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Abstract

In this paper we introduce normal filters and normlets in an almost
distributive lattice with dense elements and reinforce them in both
algebraical and topological aspects.
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Chapter one

Introduction and preliminaries

1.1 Introduction

The structure of distributive lattice is exponentially enrich and has smooth nature. A vast number
of researchers broadly studied the class of distributive lattice in different aspects. Some of the
authors take a broad view of the structure of distributive lattice in different aspects. In this
context, U.M. Swamy and G.C.Rao[15] generalized the structure of distributive lattice as a
common abstraction of lattice theoretic and ring theoretic aspects called an almost distributive
lattice in 1981. Later the authors [2,3,4,5,6,11,12,13,18,19] analogously extended some concepts
to almost distributive lattices which are in distributive lattices. In [7, 8, 9, 14, 15, 16, 17], the
authors initiated the ideal (filter) congruence theory in a distributive lattice and they have showed
some special class of distributive lattices like normal lattices, quasi complemented distributive
lattices etc.

The concept of an Almost Distributive Lattice was introduced by U.M.Swamy and G.C.Rao
[15] as a common abstraction to most of the existing ring theoretic generalization of Boolean
algebra and distributive lattices. M.Sambasiva Rao in [9] introduced the concept normal filters
and normelets are introduced in a distributive lattice in terms of annihilators and proved that the
set of all normal filters forms a distributive lattice and the class of normlets is a sub lattice of the
lattice of normal filters. In this paper we mainly concentrate on normal filters in almost
distributive lattice with dense elements. It has also two chapters and five sections. In this first
section, we collect some preliminary results on almost distributive lattices which are useful in the
sequent sections. In second section, we introduce normal filters in an almost distributive lattice
and certain examples are given and drive some properties on the class of normal filters. In the
third section, we study the class of normelets in an almost distributive lattice and obtain several
equivalent conditions for a filter to become a normlet. In fourth section we discuss the class of
normal prime filter and obtain certain results on them. In last section, we deliberate the space of
normal prime filters with hull-kernel topology and obtain a good number of equivalent
conditions for the space of normal prime filters to become Hausdorff.



1.2. Preliminaries

This section is consisting of some definitions and results that will be used in the next chapter

we simply list these in the form of lemma and theorems without their proofs

Definition 1.2.1 ([7]). A non empty set L together with two binary operations
Aand V (meet and join)onaset L is called a lattice if it satisfies the following algebraic

properties

1. Idempotent; a Aa = a and aVa = a.

2. Commutativity; aAb=bAa and avb=bVva

3. Absorption;a A{avb) =a and aVv(anb)=a.

4. Associativity; (a ab) Ac=an(bic) and (avb)vec=av(bvc). Foranya,b,c € L.
In any lattice (L, v, A) the following identities are equivalent;

san(bve)=(arnb)v(aic)

s(favb)ac=(anc)v(bnc)

cavV(bac)=(avb)a(aVe)

s(anb)ve=(aveclA(bVc).

Definition 1.2.2([7]) A lattice (L, v, A)satisfying any one of the above four

identities is called a Distributive Lattice.

Definition 1.2.3 ([11]). An algebra (L, v.A,0) Of type (2,2,0) is called an Almost

Distributive Lattice (ADL) with O if it satisfies the following axioms ; forall a, b, c€L

MNavo=a
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3) (aVbh) Ac=(arc)V(bAc)
@ an(bve)=(anb)vianc)
B)av(bac)=(avb)a(avc)
6) (avb)Ab=0b.

Definition 1.2.4 ([10)] A binary relation = defined on a set A is a partial order on the set A if the

following conditions holds identically in A:

(.a=a (reflexivity)
(i).a<=bandb<aimplya=b (ant symmetry)
(i).,a=bandb <cimplya<c (transitivity)

If, in addition, for every a, b in A

(iviaborb<=a.

.Definition 1.2.5 A non empty subset F of an ADL L is said to be a filter of L if the following
axioms hold true:
la,beL=anbeF

2xeLand a € F=av xe F.

Definition1.2.6 For any non—-empty subset S of an ADL L [S) = {=v (AlL;s;) x€L, nisa

positive integer} is said to be the smallest filter of L containing of S.

Definition 1.2.7 For any a € L,[a) = {xV a |x € L} is said to be the principal filter generated

by a. where [a)A[b)=[aVvbh)and[a)Vv[b) =[aAb),foranyab gL

Definition 1.2.8 A non empty sub set | of an ADL L is said to be an ideal of L if the following

axioms hold true:

1. abeL=avbel

2. x eLand a £ l=xnac I.



Definition 1.2.9 For any a € L,(a] = {a A x,x € L} is said to be the principal ideal generated by

a. Where (a] A (b] = (aAb] and (a] v (b] = (av b], forany a,b € L.

For any non-empty subset A of L, the set A* ={x € L,aAax =0, forall a € A} is an ideal of L. In

particular, for any a € L, {a}* = (a)*, where (a) = (a] is the principal ideal generated by a.

Definition 1.2.10 An element d € L is said to be dense, if (d)* = {0}. The set D denotes the set

of dense elements of an ADL of L. It is filter of an ADL L, provided D is non-empty.

Definition 1.2.11([11)] An almost distributive lattice L with O is called quasi-complemented
ADL if for each x € L, thereisy € L such that x Ay =0 and x v y is a maximal. Here y is called

a quasi-complement of x.

Definition 1.2.12 An element meL is said to be a maximal element if for any

a€ELm= aimplies m = a.

Note: every maximal element is dense. The set M denotes the set of maximal elements of L. It is

also a filter of L, provides M is non-empty.

Definition 1.2.13 A proper filter (ideal) F (I) of an ADL of L is said to be a prime, if for
anyabeL,(avb),(anb) e F(I), thena € F(I) orb € F(I).

