
DSpace Institution

DSpace Repository http://dspace.org

Information Technology thesis

2022-08

TOPIC CLUSTERING ON AMHARIC

COMMENTS USING BERT

EMBEDDING AND PARTITIONING ALGORITHMS.

HAIMANOT, HAILU

http://ir.bdu.edu.et/handle/123456789/14784

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

MSc. Thesis On:

TOPIC CLUSTERING ON AMHARIC COMMENTS USING BERT

EMBEDDING AND PARTITIONING ALGORITHMS.

BY

HAIMANOT HAILU

August, 2022

 BAHIR DAR, ETHIOPIA

i

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

TOPIC CLUSTERING ON AMHARIC COMMENTS USING BERT EMBEDDING AND

PARTITIONING ALGORITHMS

BY

HAIMANOT HAILU

 A thesis submitted to the school of graduate studies of Bahir Dar Institute of

Technology, BDU in partial fulfillment of the requirement of the degree of Masters

in Information Technology in the Faculty of Computing.

ADVISER: DR. GEBEYEHU BELAY (ASSOCIATE PROFESSOR)

August, 2022

Bahir Dar, Ethiopia

 ©2022 HAIMANOT HAILU

ii

DECLARATION

This is to certify that the thesis entitled “Amharic Comments Topic Clustering Using Bert

Embedding and Partition Based Clustering Algorithms”, submitted in partial fulfillment of the

requirements for the degree of Master of Science in Information Technology under the Faculty of

Computing, Bahir Dar Institute of Technology is a record of original work carried out by me and

has never been submitted to this or any other institution to get any other degree or certificates. The

assistance and help I received during this investigation have been duly acknowledged.

iii

iv

ACKNOWLEDGMENT

First, I want to thank my GOD for his forgiveness and for always giving me new chances for

change. Secondly, I want to express my deepest thanks to my Advisor DR. GEBEYEHU BELAY

(ASSOCIATE PROFESSOR) for his time, comments, and support during this research. The third

is for my dear parents for their support throughout my life. finally, I want to thank my friends who

always help me with this work.

v

ABSTRACT

Topic clustering is one of the methods to organize comments posted on Online Media Service

(OMS) news. Online news such as social media news has many comments every day. However,

most comments are not well-organized to easily find relevant information on a specific topic. And

topic clustering for short text documents is a very challenging task, especially for comments that

are very concise and contain few words per document. In addition, the short text has the problems

of data sparsity and irregularity, and most words only appear once in a short text. To the best of

our knowledge, there is no work for clustering short Amharic comments. To address the

aforementioned problems, we have developed an Amharic comments topic clustering model using

contextual sentence representation and partition-based algorithms. This thesis aims to design and

develop a topic clustering model for Amharic comments on OMS news. We used BERT

(Bidirectional Encoder Representations from Transformers) models for contextual sentence

representation. The transfer learning method is used for sentence embedding of Amharic

comments using English BERT. Finally, we applied mini-batch k-means and Fuzzy c-means

clustering algorithms. We conducted experiments on the two models and the experiment results

show that BERT embedding with mini-batch K-means clustering algorithm and BERT with fuzzy

C-means clustering has equal values of 1.0 of the v-measure score, adjusted-rand-score, and

adjusted-mutual- information-score. But fuzzy C-means have a lower silhouette-score value of

0.996 than mini-batch K-means which have a 0.998 score value. Mini-batch K-means clustering

is more accurate and takes less time to compute. Fuzzy C-means clustering shows similar results

that are comparable to mini-batch K-means clustering, but it takes longer to compute. Therefore,

the mini-batch K-means clustering algorithm was found to be more appropriate to cluster Amharic

comments to news.

vi

TABLE OF CONTENTS

DECLARATION ... ii

ACKNOWLEDGMENT... iv

ABSTRACT...v

LIST OF FIGURES .. ix

LIST OF TABLES ...x

ABBREVIATIONS .. xi

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 Background of the study .. 1

1.2 Statement of the Problem ... 3

1.3 Objective .. 5

1.3.1 General objective .. 5

1.3.2 Specific objectives .. 5

1.4 Scope and Limitation of the Study ... 5

1.5 Significance of the Study ... 6

1.6 Organization of the Thesis ... 7

CHAPTER TWO .. 8

LITERATURE REVIEW ... 8

2.1 Text Clustering ... 8

2.2 Text Clustering Approaches ... 8

2.3 Algorithms for Word Embedding .. 10

2.3.1 Contextual Word Embeddings.. 14

2.3.1.1 Transfer Learning ... 15

2.3.1.2 Cross-lingual Contextual Word Embeddings ... 17

vii

2.4 Text Similarity Measurement Metrics.. 18

2.5 Text Clustering Algorithms.. 20

2.6 Clustering Evaluations Metrics .. 28

2.7 Amharic Language ... 31

2.7.1 Amharic Morphology ... 32

2.7.2 Amharic punctuation marks and numbers .. 32

2.8 Related works for short text clustering .. 33

CHAPTER THREE .. 37

METHODOLOGY.. 37

3.1 Introduction .. 37

3.2 Dataset Collection .. 38

3.3 Development Tool .. 39

3.4 The architecture of Topic clustering on Amharic Comments .. 40

3.4.1 Text Preprocessing.. 41

3.4.2 Semantic Word Representation .. 46

3.4.2.1 Cross-Lingual Contextual Word Embedding ... 47

3.4.3 Text similarity calculation .. 50

3.4.4 Clustering Algorithms .. 50

3.4.5 Clustering Performance Evaluation .. 53

CHAPTER FOUR... 54

EXPERIMENTATION, RESULT, AND DISCUSSION .. 54

4.1 Introduction .. 54

4.2 Experimentation Setup ... 54

4.2.1 Dataset Description and Distribution.. 54

4.2.2 Environment and hyper-parameter Setups.. 54

viii

4.2.3 Experimental Setup... 59

4.3. Experimentation Result of Amharic Comments Clustering Model 59

4.4. Comparison of the two models for Amharic Comment Clustering 67

4.5. DISCUSSION .. 69

CHAPTER FIVE .. 71

CONCLUSION AND RECOMMENDATION.. 71

5.1 Conclusion.. 71

5.2 Contribution ... 72

5.3 Recommendation.. 72

References ... 74

Appendix A ... 80

Appendix B ... 81

Appendix C ... 82

Appendix D ... 83

Appendix E ... 84

ix

LIST OF FIGURES

Figure 1 Process for K-means Algorithm ... 23

Figure 2 Architecture of Amharic Comments Topic clustering ... 41

Figure 3: Tokenization algorithm ... 42

Figure 4 Normalization algorithm ... 43

Figure 5: Stop-word removal Algorithm .. 44

Figure 6 prefix Removal algorithm... 45

Figure 7 suffix removal algorithm .. 46

Figure 8: Evaluation Results of Mini-Batch K-Means model .. 61

Figure 9 Results of Mini-Batch K-means with Different Number of Clusters. 63

Figure 10: Fuzzy C-means Model Evaluation Result for Three Experiments 65

Figure 11 Results of Fuzzy C-Means Model with Different Number of Clusters. 67

Figure 12 Comparison of the two models for Amharic Comment Clustering 68

x

LIST OF TABLES

Table 1 Hyper-parameter setups for BERT embedding. .. 55

Table 2: Hyper-parameter setups for mini-batch K-Means .. 56

Table 3: Hyper-parameter setups for Fuzzy C-Means ... 57

Table 4: Experimentation Results of BERT embedding and Mini-Batch K-Means Model 60

Table 5 Mini-Batch K-Means Model Evaluation Results for Different Cluster Numbers 62

Table 6 BERT and fuzzy C-Means model testing performance for Amharic comments clustering

... 64

Table 7 Fuzzy C-Means Model Evaluation Results for Different Cluster Numbers 66

xi

ABBREVIATIONS

➢ AMI…………………Adjusted Mutual Information

➢ ARI…………………..Adjusted Rand Index

➢ BERT………………… Bidirectional encoder representation from the transformer

➢ CBOW……………….,. Continuous Bag of words

➢ CLARA ……………..Clustering Large Applications

➢ CLTL ………………..Cross-lingual transfer learning

➢ CNN…………………Convolutional neural network

➢ DBSCAN……………Density-Based Spatial Clustering of Applications with Noise

➢ DMM………………..Dirichlet Multinomial Mixture

➢ EK……………………Encyclopedic Knowledge

➢ Eps……………………Epsilon

➢ GloVe…………………Global Vectors for word representation

➢ GSDMM………………Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture

model for short text clustering.

➢ HDBSCAN……………Hierarchical Density-Based Spatial Clustering of Applicat ions

with Noise

➢ IDF………………………. Inverse document frequency

➢ LDA…………………. Latent Dirichlet Allocation

➢ LE…………………… Laplacian Eigenmaps

➢ mBERT…………………… Multilingual BERT

➢ MCL…………………. Markov Clustering Algorithm

➢ ML …………………. Machine Learning

➢ NLP……………………. Natural language processing

➢ NMI………………Normalized Mutual Information

➢ OMS………………………. Online Media Service

➢ RoBERTa…………………. Robustly Optimized Bidirectional Encoder Representations

from transformers Pretraining Approach

➢ SBERT……………………. Sentence Bidirectional Encoder Representation from the

transformer

xii

➢ SIF………………………Smooth Inverse Frequency

➢ STCC……………………Short Text Clustering using Convolutional Neural Networks

➢ TF…………………. ……Term frequency

➢ TF-IDF…………………. Term frequency by Inverse document frequency

➢ TRTD ……………………Topic Representative Term Discovery

➢ TV………………………. Television

➢ VSM ………………………Vector Space Model

➢ XLM…………………… … Cross-Lingual Language Model

➢ XLM-R……………………. XLM-RoBERTa

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Web-based information on news is essential to address many users in a short period without

geographic barriers and computer network bandwidth load. News on websites has many comments

every day from users. The comments are vast in number including volumes and a quality of

information that is quite essential to various stakeholders in the media industry (Nunzio, 2016).

However, most comments are not well-organized to easily find relevant information on a specific

topic. Organizing these texts (e.g., grouping them by topic) is an important step toward discovering

trends (political, economic) in conversations and Data Mining /Machine Learning tasks. Clustering

the texts into groups in their similarity is the foundation for many of these organizational strategies

(Rakib, 2017).

Clustering is an unsupervised descriptive data mining technique that groups data instances into

clusters, with related examples grouped and unrelated instances grouped apart (Waiyamai, 2020).

It is essentially a grouping of items based on their similarity. Clustering is sometimes mistakenly

referred to as automatic classification; however, this is incorrect because clusters are unknown

before processing, whereas classes are predefined or well-known in classification. In contrast to

classification, where the classifier learns the relationship between objects and classes from a so-

called training set, cluster membership is guided by the distribution and nature of data (Assefa,

2020).

Short text clustering has become an increasingly significant task of Natural Language Processing

(NLP). The methods are particularly essential for grouping information retrieval results, primar ily

to disclose different meanings within groupings of results. Short text can be organized into

meaningful clusters (groups) by using various techniques and this facilitates the usage of short

texts in different application areas. Clustering is done utilizing short text data such as tweets,

Facebook comments, and various news feeds, among other things. Short text, as the name implies,

2

is a text that is only a few words long. for instance, a short text on Twitter is fewer than 140

characters long (Siddiqui & Aalam, 2019).

Small text is usually quite brief and contains few words per document. Problems with data

irregularity and sparsity are present in the short text, where most terms only occur once. And this

makes clustering of comments a very difficult operation. Text ambiguity and a lack of a substantia l

number of features in document vectors are the causes of short text clustering challenges. As a

result, the classical TF-IDF (term frequency- inverse document frequency) or bag-of-words leads

to sparse vector representations. Using vector space for high dimensional data results in sparsity

and results in a lot of computing and memory storage. And, other vector representations like

word2vec, GloVe, and fastText, are word-level vector representations that cannot disambiguate

the word senses based on the surrounding context and express all possible meanings of a word as

a single vector representation; these properties did not match with the nature of the short text. In

addition, directly applying normal text clustering methods may not work well when applied to

short texts (Dai, 2020).

Given the issues existing in short texts and traditional vector representation techniques. BERT

(Bidirectional Encoder Representations from Transformers) has significant advantages in feature

extraction. BERT a contextual word embedding is released in 2018 by a team at Google AI (Bao

et al., 2021; Kenton, 2019). BERT can understand different embeddings for identical words

according to the context. The word embedding differs if the word denotes several meanings in

various phrases (Hui Yin, 2022).

Clustering techniques have a high impact on the effectiveness of topic clustering and various

techniques have been proposed. Such as affinity propagation, density-based clustering,

hierarchical clustering, partitioning clustering, and topic modeling. Density-based A cluster in data

space is defined as a contiguous region of high point density that is isolated from other clusters by

contiguous regions of low point density. This is the foundational idea behind clustering.

Sometimes, data points in the low point density dividing regions are referred to as noise or outliers.

The disadvantage of density-based clustering is that, particularly if clusters have different

densities, it is vulnerable to the choice of epsilon and minimum points. If eps is set too low, sparser

3

clusters will be misinterpreted as noise. If eps are very big, denser clusters may be joined. This

implies that if there are clusters with varied local densities, a single eps value might not be

sufficient (Lasek, 2019). Clusters are produced in a hierarchical tree-like structure using

hierarchical clustering (also called a Dendrogram). This describes how a subset of linked data

is arranged into a tree-like structure, with the root node representing the entire data set and

branches going to other clusters. Since the similarity matrix must be saved in RAM, the

Hierarchical Clustering Technique requires a lot of space when there are many data points

(Team, 2020).

A common clustering technique is partitioning clustering, which divides a collection of N data

points into a set of k non-overlapping subsets (clusters), each of which only contains one data

point. For short texts, partitioning-based clustering is preferable because it is unaffected by

high dimensionality data and requires less time than other algorithms (Waiyamai, 2020). A

technique called topic modeling uses unsupervised machine learning to automatically cluster

word groupings that best describe a batch of papers by scanning them for word and phrase

patterns (Pascual, 2019).

The stimulation and promotion of real-world applications can be greatly increased by a well-

designed short text topic grouping technique. They include subject detection, answering service

recommendations, image or video tagging, and information retrieval. And it would be very helpful,

allowing users to get a broad view of the conversation and focus on areas of interest to themselves,

especially if high-quality and narrowly-focused topics were associated with the clusters, allowing

them to easily understand what the comments within a cluster were about.

1.2 Statement of the Problem

Short text, as the name implies, is a text that is only a few words long. for instance, a short text on

Twitter is fewer than 140 characters long (Siddiqui & Aalam, 2019). And microblogs, Tweets,

news headlines, comments, etc. are also short texts (Dai, 2020). Newly posted comments are

constantly published on users' timelines and it's difficult to find useful information from a huge

group of comments. So, clustering those constantly posted comments to their related topic is a

4

significant task. But no prior work was conducted to cluster Amharic comments to news. As a

result, to find the most fascinating information, stakeholders must go through all the newly posted

content. The task of clustering short texts is more difficult than long texts. This is because of

instantaneous features and briefness of the text brings sparsity, noise, and high dimensionalit ies

throughout the text analytics process. Short text clustering has issues due to text ambiguity and a

dearth of significant document vector properties. In addition, no prior work was conducted to

cluster Amharic comments to news and it's difficult to find useful information from a huge group

of Amharic comments.

Short text clustering is a difficult problem to solve using traditional methods. For instance, TF-

IDF has less significance, due to the lower number of words in a sentence compared to a paragraph.

If the frequency of each word in a sentence is one, the sentence is considered complete (because

the sentence is short with no repeating words). Sparsity is the effect of using vector space for high-

dimensional data. This results in a significant increase in computation and memory storage

requirements. When there is no contextual information and only a small number of words in the

content, it is challenging to achieve acceptable semantic comparisons because most words only

appear once in a short text.

Previously various short text clustering techniques have been proposed. The research which

focused on using topic modeling particularly LDA for short Amharic text topic clustering was

proposed by (Assefa, 2020). But it doesn’t perform well for short texts since these models suffer

from data sparsity when applied to short documents (estimating reliable word co-occurrence

statistics. Additionally, these techniques typically need at least a few hundred words to be precise.

Authors (Heu, 2018; Nunzio, 2016; Waiyamai, 2020; Wang, 2016) applied a method to expand

short texts to long texts by the use of external knowledge sources to solve the sparsity issue of

short texts. However, it has the following three drawbacks. The first is, that creating and

maintaining such resources may be highly costly. Second, this poses a new problem in terms of

determining how to best utilize those external resources. The third is the lack of those resources

for the Amharic language. In most circumstances, fixing this new difficulty is time-consuming and

5

difficult in and of itself. Another method (Jiaming, 2015) takes a lot of practice and fine-tuning of

various parameters and hyper-parameters.

Following the above paragraph, the research questions are summarized as follows.

