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Abstract 

In this project, we discussed stability, where the stability of the state trajectory or equilibrium 

state is examined, stability is applied to obtain the behavior of systems of first-order ordinary 

differential equation and we present two techniques for examining stability: (1) Lyapunov 

functions, (2) finding the eigenvalues for fundamental matrix. Stability was proposed in 1892 by 

Russian mathematician A.M.Lyapunov. It is examined with some examples which are presented 

to show the effectiveness of it for linear and nonlinear systems and also for any higher order 

differential equation by reducing it into a system of the first order. 
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Chapter One 

1. Introduction and Preliminary Concepts 

1.1. Introduction 

Differential equations arise in many areas of science and engineering, specifically whenever 

deterministic relations involve some continuously varying quantities and their rates of change in 

space and/or time. This is illustrated in classical mechanics, where the motion of a body is 

described by its position and velocity at the time value varies. Newton’s law allows one to 

express these variables dynamically as a differential equation for the unknown position of the 

body as a function of time. The study of differential equations is a wide field in pure and applied 

mathematics, physics, metrology, and engineering [9]. All of these disciplines are concerned 

with the properties of differential equations of various types; pure mathematics focuses on the 

existence and uniqueness of solutions, while applied mathematics emphasizes the rigorous 

justifications of the methods for approximating solutions. 

The rate of change of any quantity with respect to other quantity (quantities) is expressed by a 

differential equation. Differential equations play an important role in mathematical modeling of 

physical phenomena occurring in science, economics, engineering, medicine, etc. [2]. Solving 

various problems in science and engineering requires differential equations. Many physical, 

chemical, mathematical models, biological phenomena, economics, financial forecasting, image 

processing and other fields are based on differential equations [2]. 

The general first order ODE can be written as  
  

  
        or using prime notation            

where   is a continuous function on a common region. 

An ordinary differential equation of order  , in the dependent variable   and the independent 

variable  , is an equation that can be expressed in the form of 

                      . 

If   is linear with respect to   and its derivative, we have 

∑    
        

 

   
, 

which is an     order linear ordinary differential equation. 
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A linear first order ordinary differential equation can be written as in the form  

  

  
                   

where      and      are continuous function defined in a common interval.  

Stability is a quantity, state or degree of being stable: such that, it is the strength to stand or 

endure, it is the property of a body that causes it when disturbed from a condition of equilibrium 

or steady or steady state to develop forces or moments that restore the original condition. In an 

unstable system, the state can have large variations, and small inputs or small changes in the 

initial state may produce large variations in the output. A common example of an unstable 

system is illustrated by someone pointing the microphone of a public address (PA) system at a 

speaker; a loud high-pitched tone results. Often instabilities are caused by too much gain; so to 

quiet the PA system, decrease the gain by pointing the microphone away from the speaker. 

Discrete systems can also be unstable. Someone gave the illustration of a person who was 

reading in a chair and became cold. She/he then went over and increased the temperature of the 

air conditioning. She/he then went over and raised the heater's thermostat. The home grew 

warmer. She or he decided to stand up and lowered the thermostat after becoming overheated. 

The home began to chill. She or he raised the thermostat after becoming cold. This process kept 

going until someone eventually suggested that she/he put on a sweatshirt to stop their body from 

losing heat. She/He did and felt a lot more at ease. Because she/he appeared to sample the 

environment and provide outputs at distinct intervals spaced about 15 minutes, we called this a 

discrete system. 

Stability was probably the first question in a classical dynamical system which was dealt with in 

a satisfactory way. Stability questions motivated the introduction of new mathematical concepts 

(tools) in engineering, particularly in control engineering. Stability theory has been of interest to 

mathematicians and astronomers for a long time and has had a stimulating impact on these fields. 

The specific problem of attempting to prove that the solar system is stable accounted for the 

introduction of many new methods. Our treatment of stability will apply to (control) systems 

described by sets of linear or nonlinear equations. As is to be expected, however, our most 

explicit results will be obtained for linear systems [15]. 
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The general objective of this proposal is to assess the stability analysis of systems of first 

order ordinary differential equations by using eigenvalue technique, Routh Hurwitz criterion 

and Lyapunov function. 

      The specific objectives this project is   

 To identify the stability of systems of first order ODEs. 

 To determine the region at which the system is stable.  

 To gain an understanding of the behaviors of the solutions to the systems. 

1.2. Existence and Uniqueness Theorems of Solutions 

Existence and uniqueness theorem is the tool which makes it possible for us to conclude 

that there exists only one solution to a first order differential equation which satisfies a given 

initial condition. The existence theorem is used to check whether there exists a solution for an 

ODE, while the uniqueness theorem is used to check whether there is one solution or infinitely 

many solutions. The existence and uniqueness theorem are also valid for a certain system of first 

order differential equations. These theorems are also applicable to a certain higher order ODE 

since a higher order ODE can be reduced to a system of first order ODE. 

1.2.1. Lipschitz Condition and Gronwall Inequality 

If the functions satisfy the Lipschitz condition, successive approximations can yield a unique 

solution to the initial value problem  

                        . 

 Gronwall's inequality, a kind of inequality, is used to prove the solution's uniqueness. We will 

therefore introduce a class of functions satisfying the Lipschitz condition as a preliminary to the 

Picard's theorem before discussing Gronwall's inequality. 

Definition 1.2.1.1: If there is a positive constant   such that  |               |   |     | 

forevery        and        belonging to   , then the function        defined in the region 

     is said to satisfy the Lipschitz condition with respect to   in  . For the function   in  , 

the constant       is known as the Lipschitz constant. The class of all functions satisfying the 

Lipschitz condition with the Lipschitz constant    in a domain      is denoted by Lip      . 

From the very definition, we note that if    Lip       then 

|               |

|     |
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Hence, to show that        satisfies Lipschitz condition with respect to   in     , it is enough 

if we prove that 

|               |

|     |
   

is bounded for all           . 

