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ABSTRACT 

Understanding trends in crop phenological variables and the climate drivers is indispensable for devising precision 

agricultural system. Studies conducted using remote sensing technologies at the national scale in Ethiopia have 

focused on the relationships of climate variability with vegetation greenness. However, assessment of crop 

phenological variable trends and the climate drivers were unexplored. Therefore, the study aimed to understand the 

trends in crop phenological variables and the climate derivers. To this end, phenological variables extracted from 

Normalize Difference Vegetation Index (NDVI), Moderate Resolution Imaging Spectroradiometer (MODIS) land 

surface temperatures and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) were used. Savitzky–

Golay filter method employed to smooth NDVI time series data and relative threshold method applied to extract 

phenological variables such as start of season (SOS), length of grow the season (LOS) end of growing season (EOS) 

and peak greenness time (POS). Trend analysis of crop phenological variables, precipitation and land surface 

temperature examined by Mann Kendall test and slope of the trend calculated by Sen’s slope method. Linear regression 

model used to evaluate the influence of changes in climate variables on crop phenological variables. End of crop 

growing season showed strong decreasing trend in the past twenty years (p < 0.05). May precipitation amount showed 

substantial increasing trend (p = 0.013). Minimum land surface temperature in May portrayed positive statistically 

significant trend. Peak greenness time had showed significant correlations with May, July and October precipitations 

(P < 0.05).  Precipitation amount in May and June had showed strong positive correlation with start of crop growing 

season (p < 0.001), whereas length of crop growing period showed positive significant correlation with precipitation 

amount in July and August (p < 0.001).  On the other hand, maximum land surface temperatures in May and June had 

strong positive correlation with start of crop growing season. In conclusion, the trends of crop phenological variables 

are advanced and shorten. Hence, farmers should consider crop varieties or types that need short development period. 

The research results can be used as an input in adaptive crop management guideline preparations.  

Keywords: CHIRPS, MODIS, land surface temperature, phenology, precipitation   
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CHAPTER ONE 

1. INTRODUCTION  

1.1.Background  

Crop phenology refers to the study of crop seasonal life cycles. It focuses on the start of the growing season to the end 

of aging in the life cycles of crops and the connection of the life cycles with the drivers (Adole et al 2016). Crop 

phenological variables such as start of growing season, end of growing season, and lengthen of growing period and 

peak greenness time  are driven by variability (Adole et al.2019; Xiao et al. 2021). A warmer climate certainly leads 

to shift in crop phenology and eventually determine crop yields (Zhao et al. 2019).  Declining of precipitation results 

in water stress and stagnates crop growth and development, thereby affect primary productivity (Liu et al. 2021). 

Hence, monitoring crop phenology variables in connection with climate variability helps in selecting crop types or 

varieties and modeling net primary production (Sakamoto et al. 2005). It is also useful to determine crop growth period 

conditions for modeling crop yields. Information found by monitoring crop phenology helps to decide when and how 

to utilize water resource efficiently (Digkuhn and Gal 1996). Therefore, monitoring trends of crop phenology is 

necessary for evaluating crop productivity and crop management (Sakamoto et al. 2005). Time series analysis in crop 

phenology in light with climate variability or change help formulate effective climate change adaptation strategies 

(Mo et al. 2016).  

 

However, traditional crop monitoring is costly and susceptible to error.  There is also lack of time series data that can 

be used in developing countries. The aforementioned gabs can be alleviated by remote sensing technologies.  Remote 

sensing technologies provides time series data that helps understand long term trend of crop phenology (Zhao et al. 

2019). The technologies are also used for detecting seasonal crop phenological changes and climate variability (Zhao 

et al. 2019). The most commonly used remote sensing technology for crop monitoring is MODIS data because of its 

moderate spatial and high temporal resolutions. The time series data of this technology used for studying trend of long 

term crop phenological variables. The MODIS NDVI product widely used to extract crop phenological variables  such 

as  SOS, end of the season EOS, length of the season LOS, and peak greenness POS (White et al. 2009). Such 

information helps to perform adaptive agricultural system to be based on informed decision. 
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Climate variables are key parameters influencing the growth, phenology and crop productivity. Cool summers for 

instance could result in delayed growth and decreased crop yields (Xu et al. 2020). Rain fed agricultural system is 

prone to climate variability. Climate variability profoundly affects crop phenological variables (Hmimina et al. 2013). 

Precipitation and temperature are considered very important elements in climate description (Mahmood et al. 

2019).Variations in these climate variables result in advanced or delayed, prolonged or shortened of  crop and 

development (Richardson et al. 2013). Late start of the growth season leads to exposure to harmful temperatures and 

water deficit in flowering and ripening periods (Brown et al. 2017). Early onset of the growth season on the contrary 

negatively affects crop production by delaying plant growth and restricting full development (Membold et al. 2014). 

However, the impact of climate variability on the trends of crop growth periods depends on climate regions (Brown 

et al. 2012; Richardson et al. 2013; Vrieling et al. 2013; Fatima et al 2020; Brown et al. 2012; Chen et al. 2018).  

 

1.2.Statement of the problem  

Ethiopia is characterized by complex topography, recurrent drought and climate variability. The country also located 

where the trade winds from North and South come together. The climate conditions in Northern and Southern 

hemispheres therefore affect the climate condition of Ethiopia. The climate variability influences crop production 

(Evangelista et al. 2013; Brown et al. 2017; Gummadi et al. 2018).The Ethiopian Agricultural system is rainfed and it 

is a backbone of Ethiopian economy. Rainfed agriculture is more susceptible to climate variability. For long time, 

crop maturity failure and yield decline have been frequently observed in the country (Evangelista et al. 2013). 