➢ How effective are Cross-Lingual Transfer learning models for the contextual embedding

of Amharic comments?

➢ How to sequence BERT embeddings with partition-based Algorithms to enhance the

performance of the Amharic comments’ topic clustering?

➢ To what extent the proposed model enhances the performance of Amharic comments topic

clustering?

1.3 Objective

1.3.1 General objective

The general objective of this thesis is to design the Amharic comments topic clustering model

using BERT embedding and partition-based algorithms.

1.3.2 Specific objectives

➢ To augment BERT-based embeddings on short Amharic text vector representation using

online news comments.

➢ To sequence BERT-based embeddings with partition clustering Algorithms for an

enhancement of clustering performance and accuracy.

➢ To Test and Evaluate the proposed topic clustering model.

1.4 Scope and Limitation of the Study

Short texts include news headlines, comments, status updates, web page snippets, tweets,

question/answer pairs, etc. But the focus of this work is Amharic comments on the news only

6

because a vast number of comments are available freely and they are not in a well-organized

format. In this thesis, we collect text files only and cluster them into different categories based on

their semantic similarity.

Due to the time limit, the scope of this thesis work is limited to collecting Amharic comments on

the news only from Amharic news agencies' websites (i.e., Facebook, Twitter, Instagram). For this

research, we are not considering documents that are in an image, video, or audio format.

1.5 Significance of the Study

The most popular type of communication today is short text documents, particularly for user-

generated content on social media. The number of such documents increases together with the

popularity of social media use. Therefore, grouping those often-submitted comments by topic is a

challenging process. For example, it enables the extraction of knowledge from a mass of text data:

It is one of the most crucial text analysis approaches for drawing knowledge from the voluminous

text data available online, such as Facebook comments and tweets. Easy access to the numerous

topics discussed within a huge set of comments would benefit all user groups interested in online

news commenting. Real-world applications can all benefit from a well-designed short text topic

clustering method such as answering service recommendations, image or video tagging, and

information retrieval.

At the end of the study, Users, Journalists, and Editors can get the following benefit:

➢ For Users: it allows quickly understand what the comments within each cluster were about

and get a broad overview of the conversation and select sections of interest to them.

➢ Journalists and Editors: they would have access to several conversation topics sparked by

their article, allowing them to engage with their audience in a more concentrated manner .

They would be able to monitor the topics that are most interesting to readers or they can

easily identify which topic is mostly discuses by readers.

➢ Governments: keep the public informed and updated about the idea of people on important

issues and engage with an audience on a deeper level.

7

1.6 Organization of the Thesis

The remaining part of this thesis is presented as follows; Chapter two presents related works of

short text topic clustering and different text clustering approaches. Chapter three presents the

research methodology followed by development tools, data set collection, the architecture of the

proposed thesis, clustering algorithms, and performance evaluation metrics for evaluating the

performance of the clustering model. Chapter four presents the experimentation, results, and

discussion. This chapter includes dataset description, experimentation setups, the performance

result of the selected models with experiments, and discussion. Chapter five presents the

conclusion and future works of the proposed work. in the end, the references and appendix are

presented.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 Text Clustering

The goal of cluster analysis also referred to as clustering, is to group objects into clusters that are

more similar (in some ways) to those in other clusters (clusters). It is a common technique for

statistical data analysis used in many domains, including pattern recognition, image analysis,

information retrieval, bioinformatics, data compression, computer graphics, and machine learning,

and it is the main role of exploratory data analysis (Caiyan, 2018). Since it establishes the natural

grouping among the unlabeled data, clustering is important. For effective clustering, no conditions

must be met. The user oversees selecting the criteria they will utilize to meet their needs.

The method of creating groupings from unlabeled data is known as text clustering. The number of

cluster groups is typically predefined by the user in most clustering algorithms, however, in this

situation, the number of cluster groups must fluctuate dynamically. The main idea is that

documents can be quantitatively represented as feature vectors. One way to compare text similar ity

is by measuring the distance between these feature vectors. Nearby objects ought to belong to the

same cluster. Things that are far apart ought to be arranged in different groups. Any text clustering

approach involves text pre-processing, feature extraction, and clustering (Wang, 2016).

➢ Text pre-processing: Information can be obscured by the noise of text, which might include

stop words, inflections, and sparse representations. Once the dataset has been pre-

processed, handling it is simpler.

➢ Feature extraction: For extracting vector representations from textual data.

➢ Clustering: grouping of distinct text documents using the features produced.

2.2 Text Clustering Approaches

Techniques for clustering can be divided into partition-based, hierarchical, density-based, and

grid-based algorithms. These approaches differ in how similarity is measured (both within and

9

between clusters), how thresholds are used to create clusters, how objects are clustered, whether

they allow objects to belong strictly to a single cluster, or whether they can belong to mult ip le

clusters to varying degrees and algorithmic structure. Regardless of the technique, the cluster

structure that is created is then used to assist in object retrieval or for user inspection (Suyal, 2016).

Clustering is divided into two groups: hard clustering and soft clustering, depending on whether

they let objects belong solely to one cluster or can belong to several clusters. Data objects are

grouped using a procedure called hard clustering, where each item is only assigned to one cluster.

For instance, we want the algorithm to examine every tweet and determine if it is positive or

negative. In hard clustering, each data point is a whole or partial member of a cluster. A popular

hard clustering technique called K-Means separates the data into K clusters, with each item only

belonging to one cluster. We do not always need a yes or no answer. On the other hand, soft

clustering is a method of grouping data items so that any item can reside in more than one cluster.

The process of arranging data objects into multiple clusters is known as soft clustering. One well-

known soft clustering approach is fuzzy C-means. FCM works by giving things probabilit ies,

which are essentially expressions of how strong the items in the cluster are (Malik, 2019; Sukemi,

2019).

Clustering approaches can be divided into document-based and keyword-based clustering. The

distinction lies in the features that were used to group the documents. The clusters created by

keyword-based clustering algorithms only choose specific document attributes and a small number

of them. Those few traits were chosen since they are the most important differences between the

documents. Similar documents have the same qualities. Choosing the most important feature is

thus a crucial stage in keyword-based clustering. The document vector space model is used to

apply document-based clustering methods, with each entry presenting the word weighting of a

term in the matched document. As a result, each term serves as an axis and each document is

represented as a data point in an extremely high-dimensional space. In this space, the distance

between points can be calculated and compared. It is essential to map the documents into the

correct space and employ the right distance computation algorithms because document-based

clustering is based on "document distance" (Assefa, 2020).

10

2.3 Algorithms for Word Embedding

The ultimate level of data for any machine learning or deep learning model must be in numerica l

form because models do not immediately comprehend a word or visual data like individuals do.

We need sophisticated ways in the NLP field to describe the conversion of text input into numerica l

data. Vectorization, also referred to as word embeddings in the NLP field, is a complex method of

converting text input into numerical data. Word embedding is a collective term for a variety of

language modeling and feature learning techniques used in natural language processing (NLP), in

which words or phrases from a lexicon are translated into real-number vectors. Using a real-valued

vector to capture the meaning of the word, word embedding is a technique for expressing words

in text analysis. Words that are near each other in the vector space are taken to have similar

meanings (Heidenreich, 2018; Waiyamai, 2020).

By converting words or phrases from a lexicon to real-number vectors using a variety of language

modeling and feature learning algorithms, word embeddings are produced. A multidimensiona l

space must be mathematically embedded into a continuous vector space with a much smaller

dimension. Then, several machine learning models are built using the numerical vectors. We

describe this as extracting features from text to create models for various natural languages and

processing. We can transform text data into numerical vectors in a variety of ways (Brownlee,

2019). The most popular word embedding methods to extract features from the text are Bag of

words, TF-IDF, Word2vec, Glove embedding, FastText, and the recent one BERT.

Bag of Words

The bag of words technique is simple to comprehend and use. Text classification and language

modeling are the two main applications of this technique. This approach has a simple notion behind

it. We'll use this strategy to turn sentences into vectors based on the frequency of terms that appear

in them. It is a format that counts how many times each word appears in arbitrary text to generate

fixed-length vectors. A bag of words functions as a baseline model and can thus be used to test the

findings and learn more about the data that is fed into the model. After that, deep learning

approaches can be pursued further. When the data is context specific, a bag of words can also be

11

used. The arrangement of the words in the sentence, as well as how the word is related to other

sentences, are not recorded in the bag of words. The bag of words is mostly determined by the

text's vocabulary. In this case, as the number of phrases grows, the vocabulary grows

exponentially, making the model complicated and both computations more difficult (Kabaap,

2019).

TF-IDF

The TF-IDF (term frequency- inverse document frequency) statistic assesses a word's significance

to a document within a group of documents. This is done by averaging two metrics—the frequency

with which a word appears in a document and its inverse document frequency—across a set of

documents (Heidenreich, 2018; H. Yin et al., 2021).

The TF*IDF logarithm is a calculation of the term frequency and inverse document frequency:

➢ TF: Term Frequency- this measures how frequently the term is used in a single document.

The higher the phrase frequency, the longer the document. The total number of terms in

the document is then split by this number.

TF = (Number of times the term appears in the document) / (Total number of words in the

document)

➢ IDF: Inverse Document Frequency - This metric assesses the significance of a phrase in

terms of its relevancy within the corpus. Stopwords such as "is," "of," and "the" are less

important because they appear often in all documents in the corpus. The IDF can be

calculated as follows:

IDF = (Total number of documents) / (total number of documents containing the keyword)

Word overlap is a key component of TF-IDF, yet it is uncommon in short text texts like this one.

So, TF-IDF is inappropriate. This method might produce a highly sparse document vector, which

would lead to subpar clustering outcomes and a lengthy runtime (Waiyamai, 2020).

Word2vec

12

A shallow neural network called Word2vec is trained using inputs that include each instance of a

target word and its neighbors. The embedding vector for the target word is then created using the

network weights between the input and hidden layer. Words are represented in vector space by

Word2vec. Words are represented as vectors, and placement is done so that ones with similar

meanings are grouped and different words are placed far apart. A semantic relationship is another

name for this. For each word, the Word2Vec embedding approach only offers a single, independent

embedding vector. Only ONE vector for each word is saved by Word2vec in the output model.

Word2vec is trained using contextual neighbors but used non-contextually for a downstream NLP

task. Since the representation is only kept as a single vector per word. This restricts the ability to

understand a word's meaning across two contexts (Ankiit, 2020).

Word2vec uses two architectures: Skip Gram and Continuous Bag of Words (CBOW). Continuous

Bag of Words (CBOW). CBOW is an algorithm that guesses a target word based on its

surrounding context. It tries to predict the output (target word) based on the words around it

(context words). CBOW is a word2vec version that predicts the center word from a set of context

words. CBOW would tell us the most likely word in the center based on all the words in the context

window (excluding the middle one)(Ezra, 2022; Shristikotaiah, 2020).

The skip-gram model trains a neural network to predict the probability of a word within a sentence

window, and the word embeddings are retrieved from the weights of the skip-gram model. The

main principle of the Skip-Gram model is that it selects each word from a large corpus (we'll call

it the focus word) and extracts the words that surround it within a specified "window" one at a time

to feed a neural network that, after training, predicts the likelihood for each word to appear in the

window around the focus word. Word embeddings are computed with the Skip-gram Word2Vec

architecture. Unlike CBow Word2Vec, Skip-gram Word2Vec predicts the surrounding words

using the central word. The CBOW model integrates the scattered representations of context to

predict the word in the middle (or surrounding words). On the other hand, the Skip-gram model

guesses the context using the input word's dispersed representation (Heidenreich, 2018;

Shristikotaiah, 2020). Both Word2Vec's predictive architectures fail to account for the global

context and ignore the fact that some context words occur more frequently than others.

13

GloVe

Global Vectors for Word Representation is known as GloVe. It is an unsupervised learning

technique created at Stanford University that tries to produce word embeddings by combining

global word co-occurrence matrices from a corpus. The GloVe word embedding's primary

objective is to use statistics to ascertain the link between the words. In contrast to the occurrence

matrix, the co-occurrence matrix provides information on the frequency of a certain word pair

occurring together. Each value in the co-occurrence matrix represents a pair of words that

frequently appear together. The GloVe is built using a matrix factorization technique and a word

context matrix. The process begins by creating a large matrix of (words x context) co-occurrence

data, in which each word is counted as having appeared in a certain context throughout a huge

corpus (Heidenreich, 2018).

Word-to-word cooccurrence statistics from the corpus are aggregated globally and used as training

data for the GloVe, a word vector representation technique. As a result, it comprehends word

representations and generates them based on context, just like word2vec. More successful than

learning the raw occurrence probability were learning ratios of these co-occurrence probabilit ies.

When storing the co-occurrence probability ratio between two words, GloVe Embeddings, a type

of word embedding, uses vector differences instead (Ezra, 2022).

FastText

Facebook AI research produced FastText, a vector representation approach. As the name implies,

it is a quick and efficient technique for performing the same operation, and because of the nature of

its training approach, it also learns the morphological details. FastText is unique in that it can

generate word vectors for unknown words as well as words from the lexicon. This is because it may

use the morphological characteristics of words to construct the word vector for an unknown word.

Since morphology pertains to the structure or syntax of words, FastText typically performs better

for these tasks while word2vec performs better for semantic tasks. FastText embeddings generate

word embeddings using subword information. Character n-gram representations are learned words

representation as the sum of the n-gram vectors. This adds subword information to the word2vec

14

type models. This aids in the understanding of suffixes and prefixes via the embeddings (Mohanty,

2019).

FastText employs n-gram letters as the smallest unit, whereas Word2Vec and GLOVE use each

word as the smallest unit to train on. The word vector "apple," for example, might be divided down

into individual word vector units. Because the n-gram character vectors are shared with other words,

FastText provides better word embeddings for rare words or even words that were not observed

during training. This is something that neither Word2Vec nor GLOVE can do (Heu, 2018).

Generally, skip-gram trains a log-bilinear model to predict words within a specific window size

using only the center word, whereas CBOW trains a similar model to predict the center word using

a bag of context words. With noisy contrastive estimation and negative sampling, skip-gram and

CBOW both approximate the word prediction softmax loss. Instead, Glove trains word

embeddings to forecast statistics on the worldwide co-occurrence of words. Word2Vec is

additionally improved by FastText by including subword data. Word embeddings, trained with

local co-occurrence signals independent of order, represent each word type with a single fixed -

dimensional vector due to efficiency considerations. Contextual word embeddings would

eventually be able to overcome these restrictions as the deep learning framework and computer

infrastructure advance.

2.3.1 Contextual Word Embeddings

Contextual word embeddings depict a word utilizing its context as processed by a deep neural

network, in contrast to word embeddings. In numerous downstream tasks, contextualized

representation beats stand-alone word embeddings, such as Word2Vec and Glove, with the same

task-specific design.

BERT

A machine learning method for pre-training in natural language processing developed by Google

is called BERT (Bidirectional Encoder Representations from Transformers) (NLP). BERT

15

embeddings are just vectors that represent a phrase's meaning; the vectors for similar-sound ing

words have nearer numbers. BERT's input embeddings are made up of three different embeddings .

Those are token embeddings, segment embeddings, and positional embeddings. The pre-trained

embeddings for various words are known as token embeddings. Segment embeddings are a vector's

encoded sentence number. And Position embeddings are the position of the word within that

sentence that is encoded into a vector (Kenton, 2019).

The majority of the aforementioned embedding techniques either represent words as singula r ly

indexed values (one-hot encoding) or, more usefully, as neural word embeddings, where

vocabulary words are matched to the fixed- length feature embeddings produced by Word2Vec

or FastText models. Compared to models like Word2Vec, BERT has an advantage since it

creates word representations that are dynamically influenced by the words surrounding them.

Under Word2Vec, GloVe, and FastText each word has a fixed representation regardless of the

context in which it appears. The context-informed word embeddings not only capture obvious

variations like polysemy, but also other types of information that lead to more accurate feature

representations and higher model performance (Ryan, 2019).

The BERT model has generated a buzz in the fields of natural language processing and machine

learning. A Transformer, an attention mechanism that can learn the contextual relationships

between words, is used to learn the text representation (or sub-words). According to the context,

BERT can interpret different embeddings for the same word. If a word has distinct meanings in

different phrases, the word embedding will be diverse as well. BERT has greatly improved the

expressiveness of short text representations with more condensed, low-dimensional, and

continuous features so, for the proposed work BERT was employed as a word embedding tool

using the Transfer learning approach (Reimers, 2019).

2.3.1.1 Transfer Learning

Transfer learning is the process of employing a model that has already been trained to solve a new

problem. It is presently particularly well-liked in deep learning because of its capacity to train deep

neural networks with fewer data. This is very helpful in the data science field because most real-

16

world scenarios frequently do not have millions of labeled data points to train such complex

models. Transfer learning's core principle is to apply what has been discovered in one activity to

improve generalization in another. We apply the weights that a network learns at "task A" to a new

"task B" (Donges, 2022).