Theorem 1.2.1.1: Let           be a real valued function which is continuous on the rectangle 

  {      |    |    |    |   }  where      . If 
  

  
 exists and is continuous on the 

rectangle  , then         satisfies Lipschitz condition with respect to   in   and Lipschitz 

constant   is given by 

            . 

Proof: Since  
  

  
  is continuous in a closed rectangle  , it is bounded in    so that its least upper 

bound exists in   . 

Let       (
       

  
).                                                                                                               (1.1) 

Let        and        be any two points of   . Then by the mean value theorem of differential 

calculus, there exists a point   [     ] such that 

                                        *
       

  
+                                               (1.2) 

Using (1.1) and (1.2), we obtain 

|               |   |       |  for all         and        in  . This proves that         

satisfies Lipschitz condition with Lipschitz constant    in  . 

Theorem 1.2.1.2: (Gronwall Inequality) Let      an      be two non-negative continuous 

functions for     . Let   be any positive constant. Then, the inequality 

                             ∫ (         )            
 

  
                                      (1.3) 

Implies the inequality 

         *∫         
 

  
+                                                   (1.4) 

Proof: Let        ∫ (         )    
 

  
.                                                                          (1.5) 

First note that        for any       and                 and                            (1.6) 

Since        for any        from the hypothesis, we get 
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  ∫                
 
  

 
    

    
  . 

Since      is non-negative, we obtain from the above inequality 

         

    
     , for any      . 

Using (1.6) in the above inequality, we get 

                
     

    
     .                                                                                      (1.7) 

Integrating (1.7) from    to   , which gives 

                 ∫         
 

  
. 

Using         and        we have  

   *  ∫ (         )    
 

  
+      ∫         

 

  
. 

Taking exponential on both sides of the above, we get  

                             ∫ (         )    
 

  
     *∫         

 

  
+                            (1.8)        

Replacing the left hand side of (1.8) by lesser term given in the hypothesis, we get 

Gronwall's inequality  

         ∫         
 

  
. 

1.2.2. Successive Approximations and Picard’s Theorem 

It was Emile Picard (1856–1941) who developed the method of successive approximations to 

show the existence of solutions to ordinary differential equations. He proved that it is possible to 

construct a sequence of functions that converges to a solution of the differential equation. One of 

the first steps towards understanding Picard’s iteration is to realize that an initial value problem 

can be reconstructed in terms of an integral equation. The Picard's theorem gives the unique 

solution of the equation                      , where        is some arbitrary function 

defined and continuous in some neighborhood of         by the method of successive 

approximations using the integral equation equivalent to the given differential equation. The 

main emphasis of the theorem is that it asserts the existence and uniqueness of the solution of an 

initial value problem under very general conditions. In theory of differential equations, such 

theorems are called the existence and uniqueness theorems. Thus, the theorem is more of 

theoretical importance than practical utility in solving initial value problems. 
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Theorem 1.2.2.1: (Picard’s Iteration Theorem) 

The function    ) is a solution to the initial value problem 

                                                                              (1.9)   

If and only if      is a solution to the integral equation 

                   ∫  (      )  
 

  
.                                                  (1.10) 

Proof: Let      be a solution of the initial value problem (1.9). Then we have from (1.9)  

                     [    ].                                                     (1.11) 

 

If      is a solution of (1.9), it is a continuous function on 𝐼 because it is differentiable on 𝐼. 

Since      is continuous on   and    is continuous on  , the function                 is 

continuous on   so that it is integrable on  . 

Integrating (1.11) from    to  , we get 

           ∫              
 

  

 

Since we take           we get 

        ∫  (      )    
 

  

 

Conversely, if      satisfies (1.10) on 𝐼, using the fundamental theorem of integral calculus, we 

obtain its derivative      as 

                 for all   𝐼. 

Thus,      is a solution of the initial value problem. 

Theorem 1.2.2.1: [5] Let           be a real valued function which is continuous on the 

rectangle   {      |    |    |    |   }. Assume   has a partial derivative with respect 

to   and that 
  

  
 is also continuous on the rectangle  . Then there exists an interval 𝐼  

[         ] (with    ) such that the initial value problem  

                   

has a unique solution      defined on the interval 𝐼. 

Definition 1.2.2.1: Equilibrium solution is a solution to a differential equation whose derivative 

is zero everywhere. 

http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
http://faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook06.html
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Example 1: Suppose that        with      . Since           and  
  

  
    are 

continuous everywhere, a unique solution exists near    . Separating the variables, 

 

  
       

We see that 

   
 

   
 

Or 

  
 

   
 

Therefore, a solution also exists on      ) if         . In the case that 

           and the solution is 

   
 

   
 

and a solution exists on         Solutions are only guaranteed to exist on an open interval 

containing the initial value and are very dependent on the initial condition. 

Example 2: Consider the initial value problem     
 

   with         and      Separating 

the variables, 

  
 

      . 

Thus, by integrating both sides 

 

 
 

 

     . 

Or 

  (
 

 
     )

 

 

  

 

If    , the initial condition is satisfied and  
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  (
 

 
 *

 

 

 

 

is a solution for    . However, we can find two additional solutions for    : 

  (
 

 
 )

 

 
, and 

    

This is especially troubling if we are looking for equilibrium solutions. Although      
 

  is an 

autonomous differential equation, there is no equilibrium solution at    . The problem is that 

 

  
 

 

  
 

 
 

  

  

is not defined at    . 

1.3. Systems of Ordinary Differential Equations 

Definition 1.3.1: A system of first order ordinary differential equation is an equation that can be 

written in the form: 

   

  
                 ,           . 

 If each   ,            is linear with respect to   ,          , then the system is linear and 

can be expressed as 

                 

{
 
 

 
 

   

  
                                   

   

  
                                   

 
   

  
                                   

 ,                                (1.12) 

where the coefficients      and    are continuous on a common interval 𝐼.  

When                      the system is homogeneous. Otherwise, it is nonhomogeneous. 

We can write this system in matric form if  ,       and      denote the respective matrices 

   (

     
     

 
     

,         (

                   

                   
    

                   

,         (

     
     

 
     

,. 