However, how crop phenological variables respond to climate variability at local scale have hardly been studied.  

 

Rainfed agricultural system is highly susceptible to climate conditions. The livelihoods of nearly 85% of the 

population in the country are dependent of rainfed agriculture. Studies conducted at global, regional and national 

scales showed that Ethiopia is most vulnerable country to climate change (Brown et al. 2012; Eastman et al. 2012, 

Vrieling et al. 2013; Guan et al. 2014; Alemu and Henebry 2017).  Rainfall onset, duration and intensity are highly 

variable in time and space in the country (Vrieling et al. 2013; Musau et al. 2016). Studies conducted regarding 

phenology and climate variability show different findings. Advance of  SOS and positive trends of rainfall amount in 

the north, but shortening LOS and negative trend in  rainfall amount in the south and eastern part of the Ethiopia were 

reported  (; Funk et al. 2015; Brown et al. 2017). Climate models project increasing rainfall, but frequency of drought 
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occurrence increased in recent decades (Vrieling et al. 2013; Evangelista et al. 2013). On the contrary, some other 

authors profound decreasing of rainfall amount and intensity all over the country (Vrieling et al. 2013; Evangelista et 

al. 2013). These inconsistent reports indicate that studies on crop phenology and the climate drivers need to be 

conducted at local scales.  

 

Several research have been undertaken regarding climate interactions with phenology at the country or global level in 

Ethiopia (Brown et al. 2012; Richardson et al. 2013; Vrieling et al. 2013; Fatima et al 2020; Brown et al. 2012; Chen 

et al. 2018). However, the findings of the research results are inconsistent. Early SOS and increasing trends of rainfall 

amount in the north, but shortening LOS and decreasing of rainfall amount in the south and eastern parts Ethiopia 

were reported (Brown et al. 2017; Funk et al. 2015). On the contrary, profound decreasing of rainfall amount and 

intensity all over the country is reported (Vrieling et al. 2013; Envangelista et al.  2013). Climate models project 

increasing rainfall, but frequency of drought occurrence increased in recent decades (Vrieling et al. 2013; Envangelista 

et al. 2013). Hence, researches are needed to be conducted at local scales for informed decision. Therefore, this 

research aimed to assess the trends in crop phenological variables and climate drivers in Lake Tana basin northwest 

Ethiopia. Long time-series of crop phenological variables and their drivers could can provide information in 

preparation of adaptive agronomic management guidelines. Studies conducted regarding phenology using remote 

sensing technologies at the national scale in Ethiopia have focused on the relationships of climate variability with 

vegetation greenness    (Kabthimer 2012; Teferi et al. 2015; Getahun and Shefine 2015; Zewdie et al. 2017; Workie   

and Debella 2018; Dagnachew et al. 2019). However, assessment of crop phenological variable trends and their 

response to climate drivers were unexplored at local level. This kind of research helps to select suitable crop varieties 

or crop types and perform informed agricultural management. Assessment of trends in crop phenology and climate 

drivers is necessary for developing climate adaptation strategy guideline.  
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1.3.Objectives of the study 

1.3.1.General objective  

The purpose of the study was to assess trends in crop phenology and climate drivers (2001 – 2020) based on Earth 

observation system in Lake Tana Subbasin, Northwestern Ethiopia 

1.3.2.Specific objectives  

 Investigating trends in crop phenological variables  in the past twenty years    

 Detecting trends in precipitation in crop growing months in the past twenty years    

 Exploring trends in  land surface temperatures in crop growing months in the past twenty years    

 Analyzing  the relationships of crop phenological variables with the climate variables  

1.4.Significant of the study  

Climate change is real, and environmental change is inevitable. In this dynamic environment, enhance productivity 

agricultural system has to be based on informed decisions. To this end, understanding the trends in crop phenological 

variables connections with climate variables is necessary. This information helps to select suitable crop type or 

varieties that could adapt the existing climate conditions and establish supplementary irrigation system in crop growth 

stages.  In this study, decreasing trends in start of growing season, end of crop growth season, length of crop growth 

season, and peak greenness time observed. Besides, cool trend in land surface temperatures also detected in the present 

study in crop growing season.  On the other hand, in crop growing season, increasing trends in precipitation has been 

detected except in June precipitation. The aforementioned information generated in this study can be used by different 

stakeholders, engaged in farming. This information helps understand how crop phenological variables respond to 

climate conditions.  Hence, the results could be used in selecting suitable of crop types or varieties and establish 

accompanying irrigation system in crop growth stages accordingly.  Besides, the results of this study could be used as 

a baseline to advance using remote sensing time-series for modeling crop productivity and establish modern 

agricultural system. Understanding how crop phenology respond to climate variability is also vital to understand future 

food production and food security trends in developing countries like Ethiopia.  Generally, the findings of this research 

might be used as a base for further research and an input for planning precision agriculture.  
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1.5.Scope of the study  

The study carried at subbasin scale on investigating trends in crop phenological variables, land surface temperatures 

and  precipitation in crop growth period for the past two decades (2001- 2020). Besides, the study has focused on 

investigating the relationships of climate variables with crop phenological variables such as start of crop growing 

season, end of crop growing season, length of growth period and  peak greenness time. In this study NDVI constructed 

from MODIS time series data. Crop phenological variables generated from MODIS NDVI products by using 

TIMESAT software version 3.3.  MODIS land surface temperatures have been used in the study. Besides, CHRIPS 

data was used in the study. 