Definition 1.2.14. . A prime ideal(filter) P of ADL L is said to be a minimal prime ideal(filter) if
there is no prime ideal(filter) which is properly contained in P.

2). A prime filter(ideal) P of ADL L is said to be a maximal prime filter(ideal) if there is no
prime filter(ideal) which properly contains the filter(ideal) P.

Definition 1.2.15 ([13)] An ADL L with 0 is called normal ADL if and only if foralla,b e L
@l*v (b]*=(anA b]*
Lemma 1.2.1 ([16]) for any a,b,c € L,we have

0] ahOD=0andav0=a

(i) ava=aha=a



@iii) av(bva)=avb

(iv)  Ais associative

(V) aAbAc=bAaAc
(vij aAb=0=baAa=0.
(vii aAb<banda<avb
(viii) (avb)ac=(bva)Ac

(iX) avb=bva<=anb=baa.

Lemma 1.2.2 (11). For any a, b € L, we have;

(i) a<b= (b)* c (a)*

(i) (@)*** =(a)*

(ii@@av b)* = (a)* N (b)*

(iv)(@ A b)** = (@)** N (b)**
(V) @* < (b)* & (b)** < (a)**
(vi)a € (a)**

(vii) (@avb)*=(bva)*

(viii) (@Ab)*=(bAa)*
(iX)(@*=Lea=0.

LEMMA 1.2.3 ([19]) Every maximal ideal is prime.
LEMMAZ1.2.4 ([11]) P is a prime filter (ideal) of L if and only if L\P is a prime ideal (filter) of
L.

LEMMA 1.2.5 ([11]) P is a minimal (maximal) prime filter (ideal) of L if and only if L\P is a
maximal (minimal) ideal (filter) of L.

LEMMA 1.2.6 ([11]) Let I be an ideal and F be a filter of L such that InF=¢. Then there exists a

prime filters P such that FEP and Pnl=¢.

LEMMAL1.2.7 ([11]) A prime ideal P of L is minimal prime ideal if and only if for each xeP.

There exists y&P such that xa y=0.



LEMMA 1.2.8 ([18]) Let L be an ADL with maximal element. Then every prime ideal is

minimal if and only if every prime ideal is maximal.

DEFINATION 1.2.16 ([11]) L is said to be weak relatively complemented if for any a, b €L,

there exist XL such that a/Ax=0 and (a v x)* =(a v b)"



UNIT TWO

NORMAL FILTERS IN ALMOST DISTRIBUTIVE LATTICE
2.1 NORMAL FILTERS

In this section we define a normal filter and provide certain examples for it. We observe that the
set of normal filters forms a distributive lattice which is not a sub distributive lattice of the set of
filters in an almost distributive lattice.

Definition 2.1.1 ([9]) For any filter F of an almost distributive lattice L with 0, the set F" is
defined as F* = {x € L : (X)* < (a)* for some ac F}. A filter F of a lattice L is called a normal

filter if F = F".
In particular, for any a €L, [a) "={x€L: (x)*< (a)*}, where [a) is a principal filter of L.

Lemma 2.1.1([11]). For any filter F of an ADL L, we have;

(i) FcF"
(i) D S F*. Where D is the set of dense elements

Proof. (i) Leta € F. Then (a)* < (a)*. Thereforea€ F*. Hence FS F ™.
(ii). Let d € D. Then (d)* = {0} < (a)*, forall a € F. Therefored € F*. Hence D € F *.

Lemma 2.1.2. For any filters F, G of L, we have
(i). FEG implies F'eG”
(i). F™=F"
(iii). (FNG) "=F'nG"
(iv). (FVG) "= (F'vG") "

Proof :-(i) Let xeF". Then (x)*<(a)* for some acF=G. Therefore xeG" and hence F'€G*
(ii). (By Lemma 2.1.1 (i)), FES F*. Then F* € F ™ (by (i)). Letx € F ™.

Then (x)* € (a)*. Forsomea € F *. For thisa € F *, (a)* < (b)* for some b € F.
Therefore (x)* € (b)*, for some b € F. Hence x € F *. Therefore F*SF+.

Hence F ™" =F ™.



(iii). Since (FNG) "cF", G and (FNG) "SF nG". Let xeF'nG". Then (x)*<(a)*
and (X)*<(b)*. For some aeF and beG. Therefore (x)*<(a)*n(b)*= (avb)*,
where avbeFnG. Hence x €(FNG) *. Thus (FNG) " =F nG".
(iv). (By Lemma 2.1.1 (i)), FS F "and G € G". Therefore F vG € F'vG" and

(FVG) © £(F'vG") *. On the other hand, Let x €(F'vG") ¥, Then there exists arb € F'vG"
such that (X)*<(ab)*, where aeF" and beG". For acF" and beG", there exist fEF and geG such
that (a)*<(f)* and(b)* £(g)*.Therefore (f)** S(a)**,(g)** S(b)**and (f)**n(g)**<(a)**,(b)**.
We get (fag) ** S(anb) **. So that (x)*S(anb)* < (fag)*.Where fag € FVG. Hence x(FVG)™.
Thus (F'vG") = (FVG) *

Lemma 2.1.3 ([9]) We have
(i). L'=L=[0)"
(i) D"'=D=M"
(iii). Foranyd € D, [d) " =D
(iv). For any filter F of L, FE F* and DSF"
Proof. (i) Let L be an ADL. Then L € L* (by Lemma 2.1.1 (i)). Hence L* = L. Let 0 € L.
Then [0) = L. Therefore [0) " =L". Hence L "= L =[0) ".
(ii). Let a € D*. Then there exists d € D such that (a)* < (d)* = {0} (since d is dense).
Therefore (a)* = {0}. So that a € D and hence D* € D. (By Lemma 2.1.1 (i)), DED+
and hence D" =D. Letd € D. Then (d)* = {0} = (m)*, forallm € M
(since every maximal element is dense). Therefore d € M*. Hence D € M".
(By Lemma 2.1.2 (i) (ii)), D" € M™ =M*"and M" € D" (since M € D).
ThusD*'=D =M".
(iii) Letd € D. Then [d) € D (since D is filter). Therefore [d) * € D" = D (by (ii)).
Let a € D. Then (a)* = {0} = (d)* (since d is dense). Therefore a € [d) *.
Hence D € [d) *. Thus [d) " = D.
(iv). Let x, y € F". Then (x)* < (a)* and (y)* < (b)* for some a, b € F.
Then (aAb) ** = (@) ** A (b) ** € (X) ** n (y) ** = (XAy) **.