Then the linear system of a first order ordinary differential equation can be written as: 
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(

  

  

 
  

,  (

                   
                   

    
                   

,(

  

  

 
  

,  (

     
     

 
     

,.                         (1.13) 

  Or simply 

           . 

If the system is homogeneous, its matric form becomes 

       

Definition 1.3.2: An Autonomous System is a system of DEs which does not depend on 

independent variables. It is of the form  

   

  
                                 . 

Definition 1.3.3: Equilibrium point (fixed point) is the set of intersection of the set of point 

which satisfy  

                     . 

Definition 1.3.4: Given   vectors    (
       

 
       

)       (
       

 
       

) of length   with functions 

as entries, the Wronskian is defined as the determinant of   [

             

             

    
             

]. 

Definition 1.3.5: Let             be a set of solution vectors of the homogenous system on an 

interval 𝐼, then the set of solution is linearly dependent on the interval 𝐼 if there exists non-zero 

constant            such that                   , forevery   𝐼 . Otherwise, it is 

linearly independent. If the set of solution vectors are linearly independent, then it is a 

fundamental solution of the homogenous system. 

Theorem 1.3.1: [16] Let the vector functions            be   solutions of the homogeneous 

linear vector differential equation       on 𝐼  Then, the n-solutions are linearly independent 

on 𝐼 if and only if                           for all   𝐼. 

Definition 1.3.6: Let   [   ] denotes an       matrix. Then the norm of the matrix    denoted 

by ‖ ‖ is defined as ‖ ‖  ∑ |   |
 
     . If   [   ] is a continuous matrix on 𝐼, then as ‖ ‖ is 

also continuous on 𝐼. 
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1.3.1. Existence and Uniqueness of Solutions of a System of Equations 

Theorem 1.3.1.1[14, 16] Let a system is given by 

   

  
      (                     )                               . 

If the functions              and the partial derivatives 
   

   
             are all 

continuous on some open region        containing the point (              , then there 

exists an open interval in which the system has a unique solution (                   ) which 

satisfies the initial condition of the system. In other words, if the vector valued functions      

and      are continuous over an open interval 𝐼 containing   , then the initial value problem  

                        

has a unique vector valued solution that is defined on the entire interval 𝐼 for any given initial 

value   .  In other words, if the entries of matrices      and      are continuous functions on a 

common interval 𝐼 that contains the point   , then there exists a unique solution. 

1.4. Stability at Equilibrium Point 

With the advent of Isaac Newton's second law of motion and the law of universal gravitation, the 

motions of the planets in the solar system were understood to correspond to the solutions of the 

Newtonian system of ordinary differential equations that modeled the positions and velocities of 

the planets and the sun according to their mutual gravitational attractions. Short-term 

approximate predictions (up to a few years in the future) verified this theory; but, due to the 

complexity of the differential equations of motion, the problem of long-term prediction was not 

solved;  it still occupies a central place in mathematical research. 

During the 18th Century, Pierre Simon Laplace asserted a proof of the stability of the solar 

system. He considered the changes in the semi-major axes and eccentricities of the elliptical 

motions of the planets around the sun. Using reasonable approximations of the Newtonian 

equations of motion, he showed that for his approximate model these orbital elements do not 

change over long periods of time due to the disturbances caused by the gravitational attractions 

of the other bodies in the solar system. If it is true for the full Newtonian equations of motion, 

these assertions would imply the stability of the Newtonian solar system. In fact, no proof of the 

stability of the solar system is known [11]. 



- 11 - 
 

 Laplace's results merely provide evidence in favor of the stability of the solar system; on the 

other hand, this work was a primary stimulus for the later development of a general theory of 

stability. 

One of the first rigorous results in stability theory was stated by Joseph-Louis Lagrange and 

proved by Lejeune Dirichlet; it states that an isolated minimum of the potential energy of a 

conservative mechanical system is the position of a stable equilibrium point. 

Joseph Liouville discussed the problem of the stability of rotating fluid bodies. The further 

development of this theory was suggested to Aleksandr Mikhailovich Lyapunov as a thesis topic 

by his advisor Pafnuty Chebyshev. This led to the fundamental and foundational work of 

Lyapunov on stability theory. 

Henri Poincare’s introduction of the qualitative theory of differential equations 

influenced Lyapunov's treatment of stability theory and laid much of the foundation for the 

modern theory of nonlinear dynamical systems. In addition, Poincare’s work on celestial 

mechanics discusses stability theory [8].  

The following is the definition of stability in the sense of Lyapunov after the Russian 

mathematician Aleksandra M. (Lyapunov 1857). 

Definition 1.3.1: An equilibrium state    , is said to be   

(a) Stable if for any positive scalar ε there exists a positive scalar δ such that ‖     ‖     

implies ‖    ‖     for all      . 

(b)  Asymptotically stable if it is stable and if in addition ‖     ‖      as t → ∞. 

 (c) Unstable if it is not stable; that is, there exists an       such that for every      , there 

exists an        with ‖     ‖    , ‖     ‖      for some      .  

Let us consider in more detail the concept of stability introduced by Lyapunov.  

The solution      of the system of differential equations           with initial 

conditions         is stable (in the sense of Lyapunov). If for any     there exists   

        such that if ‖         ‖   , then ‖         ‖    for all values    .                                                                                                                   

Otherwise, the solution      is said to be unstable [12]. The majority of our analysis of systems 

of ODEs will focus on whether or not the systems have stable equilibria. We characterize an 

equilibrium as stable or unstable based on the behavior of solutions whose initial conditions are 

in the neighborhood of the equilibrium. If solutions near a critical point of a system stay close to 



- 12 - 
 

the critical point as time approaches infinity, we think of the critical point as stable; if this 

condition is not met then the critical point is unstable. Furthermore, we call a stable critical point 

asymptotically stable if, over time, the solutions approach the critical point as opposed to simply 

staying within a certain radius [10]. 

The reason why we choose the equilibrium point at the origin        is that, we have 

transformation by introducing new variables       , we can arrange for the equilibrium 

state to be transferred to the origin (of the state space   ). 

