of terms in 

the document is then split by this number. 

TF = (Number of times the term appears in the document) / (Total number of words in the 

document) 

➢ IDF: Inverse Document Frequency - This metric assesses the significance of a phrase in 

terms of its relevancy within the corpus. Stopwords such as "is," "of," and "the" are less 

important because they appear often in all documents in the corpus. The IDF can be 

calculated as follows: 

IDF = (Total number of documents) / (total number of documents containing the keyword) 

Word overlap is a key component of TF-IDF, yet it is uncommon in short text texts like this one. 

So, TF-IDF is inappropriate. This method might produce a highly sparse document vector, which 

would lead to subpar clustering outcomes and a lengthy runtime (Waiyamai, 2020). 

 

Word2vec 
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A shallow neural network called Word2vec is trained using inputs that include each instance of a 

target word and its neighbors. The embedding vector for the target word is then created using the 

network weights between the input and hidden layer. Words are represented in vector space by 

Word2vec. Words are represented as vectors, and placement is done so that ones with similar 

meanings are grouped and different words are placed far apart. A semantic relationship is another 

name for this. For each word, the Word2Vec embedding approach only offers a single, independent 

embedding vector. Only ONE vector for each word is saved by Word2vec in the output model. 

Word2vec is trained using contextual neighbors but used non-contextually for a downstream NLP 

task. Since the representation is only kept as a single vector per word. This restricts the ability to 

understand a word's meaning across two contexts (Ankiit, 2020).  

 

Word2vec uses two architectures: Skip Gram and Continuous Bag of Words (CBOW). Continuous 

Bag of Words (CBOW). CBOW is an algorithm that guesses a target word based on its 

surrounding context. It tries to predict the output (target word) based on the words around it 

(context words). CBOW is a word2vec version that predicts the center word from a set of context 

words. CBOW would tell us the most likely word in the center based on all the words in the context 

window (excluding the middle one)(Ezra, 2022; Shristikotaiah, 2020). 

 

The skip-gram model trains a neural network to predict the probability of a word within a sentence 

window, and the word embeddings are retrieved from the weights of the skip-gram model. The 

main principle of the Skip-Gram model is that it selects each word from a large corpus (we'll call 

it the focus word) and extracts the words that surround it within a specified "window" one at a time 

to feed a neural network that, after training, predicts the likelihood for each word to appear in the 

window around the focus word. Word embeddings are computed with the Skip-gram Word2Vec 

architecture. Unlike CBow Word2Vec, Skip-gram Word2Vec predicts the surrounding words 

using the central word. The CBOW model integrates the scattered representations of context to 

predict the word in the middle (or surrounding words). On the other hand, the Skip-gram model 

guesses the context using the input word's dispersed representation (Heidenreich, 2018; 

Shristikotaiah, 2020). Both Word2Vec's predictive architectures fail to account for the global 

context and ignore the fact that some context words occur more frequently than others. 
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GloVe 

 

Global Vectors for Word Representation is known as GloVe. It is an unsupervised learning 

technique created at Stanford University that tries to produce word embeddings by combining 

global word co-occurrence matrices from a corpus. The GloVe word embedding's primary 

objective is to use statistics to ascertain the link between the words. In contrast to the occurrence 

matrix, the co-occurrence matrix provides information on the frequency of a certain word pair 

occurring together. Each value in the co-occurrence matrix represents a pair of words that 

frequently appear together. The GloVe is built using a matrix factorization technique and a word 

context matrix. The process begins by creating a large matrix of (words x context) co-occurrence 

data, in which each word is counted as having appeared in a certain context throughout a huge 

corpus (Heidenreich, 2018). 

 

Word-to-word cooccurrence statistics from the corpus are aggregated globally and used as training 

data for the GloVe, a word vector representation technique. As a result, it comprehends word 

representations and generates them based on context, just like word2vec. More successful than 

learning the raw occurrence probability were learning ratios of these co-occurrence probabilit ies. 

When storing the co-occurrence probability ratio between two words, GloVe Embeddings, a type 

of word embedding, uses vector differences instead (Ezra, 2022). 

 

FastText 

 

Facebook AI research produced FastText, a vector representation approach. As the name implies, 

it is a quick and efficient technique for performing the same operation, and because of the nature of 

its training approach, it also learns the morphological details. FastText is unique in that it can 

generate word vectors for unknown words as well as words from the lexicon. This is because it may 

use the morphological characteristics of words to construct the word vector for an unknown word. 

Since morphology pertains to the structure or syntax of words, FastText typically performs better 

for these tasks while word2vec performs better for semantic tasks. FastText embeddings generate 

word embeddings using subword information. Character n-gram representations are learned words 

representation as the sum of the n-gram vectors. This adds subword information to the word2vec 
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type models. This aids in the understanding of suffixes and prefixes via the embeddings (Mohanty, 

2019). 

 

FastText employs n-gram letters as the smallest unit, whereas Word2Vec and GLOVE use each 

word as the smallest unit to train on. The word vector "apple," for example, might be divided down 

into individual word vector units. Because the n-gram character vectors are shared with other words, 

FastText provides better word embeddings for rare words or even words that were not observed 

during training. This is something that neither Word2Vec nor GLOVE can do (Heu, 2018). 

 

Generally, skip-gram trains a log-bilinear model to predict words within a specific window size 

using only the center word, whereas CBOW trains a similar model to predict the center word using 

a bag of context words. With noisy contrastive estimation and negative sampling, skip-gram and 

CBOW both approximate the word prediction softmax loss. Instead, Glove trains word 

embeddings to forecast statistics on the worldwide co-occurrence of words. Word2Vec is 

additionally improved by FastText by including subword data. Word embeddings, trained with 

local co-occurrence signals independent of order, represent each word type with a single fixed -

dimensional vector due to efficiency considerations. Contextual word embeddings would 

eventually be able to overcome these restrictions as the deep learning framework and computer 

infrastructure advance. 

 

2.3.1 Contextual Word Embeddings 

 

Contextual word embeddings depict a word utilizing its context as processed by a deep neural 

network, in contrast to word embeddings. In numerous downstream tasks, contextualized 

representation beats stand-alone word embeddings, such as Word2Vec and Glove, with the same 

task-specific design. 

 

BERT 

 

A machine learning method for pre-training in natural language processing developed by Google 

is called BERT (Bidirectional Encoder Representations from Transformers) (NLP). BERT 
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embeddings are just vectors that represent a phrase's meaning; the vectors for similar-sound ing 

words have nearer numbers. BERT's input embeddings are made up of three different embeddings . 

Those are token embeddings, segment embeddings, and positional embeddings. The pre-trained 

embeddings for various words are known as token embeddings. Segment embeddings are a vector's 

encoded sentence number. And Position embeddings are the position of the word within that 

sentence that is encoded into a vector (Kenton, 2019). 

 

The majority of the aforementioned embedding techniques either represent words as singula r ly 

indexed values (one-hot encoding) or, more usefully, as neural word embeddings, where 

vocabulary words are matched to the fixed- length feature embeddings produced by Word2Vec 

or FastText models. Compared to models like Word2Vec, BERT has an advantage since it 

creates word representations that are dynamically influenced by the words surrounding them. 

Under Word2Vec, GloVe, and FastText each word has a fixed representation regardless of the 

context in which it appears. The context-informed word embeddings not only capture obvious 

variations like polysemy, but also other types of information that lead to more accurate feature 

representations and higher model performance (Ryan, 2019). 

 

The BERT model has generated a buzz in the fields of natural language processing and machine 

learning. A Transformer, an attention mechanism that can learn the contextual relationships 

between words, is used to learn the text representation (or sub-words). According to the context, 

BERT can interpret different embeddings for the same word. If a word has distinct meanings in 

different phrases, the word embedding will be diverse as well. BERT has greatly improved the 

expressiveness of short text representations with more condensed, low-dimensional, and 

continuous features so, for the proposed work BERT was employed as a word embedding tool 

using the Transfer learning approach (Reimers, 2019). 

 

2.3.1.1 Transfer Learning 

 

Transfer learning is the process of employing a model that has already been trained to solve a new 

problem. It is presently particularly well-liked in deep learning because of its capacity to train deep 

neural networks with fewer data. This is very helpful in the data science field because most real-
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world scenarios frequently do not have millions of labeled data points to train such complex 

models. Transfer learning's core principle is to apply what has been discovered in one activity to 

improve generalization in another. We apply the weights that a network learns at "task A" to a new 

"task B" (Donges, 2022). 

 

The general concept is applying what a model has learned from one task with a lot of labeled 

training data to another task with little to no training data. The process of transferring as much 

knowledge as is practical from the task the model was trained on to the current task is known as 

transfer learning. This knowledge may be expressed in a variety of ways, depending on the 

situation and the available information. For instance, the construction of models may facilitate our 

ability to identify new objects. The construction of machine learning models benefits greatly from 

transfer learning. Transfer learning's primary advantages include resource savings and increased 

effectiveness while developing new models. Additionally, since most of the models will have 

already been trained, it can aid with model training when only unlabeled datasets are available 

(Seldon, 2021). Transfer learning for machine learning has the following primary advantages: 

➢ Removing the requirement for each new model to have a significant collection of labeled 

training data. 

➢ Enhancing the deployment and development of machine learning for a variety of models. 

➢ A broader strategy for computer problem solving that uses many techniques to address new 

problems. 

➢ Instead of training in real-world settings, models can be trained in simulations  

 

Cross-Lingual and Multilingual Transfer Learning 

 

The cross-lingual transfer is the process of applying learning to solve problems in another 

language, typically one with fewer resources, by using data and models accessible for one language 

for which there are plenty of such resources (e.g., English). By using annotated data from other 

languages, cross-lingual transfer learning (CLTL) enables the development of models for a target 

language (source languages). Cross-lingual transfer learning seeks to transfer models and resources 

from one language to another (Hassan, 2020). 
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A form of transfer learning called cross-lingual transfer learning has a different source and 

destination domain. It tries to transmit knowledge from one language, which is typically referred 

to as the source language, to another language, which is typically referred to as the target language. 

Multiple source languages or multiple target languages are both possible. Any cross-lingual signal, 

such as a bilingual dictionary or bitext, is further eliminated by a stronger assumption. The cross-

lingual transfer is predicated on a cross-lingual representation space, and the cross-lingual space's 

quality, particularly for zero-shot transfer, is crucial. A single NLP system that supports several 

languages is what multilingual NLP aims to create. The development of multilingual NLP benefits 

from cross-lingual representation since it makes it easier to learn how to complete a particular task 

(Wu, 2022). 

 

2.3.1.2 Cross-lingual Contextual Word Embeddings 

 

The evolution of cross-lingual representation learning is comparable to that of NLP representation 

learning. Surprisingly, a cross-lingual transfer is successfully made possible by multilingua l 

language models like XLM, mBERT, and XLM-R. It is possible to learn a model using supervised 

data in one language and utilize it for a range of tasks in another without any explicit cross-lingua l 

signal. Using concatenated Wikipedia data for 104 languages without any explicit cross-lingua l 

signal, such as pairs of words, sentences, or pages related across languages, Multilingual BERT 

(mBERT), a multilingual model offered by BERT, was pretrained (András, 2021; Wu, 2022). 

 

The only difference between it and BERT's model architecture and training process is that it uses 

data from Wikipedia in 104 languages. The WordPiece modeling approach used in mBERT 

enables the model to share embeddings between languages. To account for the varying amounts 

of Wikipedia training data in different languages, the training applies a heuristic to subsample or 

oversample words when running WordPiece as well as sampling a training batch, random words 

for cloze, and random sentences for next sentence classification (Moberg, 2020). 

 

The Transformer-based model XLM is trained with the MLM (masked language modeling) 

objective. XLM is also trained with a Translation Language Modeling (TLM) aim to make the 

model acquire analogous representations for several languages. Simple input of the same sentence 
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in two distinct languages and standard token masking constitutes TLM. The model then has the 

option of employing tokens from the other language to forecast a disguised token. XLM is trained 

with both MLM and TLM, with MLM using Wikipedia data in the 15 languages and TLM using 

various datasets based on language. Keep in mind that TLM needs a dataset of parallel sentences, 

which may be challenging to obtain (Karthikeyan, 2019). 