The general concept is applying what a model has learned from one task with a lot of labeled

training data to another task with little to no training data. The process of transferring as much

knowledge as is practical from the task the model was trained on to the current task is known as

transfer learning. This knowledge may be expressed in a variety of ways, depending on the

situation and the available information. For instance, the construction of models may facilitate our

ability to identify new objects. The construction of machine learning models benefits greatly from

transfer learning. Transfer learning's primary advantages include resource savings and increased

effectiveness while developing new models. Additionally, since most of the models will have

already been trained, it can aid with model training when only unlabeled datasets are available

(Seldon, 2021). Transfer learning for machine learning has the following primary advantages:

➢ Removing the requirement for each new model to have a significant collection of labeled

training data.

➢ Enhancing the deployment and development of machine learning for a variety of models.

➢ A broader strategy for computer problem solving that uses many techniques to address new

problems.

➢ Instead of training in real-world settings, models can be trained in simulations

Cross-Lingual and Multilingual Transfer Learning

The cross-lingual transfer is the process of applying learning to solve problems in another

language, typically one with fewer resources, by using data and models accessible for one language

for which there are plenty of such resources (e.g., English). By using annotated data from other

languages, cross-lingual transfer learning (CLTL) enables the development of models for a target

language (source languages). Cross-lingual transfer learning seeks to transfer models and resources

from one language to another (Hassan, 2020).

17

A form of transfer learning called cross-lingual transfer learning has a different source and

destination domain. It tries to transmit knowledge from one language, which is typically referred

to as the source language, to another language, which is typically referred to as the target language.

Multiple source languages or multiple target languages are both possible. Any cross-lingual signal,

such as a bilingual dictionary or bitext, is further eliminated by a stronger assumption. The cross-

lingual transfer is predicated on a cross-lingual representation space, and the cross-lingual space's

quality, particularly for zero-shot transfer, is crucial. A single NLP system that supports several

languages is what multilingual NLP aims to create. The development of multilingual NLP benefits

from cross-lingual representation since it makes it easier to learn how to complete a particular task

(Wu, 2022).

2.3.1.2 Cross-lingual Contextual Word Embeddings

The evolution of cross-lingual representation learning is comparable to that of NLP representation

learning. Surprisingly, a cross-lingual transfer is successfully made possible by multilingua l

language models like XLM, mBERT, and XLM-R. It is possible to learn a model using supervised

data in one language and utilize it for a range of tasks in another without any explicit cross-lingua l

signal. Using concatenated Wikipedia data for 104 languages without any explicit cross-lingua l

signal, such as pairs of words, sentences, or pages related across languages, Multilingual BERT

(mBERT), a multilingual model offered by BERT, was pretrained (András, 2021; Wu, 2022).

The only difference between it and BERT's model architecture and training process is that it uses

data from Wikipedia in 104 languages. The WordPiece modeling approach used in mBERT

enables the model to share embeddings between languages. To account for the varying amounts

of Wikipedia training data in different languages, the training applies a heuristic to subsample or

oversample words when running WordPiece as well as sampling a training batch, random words

for cloze, and random sentences for next sentence classification (Moberg, 2020).

The Transformer-based model XLM is trained with the MLM (masked language modeling)

objective. XLM is also trained with a Translation Language Modeling (TLM) aim to make the

model acquire analogous representations for several languages. Simple input of the same sentence

18

in two distinct languages and standard token masking constitutes TLM. The model then has the

option of employing tokens from the other language to forecast a disguised token. XLM is trained

with both MLM and TLM, with MLM using Wikipedia data in the 15 languages and TLM using

various datasets based on language. Keep in mind that TLM needs a dataset of parallel sentences,

which may be challenging to obtain (Karthikeyan, 2019).

The most recent multilingual model is XLM-R, where the R stands for RoBERTa. By avoiding

the TLM target and stepping back from XLM, XLM-R merely trains RoBERTa on a sizable,

multilingual dataset. 2.5 TB of unlabeled text in 100 languages is extracted from CommonCrawl

databases. It was trained to utilize solely the MLM objective in a RoBERTa-style manner. The

vocabulary size is the only significant distinction from RoBERTa. Without considering scale

variation, the main difference between XLM and XLM-R is that XLM-R is entirely self-supervised

while XLM requires parallel examples, which might be challenging to obtain at a large enough

scale (Wu, 2022).

2.4 Text Similarity Measurement Metrics

Text similarity indicates how closely two text documents are related in terms of context or

meaning. Distance metrics are the most prevalent techniques for determining word similar ity.

While there is a section called Document Similarity that searches for similarities between

sentences or paragraphs of text. A distance with dimensions that represent the attributes of the data

object serves as the similarity measure in a dataset. If the distance is little, there will be a high

degree of similarity; but, if the distance is vast, there will be a low degree of similarity. There is

various text similarity metrics exist such as Cosine similarity, Euclidean distance, and Jaccard

Similarity. Each of these metrics has a definition that quantifies how similar two searches are to

one another (Wibisono, 2021).

Cosine Similarity

Cosine similarity is used to compare two vectors in an inner product space. By measuring the

cosine of the angle between two vectors, it can tell if they are generally pointing in the same

https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1907.11692

19

direction. Through text analysis, document similarity is frequently evaluated. A similarity metric

called cosine similarity can be used to compare texts or, for instance, to order items according to

a vector of search terms. A dataset's data objects are treated as a vector for cosine similar ity

calculations (Ma, 2018). The following is the formula to determine the cosine similarity between

two vectors (Elton, 2022).

Cos (x, y) =
. Y

|| || * ||Y||

X

X
 (2.1)

Were,

• x. y = product (dot) of the vector’s ‘x’ and ‘y’.

• ||x|| and ||y|| = length of the two vectors ‘x’ and ‘y’.

• ||x|| * ||y|| = cross product of the two vectors ‘x’ and ‘y’.

The two comparable data objects are separated by the Euclidean distance due to their sizes, but

they could have a lower angle between them if they share a cosine similarity. Angle decreases

with increasing similarity (Saini, 2021).

Euclidian distance

In Mathematics, the Euclidian distance or Euclidean Metric represents the length of a line segment

between two locations that can be determined using the Pythagorean Theorem. As a result, words

are used to express these points in NLP. By calculating the distance between two objects, Euclidean

distance determines their similarity(Ma, 2018). Euclidean distance is the foundation of many

similarities and dissimilarity measurements. The distance between vectors X and Y is defined as

follows (Ojha, 2020):

 () ()
2

0

,
n

i

D X Y i iX Y
=

= − (2.2)

In other terms, Euclidean distance is the square root of the total of the squared differences between

comparable elements of two vectors. It's worth noting that the formula takes the values of X and

20

Y very seriously, with no scale adjustments. Only data measured on the same scale are suitable for

Euclidean distance (Ojha, 2020).

2.5 Text Clustering Algorithms

Generally, Short text topic clustering techniques clustering can be classified into affinity

propagation, density-based clustering, hierarchical clustering, partitioning clustering, and topic

modeling (Waiyamai, 2020).

Density-Based Clustering

Density-Based Clustering is a type of unsupervised learning that is commonly employed in model

construction and machine learning techniques. Noise is defined as data points in a region separated

by two clusters of low point density (javatpoint, 2022). Data is organized into regions with high

data point densities that are surrounded by regions with low densities in density-based clustering.

The program finds regions with a lot of data points and labels those regions as clusters. The clusters

can take any shape, which is a nice feature of this. Expected circumstances are not a restriction on

you. And outliers are disregarded since the clustering algorithms of this type don't attempt to group

outliers with clusters.

Density-based spatial clustering of applications with noise (DBSCAN) is one of the most well-

known and commonly used density-based clustering approaches, particularly for text document

clustering. DBSCAN requires two basic inputs to execute clustering: the radius Epsilon (Eps) and

the minimum points (Mints). The procedure starts with an arbitrary point p and uses the two input

values to get all neighbor points that are density-reachable from point p (within distance Eps) and

have not yet been visited. Clusters are regions of densely arranged objects that are separated by

low-density or noisy zones. When the number of neighbors of point p is more than or equal to

MinPts, a cluster of tightly connected points is produced. The starting point p is tagged as visited

and added to this cluster alongside its neighbors. This technique is repeated for all of point p's

neighbors recursively. If the number of neighbors of point p is less than MinPts, the point is classed

as noise. DBSCAN will recognize some data points as noise and not assign them to any cluster for

21

cluster completeness. Because of the non-linear time complexity of this technique, it takes a long

time to run (Waiyamai, 2020).

Another form of density-based clustering approach is self-adjusting or hierarchical density-based

spatial clustering of applications with noise (HDBSCAN). By transforming DBSCAN into a

hierarchical clustering algorithm and then employing a method to extract a flat clustering based on

the stability of clusters, it expands on DBSCAN. To separate clusters of varied densities from

sparser noise, numerous distances are used. Because HDBSCAN is the most data-pushed

clustering approach, it requires the least customer input (Berba, 2020).

Hierarchical-based clustering

Hierarchical-based clustering is a clustering approach that creates a tree-like structure from a

layered sequence of divisions. Usually, hierarchical groups are depicted using the hierarchical tree

known as a dendrogram. Everything is arranged top-down by creating a tree of clusters. It seeks

to identify natural grouping based on the data's properties. Building a hierarchy is the first step in

the hierarchical clustering algorithm's quest to identify nested groups of the data. It resembles the

biological taxonomy used to classify plant and animal kingdoms. Typically, hierarchical-based

clustering is applied to hierarchical data, such as that found in taxonomies or enterprise databases.

Although it is more restrictive than the other clustering types, this is ideal for certain classes of

data sets. There are two types of hierarchical clustering algorithms: Divisive and Agglomera t ive

(McGregor, 2020).

Divisive which is a top-down method evaluates the complete set of data as one group at first before

breaking it down into smaller groups iteratively. When the desired number of clusters is reached,

division ceases if the number of a hierarchical clustering technique is known. Otherwise, the

process comes to a stop when it can no longer divide the data, so the subgroup that is produced by

the current iteration is identical to the one that was produced by the previous iteration (one can

also consider that the division stops when each data point is a cluster). Agglomerative is a bottom-

up strategy that depends on cluster fusion. In the beginning, the data is separated into m singleton

clusters, where m is the total number of samples or data points. The number of clusters in each

22

iteration decreases as two clusters are iteratively combined into one. The cluster-merging process

is complete when every cluster has been merged into one or when the desired number of clusters

has been attained (Pedamkar, 2022).

CHAMELEON a revolutionary agglomerative hierarchical clustering technique or strategy for

dealing with sparsity was proposed in 1999. In contrast to earlier agglomerative hierarchica l

clustering methods, CHAMELEON is a new clustering technique. It utilizes a sparse K-nearest

neighbor graph, where nodes stand in for data items and weighted edges denote similarit ies

between those data items. CHAMELEON uses a specific method known as the "two-phase

algorithm" to create clusters from the data set. In the first phase, the K-nearest neighbor graph is

subjected to a graph partitioning algorithm to cluster data items into several small sub-clusters. By

continually merging these sub-clusters, an algorithm is utilized in the second step to find real

clusters. CHAMELEON employs interconnectedness and closeness to determine the clusters'

similarity in this two-phase process (Waiyamai, 2020).

Partitioning-based clustering

A typical method of clustering called partitioning divides a set of N data points into k non-

overlapping clusters, with each data point belonging to exactly one cluster. This clustering

technique categorizes the data into several groups based on their characteristics and similarit ies.

The data analysts specify how many clusters must be created to complete the clustering procedures.

The partitioning method separates the data into user-specified (K) divisions when a database (D)

contains multiple(N) items, with each partition standing for a cluster and a region. Partitioning

methods cover a wide range of algorithms, but some of the more well-known ones are K-Mean,

PAM (K-Mediods), CLARA algorithm (Clustering Large Applications), etc. (Geeksforgeeks,

2020). Problems with text representations of brief text documents, which usually have large

dimensions, do not respond well to density-based and hierarchical clustering techniques (Berba,

2020). On the other hand, partitioning clustering is unaffected by the high dimensionality of short

texts (Waiyamai, 2020).

23

K-means clustering

One of the most well-known and often applied distance-based partitioning clustering algorithms

is K-means clustering, notably for text document clustering. The K-means clustering algorithm

requires many clusters to operate. The technique begins by selecting k arbitrary points at random

to serve as cluster centers (centroids) for k clusters (Waiyamai, 2020). It separates things into

several groupings, or clusters, to make objects within a cluster as similar as possible—that is, with

a high intra-class similarity—and as different from one another as possible (i.e., low inter-class

similarity). The mean of the points assigned to each cluster serves as the centroid, or center, of

each cluster in k-means clustering. The primary tenet of k-means clustering is to minimize total

intra-cluster variance, also known as total within-cluster variation while defining clusters. The

process for K-means Algorithm is presented in figure 1 (Anand, 2020).

Figure 1 Process for K-means Algorithm

Steps involved in K-Means Clustering:

Step 1: Choosing the number of clusters (k) that will be created in the result is the first stage in

using k-means clustering.

Step 2: The technique randomly selects k items from the data set as the initial cluster centers. Other

terms for the selected objects include centroids or a cluster.

Step 3: The centroid closest to each of the remaining items is then selected; the centroid closest to

an object is determined by its Euclidean distance from the cluster mean. We refer to this stage as

"the cluster assignment step".

24

Step 4: Following the assignment phase, the algorithm determines the new mean value for each

cluster. The cluster "centroid upgrade" refers to this phase. Once the centers have been recalculated,

each observation is reexamined to see if it might be closer to a different cluster. The objects are

again distributed using the updated cluster means.

Step 5: The cluster assignment and centroid update stages are iteratively repeated until the cluster

assignments stop changing (i.e until convergence is achieved). In other words, the clusters produced

in this iteration are exact replicas of the ones obtained in the prior iteration.

Pros of K-means algorithm

➢ Simple : K-means can be used to quickly identify unknown data categories in

huge datasets. The results are simply reported.

➢ Flexible : The K-means method is amenable to modifications. Altering the

cluster segment will allow for swift algorithmic fixes if any issues arise.

➢ Suitable for a large datase t: When compared to smaller datasets, K -means

can handle multiple datasets and computes much more quickly. Larger clusters

can also be produced by it.

➢ Efficient: The algorithm utilized can segment a huge data set efficiently. The

shape of the clusters determines their efficacy. K-means perform well in

clusters that are hyper-spherical.

➢ Time complexity: Because the number of data items in K -means segmentation

is linear, the execution time increases. Unlike hierarchical algorithms, it does

not take longer to classify similar qualities in data.

➢ Tight clusters: K-means yield tighter clusters than hierarchical algorithms,

especially for globular clusters.

➢ Simple to interpret: The results are simple to comprehend. It provides

simplified cluster descriptions to make the data easier to understand .

➢ Cost of computation: When compared to other clustering methods, the k-

means clustering technique is both quick and efficient in terms of calculation.

➢ Accuracy: K-means analysis provides the availability of data regarding a

problem domain and improves clustering accuracy. Based on this information,

25

the k-means algorithm is changed to increase the clusters' accuracy (Mary &

Selvi, 2014).

Cons of K-means algorithm

➢ No optimal set of clusters: The greatest outcomes come from pre-selecting your

clusters because K-means does not allow for the construction of an ideal collection

of clusters.

➢ Lacks consistency: Results from different algorithm runs of K-means clustering are

inconsistent. Consistency is produced when clustering results are determined by a

random selection of cluster patterns.

➢ Consistent effect: It creates clusters of a consistent size even when the input data is

of different sizes.

➢ As the size of the datasets being analyzed grows, the computation time increases

since the complete dataset must be kept in the main memory.

Mini Batch K-means algorithm

As the size of the datasets under study grows, K-means' computation time grows as well because

it needs to store the complete dataset in the main memory. As a result, a variety of methods for

decreasing the algorithm's time and space cost have been offered. An additional technique is the

Mini batch K-means algorithm.

A machine learning adaptation of the classic K-means clustering algorithm is called Mini-batch

K-means. It gathers a random sample of the data to update the clusters after each iteration and

maintains the data in memory in brief, random, fixed-size batches. It performs better than the

standard K-means method when working with huge datasets because it does not cycle over the

entire dataset. To update the clusters on each cycle, it first generates random batches of data to

be stored in memory and then gathers a random batch of data. The Mini-batch K-means

algorithm's main advantage is that it makes cluster detection less expensive to compute.

26

Although the mini-batch method is preferable when working with a large dataset, you might

choose to employ the K-means algorithm (KHARWAL, 2021).