 Let the system is given by  

{

   

  
         

   

  
         

 

Assume the system has equilibrium point at               which is nonzero, then the new 

variable        becomes 

                 

 

                 

when we derivate, we get 

   

  
   

  
   

  
              

   

  
   

  
   

  
              

Thus, the new system is  

  ,

   

  
             

   

  
             

, 

has the equilibrium point at origin. 

The procedures to determine stability of a linear system by using eigenvalue technique: 

  1.  Construct the coefficient matrix. 

  2.  Compute eigenvalues.  

         3. Conclude stability or instability based on the real parts of the eigenvalues. 

If the system is nonlinear, then the procedures are given by 
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  1. Compute all partial derivatives of the right-hand side of the original system of differential 

equations (1.12), and construct the Jacobian matrix. 

       2. Evaluate the Jacobian matrix at the steady state.  

       3.  Compute eigenvalues 

       4.  Conclude stability or instability based on the real parts of the eigenvalues. 

1.4. Test for Stability 

Systems of first order ordinary differential equations can be linear or nonlinear. We can 

transform a nonlinear system into a linear system by using linearization and by constructing the 

Jacobian matrix, so that we can use the procedures and method for determining the stability of a 

linear system. Given a system of two equations: 

 ,

  

  
      

  

  
      

.                                                                 (1.13)  

Then the coefficient matrix is 

                                                                    (
  
  

). 

Let    and    be the eigenvalues of the coefficient matrix of the system, which are roots of the 

characteristic equation 

        𝐼    . 

Then, depending on this we have the following theorems: 

Theorem 1.4.1: If the eigenvalues are real and negative, then the system is asymptotically stable 

node. All trajectories in the neighborhood of the fixed point will be directed towards the fixed 

point. 

Proof:  Let        . Then the general solution of the system (1.13) may be written then as 

{
       

         
   

       
         

   
,                                                                     (1.14) 

where          and    are definite constant and              and       are arbitrary 

constants. Let us choose      , we obtain 

{
       

   

       
   

,                                                                                     (1.15)  

 Similarly choose      , we obtain 
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{
       

   

       
   

,                                                                                      (1.16)  

For      , the solutions (1.5) represent a path consisting of half of the line of           with 

slope  
  

  
.  For any     , it represent a path consisting of the other half of the line. Since  

    , both of these half line paths approach       as    . Also, since   
 

 
 

  

  
, these two 

paths approaches       as    , with slope  
  

  
. In the same way, for any     , the solutions 

(1.16) represent a path consisting of half of the line        , while for any     , it 

represent a path consisting of the other half of the line. These two half line paths approach       

as    . Also, since  
 

 
 

  

  
 

  

  
 , these two half-line paths approach (0, 0) as    .  

Thus the solutions (1.15) and (1.16) provide us with four half-line paths which all approach 

      as    .  

If      and     ,  the general solution (1.14) represents nonrectilinear paths. Again, since all 

of these paths approach       as    . Further, since  

 

 
 

     
         

   

                 
 

(
       

  
)             

(
       

  
)             

 

      
 

 
 

  

  
, approaches      .  

Thus all the path approaches       as    .According to the definition the critical point       

is node and it is asymptotically stable. 

Theorem 1.4.2: If the eigenvalue are real and positive, then the stability of the system is unstable 

node that means all trajectories in the neighborhood of the fixed point will be directed outside 

and away from the fixed point 

Proof: Let        , the general solution of (1.13) is still (1.14) and similarly (1.15), (1.16). 

The proof is the same as the above theorem. But the path approaches to       as     . The 

direction of the arrow is in opposite sign. Therefore the critical point       is node and it is 

unstable. 

Theorem 1.4.3: If the eigenvalue are in opposite sign, then the stability of the system is unstable 

saddle node. In this case trajectories in the general direction of the negative eigenvalues′ 
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eigenvector will initially approach the fixed point but will diverge as they approach a region 

dominated by the positive eigenvalue. 

Proof: Let        , the general solution of (1.13) is still (1.14) and similarly (1.15), (1.16). 

For      , the solutions (1.15) represent a path consisting of half of the line of        .  For 

any     , it represent a path consisting of the other half of the line, also     , both of these 

half line paths approach       as    . For any     , the solutions (1.16) represent a path 

consisting of half of the line        , for any     , it represent a path consisting of the 

other half of the line. But     , both of these half line paths approach       as    . 

if      and     , the general solution (1.14) represents non-rectilinear paths. But here since 

       , none of these paths can approach       as     or as     . From (1.14) that 

each of these non-rectilinear paths becomes asymptotic to one of the half-line paths defined by 

(1.16) as     . Each of them becomes asymptotic to one of the paths defined by (1.15). Thus, 

there are two half line paths which approach       as     and the other two half-line paths 

which approach       as     . According to the definition, the critical point       is a saddle 

point and it is unstable. 

Theorem 1.4.4: If the real parts of eigenvalues are negative, then the stability of system is 

asymptotically stable spiral (focal). All trajectories in the neighborhood of the fixed point spiral 

in to the fixed point with ever decreasing radius. 

Proof: Since    and   are complex conjugate with real part not zero, we may write these roots 

    , where   and   are both real and unequal to zero. Then the general equation of the 

system can be written as 

       {
                                              

                                              
                    (1.17) 

where          and    are definite constant and       are arbitrary. 

Assume   , then from (1.17),           ,           and the path defined by (1.17) 

approaches to       as    .We can write (1.17) in the form   

         {
                       

                       
                                                                (1.18)  

Where                                          and             . 

Assuming    and    are real, the solutions (1.18) represent all paths in the real    phase plane. 

We can rewrite the solutions in the form 
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                             {
      

            

      
            

,                                                                  (1.19) 

where    √       ,    √       , and     and    is defined by equation 

      
  

  
,       

  

  
,        

  

  
  and        

  

  
 

Let us consider  

    

  
 

   
            

               
                                                                                    (1.20)  

Let   
  

  
  and         , equation (1.20) becomes  

  

  
  

             

          
 

                                                               *
                               

          
+ 

                                                               [                     ] 

Provided that             . As a result of the periodicity of trigonometric functions we 

conclude that       
  

  
  does not exist, the path approach       in a spiral like manner as   

 . According to the definition, the critical point       is spiral point and it is asymptotically 

stable. 