 

The most recent multilingual model is XLM-R, where the R stands for RoBERTa. By avoiding 

the TLM target and stepping back from XLM, XLM-R merely trains RoBERTa on a sizable, 

multilingual dataset. 2.5 TB of unlabeled text in 100 languages is extracted from CommonCrawl 

databases. It was trained to utilize solely the MLM objective in a RoBERTa-style manner. The 

vocabulary size is the only significant distinction from RoBERTa. Without considering scale 

variation, the main difference between XLM and XLM-R is that XLM-R is entirely self-supervised 

while XLM requires parallel examples, which might be challenging to obtain at a large enough 

scale (Wu, 2022).  

 

2.4  Text Similarity Measurement Metrics 

 

Text similarity indicates how closely two text documents are related in terms of context or 

meaning. Distance metrics are the most prevalent techniques for determining word similar ity. 

While there is a section called Document Similarity that searches for similarities between 

sentences or paragraphs of text. A distance with dimensions that represent the attributes of the data 

object serves as the similarity measure in a dataset. If the distance is little, there will be a high 

degree of similarity; but, if the distance is vast, there will be a low degree of similarity. There is 

various text similarity metrics exist such as Cosine similarity, Euclidean distance, and Jaccard 

Similarity. Each of these metrics has a definition that quantifies how similar two searches are to 

one another (Wibisono, 2021). 

 

Cosine Similarity 

 

Cosine similarity is used to compare two vectors in an inner product space. By measuring the 

cosine of the angle between two vectors, it can tell if they are generally pointing in the same 

https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1907.11692
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direction. Through text analysis, document similarity is frequently evaluated. A similarity metric 

called cosine similarity can be used to compare texts or, for instance, to order items according to 

a vector of search terms. A dataset's data objects are treated as a vector for cosine similar ity 

calculations (Ma, 2018). The following is the formula to determine the cosine similarity between 

two vectors (Elton, 2022). 

 

Cos (x, y) = 
. Y

|| || * ||Y||

X

X
                                                                                           (2.1) 

 

Were, 

• x. y = product (dot) of the vector’s ‘x’ and ‘y’. 

• ||x|| and ||y|| = length of the two vectors ‘x’ and ‘y’. 

• ||x|| * ||y|| = cross product of the two vectors ‘x’ and ‘y’. 

 

The two comparable data objects are separated by the Euclidean distance due to their sizes, but 

they could have a lower angle between them if they share a cosine similarity. Angle decreases 

with increasing similarity (Saini, 2021). 

 

Euclidian distance 

 

In Mathematics, the Euclidian distance or Euclidean Metric represents the length of a line segment 

between two locations that can be determined using the Pythagorean Theorem. As a result, words 

are used to express these points in NLP. By calculating the distance between two objects, Euclidean 

distance determines their similarity(Ma, 2018). Euclidean distance is the foundation of many 

similarities and dissimilarity measurements. The distance between vectors X and Y is defined as 

follows (Ojha, 2020): 
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=

= −                                                                                                                           (2.2) 

  

In other terms, Euclidean distance is the square root of the total of the squared differences between 

comparable elements of two vectors. It's worth noting that the formula takes the values of X and 
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Y very seriously, with no scale adjustments. Only data measured on the same scale are suitable for 

Euclidean distance (Ojha, 2020). 

 

2.5  Text Clustering Algorithms 

 

Generally, Short text topic clustering techniques clustering can be classified into affinity 

propagation, density-based clustering, hierarchical clustering, partitioning clustering, and topic 

modeling (Waiyamai, 2020).  

 

Density-Based Clustering 

 

Density-Based Clustering is a type of unsupervised learning that is commonly employed in model 

construction and machine learning techniques. Noise is defined as data points in a region separated 

by two clusters of low point density (javatpoint, 2022). Data is organized into regions with high 

data point densities that are surrounded by regions with low densities in density-based clustering. 

The program finds regions with a lot of data points and labels those regions as clusters. The clusters 

can take any shape, which is a nice feature of this. Expected circumstances are not a restriction on 

you. And outliers are disregarded since the clustering algorithms of this type don't attempt to group 

outliers with clusters. 

 

Density-based spatial clustering of applications with noise (DBSCAN) is one of the most well-

known and commonly used density-based clustering approaches, particularly for text document 

clustering. DBSCAN requires two basic inputs to execute clustering: the radius Epsilon (Eps) and 

the minimum points (Mints). The procedure starts with an arbitrary point p and uses the two input 

values to get all neighbor points that are density-reachable from point p (within distance Eps) and 

have not yet been visited. Clusters are regions of densely arranged objects that are separated by 

low-density or noisy zones. When the number of neighbors of point p is more than or equal to 

MinPts, a cluster of tightly connected points is produced. The starting point p is tagged as visited 

and added to this cluster alongside its neighbors. This technique is repeated for all of point p's 

neighbors recursively. If the number of neighbors of point p is less than MinPts, the point is classed 

as noise. DBSCAN will recognize some data points as noise and not assign them to any cluster for 
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cluster completeness. Because of the non-linear time complexity of this technique, it takes a long 

time to run (Waiyamai, 2020). 

 

Another form of density-based clustering approach is self-adjusting or hierarchical density-based 

spatial clustering of applications with noise (HDBSCAN). By transforming DBSCAN into a 

hierarchical clustering algorithm and then employing a method to extract a flat clustering based on 

the stability of clusters, it expands on DBSCAN. To separate clusters of varied densities from 

sparser noise, numerous distances are used. Because HDBSCAN is the most data-pushed 

clustering approach, it requires the least customer input (Berba, 2020). 

 

Hierarchical-based clustering 

 

Hierarchical-based clustering is a clustering approach that creates a tree-like structure from a 

layered sequence of divisions. Usually, hierarchical groups are depicted using the hierarchical tree 

known as a dendrogram. Everything is arranged top-down by creating a tree of clusters. It seeks 

to identify natural grouping based on the data's properties. Building a hierarchy is the first step in 

the hierarchical clustering algorithm's quest to identify nested groups of the data. It resembles the 

biological taxonomy used to classify plant and animal kingdoms. Typically, hierarchical-based 

clustering is applied to hierarchical data, such as that found in taxonomies or enterprise databases. 

Although it is more restrictive than the other clustering types, this is ideal for certain classes of 

data sets. There are two types of hierarchical clustering algorithms: Divisive and Agglomera t ive 

(McGregor, 2020). 

 

Divisive which is a top-down method evaluates the complete set of data as one group at first before 

breaking it down into smaller groups iteratively. When the desired number of clusters is reached, 

division ceases if the number of a hierarchical clustering technique is known. Otherwise, the 

process comes to a stop when it can no longer divide the data, so the subgroup that is produced by 

the current iteration is identical to the one that was produced by the previous iteration (one can 

also consider that the division stops when each data point is a cluster). Agglomerative is a bottom-

up strategy that depends on cluster fusion. In the beginning, the data is separated into m singleton 

clusters, where m is the total number of samples or data points. The number of clusters in each 
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iteration decreases as two clusters are iteratively combined into one. The cluster-merging process 

is complete when every cluster has been merged into one or when the desired number of clusters 

has been attained (Pedamkar, 2022).  

 

CHAMELEON a revolutionary agglomerative hierarchical clustering technique or strategy for 

dealing with sparsity was proposed in 1999. In contrast to earlier agglomerative hierarchica l 

clustering methods, CHAMELEON is a new clustering technique. It utilizes a sparse K-nearest 

neighbor graph, where nodes stand in for data items and weighted edges denote similarit ies 

between those data items. CHAMELEON uses a specific method known as the "two-phase 

algorithm" to create clusters from the data set. In the first phase, the K-nearest neighbor graph is 

subjected to a graph partitioning algorithm to cluster data items into several small sub-clusters. By 

continually merging these sub-clusters, an algorithm is utilized in the second step to find real 

clusters. CHAMELEON employs interconnectedness and closeness to determine the clusters' 

similarity in this two-phase process (Waiyamai, 2020). 

 

Partitioning-based clustering 

 

A typical method of clustering called partitioning divides a set of N data points into k non-

overlapping clusters, with each data point belonging to exactly one cluster. This clustering 

technique categorizes the data into several groups based on their characteristics and similarit ies. 

The data analysts specify how many clusters must be created to complete the clustering procedures. 

The partitioning method separates the data into user-specified (K) divisions when a database (D) 

contains multiple(N) items, with each partition standing for a cluster and a region. Partitioning 

methods cover a wide range of algorithms, but some of the more well-known ones are K-Mean, 

PAM (K-Mediods), CLARA algorithm (Clustering Large Applications), etc. (Geeksforgeeks, 

2020). Problems with text representations of brief text documents, which usually have large 

dimensions, do not respond well to density-based and hierarchical clustering techniques (Berba, 

2020). On the other hand, partitioning clustering is unaffected by the high dimensionality of short 

texts (Waiyamai, 2020). 
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K-means clustering 

 

One of the most well-known and often applied distance-based partitioning clustering algorithms 

is K-means clustering, notably for text document clustering. The K-means clustering algorithm 

requires many clusters to operate. The technique begins by selecting k arbitrary points at random 

to serve as cluster centers (centroids) for k clusters (Waiyamai, 2020). It separates things into 

several groupings, or clusters, to make objects within a cluster as similar as possible—that is, with 

a high intra-class similarity—and as different from one another as possible (i.e., low inter-class 

similarity). The mean of the points assigned to each cluster serves as the centroid, or center, of 

each cluster in k-means clustering. The primary tenet of k-means clustering is to minimize total 

intra-cluster variance, also known as total within-cluster variation while defining clusters. The 

process for K-means Algorithm is presented in figure 1 (Anand, 2020). 

 

 

Figure 1 Process for K-means Algorithm 
 

Steps involved in K-Means Clustering: 

Step 1: Choosing the number of clusters (k) that will be created in the result is the first stage in 

using k-means clustering. 

Step 2: The technique randomly selects k items from the data set as the initial cluster centers. Other 

terms for the selected objects include centroids or a cluster. 

Step 3: The centroid closest to each of the remaining items is then selected; the centroid closest to 

an object is determined by its Euclidean distance from the cluster mean. We refer to this stage as 

"the cluster assignment step". 
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Step 4: Following the assignment phase, the algorithm determines the new mean value for each 

cluster. The cluster "centroid upgrade" refers to this phase. Once the centers have been recalculated, 

each observation is reexamined to see if it might be closer to a different cluster. The objects are 

again distributed using the updated cluster means. 

Step 5:  The cluster assignment and centroid update stages are iteratively repeated until the cluster 

assignments stop changing (i.e until convergence is achieved). In other words, the clusters produced 

in this iteration are exact replicas of the ones obtained in the prior iteration. 

Pros of K-means algorithm 

 

➢ Simple : K-means can be used to quickly identify unknown data categories in 

huge datasets. The results are simply reported.  

➢ Flexible : The K-means method is amenable to modifications. Altering the 

cluster segment will allow for swift algorithmic fixes if any issues arise. 

➢ Suitable  for a large  datase t: When compared to smaller datasets, K -means 

can handle multiple datasets and computes much more quickly. Larger clusters 

can also be produced by it.  

➢ Efficient: The algorithm utilized can segment a huge data set efficiently. The 

shape of the clusters determines their efficacy. K-means perform well in 

clusters that are hyper-spherical. 

➢ Time complexity: Because the number of data items in K -means segmentation 

is linear, the execution time increases. Unlike hierarchical algorithms, it does 

not take longer to classify similar qualities in data.  

➢ Tight clusters: K-means yield tighter clusters than hierarchical algorithms,  

especially for globular clusters.  

➢ Simple  to interpret: The results are simple to comprehend. It provides 

simplified cluster descriptions to make the data easier to understand . 

➢ Cost of computation: When compared to other clustering methods, the k-

means clustering technique is both quick and efficient in terms of calculation.  

➢ Accuracy: K-means analysis provides the availability of data regarding a 

problem domain and improves clustering accuracy. Based on this information,  
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the k-means algorithm is changed to increase the clusters' accuracy (Mary & 

Selvi, 2014). 

 

Cons of K-means algorithm 

 

➢ No optimal set of clusters: The greatest outcomes come from pre-selecting your 

clusters because K-means does not allow for the construction of an ideal collection 

of clusters.  

➢ Lacks consistency: Results from different algorithm runs of K-means clustering are 

inconsistent. Consistency is produced when clustering results are determined by a 

random selection of cluster patterns. 

➢ Consistent effect: It creates clusters of a consistent size even when the input data is 

of different sizes. 

➢ As the size of the datasets being analyzed grows, the computation time increases 

since the complete dataset must be kept in the main memory. 