Hence (xAy)* € (aab)* and aab € F. Therefore xAy € F'. Again, let x €F" and x<y,
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then (y)* € (x)* =(a)* for some a€ F. Thus we get y €F". Therefore F* is a filter of L
SuchthatF = F'. LetD ={x € L: (X)* < (d)* = {0}}, since (d)* = {0} = (a)*
F'={x e L: (x)* < (a)*, for some ac F} (by the Definition 1.2.12) m = a

and also every maximal element is dense, since d = a. Therefore D € F".

Lemma 2.1.3 For any proper filter F of L, F" is always a proper normal filter.
Proof:- Let F be a proper filter of L. Suppose F is not proper normal filter. It means that F'=L.

Since O£L=F", there exists acF such that L= (0)*<(a)*. Therefore a=0 and 0=F. Hence F=L.

Which is a contradiction to our assumption. Thus F* is proper normal filter.
Theorem 2.1.1 Every maximal filter is a normal filter.

Proof. Let K be a maximal filter of L. Assume that K is not normal. Then K & K".
Therefore K" = L (since K is a filter). Let 0 € L = K. Then L = (0)* < (a)*, for some a € K.

Therefore (a)* = L and hence a = 0 (by Lemma 1.2.2 (ix)). We get 0 € K. So that K = L. Which
is a contradiction (since K is proper). Thus K is normal.



Example 2.1.1 Let L={0,bs,by,bs,b4,bsbe,b7,d,m} with the operation A and v defined as

follows.

A |0|byi|by|bsg|bs|bs|bg|bs|d | M
0|0 |0 |0 0|00 ]|O]|O|O
b1 |0 by |0 [by|bi|0 [by|O |by|Dby
by |00 |by|by|ba|{0 [0 |by|by|hy
by | O |by|by|bs|bs|0 [by|by]|bs|hbs
by |O|by|by|bs|bs|O |[by|by|bs|by
bs |00 |0 [0 |O |bs|bs|bs|bs|bs
be |0 | b1 |0 |[by|by|bs|bg]|bs|bs|be
b7 |00 |by|by|by|bs|bs|b;|b;|b;| Tablel
d |O|by|by|bs|bs|bs|bs|bs|d |d
m |0 |by|by|bs|bs|bs|bg]|b; m
vV |0 |by|by|bs|bs|bs|bs|b7|d |m
0 |0 |by|by|bs|bs|bs|bg|bs|d |m
by |by | by |bsg|bs|bs|bsg|bg|d [d|m
bo | by | bs|ba|bs|bs|bs|d |b7|d |m
bs|bs|bs|bsg|bs|bs{d |d |d |d|m
Da|Dbs | ba|bs|bs|bsm| m|m|m|m
bs |bs |bs|b;|{d | m|bs|bg|bs|d |m
be|bs | bs|d [d |m|bg|bg|d [d|m
b;|bs|d |b;{d |[m|bs|d |bs|d |m
d|d|d|d|d|[m|d]|d]|d]|d|m]| Table2
mimim{mim{m(m|m|m|m|m

Then (L,A,v ,0) is an ADL in which [bz) is a normal filter but not maximal. From the above

example we have the following.
Remark 2.1.1 The converse of above theorem not be is true. For, see the above example.
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Remark 2.1.2:- Every minimal filter need not be normal. For, see example 2.1.,
[m) = {m} is a minimal filter but not normal (because [m) "= {d, m} # [m).
Remark 2.1.3:- Every normal filter need not be prime. For, see example 2.1.,

[b3) = {bs, bs, d, m) is a normal filter but not a prime (because bs=b;vb, €[bs),
but b1&[b3) and b,&[bs).

Remark 2.1.4:- Every prime filter need not be normal. For, see example 2.1.,
[bs)= {bs,m}is a prime filter but not normal. ( Because [bs)"={b3,b4,d,m}#[ba).
Remark 2.1.5:- Every minimal prime filer need not be normal. For see example 2.1.,

[bs)={bs,m} is a minimal prime filter but not normal ( because [bs)"={b3,b4,d,m}#[b).
Let us denote the set o normal filter of VF (L). It can be observing that NF (L) is a distributive

lattice.

Theorem 2.1.2:- NF (L) can be a distributive lattice with the operations F'nG'= (FNG)" and
FUG=(FVG)", forany F,G € NF(L).

Proof: - Let F, G € NF(L). By lemma 2.1.2., (FNG) " is the infimum of F and G in NF(L).
Also (FvG) " is an upper bound of F and G. Let H eVF (L) such that F'eH, G'cH
and xe(FVG)".
Then (x)*<(a)* for some acFvG SH. Therefore xeH =H (since HN'F (L)).
Thus (FVG) "=FuG is the supremum of F and G in NF (L). Let F, G € HNF (L).
then Fn(GLUH)=F n(GvH)"=(Fn(GvH)) ={(FNG)v(FnH)} =(FNG)u(FnH).
(Since F (L) is a distributive lattice). Therefore (VF (L),A,L) is a distributive lattice with

the greatest element L*=L=(0)"

11



Theorem 2.1.3:- There is an epimorphism from F(L) on to NF(L).