Theorem 1.4.5: If the characteristics of the systems are conjugate complex, then the system is 

unstable spiral (focal), all trajectories in the neighborhood of the fixed-point spiral away from the 

fixed point with ever increasing radius. 

Proof: If    , the proof is the same except the path approach       as     , then the 

critical point       is spiral point and it is unstable. 

Theorem 1.4.6: If the real part of the eigenvalues are zero, then the system is center, and it is 

stable but not asymptotically stable. Trajectories circulate about the fixed point in a stable orbit. 

Proof: Since    and    are pure imaginary we can write the equation as      , where     ,   

is real number different from zero. Then the general solution of the system (1.13) in the form of  

{
               

               
,                                                                           (1.21)  

where   ,   ,    and    defined as before. The solution oscillate between    and   as     

and      . 

Table 1: Summarization of our result 
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Nature of roots    and    of 

characteristics equation  

Nature of critical point 

      of the linear system  

Stability of critical 

point      

 

Real and the same sign 

 

Node 

Asymptotically stable if the 

roots are negative and unstable 

if roots are positive  

Real and the opposite sign Saddle point  Unstable 

 

Conjugate complex but not 

pure imaginary 

 

Spiral point 

Asymptotically stable if the 

roots are negative and unstable 

if roots are positive  

 

Pure imaginary 

 

Center  

Stable but not asymptotically 

stable 

 

The above procedures and theorems are used to apply to N dimensional systems. 

We return to the general linear system given by 

             ,                                                                    (1.22)  

where        and equation (1.22) may represent the closed or open loop system. Provided the 

matrix   is nonsingular, the only equilibrium state of equation (1.22) is the origin, so it is 

meaningful to refer to the stability of the system (1.22). If the system is stable (at the origin) but 

not asymptotically stable we shall call it neutrally stable. 

Suppose we are given an     order homogeneous system of differential equations with constant 

coefficients: 

                                      (

     

     
 

     

,       (

          

          

    
          

,, 

where      is an   dimensional vector containing the unknown functions and    is a square 

matrix of size    . Then without loss of generality, we may assume that the equilibrium point 

is at the origin. It is always possible to reach by choosing a suitable coordinate system. 

The stability or instability of the equilibrium state is determined by the signs of the real parts of 

the eigenvalues of A. To find the eigenvalues λ, it is necessary to solve the auxiliary equation 

       𝐼    

which is reduced to an algebraic equation of the     degree 
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                . 

The roots of this equation can be easily calculated in the case    , and in some cases 

when     . In other cases, solving the auxiliary equation can be a difficult problem. Moreover, 

Norwegian mathematician             proved a theorem according to which the general 

algebraic equation of degree     cannot be solved using four basic arithmetical operations, 

that is there is no formula expressing the roots of the equation through its coefficients in the 

case   . In such a situation, methods allowing determining whether all roots have negative 

real parts and establish the stability of the system without solving the auxiliary equation itself, 

are of great importance. One of these methods is the Routh-Hurwitz criterion [4], which contains 

the necessary and sufficient conditions for the stability of the system. 

The characteristic equation of     order can be written as: 

   
     

       
                   

The stability criterion is applied using a Routh table which is defined as: 

Table 2: Routh- Hurwitz table 

   

     

     

     

  

   

   

   

   

   

 

   

   

   

   

   

   

   

   

   

   

   

  

  

  

  

where     
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Chapter Two 

Stability Analysis of Systems of First Order Ordinary 

Differential Equations 

Stability analysis is part of system and control theory which is used to study and predict the 

stability or instability characteristics of a system and used to indicate how a model reacts to 

perturbation and change.  

Stability analysis of systems of ordinary differential equations is one important problem in the 

qualitative theory of differential equations. The fundamental method of Lyapunov characteristic 

exponents permits describing the asymptotic behavior of solutions of a system via these 

exponents and thereby clarifying the stability properties of the system. However, the application 

of this method encounters difficulties arising when one tries to compute or estimate the 

Lyapunov characteristic exponents. Proving stability with Lyapunov functions is very general: it 

even works for non-linear and time-varying systems. It is also good for doing proofs. However, 

proving the stability of a system with Lyapunov functions is difficult. And failure to find a 

Lyapunov function that proves a system is stable does not prove that the system is unstable. The 

next technique we present, finding the fundamental matrix, requires the solution of systems of 

differential equations, or in the time invariant case, the computation of the eigenvalues. 

Determining the eigenvalues or the poles of the transfer function is sometimes difficult because it 

requires factoring high-order polynomials. However, there is a criterion that is applied to obtain 

the behavior of systems of first order ordinary differential equation. 

2.1. Stability Analysis of Linear Systems of First Order ODEs 

The main goal when analyzing systems of ordinary differential equations is to gain an 

understanding of the behaviors of the solutions to the systems. The natural approach for 

analyzing a system is to solve it explicitly, and this method works well if the system is linear. If 

the system is not linear, then solving explicitly can be very complicated (may be impossible). So,  

we instead linearize the system at its equilibria and gain a qualitative understanding of the 

solutions by analyzing the linearized system. It turns out that the non-homogeneous linear system 

is stable with any free term if the zero solution of the associated homogeneous system is stable. 
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Therefore, when investigating stability in the class of linear systems, it is sufficient to analyze 

the homogeneous differential systems. In the simplest case, when the coefficient matrix is 

constant, the stability conditions are formulated in terms of the eigenvalues of the matrix. 

Therefore, all the linear systems given by  
  

  
            , have the same Lyapunov 

stability property (stable, unstable and asymptotically stable). This is the same as the 

homogenous system.  

We have a rigorous mathematical technique to test the stability of a steady state and the behavior 

of the system near a steady state. We learn to analyze a linear system of ODEs first and use a 

similar approach for nonlinear systems [13].   