 

Mini Batch K-means algorithm 

 

As the size of the datasets under study grows, K-means' computation time grows as well because 

it needs to store the complete dataset in the main memory. As a result, a variety of methods for 

decreasing the algorithm's time and space cost have been offered. An additional technique is the 

Mini batch K-means algorithm. 

 

A machine learning adaptation of the classic K-means clustering algorithm is called Mini-batch 

K-means. It gathers a random sample of the data to update the clusters after each iteration and 

maintains the data in memory in brief, random, fixed-size batches. It performs better than the 

standard K-means method when working with huge datasets because it does not cycle over the 

entire dataset. To update the clusters on each cycle, it first generates random batches of data to 

be stored in memory and then gathers a random batch of data. The Mini-batch K-means 

algorithm's main advantage is that it makes cluster detection less expensive to compute. 
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Although the mini-batch method is preferable when working with a large dataset, you might 

choose to employ the K-means algorithm (KHARWAL, 2021). 

 

The main goal of the Mini Batch K-means method is to temporarily store small random batches of 

data. The clusters are updated using a fresh random sample from the dataset at the beginning of 

each iteration, and this procedure is continued until convergence. Each mini-batch uses a convex 

combination of prototype values and data to update the clusters, with the learning rate decreasing 

as the number of iterations rises. The learning rate is equal to the inverse of the number of data 

assigned to a cluster during the procedure. Convergence can be seen when there are no changes in 

the clusters for several iterations in a row since the impact of incoming data decreases as the 

number of iterations grows. The technique uses tiny, randomly chosen batches of the dataset for 

each iteration. Each piece of data in the batch is categorized into one of the clusters based on the 

centroids' prior placements. The cluster centroids' coordinates are then changed using the fresh 

points from the batch. The update is made via gradient descent, which is much faster than a batch 

K-Means update (Geeksforgeeks, 2021b). 

 

Fuzzy C-Means Clustering  

 

The Fuzzy C-means clustering algorithm is another partition clustering algorithm. Fuzzy K-Means 

clustering, also known as Fuzzy C-Means clustering, is a variant of K-Means clustering. The Fuzzy 

K-means clustering algorithm uses several points that are exclusively part of one cluster. Fuzzy 

clustering is a powerful unsupervised technique for data analysis and model building. Hard 

clustering is less natural in many cases than fuzzy clustering. Instead of being required to fully 

belong to one class, objects within the boundaries of many classes are given membership degrees 

between 0 and 1 to indicate their partial membership. The fuzzy c-means algorithm is the most 

widely used. This algorithm determines the membership of each data point in each cluster center 

based on the distance between the cluster center and the data point. The closer the data is near a 

cluster center, the more likely it is that it belongs to that cluster center. It should be evident that 

one should result from adding the membership of each data point (Cannon et al., 2012). The 

algorithm Fuzzy K-Means is identical to K-means, a popular simple clustering algorithm. The only 

difference is that instead of assigning a point to one cluster exclusively, it may have fuzziness or 
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overlap between two or more clusters (Edureka, 2019). The following are the main ideas that 

define fuzzy k-means: 

➢ A single point in a soft cluster could belong to numerous clusters, each with a distinct 

affinity value. 

➢ The affinity is proportional to the distance between the cluster centroid and that point. 

➢ Fuzzy K-Means is like K-Means in that it works on objects that have a defined distance 

measure and may be represented in n-dimensional vector space. 

➢ Choose the number of clusters. 

➢ Assign coefficients at random to each point to create the first k clusters. 

➢ Repeat these steps up until the algorithm converges. 

 

The Pros and Cons of the fuzzy k-means algorithm are presented by (Getahun, 2021),  as follows:  

 

Pros of fuzzy k-means algorithm  

 

➢ Performs better than the k-means algorithm and offers the best outcomes for overlapping 

data sets. 

➢ Each cluster center is given a membership, allowing a data point to belong to more than 

one cluster center, as opposed to just allowing it to be a member of one. 

Cons of fuzzy k-means algorithm  

 

➢ The quality of the clusters formed is difficult to compare. 

➢ With a lower termination criterion value, we achieve a better result, but it comes at the 

expense of additional iterations. 

➢ Managing enormous data sets and a high number of prototypes can be challenging. 

 

Topic modeling 

 

An unsupervised machine learning technique called topic modeling can scan a collection of 

documents, identify word and phrase patterns within them, and then automatically cluster word 
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groupings and associated expressions that most accurately describe the set. The genera l 

"themes" that appear in a collection of texts can be found using a statistical modeling method 

called topic modeling (Qiang et al., 2019). It may use your extensive collection of documents 

to sort the words into word clusters and discover subjects by applying a similarity approach. It 

makes it easier to comprehend, arrange, and summarize huge text collections. But keep in mind 

that automated topic models work best with big amounts of content. It could be best to use 

another method if your document is short (ANALYTICS, 2017).  

 

Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) are the two topic modeling 

techniques that analysts employ the most frequently (LDA). According to the distributiona l 

hypothesis, understanding a word's semantics can be accomplished by examining the contexts in 

which it appears. On this concept, Latent Semantic Analysis (LSA) is founded. In other words, 

according to this theory, two words will have identical semantics if they frequently appear in 

comparable contexts. A probabilistic generative model of a corpus is called Latent Dirichlet 

Allocation (LDA). The fundamental assumption is that documents are modeled as mixes of latent 

subjects that are randomly chosen and each specified by a word distribution (Assefa, 2020).  

 

2.6  Clustering Evaluations Metrics 

 

Clustering is assessed using metrics of similarity and dissimilarity, such as the distance between 

cluster points. The algorithm has worked well if it can unify similar data points while also separating 

different data points. Assess the success of a clustering method, it is more complicated than just 

counting the number of errors or the precision and recall of a supervised classification system. Any 

evaluation metric should focus on whether this clustering defines data separations, such as a ground 

truth set of classes, or satisfying some assumptions that members of the same class are more similar 

than members of different classes according to some similarity metric, rather than the absolute 

values of the cluster labels. 

 

Classification evaluation metrics cannot be used to assess the effectiveness of clustering methods. 

Because a dependent variable or target variable is required in any classification assessment metric, 

whether it be a confusion matrix or a log loss. The metrics are calculated using observed and 
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expected data in various evaluation procedures. The performance evaluation could be computed 

using evaluation metrics that do not require any ground truth labels to calculate the efficiency of 

the clustering algorithm(Sourabh, 2022).  

 

The difficulty in assessing the efficacy of any clustering technique is one of the biggest 

disadvantages. To tackle this problem, the different metric has been developed. Some are purity, 

entropy, V-Measure, Silhouette Coefficient, and Rand Index. Purity and entropy can be used to 

compare partitioning with the same number of clusters, but they are unreliable when comparing 

partitioning with different numbers of clusters. This is because homogeneity will result from the 

way entropy and purity analyze the partitioning of sets of phrases inside each cluster. When there 

are too many clusters, the highest purity and lowest entropy scores are typically acquired, and 

this stage results in the least completeness. Therefore, the next metric takes both the consistency 

and completeness approaches into account (Systems, 2022).  

 

V-Measure-Score  

 

The harmonic mean of the clustering's homogeneity h and completeness c is the V-Measure, also 

known as normalized mutual information. Both metrics can be expressed in terms of the mutual 

information and entropy measures from information theory. 

                                                                                                      (2.3) 

   

Were, 

• h = homogeneity 

• c = completeness 

 

The calculation of the V-Measure first requires the calculation of two terms. Homogene ity 

measures how much the sample in a cluster is similar. Homogeneity is the ratio between the 

number of samples labeled c in cluster k and the total number of samples in cluster k. A perfectly 

homogenous clustering is one in which all data points belong to the same class label. Homogene ity 

refers to how near the clustering method comes to achieving this perfection. Completeness 

measures how much similar samples are put together by the clustering algorithm. A complete 
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clustering is one in which all data points from the same class are grouped. The clustering 

algorithm's completeness describes how close it is to perfection. Completeness is the ratio between 

the number of samples labeled c in cluster k and the total number of samples labeled c 

(Geeksforgeeks, 2019).  

 

Silhouette Coefficient 

 

The silhouette analysis method could be utilized to investigate the separation distance between the 

clusters created by the algorithm. Different sorts of distance metrics can be used to calculate the 

distance between the clusters (Euclidean, Manhattan, Minkowski, Hamming). The average 

silhouette coefficient applied to all samples is returned by silhouette score. The Silhoue tte 

Coefficient is determined for all samples by averaging the intra-cluster and nearest cluster 

distances. [-1,1] is the range of the Silhouette Coefficient. The Silhouette Coefficients are higher 

(closer to +1) the larger the distance between clusters. If the value is zero, the sample is on or very 

close to the boundary that determines which of the two clusters is the neighbor; however, if the 

value is negative, the samples might have been put in the wrong cluster (Sourabh, 2022). The 

formula is as follows: 

max( , )

nc ic

ic nc

−
                                                                                                                      (2.4) 

where ic  = mean of the intra-cluster distance 

nc = mean of the nearest-cluster distance  

 

Adjusted Rand Index 

 

The Rand Index is a function that determines how similar two clusterings are to one another. All 

sample pairs are considered when calculating the rand index, and pairs that belong to the same or 

different clusters according to the anticipated and actual clustering are counted. It has two 

parameters: labels-true, which are class labels used as the basis for comparison, and labels -

predicted, which are label clusters (Tutorialspoint, 2019). the Rand Index is calculated as: 

R = (a+b) / (nC2)                                                                                                                 (2.5) 
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Where: 

➢ a: the number of times a pair of components uses two different clustering techniques to 

belong to the same cluster. 

➢ b: the number of times a pair of components use two separate clustering techniques to 

belong to different clusters. 

➢ nC2: The number of unordered pairs in a set of n elements. 

The Rand index always takes on a value between 0 and 1 where: 

➢ 0: demonstrates that no element pair is clustered using two different clustering 

algorithms. 

➢ 1: shows that every pair of components is perfectly clustered according to two different 

clustering algorithms (ZACH, 2021). 

 

2.7 Amharic Language 

  

A Semitic language called Amharic is used in northern Ethiopia. It has official status throughout 

the entire Federal Democratic Republic of Ethiopia because it is the most widely used and spoken 

language there. Several federal states and territories, like Amhara and the multiethnic Southern 

Nations, Nationalities, and Peoples Region, also use it as their official or working language. 

Outside of Ethiopia, millions of emigrants speak Amharic, which is also spoken in Eritrea. It is 

written using a Fidel or abugida writing system adopted from the now-extinct Ge'ez language (Seid 

Muhie, 2019). 

 

Amharic has a semi-syllabic writing system of its own. The current Amharic writing system 

consists of a core of thirty-three characters (ፊደል, Fidel), each of which has a basic form as well as 

six supplementary orders. Through a series of routine modifications, non-basic forms are derived 

from basic forms. There are consequently 231 unique characters. The seven orders denote syllable 

combinations with a consonant and a vowel after it. There are also forty more that have a distinct ive 

trait that usually represents labialization, such as, and so on. There are 275 characters in all (ፊደል, 

Fidels), although not all of them are strictly necessary for the spoken language's pronuncia t ion 
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patterns; some were just transmitted from Ge'ez without any meaning or phonetic differentia t ion 

in modern Amharic. Only roughly 233 of the script's 275 symbols remain once the unnecessary 

ones are deleted. There are no upper- and lower-case variations in the Amharic writing system 

(MULUGETA, 2021). 

 

2.7.1 Amharic Morphology 

 

Amharic is one of the most morphologically difficult languages in the world. Number, 

definiteness, gender, and case are all marked on Amharic nouns and adjectives. They also used 

prepositions. The inflections and derivations of Amharic verbs, which consist of a stem and up to 

four prefixes and suffixes, are much more complicated than those of nouns and adjectives. The 

stem itself is made up of two parts: a root, which represents the verb's solely lexical component, 

and a template, which has spaces for the root segments' vowel-and-consonant-adjacent segments. 

The template represents tense, aspect, mood, and one of a few derivational categories: Iterative, 

causative, transitive, passive-reflexive, and causative reciprocal (Assefa, 2020).  

 

Hundreds of words can be produced from a single verb root in Amharic by marking verbs for any 

combination of person, gender, number, case, tense/aspect, and mood. As a result, a single word 

can be used to represent a whole phrase including subject, verb, and object. Amharic, like other 

Semitic languages, has a morphological feature known as root-pattern morphology. A root is a 

group of consonants (also known as radicals) with lexical meaning. In Amharic, a stem is 

constructed by adding vowels or vowel patterns into the consonants of a root. This is the process 

of non-concatenative morphological features. In addition to this, Amharic uses different affixes to 

create inflectional word forms (Assefa, 2020; MULUGETA, 2021). 