Proof: - Let F, GEF (L). Define amap &:F (L) -»NF (L) byg(F)=F".
Then ¢(FAG) =(FAG) '=F'nG"=¢(F) n ¢(G) and ¢(F v G)= (FVG) "= (F'vG") "
(by Lemma 2.1.2 (iv)) = F UG’ =¢(F) U ¢(G). Therefore ¢ is a homomorphism.

Since VF (L)EF(L),¢ is an onto homomorphism.

2.2 Normlets

In this section, we define normlets in an almost distributive lattice. We obtain necessary and
sufficient conditions for a filter to become normal in terms of normlets. Finally we obtain
necessary and sufficient conditions for an almost distributive lattice to become weak relatively

complemented.

Definition 2.2.1.([9]) A filter F of L is said to be a normlet, if F=[a) ¥, for some a€ L.
Theorem 2.2.1. Every normlet is a normal filter.
Proof. Let xeL and te[x) *. Then (t)*<(a)*, for some ac[x)* and (a)*< (x)*.
Therefore (t)* < (x)* and hence t € [x) *. Thus [x) * is a normal filter.
Lemma 2.2.1. For any a, b € L, we have
(i). a< b implies [b) " = [a) *
(ii). a€ [b) " implies [a) "= [b)
(iii). [a) " =D if and only if ac D
(iv). [a) "= Lifand only ifa=0
(v). For any normal element mofL, [m) =D

(vi) [a) " n[b)"=[avb)”

12



Proof. (i) Suppose that a< b. Then [b) € [a). Therefore [b) "= [a) " (by Lemma 2.1.2(i)).
(i) Suppose that ae [b) *. Then [a)< [b) *. Therefore [a) ' [b) "= [b) *
and hence [a) * € [b) ¥ (Since [b) * is normlet).
(iii) Suppose that [a) " = D. Then a € [a) © = D. On the other hand,
Letd € D, then D* = {xe L, (x)*< (d)*= {0}} =D.
(iv). Suppose that [a)  =L. Then O L= [a) *. Therefore L = (0)*< (a)*.
Hence a=0. Leta=0and (0)* < (a)* and 0L = [a) *. Therefore [a) * =L.
(v). Since every maximal element is dense and from (iii), we have |m)" = D.
(vi). [8) " n [b)* = ([a) n [b)) " = [av b) * (by lemma 2.1.2)
Lemma 2.2.2 For any a, b € L, we have
(i). an b =0 implies [a) "v [b) © =L
(ii). av b € D if and only if [a) "'n [b) " =D
(iii). If a# 0, then (a)* N [a) * =¢
(iv). (@)* = (b)* ifand only if [a) " = [b) *
(v).[a) " =[b) " implies[anc) =[oac)  forallceL
(vi). [a) " = [b) " implies [av c) " =[bv c) " forall c € L.
Proof. (i) Suppose that aab = 0. Then L =[0) =[aab) =[a) v[b) S [a) " v [b) " € L.
Therefore [a) *v [b) * =L.
(ii) It can be obtain by Lemma 2.2.1.

(iii). Suppose that a=0. Let xe (a)*n [a) *. Then (x)* € (a)* and anx =0.

13



Therefore ae(x)*<(a)*. Hence ana = 0. Which is a contradiction Thus (a)*n[a) * =¢.
(iv). Suppose that (a)* = (b)*. Then a[b) * and be[a) *. Therefore [a) "=[b) " and [b) "E[a) *.
Hence [a) © = [b) *. On the other hand, suppose that [a) * = [b) *. Then ac[b) " and be [a)
Therefore (a)*=(b)* and (b)* < (a)* and hence (a)* = (b)*.
(v). Suppose that [a) * = [b) *. For any teL, te (anc)*
=thanc=0
=t Ac € (a)* = (b)*(from (iv))
e tAbAac=0
=te(bac)*
By (iv) we get [aa ) "=[bAc) *.
(vi). suppose that [a) * = [b) . For any teL
te(@ve)* =tvavec=0
=tV c € (a)* = (b)*(from (iv))
=tV bve=0
ete(bve)*
By (iv) we get [av ¢) "= [bvc) ™.
Theorem 2.2.2. For any filter F of L, the following are equivalent;

(). Fis normal

(ii) For xe L, x€ F implies [x) "€ F

14



(iii) For any x. ye L, (X)* =(y)* and xe F implies ye F
(iv) For x, ye L, [x) "= [y) " and xe Fand ye F
V) F=U,ee[)”
Proof. (i)= (ii). Assume F is normal. Let xe F. Then [x)SF. Therefore [x) "CF'=F.
Thus [x) "cF.
(ii)=> (iii). Assume (ii). Let X, y € L such that (x)*= (y)* and xe F. Then [y) = [x) "€ F.
(by our assumption). Therefore y € F.
(iii)= (iv) Suppose that (x)* =(y)*. Then xe[y)" and ye[x)".
Therefore [x) " €[y) " and [y) " €[x) Hence [x) " = [y) .
(iv)=>(v) Assume (iv). Let xeF. Then xe [x) *. Hence FE U, _;[x)*
On the other hand, letx € Fandy e[x)". Then[y)" €[x)".
Therefore [y) " =[y) '"n[x) " =lyvx) andy v Xx e F.

By our assumption, y € F. Therefore [x) " < F and hence U[x)+ cF

xeF

(V)= (i). Assume (v). Let x € F*. Then there exists a € F such that (x)* < (a)*.