Consider a system of linear ODEs, for two dependent variables: 

{

  

  
      

  

  
      

 

Note that this is an autonomous, homogeneous and linear system of ODEs. In matrix notation we 

can rewrite this system of ODEs as 

(
  

  
  

  

)  (
  
  

) (
 
 ). 

We can further represent in vector notation 

                                                                      . 

  and  are column vectors for the derivatives and the dependent variables, respectively. 

  is called the coefficient matrix and it is a square matrix 

                                                                    (
  
  

). 

Before we proceed with the system of ODEs, it will be better to recapitulate some essential 

aspects of linear algebra. Suppose we have a system of linear equations, (
  
  

) ( 
 
)  ( 

 
)  This 

system of equations can be solved algebraically by arranging terms, 
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Therefore, this system will have a unique solution,       and      , iff         

             is the determinant of the coefficient matrix of  (
  
  

) ( 
 
)  ( 

 
). In general, any 

linear homogeneous system of equations, of the form       , will have a unique solution 

     , iff           That is called the trivial solution for the system of equations. The 

equation       is an autonomous, homogenous, linear system of ODEs of two dependent 

variables. We can find its steady state by setting       

     . 

     will have a unique solution     , iff         . Therefore,            is the only 

steady state for the system of ODEs, when the determinant of the coefficient matrix is not equal 

to zero. In general, when the determinant of the coefficient matrix is not equal to zero, an 

autonomous, homogeneous, linear system of ODE will have only one steady state at      . We 

have identified the steady state of the system. Now we analyze the stability of the steady state. 

The concepts of eigenvalue will be valuable in this analysis. 

Example 1: consider the system given by 

{
  
         

  
        

. 

Rewrite in the form of        gives 

      (
  
 

  
 )  (

  
   

) (  
  
). 

This system has equilibrium point (steady state) at      ,   (
  
   

) is the coefficient matrix 

of the given system. Then |   𝐼|   , is the characteristics equation of the given system. 

                

                          

   
  √  

 
 and    

  √  

 
 are complex roots with positive real parts. Therefore,     ) is 

unstable focal. 

Example 2: Consider the system given by ,
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The coefficient matrix is given by   (
         
         
         

+  and |   𝐼|   , is the characteristics 

equation of the given system. This implies           . Then         and     . 

Therefore the given system is unstable because the roots are in opposite sign. 

Example 3: Determine the stability of the given non- homogenous system  

{
  
            

  
             

 

            (
  
 

  
 )  (

   
   

) (  
  
)  (  

  
)   

  (
   
   

) is the coefficient matrix of the given system. And |   𝐼|  0 is the 

characteristics equation. 

                 

                            

                           . 

      and       are the roots of the system. Since both roots are negative then the origin is 

asymptotically stable. 

We can determine the stability of the system of ODEs if the system has characteristics equation 

with degree less than 4. But if the characteristics equation is higher order, then it is difficult to 

calculate the roots to determine the stability of the system. Because of this we need other criteria 

that is Routh-Hurwitz Stability criterion. 

2.1.1 Reduction of Higher Order DE in to a System of First Order DEs 

Since we are using matrices as a system of equations, sometimes it is easier to study the higher 

order equations by converting them into a system of equations by suitable substitutions. In this 

connection we have the following theorem.  

Theorem 2.1.1.1: The general     order initial value problem  

                        

          
                              𝐼 

where              are constants is equivalent to a system of   - linear differential equations. 

Proof: The general     order equation is given by  
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                      𝐼 

where        , for   𝐼. Let as make the following substitution 

                                   

From these we have the substitution 

           

  
              

  
               

  
                

   

    
                  

  
             

Rewrite the equation, we get  

 

                                                           
     

     
   

       

     
        

     

     
   

    

     
 

Using matrix notation the above system can be rewrite as 

  
                 

         
                    

  

                                                    
     

     
   

       

     
        

     

     
   

    

     
 

Then 

                                                    (

  
 

  
 

 
  
 

,  

(

 

      
      
    

 
  

  
 

    

  
 

  

  
  

  

  )

 (

  

  

 
  

,  

(

 
 

 
 
 

    

  )

 
 

. 

Using vector notation 

             . 

Therefore the     order linear equation is equivalent to the linear system of differential equation. 

Example 1: Suppose the higher order linear DE is given by 

                          

First rewrite the equation in to 
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                      . 

Now substitution yields 

      

        
  

          
  

        

   
       

This implies 

                    
                  

Then 

                     

(

 

  
 

  
 

  
 

  
 )

  (

     
     
    
      

,(

  
  
  

  

, 

 

                                                                 (

     
     
    
      

,(

  
  
  

  

,, where    

(

 

  
 

  
 

  
 

  
 )

  

Or      , where   (

     
     
    
      

, and   (

  

  

  

  

, is a linear system and to 

determine the stability of this system, from   (

     
     
    
      

,  we have  

                 . 

 It is difficult to factorize. Therefore the interpretation is mentioned in section 2.1.2. 

Example2: Consider a damped harmonic oscillator. The dynamics of the system are given by the 

equation 

               

Where     and  are all positive quantities. Since the equation is second order, we rewrite the 

equation as: 
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(
  

  
*  (

  

 
 

 
   

 

 
  

+ 

 

                                            (
  

 
 

 
 

 

 

) (
  

  
), where    (

  
 

  
 *. 

which has the characteristics equation 

     (
  

 
 

 
 

 

 

). 

The solution for the characteristics equation is 

  ( 
 

 
  *  

 

 
   

              
 

 
  

 

 
   

                     

  
   √      

  
, 

which always have negative real parts, and hence the system is Asymptotically stable at     . 

2.1.2 Routh-Hurwitz Stability Criterion 

The character of stability can be determined by using a criterion of stability without solving the 

system of equations. One of these is the Routh-Hurwitz stability criterion. It allows to judge the 

stability of a system by knowing only the coefficients of the characteristic equation of the matrix. 