 

2.7.2 Amharic punctuation marks and numbers 

 

Amharic also has its punctuation that is used in the Amharic writing system. There are a lot of 

punctuation marks in Amharic and roughly there are seventeen punctuation marks. However, only 

a few are commonly used and have software equivalents in Amharic(MULUGETA, 2021). 

Amharic punctuation varies greatly from English punctuation marks such as ።(አራትነጥብ) is used as 
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a full stop, ፧(ሶስትነጥብ) as a question mark, ፣ (ነጠላሰረዝ) as a comma, ፨ a paragraph separator).below 

is a list of some punctuation in both handwritten and computer-generated text. 

➢ ። (አራትነጥብ) is a symbol for the end of a sentence and it serves the same purpose as a full 

stop in English. 

➢ ፣ (ነጠላሰረዝ) serves the same purpose as the English comma and is used for separate lists in 

Amharic text. 

➢ ፤(ድርብሰረዝ) is used as a sentence separator in the Amharic writing system and it is the 

equivalent of the semi-colon. 

➢ ፡(ሁለትነጥብ) this punctuation is used to separate one Amharic word from the other in the 

Amharic writing system. But most commonly space is used in place of this punctuation. 

Amharic occasionally uses Ethiopian numerals to write dates. Like ፩ is 1, ፪ is 2, and ፻ is 100. The 

Amharic Number system writing has 20 single characters which represent one (1/፩ up to 9/ ፱), 

tenths (ten/፲ to ninety/፺), hundred (፻), and ten thousand (፼). 

 

2.8   Related works for short text clustering 

 

Different short text clustering approaches have been proposed by using different clustering 

approaches. To start; (Heu, 2018) suggests a semantic-based K-means clustering technique that 

examines both the vector space model similarity between the data and the semantic similar ity 

between the data by using TagCluster for clustering. These heuristic approaches rely heavily on 

the information from TagCluster. Furthermore, brief communications like news comments could 

not have access to such metadata. In the other work; A K-means partitioning-based clustering 

technique was used to cluster short texts, in which document similarities are quantified by the word 

mover's distance and document similarity was determined by a document distance function. Their 

experimental result showed good accuracy. The method for Distributed Representation of Words 

that was employed in this work, which required aggregating short texts with a neural network 

model on the vast text corpus of a related topic, was its main shortcoming (Waiyamai, 2020).  

 

A method for automatically creating topic clusters of reader comments was introduced by (Nunzio, 

2016). They provided graph-based methods that make use of the Markov Clustering Algorithm 

(MCL) to group reader comments into topic clusters and automatically determine the number of 
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clusters. They employ LDA trained on reader comments to extract subject phrases from each 

cluster, which are then used to generate a concept-based network using DBPedia. But their 

approach depended on DBPedia to abstract topics extracted from the clusters. In the other work, 

the authors proposed a model for grouping short texts. they used  Smooth Inverse Frequency (SIF) 

embeddings to embed short texts,  A deep autoencoder to encode and reconstruct the short text SIF 

embeddings during a pre-training phase and in a self-training phase, they used soft cluster 

assignments as an auxiliary target distribution and fine-tuned the encoder weights and clustering 

assignments together (Hadifar et al., 2019).  

 

The Dirichlet Multinomial Mixture model for short text clustering (GSDMM) was given a 

compressed Gibbs Sampling technique by (J. Yin & Wang, 2016). The DMM is a probabilis t ic 

generative model for documents that can accurately and automatically infer the number of clusters. 

GSDMM can extract the key words for each cluster despite the sparse and high-dimensional nature 

of brief texts. But their method needs labeled data which is a time-consuming task compared to 

unsupervised clustering methods. To get the appropriate number of document clusters, a Dirichlet 

process mixture model-based clustering algorithm typically needs its parameters (i.e., α and β) 

tuned. Other authors (Dai, 2020) presented a deep embedded technique using an autoencoder of 

phrase distributed embedding for feature extraction and clustering allocation. They used BERT to 

execute vector conversion on-demand text. After BERT pre-training with an autoencoder is 

performed and they Finally used the self-training phase to improve clustering. But their 

experimental result showed that; it performs better for small datasets only.  

 

A two-stage clustering method was proposed by (Wang, 2016). The method they proposed used a 

sliding window that moved with the flow of short texts. A hierarchical clustering method was 

utilized within the sliding window, and a cluster merging method based on information gain was 

applied between the sliding windows. But their work highly depended on user Dictionaries and 

network words. another work. (Yang, 2019)For short text clustering, the authors introduced the 

topic representative term discovery (TRTD) method. By utilizing the proximity and relevance of 

phrases, they discovered groupings of strongly tied-up topics representative terms using the TRTD 

approach. The relevance of the topic representative words is measured by their global term 

occurrences throughout the entire short text corpus, and the proximity of the topic representative 
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terms is determined by their interdependent co-occurrence. But the co-occurrence of words in the 

short text is low and they didn’t put the method used to handle this issue. 

 

Another author (Caiyan, 2018) developed a concept decomposition approach that detects semantic 

word communities using a weighted word co-occurrence network gathered from a short text corpus 

or a subset thereof to produce concept vectors. They employed the k-rank-D k-means-type 

technique to extract community centers from the word co-occurrence network while identifying 

semantic word communities. They used Knowledge based document similarity calculation which 

was called WorldCom; so, for their proposed work additional external documents are needed and 

they still use high-dimensional text representations, which causes a waste of space and expensive 

computations. 

 

STCC (Short Text Clustering using Convolutional Neural Networks), without needing any 

external tags/labels was proposed by (Jiaming, 2015). Word embeddings were researched and fed 

into convolutional neural networks, with the output units fitting the pre-trained binary code during 

the training phase, to develop deep feature representations. After acquiring the learned 

representations, they clustered them using K-means. However, it overlooks the various ways that 

textual material contributes to clustering and only collects semantic information from the word 

context, not from any other unsupervised features (Smalheiser, 2019). 

 

The authors used Laplacian Eigenmaps (LE), a dimensionality reduction technique, to find the 

many similarity information from the original data set and try to reduce the distance between 

comparable short phrases. They used similar data that LE had retrieved to direct CNN's training. 

LDA and Topic2Vec then use the brief text data to create the topic's semantic characteristics. To 

train the short text representations, the CNN model concatenates word embeddings with associated 

topic semantic characteristics. On the final representations, the K-means algorithm is used to 

execute clustering, and the effectiveness of the clustering is assessed using the metrics accuracy 

and normalized mutual information (Chen, 2019). The iterative classification was suggested to 

improve the clustering quality by (Rakib, 2017). Iterative classification uses outlier removal to 

produce outlier- free clusters from the clustering of brief texts produced by any clustering 

algorithm. Then, based on the cluster distributions of the non-outliers, it trains a classifica t ion 
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algorithm. Iterative classification reclassifies the outliers using the training classification model to 

provide a fresh set of clusters. Repeating this a few times allows them to get a much better 

clustering of texts. Create the initial clusters using dense and sparse similarity matrices, k-means, 

and hierarchical clustering. However, because of the lengthy calculation time needed to execute 

the combination of those methods iteratively, this strategy is difficult to apply to huge datasets. 

 

Another work used topic modeling to discover latent/hidden topics from a collection of Amharic 

short texts through machine learning. They investigated the LDA method approach to cluster short 

Amharic texts with and without word embedding as feature extraction and they accurately extract 

latent topics. they used Skip-gram Word2vec for word representation and Spherical K-means for 

clustering short texts (Assefa, 2020). Even though LDA has been extensively used for normal text 

documents, their suggested method did not take word semantic similarity into account. However, 

for reliable determination, these techniques often need at least a few hundred words. Furthermo re, 

these techniques ignore the word context and just use latent subject information. These techniques 

disregard the texts' word order information. 
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CHAPTER THREE 

METHODOLOGY 

 

3.1 Introduction 

 

This chapter explains a research methodology to build a dataset, design, and implementation of 

topic clustering on Amharic comments to achieve research objectives and answer the research 

question. The proposed research passed through phases; data collection, preprocessing, text 

representations, text similarity calculation, text clustering, and evaluation. The first phase of this 

work was collecting comments on Amharic news which contains different topics like sports, 

entertainment, health, politics, and science and technology. After those datasets were collected, 

the second task was text preprocessing, since the proposed model is unsupervised learning, there 

were no data annotation processes. So, text preprocessing was the second step. The preprocessing 

starts by tokenizing the sentence into separate tokens. Splitting the text into a set of tokens is 

referred to as tokenization (usually words). This procedure determines where a written text's 

borders are. The Amharic language uses several punctuation marks which demarcate words in a 

stream of characters which include. After the individual tokens/terms are identified, stop-word 

removal will be done to remove non-concept bearing terms from the sentence. Once non-concept 

bearing terms are removed morphological analysis will be used to extract the stem of a word that  

will have prefix, suffix, and infix derivations. 

 

 Document representations of short Amharic texts were the third step. For the proposed work, 

BERT has been used as a word embedding tool. But no BERT is pre-train by Amharic languages. 

So, we have used a cross-lingual transfer learning approach for contextual sentence embedding of 

Amharic comments. After short texts are represented in vector form the fourth phase was document 

similarity calculation to group short texts based on their contextual similarity. And then finally 

documents were clustered based on their topic category.  

 

The experiments were conducted by comparing the two models in terms of clustering results and 

time complexity to cluster an equal number of datasets. And, we have conducted experiments by 
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using different hyperparameter values for both clustering algorithms. We conducted experiments 

on different hyperparameters to select the best fit hyperparameter for mini-batch K-means and 

fuzzy c-means. We used an equal number of datasets for both algorithms and the experimenta l 

results were compared against running time complexity and clustering quality. The experimenta l 

results were evaluated in terms of different clustering evaluation metrics. In general, using the 

preprocessed dataset the actual detection of Mode was developed and evaluated. 

 

For the proposed research we employed an experimental research approach. The use of 

experimental research methodology allows researchers to examine and comprehend the effects of 

various variables on the research methods used to arrive at a solution. Different factors are 

modified in this research process to see how they affect other variables. Datasets, experimenta l 

settings, and model hyperparameters are the variables in this study (Maxion, 2009). These 

variables are modified in our research work to see how they affect the outcome. Experimenta l 

research methodology, in general, aids us in measuring and analyzing the impact of factors on our 

research. 

 

3.2  Dataset Collection 

      

The dataset for the proposed work was collected and prepared by crawling comments from 

different news agencies' websites. We have used a Facebook comment extractor, and Twitter API 

for collecting comments from Facebook and Twitter respectively. All comments on a Facebook 

page can be exported to a CSV/Excel file using the Facebook Comment Extractor / Scraper 

Software Tool. We easily collected Amharic comments on Facebook Page postings, filtered them, 

and exported them to a file using Facebook Comment Extractor. Twitter API enabled us 

programmatic access to Twitter in unique and advanced ways. 

 

The main data sources of this thesis were Fana Broadcasting Corporation, Walta TV, Ethiopian 

Broadcasting corporation, EBS, ARTS TV, Amhara TV, Balageru TV, and Addis TV. In general, 

comments were collected from all Amharic news agencies’ websites which are available now. We 

collected comments from the Facebook, Twitter, and Instagram pages of those news agencies.  The 
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collected comments were 7000 in number and clustered into five categories. Those categories were 

selected by analyzing comments manually.  

 

3.3  Development Tool 

 

For implementation and data analysis, we have used the Python programming language. The 

general-purpose programming language Python is incredibly abstract. Code readability is given 

top attention, and there is a lot of indentation used. Programmers may write clear, logical code for 

both small and large projects with the aid of its language features and object-oriented methodology. 

Python is intended to be a simple programming language. In comparison to other languages, it 

contains fewer syntactical structures. Python has a lot of NLP packages, plus it's a powerful text 

processor. Python is an extremely abstract general-purpose programming language. Python was 

chosen throughout the development process of our research because it has a robust standard library, 

multiple open-source frameworks and tools, and code that is understandable and manageable 

(Interviewbit, 2022). Different python software Numpy, pandas, and matplotlib were used to 

analyze and tabulate the created model results. Transformers are used to import BERT Model for 

word embedding. And by receiving inputs as a multi-dimensional array called Tensor, TensorFlow 

allowed us to create dataflow graphs and structures to define how data goes through a graph.  