The main goal of the Mini Batch K-means method is to temporarily store small random batches of

data. The clusters are updated using a fresh random sample from the dataset at the beginning of

each iteration, and this procedure is continued until convergence. Each mini-batch uses a convex

combination of prototype values and data to update the clusters, with the learning rate decreasing

as the number of iterations rises. The learning rate is equal to the inverse of the number of data

assigned to a cluster during the procedure. Convergence can be seen when there are no changes in

the clusters for several iterations in a row since the impact of incoming data decreases as the

number of iterations grows. The technique uses tiny, randomly chosen batches of the dataset for

each iteration. Each piece of data in the batch is categorized into one of the clusters based on the

centroids' prior placements. The cluster centroids' coordinates are then changed using the fresh

points from the batch. The update is made via gradient descent, which is much faster than a batch

K-Means update (Geeksforgeeks, 2021b).

Fuzzy C-Means Clustering

The Fuzzy C-means clustering algorithm is another partition clustering algorithm. Fuzzy K-Means

clustering, also known as Fuzzy C-Means clustering, is a variant of K-Means clustering. The Fuzzy

K-means clustering algorithm uses several points that are exclusively part of one cluster. Fuzzy

clustering is a powerful unsupervised technique for data analysis and model building. Hard

clustering is less natural in many cases than fuzzy clustering. Instead of being required to fully

belong to one class, objects within the boundaries of many classes are given membership degrees

between 0 and 1 to indicate their partial membership. The fuzzy c-means algorithm is the most

widely used. This algorithm determines the membership of each data point in each cluster center

based on the distance between the cluster center and the data point. The closer the data is near a

cluster center, the more likely it is that it belongs to that cluster center. It should be evident that

one should result from adding the membership of each data point (Cannon et al., 2012). The

algorithm Fuzzy K-Means is identical to K-means, a popular simple clustering algorithm. The only

difference is that instead of assigning a point to one cluster exclusively, it may have fuzziness or

27

overlap between two or more clusters (Edureka, 2019). The following are the main ideas that

define fuzzy k-means:

➢ A single point in a soft cluster could belong to numerous clusters, each with a distinct

affinity value.

➢ The affinity is proportional to the distance between the cluster centroid and that point.

➢ Fuzzy K-Means is like K-Means in that it works on objects that have a defined distance

measure and may be represented in n-dimensional vector space.

➢ Choose the number of clusters.

➢ Assign coefficients at random to each point to create the first k clusters.

➢ Repeat these steps up until the algorithm converges.

The Pros and Cons of the fuzzy k-means algorithm are presented by (Getahun, 2021), as follows:

Pros of fuzzy k-means algorithm

➢ Performs better than the k-means algorithm and offers the best outcomes for overlapping

data sets.

➢ Each cluster center is given a membership, allowing a data point to belong to more than

one cluster center, as opposed to just allowing it to be a member of one.

Cons of fuzzy k-means algorithm

➢ The quality of the clusters formed is difficult to compare.

➢ With a lower termination criterion value, we achieve a better result, but it comes at the

expense of additional iterations.

➢ Managing enormous data sets and a high number of prototypes can be challenging.

Topic modeling

An unsupervised machine learning technique called topic modeling can scan a collection of

documents, identify word and phrase patterns within them, and then automatically cluster word

28

groupings and associated expressions that most accurately describe the set. The genera l

"themes" that appear in a collection of texts can be found using a statistical modeling method

called topic modeling (Qiang et al., 2019). It may use your extensive collection of documents

to sort the words into word clusters and discover subjects by applying a similarity approach. It

makes it easier to comprehend, arrange, and summarize huge text collections. But keep in mind

that automated topic models work best with big amounts of content. It could be best to use

another method if your document is short (ANALYTICS, 2017).

Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) are the two topic modeling

techniques that analysts employ the most frequently (LDA). According to the distributiona l

hypothesis, understanding a word's semantics can be accomplished by examining the contexts in

which it appears. On this concept, Latent Semantic Analysis (LSA) is founded. In other words,

according to this theory, two words will have identical semantics if they frequently appear in

comparable contexts. A probabilistic generative model of a corpus is called Latent Dirichlet

Allocation (LDA). The fundamental assumption is that documents are modeled as mixes of latent

subjects that are randomly chosen and each specified by a word distribution (Assefa, 2020).

2.6 Clustering Evaluations Metrics

Clustering is assessed using metrics of similarity and dissimilarity, such as the distance between

cluster points. The algorithm has worked well if it can unify similar data points while also separating

different data points. Assess the success of a clustering method, it is more complicated than just

counting the number of errors or the precision and recall of a supervised classification system. Any

evaluation metric should focus on whether this clustering defines data separations, such as a ground

truth set of classes, or satisfying some assumptions that members of the same class are more similar

than members of different classes according to some similarity metric, rather than the absolute

values of the cluster labels.

Classification evaluation metrics cannot be used to assess the effectiveness of clustering methods.

Because a dependent variable or target variable is required in any classification assessment metric,

whether it be a confusion matrix or a log loss. The metrics are calculated using observed and

29

expected data in various evaluation procedures. The performance evaluation could be computed

using evaluation metrics that do not require any ground truth labels to calculate the efficiency of

the clustering algorithm(Sourabh, 2022).

The difficulty in assessing the efficacy of any clustering technique is one of the biggest

disadvantages. To tackle this problem, the different metric has been developed. Some are purity,

entropy, V-Measure, Silhouette Coefficient, and Rand Index. Purity and entropy can be used to

compare partitioning with the same number of clusters, but they are unreliable when comparing

partitioning with different numbers of clusters. This is because homogeneity will result from the

way entropy and purity analyze the partitioning of sets of phrases inside each cluster. When there

are too many clusters, the highest purity and lowest entropy scores are typically acquired, and

this stage results in the least completeness. Therefore, the next metric takes both the consistency

and completeness approaches into account (Systems, 2022).

V-Measure-Score

The harmonic mean of the clustering's homogeneity h and completeness c is the V-Measure, also

known as normalized mutual information. Both metrics can be expressed in terms of the mutual

information and entropy measures from information theory.

 (2.3)

Were,

• h = homogeneity

• c = completeness

The calculation of the V-Measure first requires the calculation of two terms. Homogene ity

measures how much the sample in a cluster is similar. Homogeneity is the ratio between the

number of samples labeled c in cluster k and the total number of samples in cluster k. A perfectly

homogenous clustering is one in which all data points belong to the same class label. Homogene ity

refers to how near the clustering method comes to achieving this perfection. Completeness

measures how much similar samples are put together by the clustering algorithm. A complete

30

clustering is one in which all data points from the same class are grouped. The clustering

algorithm's completeness describes how close it is to perfection. Completeness is the ratio between

the number of samples labeled c in cluster k and the total number of samples labeled c

(Geeksforgeeks, 2019).

Silhouette Coefficient

The silhouette analysis method could be utilized to investigate the separation distance between the

clusters created by the algorithm. Different sorts of distance metrics can be used to calculate the

distance between the clusters (Euclidean, Manhattan, Minkowski, Hamming). The average

silhouette coefficient applied to all samples is returned by silhouette score. The Silhoue tte

Coefficient is determined for all samples by averaging the intra-cluster and nearest cluster

distances. [-1,1] is the range of the Silhouette Coefficient. The Silhouette Coefficients are higher

(closer to +1) the larger the distance between clusters. If the value is zero, the sample is on or very

close to the boundary that determines which of the two clusters is the neighbor; however, if the

value is negative, the samples might have been put in the wrong cluster (Sourabh, 2022). The

formula is as follows:

max(,)

nc ic

ic nc

−
 (2.4)

where ic = mean of the intra-cluster distance

nc = mean of the nearest-cluster distance

Adjusted Rand Index

The Rand Index is a function that determines how similar two clusterings are to one another. All

sample pairs are considered when calculating the rand index, and pairs that belong to the same or

different clusters according to the anticipated and actual clustering are counted. It has two

parameters: labels-true, which are class labels used as the basis for comparison, and labels -

predicted, which are label clusters (Tutorialspoint, 2019). the Rand Index is calculated as:

R = (a+b) / (nC2) (2.5)

31

Where:

➢ a: the number of times a pair of components uses two different clustering techniques to

belong to the same cluster.

➢ b: the number of times a pair of components use two separate clustering techniques to

belong to different clusters.

➢ nC2: The number of unordered pairs in a set of n elements.

The Rand index always takes on a value between 0 and 1 where:

➢ 0: demonstrates that no element pair is clustered using two different clustering

algorithms.

➢ 1: shows that every pair of components is perfectly clustered according to two different

clustering algorithms (ZACH, 2021).

2.7 Amharic Language

A Semitic language called Amharic is used in northern Ethiopia. It has official status throughout

the entire Federal Democratic Republic of Ethiopia because it is the most widely used and spoken

language there. Several federal states and territories, like Amhara and the multiethnic Southern

Nations, Nationalities, and Peoples Region, also use it as their official or working language.

Outside of Ethiopia, millions of emigrants speak Amharic, which is also spoken in Eritrea. It is

written using a Fidel or abugida writing system adopted from the now-extinct Ge'ez language (Seid

Muhie, 2019).

Amharic has a semi-syllabic writing system of its own. The current Amharic writing system

consists of a core of thirty-three characters (ፊደል, Fidel), each of which has a basic form as well as

six supplementary orders. Through a series of routine modifications, non-basic forms are derived

from basic forms. There are consequently 231 unique characters. The seven orders denote syllable

combinations with a consonant and a vowel after it. There are also forty more that have a distinct ive

trait that usually represents labialization, such as, and so on. There are 275 characters in all (ፊደል,

Fidels), although not all of them are strictly necessary for the spoken language's pronuncia t ion

32

patterns; some were just transmitted from Ge'ez without any meaning or phonetic differentia t ion

in modern Amharic. Only roughly 233 of the script's 275 symbols remain once the unnecessary

ones are deleted. There are no upper- and lower-case variations in the Amharic writing system

(MULUGETA, 2021).

2.7.1 Amharic Morphology

Amharic is one of the most morphologically difficult languages in the world. Number,

definiteness, gender, and case are all marked on Amharic nouns and adjectives. They also used

prepositions. The inflections and derivations of Amharic verbs, which consist of a stem and up to

four prefixes and suffixes, are much more complicated than those of nouns and adjectives. The

stem itself is made up of two parts: a root, which represents the verb's solely lexical component,

and a template, which has spaces for the root segments' vowel-and-consonant-adjacent segments.

The template represents tense, aspect, mood, and one of a few derivational categories: Iterative,

causative, transitive, passive-reflexive, and causative reciprocal (Assefa, 2020).

Hundreds of words can be produced from a single verb root in Amharic by marking verbs for any

combination of person, gender, number, case, tense/aspect, and mood. As a result, a single word

can be used to represent a whole phrase including subject, verb, and object. Amharic, like other

Semitic languages, has a morphological feature known as root-pattern morphology. A root is a

group of consonants (also known as radicals) with lexical meaning. In Amharic, a stem is

constructed by adding vowels or vowel patterns into the consonants of a root. This is the process

of non-concatenative morphological features. In addition to this, Amharic uses different affixes to

create inflectional word forms (Assefa, 2020; MULUGETA, 2021).

2.7.2 Amharic punctuation marks and numbers

Amharic also has its punctuation that is used in the Amharic writing system. There are a lot of

punctuation marks in Amharic and roughly there are seventeen punctuation marks. However, only

a few are commonly used and have software equivalents in Amharic(MULUGETA, 2021).

Amharic punctuation varies greatly from English punctuation marks such as ።(አራትነጥብ) is used as

33

a full stop, ፧(ሶስትነጥብ) as a question mark, ፣ (ነጠላሰረዝ) as a comma, ፨ a paragraph separator).below

is a list of some punctuation in both handwritten and computer-generated text.

➢ ። (አራትነጥብ) is a symbol for the end of a sentence and it serves the same purpose as a full

stop in English.

➢ ፣ (ነጠላሰረዝ) serves the same purpose as the English comma and is used for separate lists in

Amharic text.

➢ ፤(ድርብሰረዝ) is used as a sentence separator in the Amharic writing system and it is the

equivalent of the semi-colon.

➢ ፡(ሁለትነጥብ) this punctuation is used to separate one Amharic word from the other in the

Amharic writing system. But most commonly space is used in place of this punctuation.

Amharic occasionally uses Ethiopian numerals to write dates. Like ፩ is 1, ፪ is 2, and ፻ is 100. The

Amharic Number system writing has 20 single characters which represent one (1/፩ up to 9/ ፱),

tenths (ten/፲ to ninety/፺), hundred (፻), and ten thousand (፼).

2.8 Related works for short text clustering

Different short text clustering approaches have been proposed by using different clustering

approaches. To start; (Heu, 2018) suggests a semantic-based K-means clustering technique that

examines both the vector space model similarity between the data and the semantic similar ity

between the data by using TagCluster for clustering. These heuristic approaches rely heavily on

the information from TagCluster. Furthermore, brief communications like news comments could

not have access to such metadata. In the other work; A K-means partitioning-based clustering

technique was used to cluster short texts, in which document similarities are quantified by the word

mover's distance and document similarity was determined by a document distance function. Their

experimental result showed good accuracy. The method for Distributed Representation of Words

that was employed in this work, which required aggregating short texts with a neural network

model on the vast text corpus of a related topic, was its main shortcoming (Waiyamai, 2020).

A method for automatically creating topic clusters of reader comments was introduced by (Nunzio,

2016). They provided graph-based methods that make use of the Markov Clustering Algorithm

(MCL) to group reader comments into topic clusters and automatically determine the number of

34

clusters. They employ LDA trained on reader comments to extract subject phrases from each

cluster, which are then used to generate a concept-based network using DBPedia. But their

approach depended on DBPedia to abstract topics extracted from the clusters. In the other work,

the authors proposed a model for grouping short texts. they used Smooth Inverse Frequency (SIF)

embeddings to embed short texts, A deep autoencoder to encode and reconstruct the short text SIF

embeddings during a pre-training phase and in a self-training phase, they used soft cluster

assignments as an auxiliary target distribution and fine-tuned the encoder weights and clustering

assignments together (Hadifar et al., 2019).

The Dirichlet Multinomial Mixture model for short text clustering (GSDMM) was given a

compressed Gibbs Sampling technique by (J. Yin & Wang, 2016). The DMM is a probabilis t ic

generative model for documents that can accurately and automatically infer the number of clusters.

GSDMM can extract the key words for each cluster despite the sparse and high-dimensional nature

of brief texts. But their method needs labeled data which is a time-consuming task compared to

unsupervised clustering methods. To get the appropriate number of document clusters, a Dirichlet

process mixture model-based clustering algorithm typically needs its parameters (i.e., α and β)

tuned. Other authors (Dai, 2020) presented a deep embedded technique using an autoencoder of

phrase distributed embedding for feature extraction and clustering allocation. They used BERT to

execute vector conversion on-demand text. After BERT pre-training with an autoencoder is

performed and they Finally used the self-training phase to improve clustering. But their

experimental result showed that; it performs better for small datasets only.

A two-stage clustering method was proposed by (Wang, 2016). The method they proposed used a

sliding window that moved with the flow of short texts. A hierarchical clustering method was

utilized within the sliding window, and a cluster merging method based on information gain was

applied between the sliding windows. But their work highly depended on user Dictionaries and

network words. another work. (Yang, 2019)For short text clustering, the authors introduced the

topic representative term discovery (TRTD) method. By utilizing the proximity and relevance of

phrases, they discovered groupings of strongly tied-up topics representative terms using the TRTD

approach. The relevance of the topic representative words is measured by their global term

occurrences throughout the entire short text corpus, and the proximity of the topic representative

35

terms is determined by their interdependent co-occurrence. But the co-occurrence of words in the

short text is low and they didn’t put the method used to handle this issue.

Another author (Caiyan, 2018) developed a concept decomposition approach that detects semantic

word communities using a weighted word co-occurrence network gathered from a short text corpus

or a subset thereof to produce concept vectors. They employed the k-rank-D k-means-type

technique to extract community centers from the word co-occurrence network while identifying

semantic word communities. They used Knowledge based document similarity calculation which

was called WorldCom; so, for their proposed work additional external documents are needed and

they still use high-dimensional text representations, which causes a waste of space and expensive

computations.

STCC (Short Text Clustering using Convolutional Neural Networks), without needing any

external tags/labels was proposed by (Jiaming, 2015). Word embeddings were researched and fed

into convolutional neural networks, with the output units fitting the pre-trained binary code during

the training phase, to develop deep feature representations. After acquiring the learned

representations, they clustered them using K-means. However, it overlooks the various ways that

textual material contributes to clustering and only collects semantic information from the word

context, not from any other unsupervised features (Smalheiser, 2019).

The authors used Laplacian Eigenmaps (LE), a dimensionality reduction technique, to find the

many similarity information from the original data set and try to reduce the distance between

comparable short phrases. They used similar data that LE had retrieved to direct CNN's training.