Therefore x € [a) " and hence x e U[x)+ = F (by assumption) thus F is normal.

xeF
Let us denote the set of normlets of L as V'F (L). Then we have the following;

Theorem2.2.3. (M'F (L),n,u) is a sub lattice of VF (L) in which [0) * is a greatest element in

NF(L).Moreover N"F(L) has the smallest element if and only if L has dense element.
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Proof. It can be observing that by theorem 2.1.2 (N"F (L),n,u) is a sub lattice of a distributive
+lattice (WF (L),n,u) with the greatest element [0) "= L. Now, suppose that L has a dense
element, say d and let xe [d) ", then (x)*< (d)* = {0} < (a)* for all ac L. Therefore d € [a) * for
all a € L. Hence [d) "= [a) * for all ac L. thus [d) ¥ is the smallest element in NV'F (L).
Conversely suppose that N'F (L) has the smallest element, say [a)* for some a € L. Let x € (a)*.

Then x A a=0.Therefore [xaa) " =[x) " L [a) " = [x) " =L. Hence x =0. Thus a is dense in L.

Definition 2.2.2. ([2]): An almost distributive lattice L is said to be a disjunctive, if for any X, y
€ L, x #y implies (x)* # (y)*.

Theorem 2.2.4. If L is a disjunctive ADL, then every filter is normal.

Proof. Suppose that a filter F of L is not normal. Then there exists X, y € L such that [x) " = [y) 7,
xe F and y& F. Therefore (x)* = (y)*. Since L is disjunctive, x =y. hence ye F. which is a

contradiction. Thus F is normal.
Remark 2.2.1. The converse of above theorem need not be true. For, see the following example

Example 2.2.1. Let L= {0, dy, dp, d3, mz, my}

A |0 |dy|dy|ds|[mg |my v [0 |dp |[dy [d3 |[mg|my
0 (0|0 |O |O |O 0 0[O0 |dy |dy [d3 [mg|my
di [0]dy|d2 |0 |di |d di |[dy |di |di [mg|mg|m
d2 [0]dy |d2 |0 |di |d dy |[d2 |d2 |d2 [ Mz | My | My
ds (0|0 |0 |d3|ds |d3 d3 [d3 [mg [my [ d3 [ my | m;
mpy |0 |dy|dy[d3|mg |my my|(my|mg |mg | mg|mg|m
my |0 |dy|dy[d3|mg |my my|(my|my|my | mz|mz|m;
Table 1 Table 2
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Then (L,n,v,0) is an ADL in which every filter is normal but it is not a disjunctive ADL

(because (my)*= (My)* but m;# my).

Define a relation i on L by ¢ = {(x, y) € Lx L [X) " = [y)'}. It is easy to observe that v is a

congruence relation on L (by lemma2.2.2).

Lemma 2.2.3.([11]) For any element a € L, we have;
aly={0} ifandonlyifa=0
(i) a/y =D if and only if a € D.

Proof. (i) Let a € L. Then a € a/y. Suppose that a/y = {0}. Then a = 0. On the other hand,
leta=00y={x€EL|(X,0€yt={x€eL|[X) =[0F={xeL| (X *=(0)} (by Lemma
2.2.2 (iv)) = {x € L | x = 0}. Therefore 0/y = {0}.

(i1) Suppose that a/yy = D. Then a € a/yy = D. Therefore a € D. On the other hand, leta € D, a/y =
{xeL|(x,aey={xeL|[x)"=[a) F={xeL|X) *= ()} (by Lemma2.2.2 (iv)) = {x €
L | (x) *={0}} (since a € D) = {x € L | x € D}. Therefore a/y = D.

Theorem 2.2.5. The quotient lattice L /¢ forms a distributive lattice with the operations x/ A
y/y =(XA y)/ and x /vy /¢ =(Xv y)/¢. More ever the least element is ¢/ 4 = {0} and the
greatest element is d/y» = D.

Proof: suppose L/y is a distributive lattice with the least element 0/y = {0}. Suppose that L/y
has the greatest element say, a/y, forsomea € L. Foranyte L, te (@ *=>tAa=0= (tAa)y
= 0y = thy A aly = 0/y = t/y = {0}. (since a/y is the greatest element) Therefore t = 0 (by
Lemma 2.2.3 (i)). So that a is dense. Hence L has dense. On the other hand, suppose that L has a

dense element say, d. For any x € L, x/y V d/y = (x V d)/y. By the above lemma (x V d)/y =D =
d/vy (since x V d is dense). Hence d/v is the greatest element. Thus L/y has the greatest element.

S.Ramesh and G.Jogarao [12] introduced the concept of dense complemented ideal in ADL. An

ideal 1 of L is said to be dense complemented in L, if there exists an ideal J in L such that I A J =

{0} and I A Jis an ideal generated by a dense element in L.

Theorem 2.2.6. The following are equivalent;
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(i) L isaweak relatively complemented

(i) (WV+F(L),n,u, D, L) is a Boolean algebra
(iii) (LAp, AV, O/4p,dAD) is a Boolean algebra

(iv) Every principal ideal of L is dense complemented.

Proof . (i) = (ii) Suppose that L is a weak relatively complemented ADL. Let xe L and d is a

dense element in L. Then by our assumption, there exists y € L such that x Ay =0 and

(x v y)* = (x vd)* = {0}. Therefore x v y is dense. Now [x) "n [y) " = ([X) n [y)) =[x vy) " =D
and [X)"u [y)" = ([X) v[y))" =[x Ay)" = [0)"= L. Therefore V+F (L) is a Boolean algebra.