 

Numpy: Numpy is an acronym for "Numerical Python" or "Numeric Python," and it is a Python 

package. We may perform rapid mathematical operations on arrays and matrices with this Python 

library. By offering arrays and matrices as representations of a dataset, Numpy completes the 

Python Machine Learning ecosystem together with other Machine Learning modules like sklearn, 

Pandas, Matplotlib, TensorFlow, and others. To represent our text collection numerically for this 

work, we used Numpy. 

 

Pandas: Like Numpy, Pandas is one of the most widely used Python libraries for NLP studies. It 

provides user-friendly data analysis tools and high-performance structures. In contrast to the 

Numpy library, which offers objects for multi-dimensional arrays, Pandas provides an in-memory 

2D table object called Dataframe. It has column and row labels, just like a spreadsheet. In this 

study, we loaded and worked with our dataset using these Python packages. 
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Matplotlib: Matplotlib, together with its Numpy numerical mathematics library, is a visual charting 

library for the Python programming language. Various outcomes are plotted using this during the 

model's training. It is employed in the Python programming environment to display various graphs. 

Plotting the training and validation losses and accuracies was done using this library. 

 

Different applications are available for source coding, writing, and running the code such as 

PyCharm, Jupiter Notebook,  Python Anywhere, and others. Python Anywhere has a solid track 

record of meeting SDLC requirements from beginning to end. With the help of this PaaS (Platform 

as a Service), you may create, launch, and host Python applications online.  As an IDE, PyCharm 

provides user-friendly auto-completion, suggestions, PEP8 checks, and other tools that improve 

code quality. Among other capabilities, you may count on it for clever automatic code rewriting, 

testing support, and code inspections (SIYAL, 2022). We used Jupiter Notebook for source coding, 

writing, and running the code. Jupiter Notebook was a free and open-source web application that 

lets us create and share documents with live code, equations, visualizations, and narrative text. 

And it is very simple to use and understand its usage than the other tools.  

 

3.4 The architecture of Topic clustering on Amharic Comments 

 

A conceptual model called system architecture outlines the viewpoints, organization, and behavior 

of the system. A system architecture is a representation and description of how a system works 

and interacts with other system components, to put it another way. The entire system is made up 

of components and subsystems that work together to create the system that was intended to be in 

the first place. When we talk about system components, we are talking about the hardware and 

software that make up the system, as well as their interaction and data transmission and production.  

The system architecture diagram is a diagrammatic representation of the system architecture. This 

graphic shows the parts of the system and how they work together to make the system work 

(Geeksforgeeks, 2021a). 

 

The general architecture of topic clustering on Amharic comments using BERT embedding and 

partitioning-based algorithms is shown in Figure 1 below. The general architecture contains five 

https://keras.io/
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components that are preprocessing, word embedding, text similarity calculation, applying 

clustering algorithms, and finally Evaluating the clustering algorithms based on the result. The 

preprocessing component contains; tokenization, normalization, stopword removal, stemming, and 

lemmatization. Following this, a transfer learning-based technique known as contextual word 

embedding employing BERT (Bidirectional Encoder Representations from Transformers) was 

used. By using those vectorized sentences; similarity calculation was conducted using cosine 

similarity metrics. Finally, train and build clustering models using mini-batch k-means and fuzzy 

k-means clustering algorithms. And the last was to test the model using evaluation metrics. The 

main aim of this work was to cluster Amharic comments to their belonging topics. 

 

 

 

 

Figure 2 Architecture of Amharic Comments Topic clustering 

 

3.4.1 Text Preprocessing 

 

The preprocessing starts by tokenizing the sentence into separate tokens. After the individua l 

tokens/terms are identified, stop-word removal will be done to remove non-concept bearing terms 
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from the sentence. Once non-concept bearing terms are removed morphological analysis will be 

used to extract the stem of a word that will have prefix, suffix, and infix derivations.  

 

Tokenization 

 

The first step of preprocessing is tokenization. In Amharic, a sentence separated is with another 

sentence by space (ክፍትቦታ) and ends with a አራት ነጥብ (።). Splitting the text into a set of tokens is 

referred to as tokenization (usually words). This procedure determines where a written text's 

borders are. The Amharic language uses several punctuation marks which demarcate words in a 

stream of characters which include (፤ድርብሰረዝ) deribsereze’ (፣ነጠላሰረዝ), netelaserez‟ (!ቃልአጋኖ), 

exclamation mark and (?ጥያቄምልክት) question mark. 

 

 

 

Figure 3: Tokenization algorithm 
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Normalization  

 

There are homophone characters in the Amharic writing system, which means that letters with the 

same sound have different symbols for example; commonly, the characters ስ and ሥ are used 

interchangeably as ስራ and ሥራ to mean “work”. This increases the number of features that will be 

extracted without providing any benefits. Another example is the use of the characters, where there 

is no set rule on whether to use or and people frequently do. In these pre-processing subtasks, a 

character normalization script was developed by designing a common representation character list. 

All ‘ha’ sound varieties have changed to ‘ሀ’ type representation, ‘se’ varieties have changed to 

‘ሠ‘type representation, ‘we’ varieties have changed to ‘ወ’ type representation, ‘a’ varieties have 

changed to ‘አ‘ type representation and ‘te’ varieties have changed to ‘ፀ’ type representation. The 

normalization algorithm normalizes Amharic characters with the same sound and different 

representations into a common representation. The normalization algorithm is presented in Figure 

4. 

 

 

Figure 4  Normalization algorithm 
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Stopword Removal 

 

Stop words are words that show up most frequently in sentences but don't contribute to 

categorizing feelings. The stop words in Amharic are unique, much like in other languages. The 

most frequently used stop-words in Amharic documents are ‟ሆ”, ‟ሁሉ”, ‟ነው”, and ‟ነበር”, and 

others like ‟እና”, ‟ ወይም”, ‟ ውስጥ”,‟ ላይ”. There are many available packages like NLTK for High 

resourced languages to remove stop words without requiring a list of stopwords but in the case of 

low-resourced languages like Amharic, no model were developed yet. So, a list of stop words 

should be identified and listed. Each language possesses its list of stopwords that can be adjusted 

according to the problem and having these we have prepared an Amharic stopword list by 

compiling from different sources like papers done on Amharic language (MULUGETA, 2021). 

The algorithm is presented in Figure 5. 

 

 

Figure 5: Stop-word removal Algorithm 
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Stemming 

 

The pre-processing subtask deals with the handling (elimination) of affixes from a word to extract 

the stem of a word are stemming. Stemming is a crucial preprocessing subtask that gets rid of 

suffixes and prefixes of a word while keeping its root, also called the "stem". In this work, we have 

constructed a list of Amharic language suffixes and prefixes by collecting from different sources 

like Amharic books and research papers done on this language (MULUGETA, 2021). 

 

Stemming eliminates all word variations by using only the word's single stem. Among the 

variations that will be stemmed are plurals, ing-forms, third-person suffixes, past-tense suffixes, 

etc. For Amharic languages steaming is removing suffix, infix, and prefixes, such as “ዎች”፣”ኣችን”፣

”ኦች”፣”ከ”፣”ን”፣”በ”፣”ስለ”፣”ከ”…Amharic is a morphologically rich language which requires good 

work for handling its morphologies. 

 

 

 

Figure 6 prefix Removal algorithm 
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Figure 7 suffix removal algorithm 

 

3.4.2 Semantic Word Representation 

 

Due to the sparse, high-dimensional, and noisy characteristics of a short text corpus, effective 

representation learning is essential for short text clustering. Words with a common context 

(semantic similarity) are mapped next to one another in the latent space with similar embeddings, 

which depicts the spatial position of the word along with the word vector (Waiyamai, 2020).  

 

There are many word embedding techniques like bag-of-words, Term frequency- inverse document 

frequency, Word2Vec, Glove, FastText, and the like. Bag-of-words and Term frequency- inverse 

document frequency cannot capture semantics or the relation of words therefore they are not 

appropriate for semantic word representation. For each word, the Word2Vec embedding approach 

only offers a single, independent embedding vector. Since the representation is only kept as a single 

vector per word. This restricts the ability to understand a word's meaning across two contexts.  

GloVe utilizes the standard word-like tokens. It prevents out-of-vocabulary tokens but splits 



47 
 

completely unfamiliar words into characters. Glove and Word2vec are word-based models, which 

means that they use words as input and produce word embeddings. Additionally, they are unable 

to encode words that are unfamiliar or uncommon. Because word embedding models do not 

consider the sequence in which words appear, the syntactic and semantic meaning of the sentence 

is lost. 

 

Recently, there has been a lot of discussion on the Bidirectional Encoder Representations fro m 

Transformers (BERT) paradigm in the fields of machine learning and natural language processing. 

The model architecture of BERT is substantially different from the methods mentioned above and 

cannot be compared. Based on the placement of a word in a phrase or sentence, BERT creates a 

vector for that word. With the help of a transformer, an attention mechanism that can understand 

the relationships between words in context, it learns how to represent text (or sub-words). The 

context will determine which word embeddings BERT can understand. Particularly, word 

embedding differs if the word has several meanings in various phrases (Kenton, 2019; Yang, 

2019). The current input sentence affects the contextual word vectors that BERT produces. A word 

could theoretically have an endless number of vectors because of the words that are present around 

it in the input text. The weights available from one or more of the 12 levels can be used by the 

BERT model to derive not only word representations but also representations of sentences (Ankiit, 

2020). 

 

With more condensed, low-dimensional, and continuous elements added by BERT, the 

expressiveness of brief text representations has significantly increased. For the proposed work, 

BERT has been used as a word embedding tool. But no BERT is pre-train by Amharic languages.  

So, we have used a cross-lingual transfer learning approach for contextual sentence embedding of 

Amharic comments. 

 

3.4.2.1 Cross-Lingual Contextual Word Embedding   

 

Contextual word embeddings reflect a word utilizing its context, in contrast to word embeddings. 

It is possible to learn a model using supervised data in one language and utilize it for a range of 

tasks in another without any explicit cross-lingual signal. Surprisingly, the cross-lingual transfer 
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is successfully made possible by multilingual language models like XLM, mBERT, and XLM-R. 

Masked language modeling (MLM) and Translation Language Modeling (TLM) are used to train 

XLM. Keep in mind that TLM needs a dataset of parallel sentences, which may be challenging to 

obtain (Reimers, 2019).  

 

RoBERTa is available in multiple languages as XLM-RoBERTa. Its pre-training data includes 2.5 

TB of filtered Common-Crawl data with 100 languages. It was specifically pretrained using 

Masked Language Modeling (MLM). The model receives a sentence as input, randomly selects 

15% of the words, and then processes the entire masked sentence to determine which words were 

masks. The model acquires an internal representation of 100 languages from which it can derive 

features useful for further tasks (Conneau, 2019; Ruder, 2019). XLM-RoBERTa requires 

additional GPU memory space than BERT models. In addition, researchers proved that mBERT 

showed very impressive performance for cross-lingual transfer learning in different downstream 

tasks which are competitive performance with XLM-R. And also improving the inference speed 

taken by XLM-R for cross-lingual transfer learning without performance degradation (András, 

2021; Ruder, 2019; Wu, 2022). So, we used mBERT for the cross-lingual contextual embedding 

of Amharic comments. 

 

For the cross-lingual transfer learning, we have prepared translated dataset which contains both 

English and Amharic translations. This is used to train and test the BERT model. We have 

developed the cross-lingual contextual word embedding model by using sentence transformer 

SBERT as the teacher model and mBERT from the transformer as the student model. The reason 

behind combining those models was to take the advantage of each model. Directly Appling 

mBERT for the cross-lingual contextual embedding of Amharic comments were costly related to 

time and space usage than sentence transformer models. This is due to the mBERT having a 

tokenization step before embedding words to vector forms and this creates complexity when the 

number of datasets is high. On the other hand, directly using SBERT for the Amharic dataset was 

not possible because it trained only English languages and needs parallel data for cross-lingua l 

transfer learning. 
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The solution for this was making mBERT directly encode the dataset by eliminating this step using 

SBERT as a teacher model. SBERT is a sentence transformer model which is developed for 

extracting features purposes only without any tokenization process. So, combining those models 

allow us to create a model which has cross-lingual contextual embedding ability and can directly 

extract features from the dataset. We used “bert-base-nli-stsb-mean-tokens” from the sentence 

transformer as a teacher model which is developed as a feature extraction model and pretrained on 

English languages only. It can be used for tasks like clustering or semantic search because it maps 

sentences and paragraphs to a 768-dimensional dense vector space (Reimers, 2019).  