LDA and Topic2Vec then use the brief text data to create the topic's semantic characteristics. To

train the short text representations, the CNN model concatenates word embeddings with associated

topic semantic characteristics. On the final representations, the K-means algorithm is used to

execute clustering, and the effectiveness of the clustering is assessed using the metrics accuracy

and normalized mutual information (Chen, 2019). The iterative classification was suggested to

improve the clustering quality by (Rakib, 2017). Iterative classification uses outlier removal to

produce outlier- free clusters from the clustering of brief texts produced by any clustering

algorithm. Then, based on the cluster distributions of the non-outliers, it trains a classifica t ion

36

algorithm. Iterative classification reclassifies the outliers using the training classification model to

provide a fresh set of clusters. Repeating this a few times allows them to get a much better

clustering of texts. Create the initial clusters using dense and sparse similarity matrices, k-means,

and hierarchical clustering. However, because of the lengthy calculation time needed to execute

the combination of those methods iteratively, this strategy is difficult to apply to huge datasets.

Another work used topic modeling to discover latent/hidden topics from a collection of Amharic

short texts through machine learning. They investigated the LDA method approach to cluster short

Amharic texts with and without word embedding as feature extraction and they accurately extract

latent topics. they used Skip-gram Word2vec for word representation and Spherical K-means for

clustering short texts (Assefa, 2020). Even though LDA has been extensively used for normal text

documents, their suggested method did not take word semantic similarity into account. However,

for reliable determination, these techniques often need at least a few hundred words. Furthermo re,

these techniques ignore the word context and just use latent subject information. These techniques

disregard the texts' word order information.

37

CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter explains a research methodology to build a dataset, design, and implementation of

topic clustering on Amharic comments to achieve research objectives and answer the research

question. The proposed research passed through phases; data collection, preprocessing, text

representations, text similarity calculation, text clustering, and evaluation. The first phase of this

work was collecting comments on Amharic news which contains different topics like sports,

entertainment, health, politics, and science and technology. After those datasets were collected,

the second task was text preprocessing, since the proposed model is unsupervised learning, there

were no data annotation processes. So, text preprocessing was the second step. The preprocessing

starts by tokenizing the sentence into separate tokens. Splitting the text into a set of tokens is

referred to as tokenization (usually words). This procedure determines where a written text's

borders are. The Amharic language uses several punctuation marks which demarcate words in a

stream of characters which include. After the individual tokens/terms are identified, stop-word

removal will be done to remove non-concept bearing terms from the sentence. Once non-concept

bearing terms are removed morphological analysis will be used to extract the stem of a word that

will have prefix, suffix, and infix derivations.

 Document representations of short Amharic texts were the third step. For the proposed work,

BERT has been used as a word embedding tool. But no BERT is pre-train by Amharic languages.

So, we have used a cross-lingual transfer learning approach for contextual sentence embedding of

Amharic comments. After short texts are represented in vector form the fourth phase was document

similarity calculation to group short texts based on their contextual similarity. And then finally

documents were clustered based on their topic category.

The experiments were conducted by comparing the two models in terms of clustering results and

time complexity to cluster an equal number of datasets. And, we have conducted experiments by

38

using different hyperparameter values for both clustering algorithms. We conducted experiments

on different hyperparameters to select the best fit hyperparameter for mini-batch K-means and

fuzzy c-means. We used an equal number of datasets for both algorithms and the experimenta l

results were compared against running time complexity and clustering quality. The experimenta l

results were evaluated in terms of different clustering evaluation metrics. In general, using the

preprocessed dataset the actual detection of Mode was developed and evaluated.

For the proposed research we employed an experimental research approach. The use of

experimental research methodology allows researchers to examine and comprehend the effects of

various variables on the research methods used to arrive at a solution. Different factors are

modified in this research process to see how they affect other variables. Datasets, experimenta l

settings, and model hyperparameters are the variables in this study (Maxion, 2009). These

variables are modified in our research work to see how they affect the outcome. Experimenta l

research methodology, in general, aids us in measuring and analyzing the impact of factors on our

research.

3.2 Dataset Collection

The dataset for the proposed work was collected and prepared by crawling comments from

different news agencies' websites. We have used a Facebook comment extractor, and Twitter API

for collecting comments from Facebook and Twitter respectively. All comments on a Facebook

page can be exported to a CSV/Excel file using the Facebook Comment Extractor / Scraper

Software Tool. We easily collected Amharic comments on Facebook Page postings, filtered them,

and exported them to a file using Facebook Comment Extractor. Twitter API enabled us

programmatic access to Twitter in unique and advanced ways.

The main data sources of this thesis were Fana Broadcasting Corporation, Walta TV, Ethiopian

Broadcasting corporation, EBS, ARTS TV, Amhara TV, Balageru TV, and Addis TV. In general,

comments were collected from all Amharic news agencies’ websites which are available now. We

collected comments from the Facebook, Twitter, and Instagram pages of those news agencies. The

39

collected comments were 7000 in number and clustered into five categories. Those categories were

selected by analyzing comments manually.

3.3 Development Tool

For implementation and data analysis, we have used the Python programming language. The

general-purpose programming language Python is incredibly abstract. Code readability is given

top attention, and there is a lot of indentation used. Programmers may write clear, logical code for

both small and large projects with the aid of its language features and object-oriented methodology.

Python is intended to be a simple programming language. In comparison to other languages, it

contains fewer syntactical structures. Python has a lot of NLP packages, plus it's a powerful text

processor. Python is an extremely abstract general-purpose programming language. Python was

chosen throughout the development process of our research because it has a robust standard library,

multiple open-source frameworks and tools, and code that is understandable and manageable

(Interviewbit, 2022). Different python software Numpy, pandas, and matplotlib were used to

analyze and tabulate the created model results. Transformers are used to import BERT Model for

word embedding. And by receiving inputs as a multi-dimensional array called Tensor, TensorFlow

allowed us to create dataflow graphs and structures to define how data goes through a graph.

Numpy: Numpy is an acronym for "Numerical Python" or "Numeric Python," and it is a Python

package. We may perform rapid mathematical operations on arrays and matrices with this Python

library. By offering arrays and matrices as representations of a dataset, Numpy completes the

Python Machine Learning ecosystem together with other Machine Learning modules like sklearn,

Pandas, Matplotlib, TensorFlow, and others. To represent our text collection numerically for this

work, we used Numpy.

Pandas: Like Numpy, Pandas is one of the most widely used Python libraries for NLP studies. It

provides user-friendly data analysis tools and high-performance structures. In contrast to the

Numpy library, which offers objects for multi-dimensional arrays, Pandas provides an in-memory

2D table object called Dataframe. It has column and row labels, just like a spreadsheet. In this

study, we loaded and worked with our dataset using these Python packages.

40

Matplotlib: Matplotlib, together with its Numpy numerical mathematics library, is a visual charting

library for the Python programming language. Various outcomes are plotted using this during the

model's training. It is employed in the Python programming environment to display various graphs.

Plotting the training and validation losses and accuracies was done using this library.

Different applications are available for source coding, writing, and running the code such as

PyCharm, Jupiter Notebook, Python Anywhere, and others. Python Anywhere has a solid track

record of meeting SDLC requirements from beginning to end. With the help of this PaaS (Platform

as a Service), you may create, launch, and host Python applications online. As an IDE, PyCharm

provides user-friendly auto-completion, suggestions, PEP8 checks, and other tools that improve

code quality. Among other capabilities, you may count on it for clever automatic code rewriting,

testing support, and code inspections (SIYAL, 2022). We used Jupiter Notebook for source coding,

writing, and running the code. Jupiter Notebook was a free and open-source web application that

lets us create and share documents with live code, equations, visualizations, and narrative text.

And it is very simple to use and understand its usage than the other tools.

3.4 The architecture of Topic clustering on Amharic Comments

A conceptual model called system architecture outlines the viewpoints, organization, and behavior

of the system. A system architecture is a representation and description of how a system works

and interacts with other system components, to put it another way. The entire system is made up

of components and subsystems that work together to create the system that was intended to be in

the first place. When we talk about system components, we are talking about the hardware and

software that make up the system, as well as their interaction and data transmission and production.

The system architecture diagram is a diagrammatic representation of the system architecture. This

graphic shows the parts of the system and how they work together to make the system work

(Geeksforgeeks, 2021a).

The general architecture of topic clustering on Amharic comments using BERT embedding and

partitioning-based algorithms is shown in Figure 1 below. The general architecture contains five

https://keras.io/

41

components that are preprocessing, word embedding, text similarity calculation, applying

clustering algorithms, and finally Evaluating the clustering algorithms based on the result. The

preprocessing component contains; tokenization, normalization, stopword removal, stemming, and

lemmatization. Following this, a transfer learning-based technique known as contextual word

embedding employing BERT (Bidirectional Encoder Representations from Transformers) was

used. By using those vectorized sentences; similarity calculation was conducted using cosine

similarity metrics. Finally, train and build clustering models using mini-batch k-means and fuzzy

k-means clustering algorithms. And the last was to test the model using evaluation metrics. The

main aim of this work was to cluster Amharic comments to their belonging topics.

Figure 2 Architecture of Amharic Comments Topic clustering

3.4.1 Text Preprocessing

The preprocessing starts by tokenizing the sentence into separate tokens. After the individua l

tokens/terms are identified, stop-word removal will be done to remove non-concept bearing terms

42

from the sentence. Once non-concept bearing terms are removed morphological analysis will be

used to extract the stem of a word that will have prefix, suffix, and infix derivations.

Tokenization

The first step of preprocessing is tokenization. In Amharic, a sentence separated is with another

sentence by space (ክፍትቦታ) and ends with a አራት ነጥብ (።). Splitting the text into a set of tokens is

referred to as tokenization (usually words). This procedure determines where a written text's

borders are. The Amharic language uses several punctuation marks which demarcate words in a

stream of characters which include (፤ድርብሰረዝ) deribsereze’ (፣ነጠላሰረዝ), netelaserez‟ (!ቃልአጋኖ),

exclamation mark and (?ጥያቄምልክት) question mark.

Figure 3: Tokenization algorithm

43

Normalization

There are homophone characters in the Amharic writing system, which means that letters with the

same sound have different symbols for example; commonly, the characters ስ and ሥ are used

interchangeably as ስራ and ሥራ to mean “work”. This increases the number of features that will be

extracted without providing any benefits. Another example is the use of the characters, where there

is no set rule on whether to use or and people frequently do. In these pre-processing subtasks, a

character normalization script was developed by designing a common representation character list.

All ‘ha’ sound varieties have changed to ‘ሀ’ type representation, ‘se’ varieties have changed to

‘ሠ‘type representation, ‘we’ varieties have changed to ‘ወ’ type representation, ‘a’ varieties have

changed to ‘አ‘ type representation and ‘te’ varieties have changed to ‘ፀ’ type representation. The

normalization algorithm normalizes Amharic characters with the same sound and different

representations into a common representation. The normalization algorithm is presented in Figure

4.

Figure 4 Normalization algorithm

44

Stopword Removal

Stop words are words that show up most frequently in sentences but don't contribute to

categorizing feelings. The stop words in Amharic are unique, much like in other languages. The

most frequently used stop-words in Amharic documents are ‟ሆ”, ‟ሁሉ”, ‟ነው”, and ‟ነበር”, and

others like ‟እና”, ‟ ወይም”, ‟ ውስጥ”,‟ ላይ”. There are many available packages like NLTK for High

resourced languages to remove stop words without requiring a list of stopwords but in the case of

low-resourced languages like Amharic, no model were developed yet. So, a list of stop words

should be identified and listed. Each language possesses its list of stopwords that can be adjusted

according to the problem and having these we have prepared an Amharic stopword list by

compiling from different sources like papers done on Amharic language (MULUGETA, 2021).

The algorithm is presented in Figure 5.

Figure 5: Stop-word removal Algorithm

45

Stemming

The pre-processing subtask deals with the handling (elimination) of affixes from a word to extract

the stem of a word are stemming. Stemming is a crucial preprocessing subtask that gets rid of

suffixes and prefixes of a word while keeping its root, also called the "stem". In this work, we have

constructed a list of Amharic language suffixes and prefixes by collecting from different sources

like Amharic books and research papers done on this language (MULUGETA, 2021).

Stemming eliminates all word variations by using only the word's single stem. Among the

variations that will be stemmed are plurals, ing-forms, third-person suffixes, past-tense suffixes,

etc. For Amharic languages steaming is removing suffix, infix, and prefixes, such as “ዎች”፣”ኣችን”፣

”ኦች”፣”ከ”፣”ን”፣”በ”፣”ስለ”፣”ከ”…Amharic is a morphologically rich language which requires good

work for handling its morphologies.

Figure 6 prefix Removal algorithm

46

Figure 7 suffix removal algorithm

3.4.2 Semantic Word Representation

Due to the sparse, high-dimensional, and noisy characteristics of a short text corpus, effective

representation learning is essential for short text clustering. Words with a common context

(semantic similarity) are mapped next to one another in the latent space with similar embeddings,

which depicts the spatial position of the word along with the word vector (Waiyamai, 2020).

There are many word embedding techniques like bag-of-words, Term frequency- inverse document

frequency, Word2Vec, Glove, FastText, and the like. Bag-of-words and Term frequency- inverse

document frequency cannot capture semantics or the relation of words therefore they are not

appropriate for semantic word representation. For each word, the Word2Vec embedding approach

only offers a single, independent embedding vector. Since the representation is only kept as a single

vector per word. This restricts the ability to understand a word's meaning across two contexts.

GloVe utilizes the standard word-like tokens. It prevents out-of-vocabulary tokens but splits

47

completely unfamiliar words into characters. Glove and Word2vec are word-based models, which

means that they use words as input and produce word embeddings. Additionally, they are unable

to encode words that are unfamiliar or uncommon. Because word embedding models do not

consider the sequence in which words appear, the syntactic and semantic meaning of the sentence

is lost.

Recently, there has been a lot of discussion on the Bidirectional Encoder Representations fro m

Transformers (BERT) paradigm in the fields of machine learning and natural language processing.

The model architecture of BERT is substantially different from the methods mentioned above and

cannot be compared. Based on the placement of a word in a phrase or sentence, BERT creates a

vector for that word. With the help of a transformer, an attention mechanism that can understand

the relationships between words in context, it learns how to represent text (or sub-words). The

context will determine which word embeddings BERT can understand. Particularly, word

embedding differs if the word has several meanings in various phrases (Kenton, 2019; Yang,

2019). The current input sentence affects the contextual word vectors that BERT produces. A word

could theoretically have an endless number of vectors because of the words that are present around

it in the input text. The weights available from one or more of the 12 levels can be used by the

BERT model to derive not only word representations but also representations of sentences (Ankiit,

2020).

With more condensed, low-dimensional, and continuous elements added by BERT, the

expressiveness of brief text representations has significantly increased. For the proposed work,

BERT has been used as a word embedding tool. But no BERT is pre-train by Amharic languages.

So, we have used a cross-lingual transfer learning approach for contextual sentence embedding of

Amharic comments.

3.4.2.1 Cross-Lingual Contextual Word Embedding

Contextual word embeddings reflect a word utilizing its context, in contrast to word embeddings.

It is possible to learn a model using supervised data in one language and utilize it for a range of

tasks in another without any explicit cross-lingual signal. Surprisingly, the cross-lingual transfer

48

is successfully made possible by multilingual language models like XLM, mBERT, and XLM-R.

Masked language modeling (MLM) and Translation Language Modeling (TLM) are used to train

XLM. Keep in mind that TLM needs a dataset of parallel sentences, which may be challenging to

obtain (Reimers, 2019).

RoBERTa is available in multiple languages as XLM-RoBERTa. Its pre-training data includes 2.5

TB of filtered Common-Crawl data with 100 languages. It was specifically pretrained using

Masked Language Modeling (MLM). The model receives a sentence as input, randomly selects

15% of the words, and then processes the entire masked sentence to determine which words were

masks. The model acquires an internal representation of 100 languages from which it can derive

features useful for further tasks (Conneau, 2019; Ruder, 2019). XLM-RoBERTa requires

additional GPU memory space than BERT models. In addition, researchers proved that mBERT

showed very impressive performance for cross-lingual transfer learning in different downstream

tasks which are competitive performance with XLM-R. And also improving the inference speed

taken by XLM-R for cross-lingual transfer learning without performance degradation (András,

2021; Ruder, 2019; Wu, 2022). So, we used mBERT for the cross-lingual contextual embedding

of Amharic comments.

For the cross-lingual transfer learning, we have prepared translated dataset which contains both

English and Amharic translations. This is used to train and test the BERT model. We have

developed the cross-lingual contextual word embedding model by using sentence transformer

SBERT as the teacher model and mBERT from the transformer as the student model. The reason

behind combining those models was to take the advantage of each model. Directly Appling

mBERT for the cross-lingual contextual embedding of Amharic comments were costly related to

time and space usage than sentence transformer models. This is due to the mBERT having a

tokenization step before embedding words to vector forms and this creates complexity when the

number of datasets is high. On the other hand, directly using SBERT for the Amharic dataset was

not possible because it trained only English languages and needs parallel data for cross-lingua l

transfer learning.