1.6.Organization of the thesis 

This research work document is organized into five chapters. Chapter one included a brief introduction of the research, 

statement of the problem, research objectives, describe significance of the study and scope of the study. Chapter two 

consists of briefly review of scholars works. Chapter three encompasses description of the study area,   method and 

materials sections. Chapter four consists of result, discussion conclusion and recommendation sections of the thesis.  
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CHAPTER TWO 

2. REVIEW LITERATURE  

2.1.  Phenology  

Vegetation phenology is the study of the recurrent patterns, behaviors and life cycles of plants in response to insolation, 

temperature, and precipitation (Jönsson and Eklundh, 2004). Phenological events have been found to be sensitive to 

climate change (Adole et al. 2016), and hence they are considered as bioindicators of climate variabilities and climate 

change (Adole et al, 2018). Studies showed higher spring temperature triggers earlier leaf-on, and thereby it leads to 

a prolonged growth season (Piano et al. 2015). Additionally, it has been reported that warming land surface 

temperature in Northern Hemispheric ecosystem resulted in uneven effects on vegetation activity (Peng et al. 2013) 

and phenology such as   spring leaf onset (Piao et al. 2015; Shen et al. 2018), autumn-leaf senescence, and summer 

greenness (Shen et al. 2016). These changes of vegetation activity and phenology alter functioning and structure of 

ecosystems. These in turn result in changes in the carbon balance, land surface water and energy balances (Wu et al. 

2014). Therefore, studying how phenology responses to climate change/ variability is essential for better 

understanding of ecosystems functioning and the nutrient cycle. 

Information on crop phenology is essential for precision farming and efficient resource utilizations. It help the farming 

system to be implemented based on comprehensive scientific information to enhance crop productivity. Precision 

agriculture is systems of farming in which crops and soil receive exactly what they need in order to optimum health 

and productivity of crop growth. Studies on timing of crop phenological variables and the climate drivers provide 

valuable data for planning, organizing and timely effecting of certain standard and special agricultural activities that 

require advanced information on the dates of specific stages of crop development (Xiao et al. 2021). 

Climate variables are key primary drivers of crop seasonal biological events. The variability of climate elements 

impacts agricultural production through affecting crop growth stages, phenological events and crop yields. Variations 

in climate variables result in advanced or delayed, prolonged or shortened key sensitive crop growth stages 

(Richardson et al. 2013). Thus, changes in the rhythm of different phenological events are considered as a key 

biological indicator of climate change (Piao et al. 2019). Global average temperature change has resulted in spring 

phenological events to occur sooner as well as a delay of autumn phenological events (Jeong et al. 2011). An increase 

in the length of the growth duration generally favors an increase in net primary production resulting by increase carbon 
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dioxide assimilation and potentially contributes to regulating atmospheric greenhouse gases (Keenan et al. 2014). On 

the other hand, lengthening of growth duration can also have negative impact of atmospheric greenhouse gases. Piao 

et al. (2008) reported longer of growth season in warmer autumn results in increased respiration. Consequently, it 

leads to an increase in the amount of carbon dioxide. This largely counteracts the positive impact of springtime carbon 

dioxide assimilation on the total amount of atmospheric greenhouse gases.  

 

In addition to the impact on carbon dioxide, longer growth duration with increased temperature influences the 

transpiration of plants and impact the processes involved in hydrological cycle between the Earth’s surface and the 

atmosphere (Huntington 2004). Furthermore, a longer growth season also leads to a decreased surface albedo. This in 

turn could lead to increased warming of the Earth’s surface due to increased solar energy absorption by vegetation. 

Finally, changes in the biological cycles of plants may also have consequence on species interaction, affecting their 

ecological relationship, which could result in a loss of biodiversity (Caparros-Santiago et al. 2021). Therefore, 

studying the phenological dynamics of vegetation has paramount importance in understanding the behavioral 

responses of the Earth’s ecosystems in the face of climate change.  

 

In the past decades, satellite remote sensing has played a vital important role in monitoring how vegetation response 

to environmental changes because of its repeat monitoring capabilities and global coverage. Land surface phenology 

a term commonly used to refer to vegetation phenology derived from satellite data (Helman 2018). It is generally 

estimated based on vegetation indexes or biophysical variables. Time series data of vegetation indexes or biophysical 

variables can be used to study phonological events and obtain specific phenological variables based on functional 

analyses. Phenological variables include start of the growth season, end of the growth season or the length of growth 

duration. These help monitoring of vegetation phenological dynamics at global scales (Aragones et al. 2019). Hence, 

land surface phenology has made a great effort to determine ecologically expressive variables from multispectral 

satellite observations (Caparros-Santiago et al. 2021). 

2.2.Vegetation indexes  

Vegetation indexes are spectral transformations of two or more bands that are developed to understand the response 

of vegetation photosynthetic activity and canopy structural variations to various factors (Huete et al. 2002).The most 
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commonly used remote sensing technology for crop monitoring in developing countries is Moderate Resolution 

Imaging Spectroradiometer (MODIS) because of its moderate spatial resolutions and high temporal resolution. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index products are designed to offer consistent, 

spatial, and temporal comparisons of global vegetation conditions for monitoring photosynthetic activity (Running et 

al.1994). The time series data of this technology is used for studying trend of long term crop phenological variables. 

However, normalized difference vegetation index (NDVI) has been widely used for monitoring, analyzing, and 

mapping spatiotemporal distributions of physiological and crop phenological stages characterization (Yu et al. 2003). 

This is because the NDVI is chlorophyll sensitive and sufficiently stable to permit expressive comparisons of seasonal 

and inter-annual changes in vegetation growth and activity (Huete et al. 2002). The most commonly used vegetation 

index is Normalized Difference Vegetation Index (NDVI) (Huete et al. 2002; Gitelson 2004).  