 

The student model was “bert-base-multilingual-uncased”. BERT multilingual base model 

(uncased) model that has been pre-trained using masked language modeling (MLM) targets the 

top 102 languages with the biggest Wikipedia. This model is uncased and it does not make a 

difference between capital and small latter of the same word. In the training set, the model learns 

an internal representation of the languages that can be used to extract features for subsequent tasks. 

It was pretrained with two goals, to be more precise. Masked language modeling (MLM): the 

model must predict the words that are hidden by randomly masking 15% of the input words in a 

sentence before running the complete sentence through the model. Next sentence prediction (NSP): 

During pretraining, the model concatenates two masked sentences as inputs. They occasionally 

match sentences that were next to one another in the original text, and sometimes they do not. The 

model must then determine whether the two sentences followed one another (Kenton, 2019; Lee, 

2018). 

 

The concept was we initially used sentence transformer BERT to generate sentence embeddings 

in English sentences, which we refer to as the Teacher model. Then, for the Amharic language, we 

have developed a second model called Student, which attempts to emulate the Teacher model. To 

put it another way, the original English sentence was trained in the Student model to produce a 

vector that is identical to that of the Teacher model. Following training, the Student model was 

capable of encoding sentences in both English and the Amharic language. 
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3.4.3 Text similarity calculation 

 

The goal of the short text similarity (STS) measurement is to assess how similar two pairs of short 

texts are to one another. The similarity should be studied not only from a lexical standpoint, which 

only looks at character sequences but also from a semantic standpoint. For the proposed, work we 

have used String-based similarity calculation. BERT is the basis for choosing this approach. In 

word embedding, BERT can learn the contextual relationships between words (or sub-words).  As 

a result, the contextual issue was resolved, and words are embedded based on their context rather 

than cooccurrence. It also enables the use of String-based similarity calculation, which compares 

sentences based on the character or string sequence used to construct them. This method's 

primary benefit is that it does not primarily depend on a language and does not use an external 

semantic net or corpus to calculate similarity. The semantic similarities are usually language and 

domain-dependent, so they do not apply to all languages for different country languages (Elton, 

2022). In chapter two, the formula for calculating the cosine similarity between two vectors was 

described. 

 

3.4.4 Clustering Algorithms 

 

As discussed in chapter two different short text topic clustering techniques are available, such as 

density-based clustering, hierarchical clustering, partitioning clustering, topic modeling, and 

others. The density-Based Clustering method has a high running time because of its non-linear 

temporal complexity (Waiyamai, 2020). The drawback of density-based Clustering is that it is 

susceptible to the selection of epsilon and minimum points, especially if clusters have various 

densities. Sparser clusters will be noise if eps are set to too low. Denser clusters may be combined 

if eps are too large. This suggests that a single eps value might not be enough if there are clusters 

with variable local densities. This method may identify any cluster shape, whether it be spherical 

or arbitrary. However, certain data points will be identified as noise and not assigned to any clusters 

to ensure cluster completeness (Lasek, 2019). Regardless of whether a cluster is spherical or 

random in shape, this approach may identify it. To guarantee cluster completeness, some data 

points will be labeled as noise and not allocated to any clusters (Amandeep Kaur Mann, 2013). 

Topic modeling requires very appropriate preprocessing to perform best and the additiona l 
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contextual document is required after terms are selected by topic modeling techniques like LDA 

for short text clustering (Pascual, 2019).  

 

Partitioning-based clustering is more desirable because it has lower time complexity than the other 

approaches. The main drawback of this clustering algorithm it requires prior specification of many 

clusters. A prominent and commonly used distance-based partitioning clustering method is K-

means clustering, particularly for text document clustering (Niraj N Kasliwal, 2012). In terms of 

cluster shape, partitioning clustering produces spherical shapes of clusters while density-based 

and hierarchical clustering produces all cluster shapes. Density-based clustering can identify 

the noise in a data collection, which excludes some documents from any cluster in terms of 

cluster completeness. All documents that are part of a cluster are determined using a 

partitioning clustering technique since it does not identify any noise. In terms of time 

complexity, partitioning clustering is linearly faster than density- and hierarchically-based 

clustering. 

 

For the proposed work partitioning clustering approach specifically, mini-batch k-means and 

fuzzy k-means clustering algorithm (also called fuzzy c-means) was tested and the one 

performing well was selected.  K-means is very good for cluster completeness, ensuring that 

every text document is assigned to a cluster (Tapas Kanungo, 2022). In addition, k-means 

require lower complexity time, it is simple to use, and have less-complicated parameter settings 

(Waiyamai, 2020). K-means computation time grows with the size of the datasets being researched 

because it needs to store the complete dataset in the main memory. Consequently, many methods 

for decreasing the algorithm's time and space cost have been put forth. The Mini batch K-means 

algorithm is another method. When utilizing fuzzy clustering, sometimes referred to as soft 

clustering or soft k-means, each data point might belong to multiple groups. Through the use of 

similarity metrics, clusters are found. There are three similarity metrics: proximity, connectedness, 

and intensity (Subas, 2022). The main factors considered for choosing clustering algorithms in this 

study are the ability to handle large-dimension data, cluster shape, cluster completeness, and low 

time complexity. 
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Mini Batch K-means algorithm 

 

The Mini-batch K-means clustering algorithm is a machine learning variation of the traditiona l 

K-means technique. It gathers a random sample of the data to update the clusters after each 

iteration and maintains the data in memory in brief, random, fixed-size batches. When working 

with huge datasets, it performs better than the standard K-means algorithm because it does not 

cycle through the entire dataset. On each cycle, it creates random batches of data to be stored in 

memory before gathering a random batch to update the clusters. The Mini-batch K-means 

algorithm's main advantage is that it reduces the computational cost of cluster find ing 

(KHARWAL, 2021). 

 

The main goal of the Mini Batch K-means method is to temporarily store small random batches of 

data. The clusters are updated using a fresh random sample from the dataset at the beginning of 

each iteration, and this procedure is continued until convergence. Each mini-batch uses a convex 

combination of prototype values and data to update the clusters, with the learning rate decreasing 

as the number of iterations rises. The learning rate is equal to the inverse of the number of data 

assigned to a cluster during the procedure. Convergence can be seen when there are no changes in 

the clusters for several iterations in a row since the impact of incoming data decreases as the 

number of iterations grows. The technique uses tiny, randomly chosen batches of the dataset for 

each iteration. Each piece of data in the batch is categorized into one of the clusters based on the 

centroids' prior placements. The cluster centroids' coordinates are then changed using the fresh 

points from the batch. The update is made via gradient descent, which is much faster than a batch 

K-Means update (Geeksforgeeks, 2021b). 

 

Fuzzy K-Means Clustering  

 

The Fuzzy K-means clustering algorithm is another partition clustering algorithm that was 

proposed for this study. Fuzzy K-Means clustering, also known as Fuzzy C-Means clustering, is a 

variant of K-Means clustering. The Fuzzy K-means clustering algorithm uses several points that 

are exclusively part of one cluster. The algorithm Fuzzy K-Means is identical to K-means, a 

popular simple clustering algorithm. The only difference is that instead of assigning a point to one 
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cluster exclusively, it may have fuzziness or overlap between two or more clusters (Edureka, 

2019). The following are the salient features of fuzzy k-means: 

➢ One point in a soft cluster may be a member of several clusters, each of which has a 

different affinity value. 

➢ The affinity is proportional to the separation between that point and the cluster centroid. 

➢ Select the number of clusters. 

➢ Assign each point's coefficient at random to create the first k clusters. 

➢ Continue doing this until the algorithm converges. 

 

3.4.5 Clustering Performance Evaluation 

 

The final stage of this research was assessing the developed model's performance. Using the 

Adjusted Rand Index, homogeneity-score, Completeness, V-measure, Silhouette Coefficient, and 

Adjusted Mutual Information, we evaluated the clustering quality of the proposed work. If only 

data points from the same class are present in each cluster of clustering, the clustering is 

homogenous. The clustering algorithm's ability to satisfy a critical requirement—that only samples 

from one class should be in a cluster—can be assessed using this score. Low numbers between 0 

and 1 suggest low homogeneity. Completeness is the primary idea, and we check to see if each 

class label's data point is in the same cluster. The completeness score ranges from 0.0 to 1.0, with 

1 denoting entirely comprehensive labeling. The second metric for evaluation is perfect clustering 

would receive a score of 1, while poor clustering or independent clustering would receive a score 

of 0 or lower, according to the adjusted Rand Index. The silhouette coefficient varies from -1 to 1, 

with 1 indicating distinct clusters that are widely separated apart. Zero indicates that clusters are 

unrelated, or that the distance between clusters is not significant, and -1 indicates that clusters were 

incorrectly assigned (Geeksforgeeks, 2019; Tutorialspoint, 2019). 
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CHAPTER FOUR 

EXPERIMENTATION, RESULT, AND DISCUSSION  
 

4.1  Introduction 

 

In this chapter, we have presented the dataset used, the algorithm we have experimented with, the 

experimentation setups, and the results of the experiments done. We have collected a total of 704 

KB Dataset. Among these datasets, 37.5 KB was Translated Dataset and 664 KB was Amharic 

comments. Bidirectional Encoder Representations from Transformers (BERT) from hugging face 

are used for contextual word embeddings with a selected hyper-parameter (train-batch-size, max-

seq-length, learning rate, epoch, etc.). Mini-batch K-means clustering with a selected hyper-

parameter (init, number of clusters, random-state, maximum-iteration, etc.) and fuzzy c-means 

used as a clustering algorithm. 

 

4.2 Experimentation Setup 

 

4.2.1 Dataset Description and Distribution 

 

The dataset we used for model development contains a total of 704 KB size. Among those datasets, 

37.5 KB are Translated Dataset which contains pairs of English and Amharic sentences for transfer 

learning approach and 664 KB are Amharic comments to news for topic clustering. There is 

typically no separation of training and test data in cluster analysis. We cannot "train" when 

performing cluster analysis without labels. Train-test splitting, a machine learning technique, is 

used to prevent overfitting in training. However, there is no overfit if the algorithms are not 

learning labels. 

 

4.2.2 Environment and hyper-parameter Setups 

 

We have done our experimentation by setting environmental and hyper-parameter setups.  We 

have used an HP laptop with Intel(R) Core (TM) i5-4300M CPU@ 2.60GHz 2601 MHz processor 

and 4GB RAM specification. For evaluating BERT, we have used the hyper-parameter shown in 
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Table 1. for mini-batch k-means we have used the hyper-parameter shown in Table 2. The result 

of each experiment was documented in the appendix.  

 

Table 1 Hyper-parameter setups for BERT embedding. 

  

No. Hyper-parameter Setup 1 

(Experiment 1) 

1 maximum sequence _length 512 

2 Batch-size 16 

3 epochs 5 

4 Learning-rate 3e-5 

  

The above hyper-parameters are selected for experimentation after trying many setups and the best 

setup which performs well was selected as our model hyper-parameter. We have developed the 

models using the hyper-parameter setups and the result that we are presented is based on these 

setups. During testing, we discovered that changing the hyperparameter values improves the 

model's performance.  

 

The maximum sequence length determines the input's maximum token length. The input tokens 

are padded or shortened depending on their value. we can decide its value based on the end task. 

We know that BERT has a max length limit of tokens is 512, so we use this max length limit for 

our transfer learning model because the translation dataset contains Amharic comments with their 

translation in English makes some lines of comments to have long-sized tokens.  

 

The number of samples processed before the model is updated is referred to as the train batch size. 

The batch size is always a multiple of two, for example, 16, 32, 64,128, 512, 1024, or 2048. 

Because there are 12 layers in the BERT and each word is encoded into a floating-point vector 

with a size of 768, we must take maximum-sequence- length into account when determining the 

train batch size. The data might not fit into GPU RAM with batch size 32 if the maximum 512 

lengths are utilized. Next, a decrease to 16 is mandatory. When the maximum length is 128 or 256, 

32 is a decent choice (Devlin, 2019). So, we used batch size 16 because we used maximum-
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sequence-length 512 and this intermediate batch size 16 makes the proposed transfer learning 

model perform well.  

 

The epoch specifies how many times we want to pass the entire dataset. Its value should be more 

than one. Too small epochs make the proposed model not learn the training dataset enough and 

too large epochs make the model overlearn. Both cases reduced the accuracy of the model. The 

BERT paper suggests a few heuristics for fine-tuning BERT and they suggest that Epochs from 2 

to 5 are enough for BERT embedding (McCormick, 2019; Swatimeena, 2020). We set epochs to 

5 to allow the BERT model to learn the training dataset accurately.  