49

The solution for this was making mBERT directly encode the dataset by eliminating this step using

SBERT as a teacher model. SBERT is a sentence transformer model which is developed for

extracting features purposes only without any tokenization process. So, combining those models

allow us to create a model which has cross-lingual contextual embedding ability and can directly

extract features from the dataset. We used “bert-base-nli-stsb-mean-tokens” from the sentence

transformer as a teacher model which is developed as a feature extraction model and pretrained on

English languages only. It can be used for tasks like clustering or semantic search because it maps

sentences and paragraphs to a 768-dimensional dense vector space (Reimers, 2019).

The student model was “bert-base-multilingual-uncased”. BERT multilingual base model

(uncased) model that has been pre-trained using masked language modeling (MLM) targets the

top 102 languages with the biggest Wikipedia. This model is uncased and it does not make a

difference between capital and small latter of the same word. In the training set, the model learns

an internal representation of the languages that can be used to extract features for subsequent tasks.

It was pretrained with two goals, to be more precise. Masked language modeling (MLM): the

model must predict the words that are hidden by randomly masking 15% of the input words in a

sentence before running the complete sentence through the model. Next sentence prediction (NSP):

During pretraining, the model concatenates two masked sentences as inputs. They occasionally

match sentences that were next to one another in the original text, and sometimes they do not. The

model must then determine whether the two sentences followed one another (Kenton, 2019; Lee,

2018).

The concept was we initially used sentence transformer BERT to generate sentence embeddings

in English sentences, which we refer to as the Teacher model. Then, for the Amharic language, we

have developed a second model called Student, which attempts to emulate the Teacher model. To

put it another way, the original English sentence was trained in the Student model to produce a

vector that is identical to that of the Teacher model. Following training, the Student model was

capable of encoding sentences in both English and the Amharic language.

50

3.4.3 Text similarity calculation

The goal of the short text similarity (STS) measurement is to assess how similar two pairs of short

texts are to one another. The similarity should be studied not only from a lexical standpoint, which

only looks at character sequences but also from a semantic standpoint. For the proposed, work we

have used String-based similarity calculation. BERT is the basis for choosing this approach. In

word embedding, BERT can learn the contextual relationships between words (or sub-words). As

a result, the contextual issue was resolved, and words are embedded based on their context rather

than cooccurrence. It also enables the use of String-based similarity calculation, which compares

sentences based on the character or string sequence used to construct them. This method's

primary benefit is that it does not primarily depend on a language and does not use an external

semantic net or corpus to calculate similarity. The semantic similarities are usually language and

domain-dependent, so they do not apply to all languages for different country languages (Elton,

2022). In chapter two, the formula for calculating the cosine similarity between two vectors was

described.

3.4.4 Clustering Algorithms

As discussed in chapter two different short text topic clustering techniques are available, such as

density-based clustering, hierarchical clustering, partitioning clustering, topic modeling, and

others. The density-Based Clustering method has a high running time because of its non-linear

temporal complexity (Waiyamai, 2020). The drawback of density-based Clustering is that it is

susceptible to the selection of epsilon and minimum points, especially if clusters have various

densities. Sparser clusters will be noise if eps are set to too low. Denser clusters may be combined

if eps are too large. This suggests that a single eps value might not be enough if there are clusters

with variable local densities. This method may identify any cluster shape, whether it be spherical

or arbitrary. However, certain data points will be identified as noise and not assigned to any clusters

to ensure cluster completeness (Lasek, 2019). Regardless of whether a cluster is spherical or

random in shape, this approach may identify it. To guarantee cluster completeness, some data

points will be labeled as noise and not allocated to any clusters (Amandeep Kaur Mann, 2013).

Topic modeling requires very appropriate preprocessing to perform best and the additiona l

51

contextual document is required after terms are selected by topic modeling techniques like LDA

for short text clustering (Pascual, 2019).

Partitioning-based clustering is more desirable because it has lower time complexity than the other

approaches. The main drawback of this clustering algorithm it requires prior specification of many

clusters. A prominent and commonly used distance-based partitioning clustering method is K-

means clustering, particularly for text document clustering (Niraj N Kasliwal, 2012). In terms of

cluster shape, partitioning clustering produces spherical shapes of clusters while density-based

and hierarchical clustering produces all cluster shapes. Density-based clustering can identify

the noise in a data collection, which excludes some documents from any cluster in terms of

cluster completeness. All documents that are part of a cluster are determined using a

partitioning clustering technique since it does not identify any noise. In terms of time

complexity, partitioning clustering is linearly faster than density- and hierarchically-based

clustering.

For the proposed work partitioning clustering approach specifically, mini-batch k-means and

fuzzy k-means clustering algorithm (also called fuzzy c-means) was tested and the one

performing well was selected. K-means is very good for cluster completeness, ensuring that

every text document is assigned to a cluster (Tapas Kanungo, 2022). In addition, k-means

require lower complexity time, it is simple to use, and have less-complicated parameter settings

(Waiyamai, 2020). K-means computation time grows with the size of the datasets being researched

because it needs to store the complete dataset in the main memory. Consequently, many methods

for decreasing the algorithm's time and space cost have been put forth. The Mini batch K-means

algorithm is another method. When utilizing fuzzy clustering, sometimes referred to as soft

clustering or soft k-means, each data point might belong to multiple groups. Through the use of

similarity metrics, clusters are found. There are three similarity metrics: proximity, connectedness,

and intensity (Subas, 2022). The main factors considered for choosing clustering algorithms in this

study are the ability to handle large-dimension data, cluster shape, cluster completeness, and low

time complexity.

52

Mini Batch K-means algorithm

The Mini-batch K-means clustering algorithm is a machine learning variation of the traditiona l

K-means technique. It gathers a random sample of the data to update the clusters after each

iteration and maintains the data in memory in brief, random, fixed-size batches. When working

with huge datasets, it performs better than the standard K-means algorithm because it does not

cycle through the entire dataset. On each cycle, it creates random batches of data to be stored in

memory before gathering a random batch to update the clusters. The Mini-batch K-means

algorithm's main advantage is that it reduces the computational cost of cluster find ing

(KHARWAL, 2021).

The main goal of the Mini Batch K-means method is to temporarily store small random batches of

data. The clusters are updated using a fresh random sample from the dataset at the beginning of

each iteration, and this procedure is continued until convergence. Each mini-batch uses a convex

combination of prototype values and data to update the clusters, with the learning rate decreasing

as the number of iterations rises. The learning rate is equal to the inverse of the number of data

assigned to a cluster during the procedure. Convergence can be seen when there are no changes in

the clusters for several iterations in a row since the impact of incoming data decreases as the

number of iterations grows. The technique uses tiny, randomly chosen batches of the dataset for

each iteration. Each piece of data in the batch is categorized into one of the clusters based on the

centroids' prior placements. The cluster centroids' coordinates are then changed using the fresh

points from the batch. The update is made via gradient descent, which is much faster than a batch

K-Means update (Geeksforgeeks, 2021b).

Fuzzy K-Means Clustering

The Fuzzy K-means clustering algorithm is another partition clustering algorithm that was

proposed for this study. Fuzzy K-Means clustering, also known as Fuzzy C-Means clustering, is a

variant of K-Means clustering. The Fuzzy K-means clustering algorithm uses several points that

are exclusively part of one cluster. The algorithm Fuzzy K-Means is identical to K-means, a

popular simple clustering algorithm. The only difference is that instead of assigning a point to one

53

cluster exclusively, it may have fuzziness or overlap between two or more clusters (Edureka,

2019). The following are the salient features of fuzzy k-means:

➢ One point in a soft cluster may be a member of several clusters, each of which has a

different affinity value.

➢ The affinity is proportional to the separation between that point and the cluster centroid.

➢ Select the number of clusters.

➢ Assign each point's coefficient at random to create the first k clusters.

➢ Continue doing this until the algorithm converges.

3.4.5 Clustering Performance Evaluation

The final stage of this research was assessing the developed model's performance. Using the

Adjusted Rand Index, homogeneity-score, Completeness, V-measure, Silhouette Coefficient, and

Adjusted Mutual Information, we evaluated the clustering quality of the proposed work. If only

data points from the same class are present in each cluster of clustering, the clustering is

homogenous. The clustering algorithm's ability to satisfy a critical requirement—that only samples

from one class should be in a cluster—can be assessed using this score. Low numbers between 0

and 1 suggest low homogeneity. Completeness is the primary idea, and we check to see if each

class label's data point is in the same cluster. The completeness score ranges from 0.0 to 1.0, with

1 denoting entirely comprehensive labeling. The second metric for evaluation is perfect clustering

would receive a score of 1, while poor clustering or independent clustering would receive a score

of 0 or lower, according to the adjusted Rand Index. The silhouette coefficient varies from -1 to 1,

with 1 indicating distinct clusters that are widely separated apart. Zero indicates that clusters are

unrelated, or that the distance between clusters is not significant, and -1 indicates that clusters were

incorrectly assigned (Geeksforgeeks, 2019; Tutorialspoint, 2019).

54

CHAPTER FOUR

EXPERIMENTATION, RESULT, AND DISCUSSION

4.1 Introduction

In this chapter, we have presented the dataset used, the algorithm we have experimented with, the

experimentation setups, and the results of the experiments done. We have collected a total of 704

KB Dataset. Among these datasets, 37.5 KB was Translated Dataset and 664 KB was Amharic

comments. Bidirectional Encoder Representations from Transformers (BERT) from hugging face

are used for contextual word embeddings with a selected hyper-parameter (train-batch-size, max-

seq-length, learning rate, epoch, etc.). Mini-batch K-means clustering with a selected hyper-

parameter (init, number of clusters, random-state, maximum-iteration, etc.) and fuzzy c-means

used as a clustering algorithm.

4.2 Experimentation Setup

4.2.1 Dataset Description and Distribution

The dataset we used for model development contains a total of 704 KB size. Among those datasets,

37.5 KB are Translated Dataset which contains pairs of English and Amharic sentences for transfer

learning approach and 664 KB are Amharic comments to news for topic clustering. There is

typically no separation of training and test data in cluster analysis. We cannot "train" when

performing cluster analysis without labels. Train-test splitting, a machine learning technique, is

used to prevent overfitting in training. However, there is no overfit if the algorithms are not

learning labels.

4.2.2 Environment and hyper-parameter Setups

We have done our experimentation by setting environmental and hyper-parameter setups. We

have used an HP laptop with Intel(R) Core (TM) i5-4300M CPU@ 2.60GHz 2601 MHz processor

and 4GB RAM specification. For evaluating BERT, we have used the hyper-parameter shown in

55

Table 1. for mini-batch k-means we have used the hyper-parameter shown in Table 2. The result

of each experiment was documented in the appendix.

Table 1 Hyper-parameter setups for BERT embedding.

No. Hyper-parameter Setup 1

(Experiment 1)

1 maximum sequence _length 512

2 Batch-size 16

3 epochs 5

4 Learning-rate 3e-5

The above hyper-parameters are selected for experimentation after trying many setups and the best

setup which performs well was selected as our model hyper-parameter. We have developed the

models using the hyper-parameter setups and the result that we are presented is based on these

setups. During testing, we discovered that changing the hyperparameter values improves the

model's performance.

The maximum sequence length determines the input's maximum token length. The input tokens

are padded or shortened depending on their value. we can decide its value based on the end task.

We know that BERT has a max length limit of tokens is 512, so we use this max length limit for

our transfer learning model because the translation dataset contains Amharic comments with their

translation in English makes some lines of comments to have long-sized tokens.

The number of samples processed before the model is updated is referred to as the train batch size.

The batch size is always a multiple of two, for example, 16, 32, 64,128, 512, 1024, or 2048.

Because there are 12 layers in the BERT and each word is encoded into a floating-point vector

with a size of 768, we must take maximum-sequence- length into account when determining the

train batch size. The data might not fit into GPU RAM with batch size 32 if the maximum 512

lengths are utilized. Next, a decrease to 16 is mandatory. When the maximum length is 128 or 256,

32 is a decent choice (Devlin, 2019). So, we used batch size 16 because we used maximum-

56

sequence-length 512 and this intermediate batch size 16 makes the proposed transfer learning

model perform well.

The epoch specifies how many times we want to pass the entire dataset. Its value should be more

than one. Too small epochs make the proposed model not learn the training dataset enough and

too large epochs make the model overlearn. Both cases reduced the accuracy of the model. The

BERT paper suggests a few heuristics for fine-tuning BERT and they suggest that Epochs from 2

to 5 are enough for BERT embedding (McCormick, 2019; Swatimeena, 2020). We set epochs to

5 to allow the BERT model to learn the training dataset accurately.

The BERT model pre-training itself used a higher learning rate. So, we should avoid using a

learning rate that is either too high or too low. The literature demonstrates that for BERT to

overcome the catastrophic forgetting issue, a lower learning rate, such as 2e-5, is required. The

training set is unable to converge with an aggressive learning rate of 4e-4 (Devlin, 2019)(Devlin,

2019). The tendency of an artificial neural network to entirely and abruptly lose previously learned

information upon acquiring new information is known as catastrophic interference, sometimes

known as catastrophic forgetting (Zuhua Dai, 2020). We used learning rate 3e-5 which is an

intermediate learning rate between lower and aggressive learning rates.

Table 2: Hyper-parameter setups for mini-batch K-Means

No. Hyper-parameter Setup 1
(Experiment 1)

1 Number of Clusters 5

2 Random-State 64

3 Batch-Size 64

4 Maximum-Iteration 300

5 Reassignment-Ratio 0.01

6 Max-no improvement 10

The first parameter for mini-batch k-means is the number of clusters. We have considered two

methods to determine the cluster numbers. The first was manually analyze our dataset and we

57

decide that the number of clusters is 5. Secondly, we experimented with the Silhouette coeffic ient

value of the model by using different cluster numbers (2,3,4,5,6,7, and 8) and the

optimal Silhouette value is obtained when K = 5. So, our model's cluster number is five. The

results of the experiment were documented in Appendix D.

The other hyperparameter Random state is useful if we want to reproduce exact clusters repeatedly.

We can set it to any number and we want to see the changes. We decide to use 32 because we

conducted experiments on three different values (0, 32, 64) of random-state and the model’s

performance is high at value 32. The results of the experiment were documented in appendix D.

We used the Maximum number of iterations of the mini-batch k-means algorithm for a single run

of 300 because we conducted experiments on values (100, 300, and 1000) of a maximum number

of iterations and the results showed that there is no any variation on the results of those three

experiments. And this is an intermediate value that is not a too low or high maximum number of

iterations.

Table 3: Hyper-parameter setups for Fuzzy C-Means

No. Hyper-parameter Setup 1

(Experiment 1)

1 Number of Clusters 5

2 Random-State 32

3 Fuzzifier 2

4 Maximum-Iteration 300

5 Metric Cosine similarity

We conducted experiments on different batch-size values (32,64,128 and 256) and we observed in

practice that when using a small and a larger batch there is no difference in the quality of the model

instead there is a slight difference in the execution time. The small batch size has less execution

time than the large batch size. So, we take batch-size 64 for the model. Reassignment-Ra tio

controls the percentage of the total counts that may be used to reassign a center. The model will

take longer to converge but should converge in a better clustering if the value is bigger because it

makes low count centers easier to reassign. Convergence, however, could result from an excessive

58

value. Therefore, we used the default value of reassignment-ratio 0.01, which improves the

performance of the model. Early termination under the maximum-no improvement control is based

on the number of mini-batches that have been run in a row without improving the smoothed inertia.

We used the default value 10 because of the mini-batch size was set to 64.

We set the same number of clusters and Random-state value for Fuzzy C-means with mini-batch

k-means because we conducted experiments on a different number of clusters (2,3,4,5,6 and 7) for

determining an optimal number of clusters. The Maximum-Iteration set to 300 because we

conducted experiments on 100, 300, and 1000 maximum iteration values. The results were low at

100 and show the same value starting from 300 with a high score. So, we can set any value starting

from 300 and greater.

We have two parameters, μ_ij, and c_i, as well as one hyperparameter, m, in the Fuzzy c-means

(FCM) clustering algorithm. The membership value, or μ_ij, is the likelihood that the jth data point

is a member of the ith cluster, and it is confined to the condition that the total of μ_ij over C cluster

centers is 1 for every data point j. (the same dimension as X). In addition, the fuzzifier, abbreviated

as m, determines how fuzzy the cluster boundary should be. Fuzzifier is a parameter that has a

significant impact on the performance of the FCM. It is a scalar parameter used to define the degree

of fuzziness in the fuzzy algorithm. If m = 1, the objective function, which sums the distances

between the data points and the cluster centers probability-weighted, is. It denotes that closer data

points near cluster centers will have larger weights (Yufeng, 2021). When we set fuzzifier value 1

it works like k-means which is a hard-clustering method that assigns data points to one cluster and

when we set it to a higher number it leads to all data points belonging to all clusters numbers

(Schwämmle, 2016; Zhou, 2019). So, we start our experiment by setting the values of the Fuzzifier

starting from 1.1 up to 2. And our model achieves a high score value when the Fuzzifier value is

set to 2 and the result were documented in Appendix E.