 

Analysis of remote sensing based vegetation index data which transformed from individual spectral bands has been 

the basis for most phenology studies. The use of vegetation indexes has been well established in the literatures as they 

represent spectral transformations that integrate two or more spectral bands sensitive to different plant characteristics 

and have been found to be more useful indicators of the state and condition of vegetation (Adole et al, 2018; Vrieling 

et al. 2018). Commonly used remote sensing vegetation indexes in phenology literatures are normalized difference 

vegetation index, enhanced vegetation index, leaf area index, and wide dynamic range vegetation index. Whereas, 

fraction of absorbed photosynthetically active radiation, perpendicular vegetation index, green-red vegetation index, 

two-band enhanced vegetation index, plant phenology index, and soil adjusted vegetation index are the less frequently 

used indices (Caparros-Santiago et al. 2021).  

 

Physical-based indexes like fraction of absorbed photosynthetically active radiation and leaf area indices represent 

direct biophysical measures of vegetation can be estimated by empirical or physical models, instead of a certain 

combination of the multispectral reflectance properties (Gobron et al. 2006). The modified vegetation indexes such as 

perpendicular vegetation index, soil adjusted vegetation index, enhanced vegetation index, and 2 bands enhanced 

vegetation index are designed to minimize the index's sensitivity to various environmental factors that introduce non-

vegetation-related variations into normalized difference vegetation index that include effects from the soil background, 
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snow or aerosols. In addition, several studies suggest that a collectively analysis of multiple vegetative indexes may 

improve the accuracy of phenology estimation (Wu et al. 2014). 

2.3.Climate variability impacts on phenology  

An understanding of vegetation-climate trends along with their relationships is essential to visualize the complex 

interactions of Earth systems and their dynamics (Brown et al. 2012). Climate variability/change impacts agricultural 

system by shifting phenology timing (Brown et al. 2010). The variability of climate variables such as temperatures 

and precipitations in key phenological stages impose challenges on agriculture (Hmimina et al. 2013). For instance, a 

late start of season may cause exposure to temperature and water stresses in flowering and fruit ripening periods. 

These in turn could result in crop growth failures and declining productivity (Brown et al. 2017). However, the impact 

of climate on phenology timing trends varies from region to region across the world (Richardson et al. 2013). An 

expansion of the growth period has been reported in the previous decades at global level and early green-up in high 

latitudes owing to global warming (Chen et al. 2018). However, the trends and the drivers of vegetation phenology 

timing over the tropics is less clear (Vrieling et al. 2013). The impact of climate variability or changes varies across 

vegetation types and from regions to regions in the continent (Adole et al 2019; Wang and Shafeeque 2019). These 

clearly indicate that detail studies on the trends and response of vegetation to climate conditions at local scales is 

necessary to envisage the possible agricultural systems, future food production and food security trends in developing 

countries.   

 

Ethiopia is vulnerable to climate variability/change as it is reported by several researches (Alemu and Henebry 2017; 

Eastman et al. 2013; Workie and Debella, 2018). This is brought about due to the country’s latitude position, complex 

topography, fragmented landscapes and rain fed agriculture system. Agriculture is the backbone of Ethiopia economy. 

Climate change altered the annual amount, intensity and distribution of rainfall in the country (Musau et al. 2016). 

Early green up, an increase the rainfall amount in summer in the north and a shorter growth duration in south and 

eastern Ethiopia have all resulted in water stress  in crop growth season (Brown et al. 2017; Funk et al. 2015). On the 

other hand, significant declining in the amount and intensity of spring rainfall and a decline in the number of annual 

rainy days have been reported by Gummadi et al. (2018). According to Meroni et al. (2014), increasing temperature 

is also a limiting factor for vegetation growth in the highlands of Ethiopia. Conflicting and spatially inconstant study 
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results on the trends and the response of vegetation to climate variabilities justify the importance of a spatially explicit 

examination of the trends and connections of climate and vegetation critical growth timing period in the country. 

2.4.Satellite data smoothing methods 

Remotely sensing data quality contaminated by various noises such as aerosols, sun angle shadow effects, cloud and 

cloud shadow, and sensors/platform conditions. To reduce the noise, maximum value composite method is commonly 

applied to the satellite derived observations to generate temporally composite data. However, composite data alone 

cannot ensure quality of remote sensing data. Consequently, various techniques have been developed to minimize the 

residual noise and reconstruct a more representative data time series vegetation condition. The specific method 

selected can influence the performance of the phenology extraction from the smoothed time series (Atkinson et al. 

2012). The techniques used to smooth and reconstruct the time-series data categorized into empirical methods, curve 

fitting methods and data transformations (Atkinson et al. 2012).  

2.4.1. Empirical methods 

Empirical smoothing methods operate over a local temporal window within the time series based on empirical 

knowledge or assumptions. This smoothening technique is based on the assumption that noise signals usually reduce 

the vegetation index value and temporal variation of the vegetation indexes signal from vegetation should be a smooth, 

continuous response across the growth season under favorable conditions. To this end, running sliding window, 

moving average filter, iterative interpolation, and changing-weight filter proposed to replace the low vegetation index 

values caused by residual noise (Zhu et al. 2012). 

 

The advantage of empirical smoothing techniques is that they are simple to apply, but they are usually sensitive to the 

empirical parameters such as the threshold for noise, the length of compositing period for the maximum value 

composite method and the length of sliding window. Specifically, they performed poorly as the original time series 

contains continuous missing data. Recently, the methods integrating spatial and/or temporal information have been 

proposed to reconstruct vegetation time-series data (Cao et al. 2018).  

 

Only applying traditional empirical methods to create a smoothed time series representative of detail phenological 

responses can still retain some residual noise artifacts in the form of localized, anomalous peaks or dips in the time-
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series vegetation index data. Accordingly, other data smoothing methods like curve fitting and data transformation 

can be used after the application of empirical methods to further reduce these remaining noise artifacts (Caparros-

Santiago et al. 2021). 