 

The BERT model pre-training itself used a higher learning rate. So, we should avoid using a 

learning rate that is either too high or too low. The literature demonstrates that for BERT to 

overcome the catastrophic forgetting issue, a lower learning rate, such as 2e-5, is required. The 

training set is unable to converge with an aggressive learning rate of 4e-4 (Devlin, 2019)(Devlin, 

2019). The tendency of an artificial neural network to entirely and abruptly lose previously learned 

information upon acquiring new information is known as catastrophic interference, sometimes 

known as catastrophic forgetting (Zuhua Dai, 2020). We used learning rate 3e-5 which is an 

intermediate learning rate between lower and aggressive learning rates. 

 

Table 2: Hyper-parameter setups for mini-batch K-Means  

 

No. Hyper-parameter  Setup 1 
(Experiment 1) 

1 Number of Clusters 5 

2 Random-State 64 

3 Batch-Size 64 

4 Maximum-Iteration 300 

5 Reassignment-Ratio 0.01 

6 Max-no improvement 10 

   

The first parameter for mini-batch k-means is the number of clusters. We have considered two 

methods to determine the cluster numbers. The first was manually analyze our dataset and we  
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decide that the number of clusters is 5. Secondly, we experimented with the Silhouette coeffic ient 

value of the model by using different cluster numbers (2,3,4,5,6,7, and 8) and the 

optimal Silhouette value is obtained when K = 5. So, our model's cluster number is five. The 

results of the experiment were documented in Appendix D.   

 

The other hyperparameter Random state is useful if we want to reproduce exact clusters repeatedly. 

We can set it to any number and we want to see the changes. We decide to use 32 because we 

conducted experiments on three different values (0, 32, 64) of random-state and the model’s 

performance is high at value 32. The results of the experiment were documented in appendix D. 

We used the Maximum number of iterations of the mini-batch k-means algorithm for a single run 

of 300 because we conducted experiments on values (100, 300, and 1000) of a maximum number 

of iterations and the results showed that there is no any variation on the results of those three 

experiments. And this is an intermediate value that is not a too low or high maximum number of 

iterations. 

 

Table 3:  Hyper-parameter setups for Fuzzy C-Means  
 

No. Hyper-parameter  Setup 1 

(Experiment 1) 

1 Number of Clusters 5 

2 Random-State 32 

3 Fuzzifier 2 

4 Maximum-Iteration 300 

5                          Metric Cosine similarity 

 

We conducted experiments on different batch-size values (32,64,128 and 256) and we observed in 

practice that when using a small and a larger batch there is no difference in the quality of the model 

instead there is a slight difference in the execution time. The small batch size has less execution 

time than the large batch size. So, we take batch-size 64 for the model. Reassignment-Ra tio 

controls the percentage of the total counts that may be used to reassign a center. The model will 

take longer to converge but should converge in a better clustering if the value is bigger because it 

makes low count centers easier to reassign. Convergence, however, could result from an excessive 
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value. Therefore, we used the default value of reassignment-ratio 0.01, which improves the 

performance of the model. Early termination under the maximum-no improvement control is based 

on the number of mini-batches that have been run in a row without improving the smoothed inertia. 

We used the default value 10 because of the mini-batch size was set to 64. 

 

We set the same number of clusters and Random-state value for Fuzzy C-means with mini-batch 

k-means because we conducted experiments on a different number of clusters (2,3,4,5,6 and 7) for 

determining an optimal number of clusters. The Maximum-Iteration set to 300 because we 

conducted experiments on 100, 300, and 1000 maximum iteration values. The results were low at 

100 and show the same value starting from 300 with a high score. So, we can set any value starting 

from 300 and greater.  

 

We have two parameters, μ_ij, and c_i, as well as one hyperparameter, m, in the Fuzzy c-means 

(FCM) clustering algorithm. The membership value, or μ_ij, is the likelihood that the jth data point 

is a member of the ith cluster, and it is confined to the condition that the total of μ_ij over C cluster 

centers is 1 for every data point j. (the same dimension as X). In addition, the fuzzifier, abbreviated 

as m, determines how fuzzy the cluster boundary should be. Fuzzifier is a parameter that has a 

significant impact on the performance of the FCM. It is a scalar parameter used to define the degree 

of fuzziness in the fuzzy algorithm. If m = 1, the objective function, which sums the distances 

between the data points and the cluster centers probability-weighted, is. It denotes that closer data 

points near cluster centers will have larger weights (Yufeng, 2021). When we set fuzzifier value 1 

it works like k-means which is a hard-clustering method that assigns data points to one cluster and 

when we set it to a higher number it leads to all data points belonging to all clusters numbers 

(Schwämmle, 2016; Zhou, 2019). So, we start our experiment by setting the values of the Fuzzifier 

starting from 1.1 up to 2.  And our model achieves a high score value when the Fuzzifier value is 

set to 2 and the result were documented in Appendix E.  
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4.2.3 Experimental Setup  

 

The experiments were carried out by comparing the two models in terms of clustering results and 

time complexity to cluster an equal number of datasets. And, we have conducted experiments by 

using different hyperparameter values for both clustering algorithms. We conducted experiments 

on different clusters, batch-size, and maximum iteration hyperparameters to select the best fit 

hyperparameter for mini-batch K-means. Different values of fuzzifier, number of clusters, and 

maximum iteration were the experimentation variable for fuzzy c-means. We used an equal 

number of datasets for both algorithms. The experimental results were compared against running 

time complexity and clustering quality. The experimental results were evaluated in terms of 

Homogeneity-score, Completeness-score, V-measure, Adjusted Rand Index, Adjusted-mutua l 

information, and Silhouette Coefficient.  

 

4.3. Experimentation Result of Amharic Comments Clustering Model 

 

In this sub-section, we have presented an experimental evaluation of our two models. The first 

model was using BERT embedding and mini-batch K-means clustering algorithms. The second 

was BERT embedding and fuzzy c means clustering algorithms. We have evaluated the two 

models using the same hyper-parameter discussed in the experimentation setup section and the 

performance of each model is presented below.  

 

Experimental Results of BERT Embedding with Mini-Batch K-Means Clustering 

Algorithms  

 

We have conducted a total of 18 experiments on the first model by using different hyperparameters 

values of min-batch k-means. The first experiment was conducted by using different values of 

cluster-number or K-value (2,3,4,5,6,7) and the experiment result shows that the model performs 

best at cluster number 5. For the second experiment, we used different batch-size values and the 

model performs best at batch-size 64. The third experiment was conducted by considering different 

maximum iteration numbers and we observed that maximum iteration numbers didn’t influence 

the results of the model. The fourth experiment was by using different random-state values and the 

model performs best at random state value 32. Based on the experimental results of those 
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hyperparameters we select setups that are listed in Table 2 for conducting experiments on the first 

model (BERT embedding with mini-batch k-means algorithms). Table 4 below shows the 

performance of the model in this hyperparameter setup for clustering Amharic comments to news. 

We have calculated the Homogeneity-score, Completeness, V-measure, Adjusted Rand Index, 

Adjusted Mutual Information and Silhouette Coefficient of the model are presented in table 4.  

 

Table 4:  Experimentation Results of BERT embedding and Mini-Batch K-Means Model  
 

 

As we can see in Table 4, we can observe that the clustering evaluation of the models reaches a 

score value 1.0 of for Homogeneity-score, Completeness-score, V-measure, Adjusted Rand Index, 

and Adjusted-mutual information. Hyperparameter configurations from Table 2 were used in the 

experiment. Because the homogeneity score is confined between 0 and 1, high values imply strong 

homogeneity and low values that are close to 0 suggest less homogeneity, models with 

homogeneity scores that reach 1.0 indicate that a cluster contains only data from a single class. 

Completeness is the primary idea, and we check to see if the data points for each class label are in 

the same cluster. The completeness score ranges from 0.0 to 1.0, with 1 denoting entirely 

comprehensive labeling. So, the model shows perfect completeness labeling on the experiment 

because its value reaches 1. The other evaluation metric Adjusted Rand Index indicates perfect 

clustering would be scored 1 and bad clustering or independent clustering is scored 0 or negative. 

So, the model's ARI values reach one during the experiment, which shows the model perfectly 

clusters to their group. The value of the silhouette coefficient ranges from -1 to 1. One indicates 

that clusters are distinct and spaced widely apart. Assigning clusters incorrectly results in a score 

of -1, while zero indicates that clusters are indifferent or that the distance between clusters is not 

Evaluation metrics Experiment 1 

Homogeneity-score 1.0 

Completeness-score 1.0 

V-measure 1.0 

Adjusted Rand Index 1.0 

Adjusted-mutual information 1.0 

Silhouette Coefficient 0.998 
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relevant. So, the clustering models have a value of Silhouette Coefficient 0.997 which indicates 

clusters are well apart from each other in the conducted experiment.  

 

 

 

Figure 8: Evaluation Results of Mini-Batch K-Means model  
 

Figure 10 shows the experimental results of the experiments on different evaluation metrics. We 

can observe the model reaches the top score value on those evaluation metrics and there is not that 

much variation in the results of those metrics this indicates that the hyperparameter setup for the 

experiment is the best match to the proposed problem and the dataset used. So, we can conclude 

that the experimentation setup is the best match to the proposed problem and the dataset used.  

 

We also conducted experiments on different hyperparameter setups. Table 5 below shows the 

evaluation of the mini-batch K-Means model for different numbers of clusters (k-value). The 

experiment results show the perfect cluster number for the given dataset is 5 because the model 

has a high value of V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhoue tte 

Coefficient at k value 5 than the other cluster numbers. 
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Table 5  Mini-Batch K-Means Model Evaluation Results for Different Cluster Numbers  

 

 

As we can see from Table 5, we can observe that the model’s performance is very low at cluster 

number 2, very high at cluster number 5, and start decreasing from cluster number 6. Adjusted 

Rand Index indicates perfect clustering would be scored 1 and bad clustering or 

independent clustering is scored 0 or negative. So, the model's ARI value reaches 1.0 on cluster 

number 5 and this shows the model perfectly clusters at K value five than other cluster numbers. 

The value of the silhouette coefficient ranges from -1 to 1. And 1 indicates that clusters are distinct 

and spaced widely apart. Clusters are either indifferent or the distance between them is not relevant 

if the value is 0. Clusters are incorrectly assigned if the value is -1. The silhouette coeffic ient 

reaches 0.998 at cluster number five, which indicates clusters are well apart from each other 

because of this number near number 1.  Figure 11 below shows the plot of results of mini-batch k-

means with a different number of clusters. 

 

Evaluation metrics K= 2 K= 3 K=4 K=5 K=6 K=7 

V-measure 0.592 0.823 0.947 1.0 0.936 0.896 

Adjusted Rand Index 0.4.03 0.717 0.922 1.0 0.883 0.810 

Adjusted-mutual information 0.592 0.823 0.947 1.0 0.936 0.895 

Silhouette Coefficient 0.705 0.761 0.934 0.998 0.863 0.774 
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Figure 9 Results of Mini-Batch K-means with Different Number of Clusters. 

 

Figure 9 shows the plot of the results of the first model with a different number of clusters. The 

experiment results show the perfect cluster number for the given dataset is 5 because the model 

has a high value of V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhoue tte 

Coefficient at k value 5 than the other cluster numbers. As we observed in figure 13 the clustering 

result starts increasing from cluster number up to cluster number 5, and the models have a high 

score value at cluster number 5. But starting from cluster number 6 it drops to 0.88 and 0.86 scores 

of Adjusted Rand Index and Silhouette Coefficient value. And, at cluster number 7 the evaluation 

score value drops highly. So, we can conclude that the optimal cluster number for the given dataset 

and Fuzzy C-Means Model is cluster number 5. The five clusters predicted by mini-batch K-means 

algorithms contain different topic categories. The first cluster number “0” includes comments 

about entertainment, cluster number “1” includes comments about health, cluster number “2” 

includes comments about politics, cluster number “3” includes comments about science and 

technology, and cluster number “4” includes comments about sport. The screenshots of those 

results are documented in Appendix C.  
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Experimental Results of BERT with Fuzzy C-Means Clustering Algorithms  

 

Table 6 below shows the overall performance of the BERT and Fuzzy C-Means model to cluster 

a total of 7000 Amharic comments into five different clusters. We have calculated the 

Homogeneity-score, Completeness, V-measure, Adjusted Rand Index, Adjusted Mutual 

Information and Silhouette Coefficient of the model are presented in the table below. 