59

4.2.3 Experimental Setup

The experiments were carried out by comparing the two models in terms of clustering results and

time complexity to cluster an equal number of datasets. And, we have conducted experiments by

using different hyperparameter values for both clustering algorithms. We conducted experiments

on different clusters, batch-size, and maximum iteration hyperparameters to select the best fit

hyperparameter for mini-batch K-means. Different values of fuzzifier, number of clusters, and

maximum iteration were the experimentation variable for fuzzy c-means. We used an equal

number of datasets for both algorithms. The experimental results were compared against running

time complexity and clustering quality. The experimental results were evaluated in terms of

Homogeneity-score, Completeness-score, V-measure, Adjusted Rand Index, Adjusted-mutua l

information, and Silhouette Coefficient.

4.3. Experimentation Result of Amharic Comments Clustering Model

In this sub-section, we have presented an experimental evaluation of our two models. The first

model was using BERT embedding and mini-batch K-means clustering algorithms. The second

was BERT embedding and fuzzy c means clustering algorithms. We have evaluated the two

models using the same hyper-parameter discussed in the experimentation setup section and the

performance of each model is presented below.

Experimental Results of BERT Embedding with Mini-Batch K-Means Clustering

Algorithms

We have conducted a total of 18 experiments on the first model by using different hyperparameters

values of min-batch k-means. The first experiment was conducted by using different values of

cluster-number or K-value (2,3,4,5,6,7) and the experiment result shows that the model performs

best at cluster number 5. For the second experiment, we used different batch-size values and the

model performs best at batch-size 64. The third experiment was conducted by considering different

maximum iteration numbers and we observed that maximum iteration numbers didn’t influence

the results of the model. The fourth experiment was by using different random-state values and the

model performs best at random state value 32. Based on the experimental results of those

60

hyperparameters we select setups that are listed in Table 2 for conducting experiments on the first

model (BERT embedding with mini-batch k-means algorithms). Table 4 below shows the

performance of the model in this hyperparameter setup for clustering Amharic comments to news.

We have calculated the Homogeneity-score, Completeness, V-measure, Adjusted Rand Index,

Adjusted Mutual Information and Silhouette Coefficient of the model are presented in table 4.

Table 4: Experimentation Results of BERT embedding and Mini-Batch K-Means Model

As we can see in Table 4, we can observe that the clustering evaluation of the models reaches a

score value 1.0 of for Homogeneity-score, Completeness-score, V-measure, Adjusted Rand Index,

and Adjusted-mutual information. Hyperparameter configurations from Table 2 were used in the

experiment. Because the homogeneity score is confined between 0 and 1, high values imply strong

homogeneity and low values that are close to 0 suggest less homogeneity, models with

homogeneity scores that reach 1.0 indicate that a cluster contains only data from a single class.

Completeness is the primary idea, and we check to see if the data points for each class label are in

the same cluster. The completeness score ranges from 0.0 to 1.0, with 1 denoting entirely

comprehensive labeling. So, the model shows perfect completeness labeling on the experiment

because its value reaches 1. The other evaluation metric Adjusted Rand Index indicates perfect

clustering would be scored 1 and bad clustering or independent clustering is scored 0 or negative.

So, the model's ARI values reach one during the experiment, which shows the model perfectly

clusters to their group. The value of the silhouette coefficient ranges from -1 to 1. One indicates

that clusters are distinct and spaced widely apart. Assigning clusters incorrectly results in a score

of -1, while zero indicates that clusters are indifferent or that the distance between clusters is not

Evaluation metrics Experiment 1

Homogeneity-score 1.0

Completeness-score 1.0

V-measure 1.0

Adjusted Rand Index 1.0

Adjusted-mutual information 1.0

Silhouette Coefficient 0.998

61

relevant. So, the clustering models have a value of Silhouette Coefficient 0.997 which indicates

clusters are well apart from each other in the conducted experiment.

Figure 8: Evaluation Results of Mini-Batch K-Means model

Figure 10 shows the experimental results of the experiments on different evaluation metrics. We

can observe the model reaches the top score value on those evaluation metrics and there is not that

much variation in the results of those metrics this indicates that the hyperparameter setup for the

experiment is the best match to the proposed problem and the dataset used. So, we can conclude

that the experimentation setup is the best match to the proposed problem and the dataset used.

We also conducted experiments on different hyperparameter setups. Table 5 below shows the

evaluation of the mini-batch K-Means model for different numbers of clusters (k-value). The

experiment results show the perfect cluster number for the given dataset is 5 because the model

has a high value of V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhoue tte

Coefficient at k value 5 than the other cluster numbers.

62

Table 5 Mini-Batch K-Means Model Evaluation Results for Different Cluster Numbers

As we can see from Table 5, we can observe that the model’s performance is very low at cluster

number 2, very high at cluster number 5, and start decreasing from cluster number 6. Adjusted

Rand Index indicates perfect clustering would be scored 1 and bad clustering or

independent clustering is scored 0 or negative. So, the model's ARI value reaches 1.0 on cluster

number 5 and this shows the model perfectly clusters at K value five than other cluster numbers.

The value of the silhouette coefficient ranges from -1 to 1. And 1 indicates that clusters are distinct

and spaced widely apart. Clusters are either indifferent or the distance between them is not relevant

if the value is 0. Clusters are incorrectly assigned if the value is -1. The silhouette coeffic ient

reaches 0.998 at cluster number five, which indicates clusters are well apart from each other

because of this number near number 1. Figure 11 below shows the plot of results of mini-batch k-

means with a different number of clusters.

Evaluation metrics K= 2 K= 3 K=4 K=5 K=6 K=7

V-measure 0.592 0.823 0.947 1.0 0.936 0.896

Adjusted Rand Index 0.4.03 0.717 0.922 1.0 0.883 0.810

Adjusted-mutual information 0.592 0.823 0.947 1.0 0.936 0.895

Silhouette Coefficient 0.705 0.761 0.934 0.998 0.863 0.774

63

Figure 9 Results of Mini-Batch K-means with Different Number of Clusters.

Figure 9 shows the plot of the results of the first model with a different number of clusters. The

experiment results show the perfect cluster number for the given dataset is 5 because the model

has a high value of V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhoue tte

Coefficient at k value 5 than the other cluster numbers. As we observed in figure 13 the clustering

result starts increasing from cluster number up to cluster number 5, and the models have a high

score value at cluster number 5. But starting from cluster number 6 it drops to 0.88 and 0.86 scores

of Adjusted Rand Index and Silhouette Coefficient value. And, at cluster number 7 the evaluation

score value drops highly. So, we can conclude that the optimal cluster number for the given dataset

and Fuzzy C-Means Model is cluster number 5. The five clusters predicted by mini-batch K-means

algorithms contain different topic categories. The first cluster number “0” includes comments

about entertainment, cluster number “1” includes comments about health, cluster number “2”

includes comments about politics, cluster number “3” includes comments about science and

technology, and cluster number “4” includes comments about sport. The screenshots of those

results are documented in Appendix C.

64

Experimental Results of BERT with Fuzzy C-Means Clustering Algorithms

Table 6 below shows the overall performance of the BERT and Fuzzy C-Means model to cluster

a total of 7000 Amharic comments into five different clusters. We have calculated the

Homogeneity-score, Completeness, V-measure, Adjusted Rand Index, Adjusted Mutual

Information and Silhouette Coefficient of the model are presented in the table below.

Table 6 BERT and fuzzy C-Means model testing performance for Amharic comments clustering

As we can see in Table 6, we can observe that the clustering evaluation of the models reaches a

score value 1.0 of for Homogeneity-score, Completeness-score, V-measure, Adjusted Rand Index,

and Adjusted-mutual information. The experiment was conducted by using hyperparameter setups

in Table 3. Models' homogeneity score reaches 1.0 which indicates a cluster contains only samples

belonging to a single class because the homogeneity score is bounded between 0 and 1, with

high values indicating high homogeneity and low value which is near 0 indicating less

homogeneity. Checking if the data points for each class label are in the same cluster is the basic

concept of completeness for each class label. The completeness score ranges from 0.0 to 1.0, with

1 denoting entirely comprehensive labeling. So, the model shows perfect completeness labeling

on the experiment because its value reaches 1. The other evaluation metric Adjusted Rand Index

indicates perfect clustering would be scored 1 and bad clustering or independent clustering is

scored 0 or negative. So, the model's ARI values reach one during the experiment, which shows

the model perfectly clusters to their group. The value of the silhouette coefficient ranges from -1

to 1. One indicates that clusters are distinct and spaced widely apart. Zero indicates that clusters

are unrelated, or that the distance between clusters is not significant, and -1 indicates that the

clusters were incorrectly assigned. So, the clustering models have a value of Silhouette Coeffic ient

0.996 which indicates clusters are well apart from each other in the conducted experiment.

Evaluation metrics Experiment 1

Homogeneity _score 1.0

Completeness 1.0

V-measure 1.0

Adjusted Rand Index 1.0

Adjusted mutual information 1.0

Silhouette Coefficient 0.996

65

Figure 10: Fuzzy C-means Model Evaluation Result for Three Experiments

Figure 10 shows the experimental results of the experiments on different evaluation metrics. We

can observe the model reaches the top score value on those evaluation metrics and there is not that

much variation in the results of those metrics this indicates that the hyperparameter setup for the

experiment is the best match to the proposed problem and the dataset used. So, we can conclude

that the experimentation setup is best to match the proposed problem and the dataset used.

We also conducted experiments on different hyperparameter setups. Table 7 below shows the

evaluation of the Fuzzy C-Means model for different numbers of clusters. The experiment results

show the perfect cluster number for the given dataset is 5 because the model has a high value of

V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhouette Coefficient at

cluster number 5.

66

Table 7 Fuzzy C-Means Model Evaluation Results for Different Cluster Numbers

As we can see from Table 7, we can observe that the second model’s performance is very low at

cluster number 2, very high at cluster number 5, and start decreasing from cluster number 6.

Adjusted Rand Index indicates perfect clustering would be scored 1 and bad clustering or

independent clustering is scored 0 or negative. So, the second model's ARI value reaches 1.0 on

cluster number 5 and this shows the second model perfectly clusters at K value five more than

other cluster numbers. The value of the silhouette coefficient ranges from -1 to 1. One indicates

that clusters are distinct and spaced widely apart. Zero indicates that clusters are unrelated, or that

the distance between clusters is not significant, and -1 indicates that the clusters were incorrectly

assigned. The silhouette coefficient reaches 0.996 at cluster number five, which indicates clusters

are well apart from each other because of this number near number 1.

Evaluation metrics K= 2 K= 3 K=4 K=5 K=6 K=7

V-measure 0.435

0.578

0.66

1.0 0.678

0.532

Adjusted Rand Index 0.302

0.457

0.567

1.0 0.611

0.380

Adjusted-mutual information 0.435

0.578

0.66

1.0 0.67

0.531

Silhouette Coefficient 0.415

0.152

0.279

0.996

0.476

0.041

67

Figure 11 Results of Fuzzy C-Means Model with Different Number of Clusters.

Figure 11 shows the plot of the results of the second model with a different number of clusters.

The experiment results show the perfect cluster number for the given dataset is 5 because the model

has a high value of V-measure, Adjusted Rand Index, Adjusted-mutual information, and Silhoue tte

Coefficient at k value 5 than the other cluster numbers. As we observed in figure 13 the clustering

result starts increasing from cluster number up to cluster number 5, and the models have a high

score value at cluster number 5. But starting from cluster number 6 it drops to 0.6 and 0.4 scores

of Adjusted Rand Index and Silhouette Coefficient value. And, at cluster number 7 the evaluation

score value drops highly. So, we can conclude that the optimal cluster number for the given dataset

and Fuzzy C-Means Model is cluster number 5.

4.4. Comparison of the two models for Amharic Comment Clustering

As shown in the above section, the result of each model has been studied in terms of the following

evaluation metrics:

➢ Homogeneity-score

➢ Completeness

➢ V-measure

➢ Adjusted Rand Index

➢ Adjusted Mutual Information

68

➢ Silhouette Coefficient

We compare the two models using the score value of those evaluation metrics and run- time

complexity for clustering an equal number of datasets. Figure 14 shows comparison results of the

BERT embedding with mini-batch K-means and BERT embedding with fuzzy C-means in terms

of the above-listed evaluation metrics.

Figure 12 Comparison of the two models for Amharic Comment Clustering

The evaluation result shows that BERT embedding with mini-batch K-means algorithms shows

better performance than BERT embedding with fuzzy C-means in our experiments. Literature

shows that the Adjusted Rand Index is considered clustering accuracy. And the ARI value of the

first model were 100% and 100% for the second model. So, the two models are equal in terms of

accuracy but in terms of Silhouette Coefficient The first model has a high value of 0.998 and the

second model have 0.996. The run-time complexity of the fuzzy c-means model is higher than the

mini-batch K-means for clustering the given dataset. So, we can conclude that BERT embedding

with mini-batch K-means algorithms is more accurate than the fuzzy c-means model.

69

4.5. DISCUSSION

For this research, we propose a Topic clustering model for Amharic comments on the news by

experimenting with BERT embedding and two different clustering algorithms. We conducted

experiments on the two models by selecting different hyperparameter setups to analyze the effect

of the hyperparameter setups for selecting the best-performed model. We used the v-measure

score, adjusted rand index, and Silhouette scores for measuring the performance of the model. The

results of stopword elimination, normalization, and stemming have also been investigated. First,

we conducted experiments without doing stopword elimination, normalization, and stemming

separately and together. Then, we tried out stopword removal, normalization, and stemming. And

we recognize that using the text preparation activities improves the effectiveness of the suggested

work.

We have experimented on BERT embedding using a cross-lingual transfer learning approach to

improve the clustering accuracy of short Amharic texts. For cross-lingual transfer learning, we use

a combination of SBERT and MBERT and the model can accurately embed Amharic comments

contextually. The experiment result showed that contextualized embeddings can improve

clustering accuracy. We proved this by comparing the experiment results with works of literature

that used non-contextual word embedding techniques. For instance, our work improves literature

work (Assefa, 2020). This work archived an accuracy of 90% to cluster short Amharic texts using

the word2vec embedding technique and k-means clustering algorithms. We achieved 100%

accuracy to cluster Amharic comments using BERT embedding and mini-batch k-means. We

understand that contextualized word embedding can improve the clustering accuracy of Amharic

short texts more than non-contextualized word embedding because the nature of short texts is very

concise.

We have done two experiments for the two models. The first used BERT embedding with mini-

batch k-means and the second model was using BERT embedding with fuzzy c-means. The first

model shows better performance than the second model in terms of time and Silhouette score

value. As we understand from our experimentation the value of the number of clusters has a high

impact on the experimentation results of mini-batch k-means. But the value of batch size and

70

maximum iteration number does not have any impact on clustering results. For fuzzy c-means, the

value of fuzzifier, maximum iteration number, and the number of clusters have a high impact on

clustering results. When the value of the fuzzifier equals one, the fuzzy c-means works like a hard-

clustering method, and when its value gets too high all data points belong to all clusters. So, we

understand that the fuzzifier value must be selected by considering the number of clusters and

dataset size. And higher maximum iteration number improves the performance of fuzzy c-means.

The fuzzy c-means-based models take much more time than mini-batch k-means to cluster

Amharic comments to news. This is because it performs more work than K means, fuzzy-C means

will typically run more slowly. With each cluster, each point is reviewed, and each evaluation

involves more processes. The mini-batch k-means have less computation time than k-means

because it keeps data in memory in short, random, fixed-size batches, and then collects a random

sample of the data to update the clusters with each iteration. It does not cycle over the complete

dataset, it performs better than the usual K-means algorithm when working with large datasets.

71

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this thesis work, we have undertaken the clustering of Amharic comments to the news using the

partitioning method specifically mini-batch K-Means and fuzzy c-means. For contextual sentence

embedding, BERT was implemented. The main activity of this thesis work was to develop a model

for Amharic comments clustering using BERT-based embedding and mini-batch K-Means and

fuzzy C-means clustering. To accomplish the study activities like corpus preparation,

preprocessing, design, implementation, and evaluation were done. The dataset preparation activity

was performed crawl different local news websites and collecting different Amharic comments

under different categories. After collecting the comments, the preprocessing module performs

tokenization, stemming, normalization, stop word removal, and lemmatization on the corpus for

better machine learning. For our experiment, we have identified an optimal number of cluster k to

be five using different experiments. We have conducted the training experiment on a total of 7000

short Amharic texts on different topics.