2.4.2.  Curve fitting method 

Curve fitting methods apply mathematical functions to fit the vegetation index time-series curves to a specified 

function. Commonly used approaches include logistic models, improved logistic method, asymmetric Gaussian 

functions, Savitzky–Golay filter, quadratic function and nonlinear spherical model. The most commonly used 

smoothing technique in phenology detection are curve fitting methods (Caparros-Santiago et al. 2021). The model 

fitting methods can effectively suppress the noise of data. In addition, they are expected to be more objective 

approaches and easier to adapt to a wide range of situations. However, the time series vegetation index curves derived 

from remote sensing data are not always regular curves, and hence the accuracy of function fitting will directly affect 

the precision and accuracy of extracting phenological features. An inadequately calibrated data record can introduce 

artefactual changes in the time series data and an overfitting of the time series may affect important phenological 

features.  The greenness trajectory in the senescence phase of the growth season for instance can drop more rapidly 

than the rapid vegetation indexes value increase in the green up phase for most vegetation types, or even appear as a 

two-stage decline, which results in estimates of end of growth season in autumn often being inherently more uncertain 

(Caparros-Santiago et al. 2021).  

2.4.3. Data transformation methods 

Data transformation methods decompose the time series into cyclical, trend, seasonal and irregular components based 

on mathematical manipulation. Fourier transforms and wavelet analysis are the most widely used data transformation 

methods to characterize the phenological stages which are derived from satellite observations (Caparros-Santiago et 

al. 2021). Generally, the model with higher resolution can better capture refined phenological information as they are 

able to describe more detailed changes of time-series curves (Beck et al. 2006). Accordingly, compared to Fourier 

analysis, wavelet transform based on local basis of functions has advantage in the feasibility of localization in the time 

domain and flexible scales in both frequency and time domains, which can capture the high frequency variability 

(Sakamoto et al. 2005). 
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2.5. Phenological variable extraction methods 

Several methods have been applied to extract various phenology variable. The methods, however, can be categorized 

into threshold-based methods and vegetation index change detection methods. The most commonly methods used in 

phenological event extraction approaches are briefly discussed as follows. 

2.5.1.  Thresholds methods 

Threshold methods represent the simplest approach to extract phenological indexes from vegetation time-series data, 

assuming that the phenological stage commences as the smoothed vegetation index values reach a specific index value. 

Thresholds commonly are either fixed or dynamic. In the case of fixed threshold, arbitrarily a single fixed index value 

establishes. The dynamic threshold is generally based on a metric calculated from the vegetation index time-series 

data such as the vegetation index ratio, long-term mean or median vegetation indexes, vegetation index of the time-

series data record (White et al. 1997).  

 

Albeit the threshold method is simple and easy to apply, there is no underlying biophysical meaning for the threshold 

selected and a single threshold value may not be appropriate for different plant species and/or different locations. 

Fixed threshold methods can be sensitive to various noise in the vegetation index time series.  On the other hand, 

dynamic thresholds are established directly from the vegetation index data characteristics over the study area. Thus, 

they are more customized as the threshold accounts for differences among vegetation types or the inter-annual 

variation of vegetation that occur within the targeted area. However, these dynamic thresholds might not be stable 

over time and can be sensitive to the noise (White et al. 1997). The baseline year method developed by Shabanov et 

al. (2002) is based on the value from a selected baseline year in the time series to represent the normal  phenological 

behavior of vegetated landscape and phenological events for other years are detected as time series values reach the 

values from the baseline year (Shabanov et al. 2002). However, the baseline year method is sensitive to the inter-

annual variations and the selection of a representative year is subjective and challenging. 

5.3.2. Change detection methods 

Change detection methods determine the phenological dates by directly identifying the changing characteristics of the 

vegetation index time-series curve such as the point with largest derivative or the inflection point with the local 

extreme in the first derivative or the rate of change of curvature. It is assumed that the start of the growth season and 

the end of the growth season can be determined as the time starting the maximal increase or the time marking the 
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maximal decrease in vegetation index in the green up and senescence phases of the growth season, respectively. The 

primary difference among existing methods is how they determine the points with specific change characteristics in 

vegetation index time series. Reed et al. (1994) proposed a moving averaged method to determine the start of growth 

season and the end of growth season as the dates that an observed vegetation index time series crossed a curve 

established from moving average models. This is an innovative in the change detection method for estimating the start 

of the growth season and end of the growth season dates.  

 

Change detection methods are usually combined with curve fitting or data transformation methods to extract the 

phenological features from the smoothed data, as the fitted time series data are continuous in first derivative or change 

rate of curvature. Change detection methods are widely documented in literatures and considered an effective way to 

extract the phenological metrics (Zhang et al. 2003). The reliability depends on the assumption that the phenological 

stages are corresponding to the rapid changes of vegetation index values and the smoothed time series data 

approximates the true phenological characteristics of the vegetation. 

2.6. Applications of remote sensing technology in agriculture  

Remote sensing is the acquisition of information about an object or phenomenon from distance. This involves an 

instrument or a sensor mounted on a satellite, an aircraft, an unmanned aerial vehicle or unmanned ground vehicle or 

a probe. The sensor typically measures the electromagnetic radiation that is either reflected or emitted by the target 

(Wang and Shafeeque 2019).  

The type of information accessible from remote sensing depends on the specific properties of the instrument and its 

platforms. In the field of agriculture, the information of interest consists of traits or features of the agricultural systems, 

and especially how the features r vary in space and time. According to Nock et al. (2016) functional traits that influence 

organism performance or fitness are morphological, biochemical, physiological, structural, phenological or behavioral 

characteristics. The nature of agronomic traits can be crop type, physical, chemical, biological, structural or 

geometrical. Crop productivity is resulted from a series of intertwined biophysical processes and agricultural 

managements in the crop growth season (Nock et al. 2016). 