(if)= (iii) Suppose that V+F(L),n,U) is a Boolean algebra. Let x £ L. Then by our assumption,
there exists y € Lsuch that [x) "n[y)"=Dand [x)"u[y)'=L. Thatis[xvy) =D and L =[x
AY)". Therefore x vy is dense and x Ay = 0 and hence. x/w A y/y =(XAy)/y =0/ = {0} and

x/Y vy /i =(Xvy)/yr=D. Thus L/ is Boolean algebra
(iii)=(iv). Suppose that (L/y,A,V) is a Boolean algebra. Let xe L. Then by our assumption,

there exists ye L such that x/1p A y/1 = (XA v)/yp =0/ and X/ v y/y = (Xv y) /10 =d/1.
Therefore xay= 0 and xvy is a dense and hence (X] n (y] = (xay] = (0] and (x]v(y] = (xvy] is
an ideal generated by a dense element x v y. Thus (x] is a dense complemented ideal.
(iv)= (i) Let a, b € L. Then there exist c, d € L such that (a] A (c] = {0} = (b]a (d] and (a] Vv
(c] and (b] v (d] are the principal ideals generated by dense elements. Thus aac =0 = bad and
avc, bvd are dense elements. Take x= cab. Then aax = aacab =0 (since aac =0) and (avx) A
(avb) = av(xnb) = av(c nbab) =avx. So that (avb)* < (avx)*. Now, for te L.
T € (a vx)* = ta(avx) =0

= tna= 0 and ta ca b=0

=t Aba (avc) =0

=tAb=0 (since (avc) is dense)

= ta(avb) =0
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= te (avb)*
Therefore (avx)* S(avb)* and hence (awvx)* = (avb)*. Thus L is a weak relatively
complemented.
Theorem 2.2.7. If L is an ADL in which every dense element is maximal, then the following are

equivalent.

I. L isquasi complemented

I. L isrelatively complemented
iii. (W'F(L),n,u,M,L) is Boolean algebra
iv.  (L/y AV 0 /M, m/y)is Boolean algebra

v.  Every principal ideal of L is complemented

Proof. Let every dense element is maximal in L.

()= (ii) Suppose that L is quasi complemented. Let a, b € L. Then there exist ¢, d € L such that
anc=0=bAd,avcandbVvdaremaximal. Takex=cAb,aAx=aA(CAb)(sincex=cA
b)=(@Ac)Ab =0(sinceanc=0)andavx=aVv(cAb)(sincex=cAb)=(@vc)a(avh)
=aVb. (since a Vv cis maximal) Therefore L is relatively complemented.
(i) = (iii) Suppose that L is relatively complemented. Let F € N *F(L). Then there exists a € L
such that F = [a) *. For any dense element d € L, there exists x € L such thata Ax =0 and a v x
=avd. Now,aAx=0=[aAx)=[0)
>[aax) " =[0)+=(a)"vV[x)")"=L
=>((FVvG)'=L whereG=[x)"
=>FUG=L Andavx=avd
=>[avXx)=[avVvd)
s[avx)"=[avd)”
= ([a) N [x))" =D (since a v d is dense) = [a) * N [x) * = M (since every dense element
is maximal)
= F N G =M, where G =[x) *. Therefore N *F (L) are a Boolean algebra.
(iii)= (i) Suppose that N *F (L) is a Boolean algebra. Let a € L. Then there exists ¢ € L such that
[@)"N[c)"=Mand[a)"ufc) " =L.
Now, [a) "N [c) "=M=[aVvc) =M (by Lemma 2.2.1 (vi))
=>avceM (sinceavcelave)Hand[a)" ulc) =L
=([a)"vIc)) =L
=s[anc) =L
= aAc=0. (by Lemma 2.2.1 (iv)) Therefore a A ¢ = 0 and a Vv c¢ is maximal (since
every dense is maximal). Hence L is quasi complemented. .
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(iii)= (iv) Suppose that N+F(L),n,L) is a Boolean algebra. Let x € L. Then by our assumption,
there exists y € L such that [x)"n [y)"* =D and [x)" u [y)*'= L. That is [xvy) * =D and

L =[x ay)". Therefore x vy is dense and x Ay = 0 and hence. x/i A y/1fr =(XAy)/p = 0/1pr =
{0} and x/y vy /1 =(Xvy)/1 = D. (by the Definition (1.2.12)). Thus L/ is Boolean algebra.

(iv)= (V) Suppose that (L/y, A, V, 0/y, m/y) is a Boolean algebra. Let x € L. By the above
theorem, there exists y € L such that xAy = 0 and xVvy is maximal (since every dense element is
maximal). Therefore (x] N (y] = (x Ay] = (0] and (X] v (y] = (Xvy] = L (since xvy is maximal).
Hence (x] is a complemented ideal

Theorem 2.2.8 :- L is weak relatively complemented almost distributive lattice if and only if
forany a ,b €L, there exists x € L such that a A x = 0and [avx)" = [ av b)"
Proof. Let a, b, x € L. Then aAx =0 and (avx) * = (avb) * if and only if aAx =0 and

[aVv x) " =[aV b) "(by Lemma 2.2.2 (iv)). Hence the theorem is proved.

2.3 Normal prime filters

In this section, we study the class of normal prime filters in an almost distributive lattice with
dense element. We obtain some properties on them. For any filter F of L, we prove that the
intersection of all normal prime filters containing F is the smallest normal filter containing F.

Theorem 2.3.1. Let F be a filter of L and for any chain of filters C;, C,, Cs... Of L such that
FECic€CycCc ...cF . ThenCy =C, =C3" =....=F".
Proof: Suppose that F be a filter of L and for any chain of filters C;, C,, Cs....of L such that

FC Ci€ C, S Csc ..c .F". Then C;" €C," € C3" €....c F™ =F" (since F' is normal.

ThereforeC;" =C,"=C3' =.... = F
Theorem 2.3.2. Let F be a proper filter of L. Then there exists a normal prime filter containing F.

Proof: - Let F be a proper filter of L. Take p ={G: G is a proper normal filter of L and F €G.