 

Table 6 BERT and fuzzy C-Means model testing performance for Amharic comments clustering 

 

 

As we can see in Table 6, we can observe that the clustering evaluation of the models reaches a 

score value 1.0 of for Homogeneity-score, Completeness-score, V-measure, Adjusted Rand Index, 

and Adjusted-mutual information. The experiment was conducted by using hyperparameter setups 

in Table 3. Models' homogeneity score reaches 1.0 which indicates a cluster contains only samples 

belonging to a single class because the homogeneity score is bounded between 0 and 1, with 

high values indicating high homogeneity and low value which is near 0 indicating less 

homogeneity. Checking if the data points for each class label are in the same cluster is the basic 

concept of completeness for each class label. The completeness score ranges from 0.0 to 1.0, with 

1 denoting entirely comprehensive labeling. So, the model shows perfect completeness labeling 

on the experiment because its value reaches 1. The other evaluation metric Adjusted Rand Index 

indicates perfect clustering would be scored 1 and bad clustering or independent clustering is 

scored 0 or negative. So, the model's ARI values reach one during the experiment, which shows 

the model perfectly clusters to their group. The value of the silhouette coefficient ranges from -1 

to 1. One indicates that clusters are distinct and spaced widely apart. Zero indicates that clusters 

are unrelated, or that the distance between clusters is not significant, and -1 indicates that the 

clusters were incorrectly assigned. So, the clustering models have a value of Silhouette Coeffic ient 

0.996 which indicates clusters are well apart from each other in the conducted experiment.  

Evaluation metrics Experiment 1 

Homogeneity _score 1.0 

Completeness 1.0 

V-measure 1.0 

Adjusted Rand Index 1.0 

Adjusted mutual information 1.0 

Silhouette Coefficient 0.996 
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Figure 10: Fuzzy C-means Model Evaluation Result for Three Experiments 

 

Figure 10 shows the experimental results of the experiments on different evaluation metrics. We 

can observe the model reaches the top score value on those evaluation metrics and there is not that 

much variation in the results of those metrics this indicates that the hyperparameter setup for the 

experiment is the best match to the proposed problem and the dataset used. So, we can conclude 

that the experimentation setup is best to match the proposed problem and the dataset used. 

 

We also conducted experiments on different hyperparameter setups. Table 7 below shows the 

evaluation of the Fuzzy C-Means model for different numbers of clusters. The experiment results 

show the perfect cluster number for the given dataset is 5 because the model has a high value of 

V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhouette Coefficient at 

cluster number 5. 
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Table 7  Fuzzy C-Means Model Evaluation Results for Different Cluster Numbers  

 

 

As we can see from Table 7, we can observe that the second model’s performance is very low at 

cluster number 2, very high at cluster number 5, and start decreasing from cluster number 6. 

Adjusted Rand Index indicates perfect clustering would be scored 1 and bad clustering or 

independent clustering is scored 0 or negative. So, the second model's ARI value reaches 1.0 on 

cluster number 5 and this shows the second model perfectly clusters at K value five more than 

other cluster numbers.  The value of the silhouette coefficient ranges from -1 to 1. One indicates 

that clusters are distinct and spaced widely apart. Zero indicates that clusters are unrelated, or that 

the distance between clusters is not significant, and -1 indicates that the clusters were incorrectly 

assigned. The silhouette coefficient reaches 0.996 at cluster number five, which indicates clusters 

are well apart from each other because of this number near number 1.   

 

Evaluation metrics  K= 2 K= 3 K=4 K=5 K=6 K=7 

V-measure 0.435 
 

0.578 
 

0.66 
 

1.0 0.678 
 

0.532 
 

Adjusted Rand Index  0.302 

 

0.457 

 

0.567 

 

1.0 0.611 

 

0.380 

 

Adjusted-mutual information  0.435 
 

0.578 
 

0.66 
 

1.0 0.67 
 

0.531 
 

Silhouette Coefficient 0.415 
 

0.152 
 

0.279 
 

0.996 
 

0.476 
 

0.041 
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Figure 11  Results of Fuzzy C-Means Model with Different Number of Clusters. 

 

Figure 11 shows the plot of the results of the second model with a different number of clusters. 

The experiment results show the perfect cluster number for the given dataset is 5 because the model 

has a high value of V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhoue tte 

Coefficient at k value 5 than the other cluster numbers. As we observed in figure 13 the clustering 

result starts increasing from cluster number up to cluster number 5, and the models have a high 

score value at cluster number 5. But starting from cluster number 6 it drops to 0.6 and 0.4 scores 

of Adjusted Rand Index and Silhouette Coefficient value. And, at cluster number 7 the evaluation 

score value drops highly. So, we can conclude that the optimal cluster number for the given dataset 

and Fuzzy C-Means Model is cluster number 5. 

 

4.4.  Comparison of the two models for Amharic Comment Clustering 

 

As shown in the above section, the result of each model has been studied in terms of the following 

evaluation metrics: 

➢ Homogeneity-score  

➢ Completeness  

➢ V-measure  

➢ Adjusted Rand Index  

➢ Adjusted Mutual Information 



68 
 

➢ Silhouette Coefficient 

We compare the two models using the score value of those evaluation metrics and run- time 

complexity for clustering an equal number of datasets. Figure 14 shows comparison results of the 

BERT embedding with mini-batch K-means and BERT embedding with fuzzy C-means in terms 

of the above-listed evaluation metrics. 

 

 

 

Figure 12  Comparison of the two models for Amharic Comment Clustering 

 

The evaluation result shows that BERT embedding with mini-batch K-means algorithms shows 

better performance than BERT embedding with fuzzy C-means in our experiments. Literature 

shows that the Adjusted Rand Index is considered clustering accuracy. And the ARI value of the 

first model were 100% and 100% for the second model. So, the two models are equal in terms of 

accuracy but in terms of Silhouette Coefficient The first model has a high value of 0.998 and the 

second model have 0.996. The run-time complexity of the fuzzy c-means model is higher than the 

mini-batch K-means for clustering the given dataset. So, we can conclude that BERT embedding 

with mini-batch K-means algorithms is more accurate than the fuzzy c-means model.  
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4.5. DISCUSSION 

 

For this research, we propose a Topic clustering model for Amharic comments on the news by 

experimenting with BERT embedding and two different clustering algorithms. We conducted 

experiments on the two models by selecting different hyperparameter setups to analyze the effect 

of the hyperparameter setups for selecting the best-performed model. We used the v-measure 

score, adjusted rand index, and Silhouette scores for measuring the performance of the model. The 

results of stopword elimination, normalization, and stemming have also been investigated. First, 

we conducted experiments without doing stopword elimination, normalization, and stemming 

separately and together. Then, we tried out stopword removal, normalization, and stemming. And 

we recognize that using the text preparation activities improves the effectiveness of the suggested 

work. 

 

We have experimented on BERT embedding using a cross-lingual transfer learning approach to 

improve the clustering accuracy of short Amharic texts. For cross-lingual transfer learning, we use 

a combination of SBERT and MBERT and the model can accurately embed Amharic comments 

contextually. The experiment result showed that contextualized embeddings can improve 

clustering accuracy. We proved this by comparing the experiment results with works of literature 

that used non-contextual word embedding techniques. For instance, our work improves literature 

work (Assefa, 2020). This work archived an accuracy of 90% to cluster short Amharic texts using 

the word2vec embedding technique and k-means clustering algorithms. We achieved 100% 

accuracy to cluster Amharic comments using BERT embedding and mini-batch k-means. We 

understand that contextualized word embedding can improve the clustering accuracy of Amharic 

short texts more than non-contextualized word embedding because the nature of short texts is very 

concise.  

 

We have done two experiments for the two models. The first used BERT embedding with mini-

batch k-means and the second model was using BERT embedding with fuzzy c-means. The first 

model shows better performance than the second model in terms of time and Silhouette score 

value. As we understand from our experimentation the value of the number of clusters has a high 

impact on the experimentation results of mini-batch k-means. But the value of batch size and 
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maximum iteration number does not have any impact on clustering results. For fuzzy c-means, the 

value of fuzzifier, maximum iteration number, and the number of clusters have a high impact on 

clustering results. When the value of the fuzzifier equals one, the fuzzy c-means works like a hard-

clustering method, and when its value gets too high all data points belong to all clusters. So, we 

understand that the fuzzifier value must be selected by considering the number of clusters and 

dataset size. And higher maximum iteration number improves the performance of fuzzy c-means.  

 

The fuzzy c-means-based models take much more time than mini-batch k-means to cluster 

Amharic comments to news. This is because it performs more work than K means, fuzzy-C means 

will typically run more slowly. With each cluster, each point is reviewed, and each evaluation 

involves more processes. The mini-batch k-means have less computation time than k-means 

because it keeps data in memory in short, random, fixed-size batches, and then collects a random 

sample of the data to update the clusters with each iteration. It does not cycle over the complete 

dataset, it performs better than the usual K-means algorithm when working with large datasets. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 

In this thesis work, we have undertaken the clustering of Amharic comments to the news using the 

partitioning method specifically mini-batch K-Means and fuzzy c-means. For contextual sentence 

embedding, BERT was implemented. The main activity of this thesis work was to develop a model 

for Amharic comments clustering using BERT-based embedding and mini-batch K-Means and 

fuzzy C-means clustering. To accomplish the study activities like corpus preparation, 

preprocessing, design, implementation, and evaluation were done. The dataset preparation activity 

was performed crawl different local news websites and collecting different Amharic comments 

under different categories. After collecting the comments, the preprocessing module performs 

tokenization, stemming, normalization, stop word removal, and lemmatization on the corpus for 

better machine learning. For our experiment, we have identified an optimal number of cluster k to 

be five using different experiments. We have conducted the training experiment on a total of 7000 

short Amharic texts on different topics. 

 

We have evaluated the performance of two Amharic comments clustering models using the same 

evaluation metrics. i.e., V-measure, ARI, Adjusted Mutual Information, and Silhoue tte 

Coefficient. The evaluation result showed that BERT embedding with mini-batch K-means 

algorithms shows better performance than BERT embedding with fuzzy C-means in the 

experiments. Literature shows that the Adjusted Rand Index is considered clustering accuracy. 

And the ARI value for both models reaches 100% but the Silhouette Coefficient result of the first 

model was 99.8 % and 99.6 % for the second model. So, the first model is more accurate than the 

second model.  
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5.2 Contribution 

 

In this work, we have developed a Topic clustering model for Amharic comments on the news 

using BERT-based embeddings and partitioning clustering algorithms. This study's key 

contribution is:  

➢ We have prepared an Amharic comment dataset which can be an initial point for other 

researchers to study further. We have prepared 665KB Amharic comments and a 37.5KB 

Translation Dataset from English to Amharic.  

➢ We have developed a model that can cluster short Amharic texts into a different group 

based on the topic. Due to grammar, semantic, and morphology difference, the models 

proposed for another language cannot be used in the Amharic language and no prior work 

was conducted on clustering short Amharic texts, so we can conclude that the proposed 

model is our contribution.  

➢ This thesis work showed how effective are BERT models in contextually embedding 

Amharic comments.  

➢ This thesis work showed that a better conceptual feature extraction technique can improve 

the clustering accuracy.  

 

5.3 Recommendation 

 

BERT is a model from Hugging face that improves the clustering of texts by considering the 

context for sentence embedding. This work tried to address the clustering of short Amharic texts 

with BERT embeddings. But another research effort is needed to make unsupervised text 

clustering more accurate. 

➢ Extending this work by preparing enough datasets for Short Amharic text clustering. We 

have collected datasets on topics like health, politics, sport, entertainment, and technology 

news. As a result, we strongly recommend researchers include other additional topics. 

➢ Assessing BERT-based embedding with other types of clustering algorithms like 

Hierarchical, density-based, affinity propagation, and others to enhance the accuracy of the 

model. 
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➢ We recommend researchers extend the transfer learning we have developed to the number 

of different Ethiopian languages by preparing a new language dataset. 
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Some screenshots of preprocessing python codes  
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Appendix C 
 

A sample snapshot of clustering result of BERT with mini-batch K-Means model 
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Appendix D 
 

Experimental Results of BERT with mini-batch K-Means model for different number of Batch 

size  
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Appendix E 
 

Experimental Results of BERT with fuzzy C-Means model with different Fuzzifier 
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