The agronomic traits mentioned in the aforementioned are hardly measured directly by remote sensing sensors. 

However, it is possible to make inference about the traits by modeling the relationships of radiance measured by 
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remote sensors and the traits themselves. Crop yield can be linked to remote sensing observations. However, in this 

regard characterizing driving factors of crop yield such as solar radiation, temperature, wind speed, humidity 

precipitation, crop growth stages, transpiration and photosynthesis, redistribution of assimilates within plant organs, 

nutrient and water supplies, pruning need  to be considered. 
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CHAPTER THREE 

3. MATERIALS AND METHODS 

3.1.Description of the study area  

Geographical location of Lake Tana basin ranges from 10◦29′N to 12◦46′N latitude, 36
◦
44′E to 38

◦
14′E longitude 

(Figure 1). The total area coverage of the basin including the Lake area is around 15096 km2.  Lake Tana basin is 

located in the Amhara National Regional State in the north-western part of Ethiopia.  The basin is the headwater 

catchment of the Upper Blue Nile River. Lake Tana basin support the production of Ethiopia’s main staple grains such 

teff, maize, millet, and rice. The spatial distribution of crops in the Lake Tana Basin mainly influenced by 

heterogeneous topography and highly localized climate patterns (Sisheber et al. 2022).   

 

       Fig. The study area map  
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3.2.Characteristics of Lake Tana Basin  

3.2.1. Topography of Lake Tana 

Lake Tana is located in a wide depression of the Ethiopian plateau. It drained by several rivers flowing into Lake 

Tana. (Sisheber et al. 2022).The landscape is characterized by floodplains, peak highlands, mountain chains, hills and 

steeply slope lands that mostly divide the sub-basin from its surrounding drainage basin and serves as a water tower 

for whole sub-basin area. According to BoEPLAU (2015), the largest area of Lake Tana basin area is characterized 

by moist tepid (79.4%) followed by sub-humid tepid (12%) and moist cool (5%). The  rest of the areas characterized 

by  sub-humid cool, moist warm, moist cold, moist very cold, and sub-humid cold which cover 2.8%,  0.64%,  0.2% 

, 0.01%,  0.01% of the basin, respectively . Moist tepid agroclimatic condition found up to 2700 m and of which 

25.75% and 19.33% is found within the elevation range from 1327 to 1800 m and 1800 to 1900 m, respectively. It is 

surrounded by high hills and mountains except where the outflow leaves the lake by a narrow valley in the southeast. 

The lake catchment has a minimum elevation of approximately 1784m at around the south tips of Lake Tana,  and a 

maximum elevation of 4107 (BoEPLAU 2015).  

3.2.2.Climate 

The Lake Tana basin has a comparatively mild climate as of its high elevation. The annual climatic conditions of Lake 

Tana basin is categorized into rainy and dry season. The rainy season further categorized into major rainy season 

which ranges from June to September, and minor rainy season which is in April to May. The dry season occurs 

between October and April. The mean annual rainfall ranges from 970 mm to 1900 mm (Sisheber et al. 2022). The 

annual average air temperature in the basin ranges from 13.2 °C to 27.3o C. The mean annual relative humidity is 

around 58% (Setegn et al. 2008). 

3.2.3.Land use land cover 

According to the information in BoEPLAU (2015), Lake Tana basin is characterized by diverse land use and land 

cover types dominantly by cultivated land. From the total area of Lake Basin , 55.71%  of the  area covered by  

cultivated land, 19.69%  by water, 7.22% infrastructure, 6.3% grassland, 4.9% by bush and shrub land,  3.79% by 

forest, and 1.52% by wetland. In the basin, around 0.85% of the land in Guna Mountain range covered by afroalpine 

and sub-afroalpine vegetation.    
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3.2.4. Vegetation  

Natural forests in Lake Tana basin are characterized into dry evergreen Afromontane and riverine forest. Evergreen 

Afromontane forests found ranges from 1500 to 2700 m above sea level. Riverine forest is mainly found in the vicinity 

of Lake Tana and rivers of the basin. Combretum–Terminalia and Acacia–Commiphora woodland are the two types 

of woodland mostly found in the Lake Tana basin. Combretum–Terminalia woodlands found in the altitude range 

from 500–1900 m. They are usually located in humid lowland areas or in river valleys of Lake Tana basin. Acacia–

Commiphora woodlands usually found within the altitude ranging from 1000 to 1900 m. Eucalyptus species, 

Cupressus lusitanica and pine species as well as Acacia mearnsii   are most common planted plants in the Lake Tana 

basin. Bushland commonly found in areas with shallow soil and steep slopes such as hills, escarpments, mountains, 

and gorge slopes. While grasslands are mainly distributed along rivers, around villages, on mountains and hilltops, on 

slopes, and on highlands with stony and shallow soils. Teff, sorghum, chickpea, rice, maize, and sesame are the most 

commonly cultivated in the Lake Tana basin (Song et al. 2018). 

3.2.5.Agronomic practices 

Lake Tana basin is characterized by having high potential for agriculture, livestock, water resource, forest and wildlife, 

tourism, and fishery development compounded with high biological diversity. The basin has also fertile soil and 

cultivable land for intensive agriculture. The agroecosystem are also suitable to produce more than once per year. 

More than million people expected to live in the Lake Tana basin (BoEPLAU 2015). The basin is characterized its 

multiple benefits such as economic, social, political, religious, ecological benefits.  