(By lemma 2.1.3).; F" is a proper normal filter containing F. Therefore F'€ p and p satisfies the
hypothesis of Zorn's lemma. Hence p has a maximal element, say P. leta, b € L such thata & P
and bg P. then Pu [a) * and Pu [b) * are normal filters, which containing P properly. By the
maximality of P, L= Pu [a) " = Pu [b) *.Therefore L = { Pu [a)"} n { Pu [b)"}= {(PU [a)) n (PU
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[b))} ={ Pv[avb)}". If av b € P, then L = P*=P. Which is a contradiction. Hence avb & P. Thus P

IS prime.

Theorem 2.3.3. If P is a minimal in the class of prime filter containing a normal filter F, then P

is a normal.

Proof. Let F be a normal filter of L and P is a minimal in the class of prime filters of L
Containing F. Suppose that P is not a normal. Then there exists x, y € L such that [x)" =[y) ",

xe P and yg P. Take | = L-P v(xvy] is an ideal of L. Then InF =¢. If INF =¢, then ag InF.
Therefore a = rvs for some r €L-P and s & (xvy).So that

rvs=rv{(xvy)as}=r

Vilyvx)ast={rv(yvx)}Aa(rvs)EF (sincervs=a€F).Sothatrv{(yVv x) E
F.We have

[X)" =[y)". Then [rvyvx) "= [rvyvy)'= [rvy)’. Since F is normal, rvyeP, which is a
Contradiction. Therefore InF =¢. So that there exists a prime filter Q such that InQ =¢, FEQ
and Q<P. Also xvy&Q and xvy € P. We get Q&P. hence P is not minimal. Which is a

contradiction. Thus P is normal prime filter.
Corollary 2.3.1. Every minimal prime filter containing D is normal.

Proof: - Let P be the minimal prime filter of L and D<P. that is P is the minimal is the class of

prime filters containing (the normal filter) D. By the above theorem, P is normal.

Theorem 2.3.4. Let F be a normal filter and 1 is an ideal of L such that Frnil =¢. Then there exists

a normal prime filter P such that FEP and Pnl =¢.

Proof: - Let F be a normal filter and I is an ideal of L such that Fnl =¢. Take P= {G: G is a
normal filter, F €G and Gnl = ¢}. Clearly FEP and it satisfies the hypothesis of Zorn's Lemma.
Therefore P has a maximal element, say P. Choose X, yeL such that xZP and y&P. then
P=PU[x)"= {PV[X)}" and P=PU[y)" = { Pv[y)}'. By the maximality of P, {PV[x)} * nl# ¢ and
{PVIY)} nl#g. Leta € {P v[x)} " nl and be {P v[y)}" nl. then avb €l. and avbe {Pv[x)}'n{
Pvly)}'= {Pv[x)} n {Pvy)}}'= {Pvxv y)}". If xv yeP, then avbeP"=P (Since P is normal) and

avbe 1. Hence P is prime. Thus P is a normal prime filter of L such that F P and Pnil = ¢.

Remark 2.3.1. If F is not a normal filter, then the above theorem need not be true.
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For see example 2.1.1. Let F = [by) and | = [d], then Fnl = ¢. But there is no normal prime filter

P such that Pnl = ¢ and F P.

Corollary 2.3.2. Let F be a normal filter of L and x&F. Then there exists a normal prime filter P

of Lsuchthat F = P and x&P.

Proof: - Let F be a normal filter of L and x & F. then (X] NnF=¢. Therefore (by Theorem 2.3.4).,

there exists a normal prime filter P such that F P and (x] nP=g¢. Thus x & P.
Theorem 2.3.5. For any filter F, F'= n{P: P is a normal prime filter of Land F < P}
Proof: - Let F be a filter of L and x&F". Put P = {G: G is a normal filter of L and x&G and

F ©G}. clearly F'eP and it satisfies the hypothesis of Zorn's Lemma. Therefore P has a maximal
element, say P let a, beL such that agP and b&P. Then xePula) * = {P v[a) '} = {P v[a)} " and
xePu[b)" = {Pv[b)'}" = {Pv[b)}". Thus x € {Pv [a)}" n {P v [b)}" = {Pv][avb)}". Suppose that
avb € P. Then xe P"=P (since P is normal. So that xeP. which is a contradiction. Therefore P is
prime. Hence P is normal prime filter containing F and x&P. Thus F* = n{P: P is a normal prime

filter of Land F < P}.

Corollary 2.3.3. The intersection of normal prime filter of L is equal to D.

Proof :- We have every normal filter of L containing the filter D. hence (by Lemma 2.1.1) from

the above theorem it is obvious.

Theorem 2.3.6. For any filter Fof L, F'n F* =¢

Proof :- Let F be a filter of L. Suppose that F'n F* #¢. Let t€ F'n F*. Then there exist ac F
such that (t)* (a)* and taf = Ofor all feF. Therefore ag(t)* ( since tra=0). Hence a=0 and acF.

Which is a contradiction. Thus F'n F* =¢.

Corollary 2.3.5. For any filter F of L, there exists a normal prime filter P of L such that FEP and

PNF* = ¢.

22



Proof :- Let F be a filter of L. Then by the above theorem F'n F* =¢. (By Theorem 2.3.6.).,

there exists a normal prime filter P of L such that F*<P and PnF* = ¢. Thus FEP and PnF* =¢.

2.4 The space of normal prime filters in Almost Distributive Lattice

In this section we discuss the space of normal prime filters in an almost distributive lattice which
the hull-kernel topology. Finally we obtain necessary and sufficient conditions for the space of
normal prime filter to become Hausdorff.

Let us denote specL the set of normal prime filter of L. For any ASL, K (A) = {Pe specL AZP}.