If any elements of the Routh table have some common factor, then we can divide the row 

elements with that factor for simplification will be easy. 

Theorem 2.2.1: [3] Routh-Hurwitz Stability criterion states that the numbers of roots of the 

characteristics equation with positive real parts are equal to the number of change of signs of 

coefficients in the first column of an array. 

In order to construct the Routh array  

 The first row consists of all the coefficient of even terms (degree) of the characteristic 

equation. Arrange them from first (even term) to last (even term). 
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 The second row consists of all the coefficient of odd terms of the characteristic equation. 

Arrange them from first (odd term) to last (odd term). When characteristics equation of 

an     order is given by: 

    
     

       
                   and the highest degree of the 

characteristics equation   is even.  

There are necessary and sufficient conditions for a system to be stable: 

 None of the coefficient of the characteristics equation should be missing or zero. 

 Every coefficient should be real and have the same sign. 

 If the characteristics equation contains only odd or even power of λ, this indicates that the 

root has no real part and posses only imaginary. 

 Each term of the first column of Routh’s array should be positive and should have the 

same sign. 

Special cases of Routh Hurwitz criterion: 

 If the first term in any row of the Routh array is zero while the rest of the row has at least 

one none zero term, the first element in the third row is zero. So, we replace it with   . In 

this case, we will assume a very small value (ε) which is tending to be zero in place of 

zero. By replacing zero with (ε) we will calculate all the elements of the Routh array. 

After calculating all the elements, we will apply the limit at each element containing (ε). 

On solving the limit at every element if we will get a positive limiting value then we will 

say the given system is stable otherwise in all the other condition, we will say the given 

system is not stable. 

 Let all elements of any row of the Routh array be zero. In order to find out the stability in 

this case, we will first find out the auxiliary equation. The auxiliary equation can be 

formed by using the elements of the row just above the row of zeros in the Routh array. 

After finding the auxiliary equation we will differentiate the auxiliary equation to obtain 

elements of the zero row. If there is no sign change in the new Routh array formed by 

using the auxiliary equation, then in this case we say the given system is stable [1]. 

Example 1: From the 2.1.1 we have 

                 . 

In order to determine stability of this system, we have to construct Routh array. 

Table 3: Routh array for a given example 
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   1 4 -2 

   -7 5 0 

     

 
 

2 0 

   

(
(
  

 
  )    

  

 

) 

0 0 

   2 0 0 

 

There is sign change from positive to negative and negative to positive. Therefor the system is 

unstable. 

Example 2: suppose the characteristics equation is 

                     

Now construct Routh array 

 

Table 4: Routh array for a given example 

 

   2 6 1 

   1 3 1 

   0( ) -1 0 

         

 
 

1 0 

   

(
 (

    

 
)   

      

 

) 

0 0 

   1 0 0 

Since the first element in the third row is zero. So, we replace it with   . 

To check the sign change the coefficient of first column, we apply limit    . 

   
   

 
    

 
     

   
   

 (
    

 
)   

(
    

 
)
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Here, we have two sign changes from positive to negative and from negative to positive. 

Therefore, the system is unstable and it has two roots (positive real part). 

Example 2: Let the characteristics equation is given by 

                        

The Routh array becomes 

Table 5: Routh array for a given example 

 

   1 6 8 

   2 10 12 

   1 2 0 

   6 12 0 

   0 replace by 2 0 0 

   12   

Since the fourth row has zero elements, we use the derivative of auxiliary equation that appears 

above zero’s row. 

Now                     , differentiation yields     . Then replace all zero 

row by this. There is no sign change in the first column. Therefore, the system is stable.  

2.2 Stability Analysis of Nonlinear Systems of ODEs 

A linear system of ODE with a non-zero determinant of the coefficient matrix has only one 

trivial steady state solution at        However, a nonlinear system can have more than one steady 

state. Therefore, unlike a linear system, we cannot make a generalized statement on the stability 

of a nonlinear system. We have to check the stability of each of the steady states individually. 

To analyze a nonlinear system, we have to identify all possible steady states. That can be done 

using linearization. Non-linear systems are in general much less amenable to the analytic and 

algebraic techniques, but we can use the method Linearization technique and Lyapunov stability 

to understand the behavior of the solution of non-linear systems near their equilibrium points [7]. 
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2.2.1 Linearization 

Consider the following autonomous nonlinear system of ODEs: 

,

  

  
       

  

  
       

. 

Assume         is an equilibrium point. So, we would like to find the closest linear system when 

      is close to        . In order to do that we need to approximate the function        and 

       when       is close to        . This is a similar problem to approximating a real valued 

function by its tangent (around a point).  

{
 
 

 
                       

  

  
       

  

  

                      
  

  
       

  

  

  

When (     is close to         then the nonlinear system may be approximated by 

{
 
 

 
   

  
                

  

  
       

  

  
  

  
                

  

  
       

  

  

 

As         is a steady state,            and           . Therefore, we can write these two 

equations as: 

{
 
 

 
   

  
       

  

  
       

  

  
  

  
       

  

  
       

  

  

 

This is a linear system with coefficient matrix *

  

  
       

  

  
       

  

  
       

  

  
       

+ 

This matrix is called the Jacobian matrix of the system at the point        . 

Example 1: Consider a simple pendulum of length   and mass   in the presence of viscous 

friction with coefficient   is given by  

                    . 

First, we change in to first order system of ODEs. 

 Setting     and            
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This becomes  

,
  
    

  
   

 

 
      

 

   
  

  

This system has a steady states             . 

Let                       
 

 
      

 

   
   

This implies that    
         

  , 

                              
  

 

 
         

  
 

   
. 

The Jacobian matrix   (
  

 
 

 
      

 

   
),         (

  

 
 

 
 

 

   
). 

|   𝐼|   , is the characteristics equation of the linearize system. 

  ( 
 

   
  )  

 

 
  . 

    
 

   
  

 

 
   

                                                               
 

 

   
 √(

 

   
)
 
  

 

 

 
 

If (
 

   
)
 

  
 

 
, then       is unstable focal, and if  (

 

   
)
 

  
 

 
,  then       is unstable saddle 

point. 