 

In Lake Tana basin, mixed agronomic practices such as crop production and the rearing of livestock carried out in 

small farms. The basin is most suitable for irrigation agricultural development. It is estimated that 8% of the basin is 

irrigable land, which makes the water shed a major growth corridor in Ethiopia. However, the agricultural system in 

the basin is rain fed which is highly susceptible to climate variability or changes.  Based on the origin, formations, 

morphology and other profiles,  the soils in the basin is classified into Vertisols, Luvisols,  Nitosols,  Leptosols, 

Alisols, Cambisols,  Regosols, Fluvisols, Ferralsols, Gleysols,  Acrisols and Lixisols (BoEPLAU  2015).  

 

3.2.6.Population 
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Lake Tana basin is one of the most densely populated area. It is estimated that 250 people live within a square 

kilometer. Around 76.9 % of the proportion live in the rural areas while the remaining percent live in urban and semi 

urban centers. Linguistically, main ethnic families live in the basin is Amhara (BoEPLAU 2015).  

3.3.Materials 

In this study, MODIS Conversion Toolkit used for reprojection sinusoidal projection of MODIS imageries into UTM 

projection in ENVI 3.5 software. While TIMSAT software version 3.3 and Matlab software version 2018b used for 

the purpose of analysis of time series data and extracting phenological variables. ArcGIS 10.2 used for the purpose of 

calculating NDVI.  

3.4.Research design 

The research designed used in this study was a longitudinal research design. This research approach was performed 

as the study focused exploring the relationships of crop phenological variables with climate variables, and the trends 

in the climate variables as well crop phenological variables in relation to time repeatedly for twenty from 2001 to 

2020. In this study, the researchers have looked into the correlations of land surface temperatures and precipitations 

with crop phenological variables such as SOS, EOS, LOS, and POS. Longitudinal research design selected  as the  

research aimed to assess the trend of  crop phenological variables and the climate variables for the past twenty years, 

time series analysis.  

 

3.5.Satellite data acquisition and preprocessing 

3.5.1.MODIS data 

Terra MODIS eight day maximum value composite stellate archives (MOD09Q1/A1) accessed from NASA’s LP 

DAAC website https://lpdaac.usgs.gov/. Then, data reprojected into Universal Transverse Mercator projection (UTM 

Zone 37N, WGS84) using MODIS Conversion Toolkit. MODIS imageries from May to October for the past twenty 

years (2001 -2020) processed for this study. A total of 480 imageries processed for constructing MODIS NDVI time 

series data. The spatial resolution of the MODIS sensor data used in this study is 250m. The Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor time series data used because it has high temporal and moderate spatial 

resolution, and is accessible free of charge.  Cloud and cloud shadow effects on MODIS LST removed by MODIS 

state quality flags (NourEldeen et al. 2020). The NDVI is chlorophyll sensitive vegetation index and commonly used 

in crop phenology trend assessment and monitoring (Wang and Shafeeque 2019). Besides, the NDVI is sufficiently 

https://lpdaac.usgs.gov/
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stable to provide expressive comparisons of seasonal and interannual changes in vegetation growth and activity (Huete 

et al. 2002). The NDVI is a normalized ratio of the near infrared (NIR) and red bands and it is calculated as below: 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
  Where pNIR and pred are the surface bidirectional reflectance factors for their respective MODIS 

bands.  

3.5.2. Climate data  

3.5.2.1.MODIS Land surface temperatures  

MODIS Land surface temperatures (MODIS LST) used in the study.  Terra MODIS LST with a resolution of 1km 

were accessed from https://lpdaac.usgs.gov/products/mod21a2v061/. Land surface temperature (LST) is an 

important parameter related to surface atmosphere interactions. It has been widely used for agriculture scientific 

studies (NourEldeen et al. 2020). The change in LST can cause surface air temperature, precipitation and vegetation 

cover to vary by altering terrain materials and energy balances (Vancutsem et al. 2010). MODIS LST is considered 

the most suitable data source because of its free accessible, high observation frequency and moderate spatial resolution 

(NourEldeen et al. 2020). The MODIS Reprojection Toolkit software also used to reprojection Sinusoidal data to the 

UTM (Zone 37N, WGS84). Cloud and cloud shadow effects on MODIS LST removed by MODIS state quality flags 

(NourEldeen et al. 2020).  

3.5.2.2.Climate Hazard Infrared Precipitation with Stations 

 Climate Hazard Infrared Precipitation with stations (CHIRPS) were as a climate element. CHIRPS dataset at a spatial 

resolution of 0.05◦ x 0.05◦ which is found to be reliable to Ethiopia (Funk et al. 2015, Bayissa et al. 2017) accessed 

from http://chg.geog.ucsb.edu/data/chirps/. Then, the land surface temperatures and the precipitation data were 

resampled to match with the spatial resolution of the MODIS NDVI time series products data. Then, the climate 

variables aggregated into months of crop growing periods (May, June, July, August, September, October) to match 

the timing of the phenology parameters in exploring the relationships of crop phenological seasonal parameters and 

climate parameters. The data used in this study summarized in (Table 1).  

 

Table 1: Data sources of the study 

https://lpdaac.usgs.gov/products/mod21a2v061/
http://chg.geog.ucsb.edu/data/chirps/
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Data Type  Source  Spatial resolution  Temporal resolution Unit 

NDVI MODIS terra sensor 250m 8 day composite  m 

Precipitation  CHRIPS 5km pentad   mm 

Maximum land surface temperature, 

Minimum land surface temperature 

and average land surface temperature 

 

MODSLST 

  

1km 

 

8 day composite 

 

oc 

 

3.5.3. Data extraction   

Nine thousand points sampled from croplands using Google history Earth imageries. Then, the reliable croplands for 

the past twenty years (2001 to 2020) identified from Google Earth history. From the total sample, the four hundred 

fifty two points were found to be consistently croplands for the past twenty years.  Then, the NDVI, land surface 

temperatures, and CHRIPS time series data were extracted by using these reliable cropland points to construct time 

series data for the past twenty years.   