In particular, for aeL, K (a) = {P& specL a¢P}
Theorem 2.4.1. We have the following

(i) ForanyaeL, K(a) is compact

(i) If C is a compact open subset of specL, then C=K(a)

Proof :- (i) Let aeL and B €L such that K(a) € UK(b) and F=[B) is a normal filter of L

beB

Generated by B. If agF, by corollary 2.3.2. , there exists a normal prime filter of P such that FEP

and agP. Therefore P e K(a) < U K (b) . Hence b&P for some beB .Which is a contradiction. So

beB

that a eF=[B) and a =x v (AL, b,) for some by,b,,bs,.....by EB and xeL. (by Lemma 2.4.2.)

K@) = K(xV (AL b)) = K(x)N KL, b) S K(ALy by = | JK(B) and hence K(a) is
fml

compact in specL.

(iii) Let C is a compact open subset of specL. Then C =K(A), for some AZL ( since C is

open). Therefore C :UK(a). Therefore there exist aj,azas,....an€A such that

acA

C= U K(a,) = K(a) for some aL ( since C is compact).

i=1

Theorem 2.4.2. Let L be an ADL in which every prime filter is normal. Then L is a distributive

lattice if and only if the map a = K (a) is an injection.
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Proof. Suppose that L is a distributive lattice in which every prime filter is normal. Leta ,b €L

such that a# b. Then there exists a prime filter P such that agP and b&P. Hence K(a)#ZK(b). Thus
the map is injection. Conversely suppose that the map is injection. Let a, b €L. Then K(avb) =

K(bva). Therefore avb = bva. Hence L is a distributive lattice.

Lemma 2.4.2 Let L be an ADL with maximal elements. Let P be a normal prime filter of L.

Then P is a minimal if and only if for each xP there exists y&P such that xvy is maximal.

Proof :- Let L be an ADL with maximal elements. Let P be a normal prime filter of L. Suppose

that P is a minimal prime filter of L. Let xeP, then L\ Pv{x} =L (since L\P is a maximal ideal).
Therefore there exists a maximal element me L such that m = xvy, xeP and y&P. On the other
hand, clearly we have L\P is a prime ideal of L. then there exists xeL such that x& L\P.
Therefore by our assumption there exists y&P such that xvy is maximal. Hence L\P is maximal.
Thus P is a minimal prime filter of L. For any A<L, denote H (A) = {Pe specL ASP}. Then H
(A) = SpcL\K (A). Therefore H (A) is a closed set in SpecL and hence every closed set in SpecL

is of the form H (A) for some A<L. Thus we have the following.

Theorem 2.4.3. For any YZ<SpecL, the closure of Y is given by ¥ =H ﬂ P.

peY

Proof: - Let Y SSpecL. Let Q €Y. Then ﬂP Q. Therefore Qe H (Q)€ H{( ﬂP ).
pe¥

peY

Hence H{( ﬂP] is a closed set containing Y. Let C e a closed set in SpecL containing Y.
pet

Then C =H (A), for some ASL. Therefore AS ﬂP. Hence H( ﬂPj € H (A)=C.
pet

peY

Thus Y= H([)P).
pel

Theorem 2.4.4. Let L be an ADL in which every dense element is maximal. Then the following

are equivalent;
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(i) Every normal prime filter is maximal
(ii) Every normal filter is minimal
(iii)SpecL is T;-space

(iv)SpecL is a Hausdorff space

(v) For any x,ye L, there exists zeL such that xvz is a maximal and K(y)n{SpecL-

K()}=K(yv2).

Proof :- (i)=(ii) Let P be a normal prime filter of L. If Q is a normal prime filter of L such that

QCP, then by our assumption Q=P, Therefore every normal prime filter is minimal.

(i) = (i) Let P be a normal prime filter of L. If Q is a normal prime filter of L such that PSQ.

then P =Q (by our assumption). Therefore P is maximal

(if) = (i) Let P and Q are two distinct normal prime filter of L. Then PZQ and QZP (since P
and Q are minimal). Take xeP/Q and yeQ/P. Then Q eK(x)/K(y) and PeK(y)/K(x). Therefore
SpeclL is T;-space.

(iii) = (iv) Suppose that SpecL is T;- space. Let P € SpecL. Then P={P} = H (P) = {Q&SpecL
PZQ}. Therefore P is a maximal. Hence every normal prime filter is maximal. Let P, Q € SpecL
such that P#Q. Choose x€ P and x&Q. Then there exists ygP such that xvy is maximal.
Therefore PeK(y) and QeK(x) and K(xvy) =K(x)rnK(y)=¢. Hence SpecL is Hausdorff space.

(iv)= (v) LetaeL. Then K(a) is a compact subset of the Hausdorff space SpecL. Then K(a) is
clopen subset of SpecL. Let x,y€L such that x# y. Then K(y) n{specL\K(x)} is a compact open
subset of SpecL. (By lemma 2.4.1)., there exists zeL such that K (z) = K(y) n{SpecL\K(x)}. So
that K(yvx)=K(y) nK(z)= K(y)n{SpecL\K(x)}= K(z) and K(xvz) = K(X)nK(z)=¢. (By
Lemma 2.4.1)., xvz is dense. Thus xvz is maximal (since every dense is maximal).

(iv)=(ii) Let P is a normal prime filter of L. Let x, yeL such that xeP and y&P. Then by our
assumption there exists zeL such that xvz maximal and K(yvz) = K(y)n{SpecL\K(x)}, P&K(x)
and PeK(y). Therefore Pe K(y) n {SpecL\K(x)} = K (xvz). If zeP, then yvzeP, which is a
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contradiction. Hence for each x €L, there exist a normal prime filter P and z&P such that xvz is a

maximal. Thus P is minimal (by Lemma 2.4.2).
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3. Conclusion

In this project, we have discussed the concept of lattice, distributive lattice and ADL.
Moreover we introduced and characterized normal filter, normlet, normal prime filter in almost
distributive lattice. And also we have to understand how to proof a theorem, Lemma and

corollary related to normal filter in almost distributive lattice.
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