Example 2: Let a nonlinear system is given by 

{

  

  
     

  

  
     

  

First, identify all possible steady states. This system of ODEs has two steady states       and 

       Now we have to construct the Jacobian matrix at each of these two steady states. In 

general, the Jacobian matrix for this system of ODEs is 
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                               (

       

  

       

  

       

  

       

  

)  (
     

    
*     at       will be 

  (
  
   

) 

For this matrix |   𝐼|    is the characteristics equation of the linearized system. Then  

                                                           (             

      and     . 

This steady state       is a saddle point because the eigenvalues are opposite sign. The Jacobian 

matrix for the other steady       is, 

  (
   
  

). 

Similarly, |   𝐼|    is the characteristics equation of the linearized system. Then 

                                                                   , 

       

                 . 

Therefore,       is center type because it has an eigenvalue with real parts zero. 

This system has two steady states with different stability and different types of trajectories 

around them. The steady state (1, 1) is of center type. Therefore, there are closed orbits around it. 

The other steady state (0, 0) is unstable saddle. If the system starts near to it, it may move closer 

for some time, but would eventually move away from this steady state. 

Example 3:  Determine the stability of nonlinear system 

{

  

  
  

  

  
           

 

Let           ,                  

Now           and 

                 ,          

  (
  

          * 

Since       is equilibrium point, the linearized system at       is 

  (
  
   

) and 
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√ 

 
  these are complex roots with positive real parts. Therefore       is unstable spiral 

(focal). 

2.2.2 Lyapunov Stability 

One of the powerful tools for stability analysis of systems of differential equations including 

nonlinear systems are Lyapunov functions. It is used to determine the stability without solving 

the system. 

Alexsander Mihailov Lyapunove (1857-1987) elaborated an extremely general method for 

investigating the solution of system of differential equations for stability. 

   

  
                          

Definition 2.3.2.1:  Let   be open connected subset of    and       . Then,  is said to be 

 Positive definite in   if                      { }  

 Positive semi definite in   if                     except at one or more points 

in the state space including the origin      where                . 

 Negative definite in   if V                   { }  

 Negative semi definite in   if V                   except at one or more points 

in the state space including the origin    , where                . 

Definition 2.3.2.2: A function       is said to be Lyapunov function if 

   is differentiable 

   is positive definite 

   is decreasing function along the solution of the system. 

Theorem 2.2.2.1: Suppose that there exists a differentiable positive definite function      . 

  

  
  along the trajectories of the system is negative semi definite, then the equilibrium point is 

stable. That is 

  

   
 ∑

  

   

 
                                                                                             (2.1) 

     { }        only if    . 
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Proof: Let    and      be given. Assume, without loss of generality, that        is 

contained in D. Assume positive definite function  :   , such that             for every 

         . Let      {        | |   }. Since   is continuous and positive definite,   

is well-defined and positive. Given that     small enough that     and max{{        | |  

 }   }. Since   is positive definite and continuous function, it is possible, if      solution of 

           and |     |     Then,              and  
 

  
 (      )               for 

all  . So,  (      )    forevery     . Thus,        and |    |    for every      . 

Since |    |   , forevery     . The solution of          is stable. 

Theorem 2.2.2.2: If a differentiable positive definite function      .  
  

  
 along the 

trajectories of the system is negative definite, then the equilibrium point is a asymptotically 

stable. i.e. 

   
  

   
 ∑

  

   

 
                            { }                                                                (2.2) 

Proof: If there is a solution  

                                                                                              (*) 

stable in  , there exist sphere radius     contained in the region    center at origin of the 

phase plane, such that             ‖ ‖    and         ‖ ‖   .In particular, for 

   , there exists    such that all solution     of (*) with         and ‖ ‖    exist on 

     and satisfy‖    ‖         . We have a non-increasing function        of   

which is bounded below. Therefore               exists. Suppose that for some       , 

we could have  

 (    )     , for                                                       (**) 

We will show that (**) is impossible. By continuity, for the  , there exists a   0, such that                     

        , whenever ‖ ‖                                              (***) 

Therefore,      the solution for which (**) holds must satisfy ‖    ‖   , for    . Let   be 

the set lying between the spheres of radius   and   , that is,   {      ‖ ‖   }. Consider 

the function        on the closed bounded set  . By hypothesis on   and   , -      define (2.2) 

is continuous and positive definite. 

Let                     

Since   is not a point of  , we have   
 

  
  (    )             ,  for    . 
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Integrating, we obtain  (    )           for    . But clearly for   large enough  (    ) 

is negative, which is an obvious contradiction. Thus (**) is impossible and we must have 

       (    )    which implies that             . Since this holds for every solution 

     with ‖ ‖   , this completes the proof. 

Theorem 2.2.2.3: [6] If a differentiable positive definite function      . 
  

  
 along the 

trajectories of the system is positive definite, then the equilibrium point is a unstable. i.e. 

  
  

  
 ∑

  

   

 
                            { }                                        (2.3) 

Example 1:  Check stability of the system given by 

{
  

    

  
        

 

Define          
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 ]  is positive definite   
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[          

     
                   

 ]  

                           
    

                   

Since  
  

  
  , it is negative definite. Therefore, (             is asymptotically stable. 

Example 2: Determine the stability of nonlinear system given by 

{
  

         
    

  
     

 

Define            
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If               then  
  

  
 is negative definite. This implies the origin of the system is 

asymptotically stable. But if             ,  
   

  
 is positive definite. Then the origin of the 

system is unstable. 
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Summary 

In this project, stability analysis of systems of first order ordinary differential equations are 

discussed. The stability of linear systems have been determined by using eigenvalue technique 

and the Routh-Hurwitz Stability criterion if the degree of the characteristic equation is greater 

than or equal to four and nonlinear system by linearization technique and Lyapunov functions. 

Generally, stability plays a very important role in system theory and control design and 

Lyapunov not only gave a formal statement of the problem but also proposed the methods which 

till today serve as a key instrument for treating the stability problem. 
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