We have evaluated the performance of two Amharic comments clustering models using the same

evaluation metrics. i.e., V-measure, ARI, Adjusted Mutual Information, and Silhoue tte

Coefficient. The evaluation result showed that BERT embedding with mini-batch K-means

algorithms shows better performance than BERT embedding with fuzzy C-means in the

experiments. Literature shows that the Adjusted Rand Index is considered clustering accuracy.

And the ARI value for both models reaches 100% but the Silhouette Coefficient result of the first

model was 99.8 % and 99.6 % for the second model. So, the first model is more accurate than the

second model.

72

5.2 Contribution

In this work, we have developed a Topic clustering model for Amharic comments on the news

using BERT-based embeddings and partitioning clustering algorithms. This study's key

contribution is:

➢ We have prepared an Amharic comment dataset which can be an initial point for other

researchers to study further. We have prepared 665KB Amharic comments and a 37.5KB

Translation Dataset from English to Amharic.

➢ We have developed a model that can cluster short Amharic texts into a different group

based on the topic. Due to grammar, semantic, and morphology difference, the models

proposed for another language cannot be used in the Amharic language and no prior work

was conducted on clustering short Amharic texts, so we can conclude that the proposed

model is our contribution.

➢ This thesis work showed how effective are BERT models in contextually embedding

Amharic comments.

➢ This thesis work showed that a better conceptual feature extraction technique can improve

the clustering accuracy.

5.3 Recommendation

BERT is a model from Hugging face that improves the clustering of texts by considering the

context for sentence embedding. This work tried to address the clustering of short Amharic texts

with BERT embeddings. But another research effort is needed to make unsupervised text

clustering more accurate.

➢ Extending this work by preparing enough datasets for Short Amharic text clustering. We

have collected datasets on topics like health, politics, sport, entertainment, and technology

news. As a result, we strongly recommend researchers include other additional topics.

➢ Assessing BERT-based embedding with other types of clustering algorithms like

Hierarchical, density-based, affinity propagation, and others to enhance the accuracy of the

model.

73

➢ We recommend researchers extend the transfer learning we have developed to the number

of different Ethiopian languages by preparing a new language dataset.

74

References

 ANALYTICS, B. O. T. (2017). WHAT IS TOPIC MODELING? Provalisresearch.

https://provalisresearch.com/blog/topic-modeling/

Anand, D. (2020). Partitional Clustering. Analytics Vidhya. https://medium.com/analytics-

vidhya/partitional-clustering-181d42049670#:~:text=What is Partitioning in Clustering%3F

The most popular,clusters until a %28locally%29 optimal partition is attained.

András. (2021). Subword pooling makes a difference. EACL 2021 - 16th Conference of the

European Chapter of the Association for Computational Linguistics, Proceedings of the

Conference, January, 2284–2295. https://doi.org/10.18653/v1/2021.eacl-main.194

Ankiit. (2020). Word2vec vs BERT. https://medium.com/@ankiit/word2vec-vs-bert-

d04ab3ade4c9#:~:text=Vectors%3A Word2vec saves one vector representation of

a,classifier%2C which is a standard practice in application

Assefa, K. (2020). Short Amharic Text Clustering Using Topic Modeling (Issue November) [Bahir

Dar university]. https://doi.org/10.13140/RG.2.2.17462.32326

Bao, T., Ren, N., Luo, R., Wang, B., Shen, G., & Guo, T. (2021). A BERT-Based Hybrid Short

Text Classification Model Incorporating CNN and Attention-Based BiGRU. Journal Of

Organizational and End User Computing 33(6), 1-21. https://doi.org/10.4018/joeuc.294580

Berba, P. (2020). Understanding HBDSCAN and Density-Based Clustering.

https://towardsdatascience.com/understanding-hdbscan-and-density-based-clustering-

121dbee1320

Brownlee, J. (2019). What Are Word Embeddings for Text? Deep Learning for Natural Language

Processing.

Caiyan. (2018). Concept decompositions for short text clustering by identifying word

communities. Pattern Recognition, 76, 691-703. https://doi.org/10.1016/j.patcog.2017.09.045

Cannon, R. L., Dave, J. V., & Bezdek, J. C. (2012). Efficient Implementation of distinct the Fuzzy

c-Means Clustering Algorinthms. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-8(2), 248–255. https://doi.org/10.1109/TPAMI.1986.4767778

Chen, Z. (2019). Short Text Embedding for Clustering based on Word and Topic Semantic

Information. 61–70. https://doi.org/10.1109/DSAA.2019.00020

https://medium.com/@ankiit/word2vec-vs-bert-d04ab3ade4c9#:~:text=Vectors%3A
https://medium.com/@ankiit/word2vec-vs-bert-d04ab3ade4c9#:~:text=Vectors%3A
https://doi.org/10.4018/joeuc.294580
https://towardsdatascience.com/understanding-hdbscan-and-density-based-clustering-121dbee1320
https://towardsdatascience.com/understanding-hdbscan-and-density-based-clustering-121dbee1320
https://doi.org/10.1016/j.patcog.2017.09.045

75

Conneau, A, 2019. XLM-RoBERTa (base-sized model). Hugging Face.

https://huggingface.co/xlm-roberta-base

Dai. (2020). An unsupervised learning short text clustering method. Journal of Physics:

Conference Series, 1650(3). https://doi.org/10.1088/1742-6596/1650/3/032090

Devlin. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding.

NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies - Proceedings of the Conference,

1(Mlm), 4171–4186.

Donges, N. (2022). What Is Transfer Learning? Exploring the Popular Deep Learning Approach.

https://builtin.com/data-science/transfer-learning

Edureka. (2019). Fuzzy K-Means Clustering.

Elton. (2022). Cosine Similarity in Natural Language Processing. Pythonwife.

Ezra, K. (2022). Word Embedding [Complete Guide]. OpenGenus IQ.

Geeksforgeeks. (2019). V-Measure for Evaluating Clustering Performance. Geeksforgeeks.

https://www.geeksforgeeks.org/ml-v-measure-for-evaluating-clustering-performance/

Geeksforgeeks. (2020). Partitioning Method (K-Mean) in Data Mining.

https://www.geeksforgeeks.org/partitioning-method-k-mean- in-data-mining/

Geeksforgeeks. (2021a). Fundamentals of Software Architecture. Geeksforgeeks

https://www.geeksforgeeks.org/fundamentals-of-software-architecture

Geeksforgeeks. (2021b). Mini Batch K-means clustering algorithm. Geeksforgeeks.

https://www.geeksforgeeks.org/ml-mini-batch-k-means-clustering-algorithm/

Getahun, S. (2021). Customer Clustering for a Mobile Telecommunications Company Based on

Call Detail Records.

Hadifar, A., Sterckx, L., Demeester, T., & Develder, C. (2019). A self-training approach for

short text clustering. ACL 2019 - 4th Workshop on Representation Learning for NLP,

RepL4NLP, (2019), Proceedings of the Workshop, (2017). 194-199.

https://doi.org/10.18653/v1/w19-4322

Hassan, A. (2020). Multi-source cross-lingual model transfer: Learning what to share. ACL 2019

- 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the

Conference, 3098–3112. https://doi.org/10.18653/v1/p19-1299

Heidenreich, H. (2018). Introduction to Word Embeddings. Towards Data Science.

https://huggingface.co/xlm-roberta-base
https://www.geeksforgeeks.org/partitioning-method-k-mean-in-data-mining/
https://www.geeksforgeeks.org/fundamentals-of-software-architecture
https://doi.org/10.18653/v1/w19-4322

76

Heu, J. U. (2018). Semantic-based K-means clustering for microblogs exploiting folksonomy.

Journal of Information processing System, 14(6). 1438–1444.

https://doi.org/10.3745/JIPS.04.0097

Interviewbit. (2022). Top Applications of Python.

https://www.interviewbit.com/blog/applications-of-python

Jiaming. (2015). Short text clustering via convolutional neural networks. 1st Workshop on Vector

Space Modeling for Natural Language Processing, VS 2015 at the Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT 2015, 62–69. https://doi.org/10.3115/v1/w15-1509

Kabaap. (2019). Bag of words (BoW) model in NLP. GeeksforGeeks.

Karthikeyan. (2019). Cross-Lingual Ability of Multilingual BERT: An Empirical Study. 1–12.

http://arxiv.org/abs/1912.07840

Kenton. (2019). BERT : Pre-training of Deep Bidirectional Transformers for Language

Understanding. 4171–4186.

KHARWAL, A. (2021). Mini-batch K-means Clustering in Machine Learning.

Thecleverprogrammer. https://thecleverprogrammer.com/2021/09/10/mini-batch-k-means-

clustering- in-machine- learning/

Lasek, P. (2019). Density-based clustering with constraints. Computer Science and Information

Systems, 16(2), 469–489. https://doi.org/10.2298/CSIS180601007L

Lee, K. (2018). BERT multilingual base model (uncased). Huggingface. BERT multilingual base

model (uncased)

Ma, E. (2018). 3 basic Distance Measurement in Text Minin. Towardsdatascience.

Malik, F. (2019). Machine Learning Hard Vs Soft Clustering. FinTechExplained.

Mary, S. S., & Selvi, T. (2014). A Study of K-Means and Cure Clustering Algorithms.

International Journal of Engineering Research & Technology (IJERT), 3(2), 1985–1987.

Maxion, R. (2009). Experimental Methods for Computer Science Research. 136–136.

https://doi.org/10.1109/ladc.2009.29

McCormick, C. 2019. BERT Fine-Tuning Tutorial with PyTorch.

https://mccormickml.com/2019/07/22/BERT-fine-tuning/

McGregor, M. (2020). 8 Clustering Algorithms in Machine Learning that All Data Scientists

Should Know. https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-

https://doi.org/10.3745/JIPS.04.0097
https://www.interviewbit.com/blog/applications-of-python
https://mccormickml.com/2019/07/22/BERT-fine-tuning/

77

learning-that-all-data-scientists-should-know/

Moberg, J. (2020). A deep dive into multilingual NLP models. Data-Science.

https://peltarion.com/blog/data-science/a-deep-dive- into-multilingual-nlp-models

Mohanty, A. (2019). Understanding FastText:An Embedding To Look Forward To. Medium.Com.

MULUGETA, A. G. (2021). . july 2021 bahir dar, ethiopia (Issue July). Bahir Dar university.

Nunzio. (2016). Comments to News . Version : Accepted Version A Graph-based Approach to

Topic Clustering for Online Comments to News.

Ojha, V. (2020). Understanding Euclidean Distance and Cosine_Similartiy. Analytics Vidhya.

Pascual, F. (2019). Topic Modeling: An Introduction.

Pedamkar, P. (2022). Hierarchical Clustering Algorithm. https://www.educba.com/hierarchica l-

clustering-algorithm/

Qiang, J., Qian, Z., Li, Y., Yuan, Y., & Wu, X. (2019). Short Text Topic Modeling Techniques ,

Applications , and Performance : A Survey. 14(8), 1–17.

Rakib. (2017). Enhancement of Short Text Clustering by Iterative Classification. 1–30.

Reimers, N. (2019). Sentence-BERT: Sentence embeddings using siamese BERT-networks.

EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language

Processing and 9th International Joint Conference on Natural Language Processing,

Proceedings of the Conference, 3982–3992. https://doi.org/10.18653/v1/d19-1410

Ruder. (2019). Unsupervised cross-lingual representation learning. ACL 2019 - 57th Annual

Meeting of the Association for Computational Linguistics, Tutorial Abstracts, 31–38.

https://doi.org/10.18653/v1/p19-4007

Ryan, C. M. and N. (2019). BERT word Embeddings Tutorial.

https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/

Saini, D. (2021). BERT Embedding for Classification. Analytics Vidhya.

https://medium.com/analytics-vidhya/bert-embedding-for-classification-7c51aead26d9

Schwämmle. (2016). A simple and fast method to determine the parameters for fuzzy c-means

cluster analysis. Bioinformatics, 26(22), 2841–2848.

https://doi.org/10.1093/bioinformatics/btq534

Seid Muhie. (2019). TETEYEQ : Amharic Question Answering For Factoid Questions. 17–25.

Seldon. (2021). Transfer Learning for Machine Learning. https://www.seldon.io/transfer-learning

Shristikotaiah. (2020). Word Embeddings in NLP. GeeksforGeeks.

https://peltarion.com/blog/data-science/a-deep-dive-into-multilingual-nlp-models
https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/
https://medium.com/analytics-vidhya/bert-embedding-for-classification-7c51aead26d9
https://doi.org/10.1093/bioinformatics/btq534

78

Siddiqui, T., & Aalam, P. (2019). Short Text Clustering ; Challenges & Solutions : A Literature

Review. June 2015.

SIYAL, G. (2022). 10 Useful Tools for Python Developers. https://www.makeuseof.com/python-

developer-tools/#:~:text= 10 Useful Tools for Python Developers ,spearheading Python ML

and Deep Learning... More

Smalheiser. (2019). Unsupervised low-dimensional vector representations for words, phrases and

text that are transparent, scalable, and produce similarity metrics that are not redundant with

neural embeddings. Journal of Biomedical Informatics, 90(January), 103096.

https://doi.org/10.1016/j.jbi.2019.103096

Sourabh. (2022). A tutorial on various clustering evaluation metrics. DEVELOPERS CORNER.

https://analyticsindiamag.com/a-tutorial-on-various-clustering-evaluation-metrics/

Sukemi, J. P. E. (2019). Soft and Hard Clustering for Abstract Scientific Paper in Indonesian. 2019

International Conference on Informatics, Multimedia, Cyber and Information System

(ICIMCIS).

Suyal. (2016). Text Clustering Algorithms: A Review. International Journal of Computer

Applications, 96(24), 36–40. https://doi.org/10.5120/16946-7075

Swatimeena. (2020). BERT Text Classification using Keras. Data Scientist.

https://swatimeena989.medium.com/bert-text-classification-using-keras-903671e0207d

Systems, C. (2022). Entropy, purity and V-measure. WordPress and Bam. https://complex-

systems-ai.com/en/data-partitioning/entropy-purity-and-v-measure/

Team, G. L. (2020). What is Hierarchical Clustering? An Introduction to Hierarchical Clustering.

Tutorialspoint. (2019). Clustering Performance Evaluation. Tutorialspoint.

https://www.tutorialspoint.com/scikit_learn/scikit_learn_clustering_performance_evaluation.htm

Waiyamai, K. (2020). Combining Distributed Word Representation and Document Distance for

Short Text Document Clustering. 16(2), 277–300.

Wang. (2016). Clusters Merging Method for Short Texts Clustering. Open Journal of Social

Sciences, 02(09), 186–192. https://doi.org/10.4236/jss.2014.29032

Wibisono. (2021). Short text similarity measurement methods : a review. Soft Computing, 25(6),

4699–4723. https://doi.org/10.1007/s00500-020-05479-2

Wu, S. (2022). How Do Multilingual Encoders Learn Cross-lingual Representation?

http://arxiv.org/abs/2207.05737

https://swatimeena989.medium.com/bert-text-classification-using-keras-903671e0207d
https://www.tutorialspoint.com/scikit_learn/scikit_learn_clustering_performance_evaluation.htm

79

Yang. (2019). Discovering Topic Representative Terms for Short Text Clustering. IEEE Access,

7, 92037–92047. https://doi.org/10.1109/ACCESS.2019.2927345

Yin, H., Song, X., Yang, S., Huang, G., & Li, J. (2021). Representation Learning for Short Text

Clustering. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 13081 LNCS, 321–335.

https://doi.org/10.1007/978-3-030-91560-5_23

Yin, J., & Wang, J. (2016). A Dirichlet multinomial mixture model-based approach for short text

clustering. Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 233–242. https://doi.org/10.1145/2623330.2623715

Yufeng. (2021). Fuzzy C-Means Clustering with Python. Towards Data Science.

https://towardsdatascience.com/fuzzy-c-means-clustering-with-python-f4908c714081

ZACH. (2021). What is the Rand Index? (Definition & Examples). ZACH.

https://www.statology.org/rand- index/

Zhou. (2019). Fuzzifier Selection in Fuzzy C-Means from Cluster Size Distribution Perspective.

Informatica, 30(3), 613–628. https://doi.org/10.15388/informatica.2019.221

80

Appendix A

Sample dataset

81

Appendix B

Some screenshots of preprocessing python codes

Tokenization

82

Appendix C

A sample snapshot of clustering result of BERT with mini-batch K-Means model

83

Appendix D

Experimental Results of BERT with mini-batch K-Means model for different number of Batch

size

Experimental Results of BERT with mini-batch K-Means model for different numbers of Cluster

84

Appendix E

Experimental Results of BERT with fuzzy C-Means model with different Fuzzifier

Experimental Results of BERT with fuzzy C-Means model with different Maximum-iteration-

number