 

Phenological variables extracted from NDVI using TIMSAT software 3.3. The software is widely used to extract 

phenological information from time series of satellite data. Maximum value composition technique lessens cloud and 

cloud shadow effects ((Jönsson and Eklundh, 2004).). However, the technique cannot remove the noises completely, 

and hence original NDVI products are insufficiently accurate as residual noises. Several techniques proposed to further 

remove residual noises. For NDVI time series data characterized by fine spike noises, the Savitzky-Golay filtering 

method works very well (Jönsson and Eklundh, 2004). And hence, Savitsky-Golay filter smoothing model used to 

minimize the noises of MODIS NDVI time series in TIMESAT software version 3.2 during extracting crop 

phenological variables in this study.  

 

During extracting the phenological variables, we used the relative threshold method to detecting crop phenology and 

determine the crop phenological variables as Lake Tana basin characterized by mixed crop agricultural practices 

(Jönsson and Eklundh, 2004). The date of the phenological variables occurs as NDVI values measured 

increased/decreased from the base level to a specified fraction of the amplitude. A relative threshold of 0.1 for start of 

crop growing season, and a relative threshold 0.3 for end of crop growing season used in extracting phenological 
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variables. These relative thresholds are found to be reliable in the study area (Sisheber et al. 2022). The date of peak 

greenness represents date of the period as crop greenness reaches at least 80 % of NDVI maximum seasonal value 

(Jönsson and Eklundh, 2004). The length of crop growing period is the difference between the end of crop growing 

season and start of crop growing season (Zhou et al. 2016).  

3.5.4. Data analysis   

Trend analysis was carried out by XLSTAT version 2021.1.software. The Mann-Kendall test widely employed to detect 

trends in time series data, however, the result of the test may contain an error if significant autocorrelation exists in the 

data series (Mahmood et al. 2019). We calculated autocorrelation coefficient (R) to identify existence of significant 

autocorrelation within time series as below: 

⌈
−1 − 1.645 ∗ (𝑁 − 2) ∗ 0.5)

𝑁 − 1
⌉ =< 𝑅 <= ⌈

1 = 1.465 ∗ (𝑁 − 2) ∗ 0.5

𝑁 − 1
⌉ 

Where N represents the number of observations, R indicates autocorrelation coefficient. If the autocorrelation 

coefficient values R lies in between the lower and the upper confidence boundary, it shows that there is no significant 

autocorrelation among the observations (Mahmood et al. 2019). We have calculated autocorrelation coefficient in crop 

phenological variables, land surface temperatures and precipitation time series data using the aforementioned model. 

We found that the autocorrelation coefficients of crop phenological variables, land surface temperatures and 

precipitation time series data falls in between the lower confidence level and upper confidence level ( -0.75 =  < R= < 

0.75). And hence, we applied Mann Kendall test to identify statistically significant trends in phenological variables, 

land surface temperature and precipitation for the period of 2001- 2020. Mann-Kendall test is the most commonly used 

nonparametric method in trend analysis (Mahmood et al. 2019).  Mann-Kendall test statistic (S), the variance of Mann-

Kendall test statistic V(S), and the associated standard normal test statistic (Z) were calculated as below. 

 

 𝑍 =

⌈
⌈
⌈
 

𝑆−1

√𝑉(𝑆)
for S >  0

0             𝑆 = 0
𝑆−1

√𝑉(𝑆)
for S <  0

⌉
⌉
⌉
 

 

∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝐽=𝐼+1

𝑛−1

𝐼=1
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𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = ⌈

1 𝑓𝑜𝑟 (𝑥𝑗 − 𝑥𝑖) > 0

0 𝑓𝑜𝑟 (𝑥𝑗 − 𝑥𝑖) = 0
−1 𝑓𝑜𝑟 (𝑥𝑗 − 𝑥𝑖 < 0

⌉ 

𝑉(𝑆) =
1

18
⌈𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝 (𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

⌉ 

Where q designates total number of tied groups. A set of the same values in a dataset is referred to as a tied group. Each 

tied group is denoted by tp.  The positive values of Z denotes indicate increasing trends in time series, and the negative 

Z values means decreasing trends in time series. Trends are tested against the critical values (Z1−α) to show that either 

they are statistically significant or not.  

 

The Sen’s slope estimator applied to quantify the magnitude of detected trends.  It is a commonly used nonparametric 

method. We applied the Sen’s slope method this present study. The method is robust against outliers in a time series 

(Mahmood et al. 2019). Declining slope indicates that the phenological period is advanced/shortened whereas 

increasing slope denotes the phenological period is delayed/prolonged. Sen’s slope (SS) is estimated as below: 

𝑆𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛 ⌈
𝑥𝑗−𝑥𝑖

𝑗−𝑖
⌉  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑗    Where xi is the value of data at time step i & xj at time step j 

Partial correlation analysis was carried out in order to weight the contributions of climate variables for variation of crop 

phenological variables. Different periods selected for the partial correlation analysis to set fitting time scales for the 

phenological variables and climatic variables. For SOS, May, June, and July; for EOS, July, August, and September; 

and for POS May, June, July, and August; and for LOS May, June, July, August, September and October were selected. 

Then, we used linear regression analysis to estimate the influence of climatic variables effect on crop phenology. The 

correlation coefficient (r), coefficient of determination, and p value (p < 0.05) were used to determine the extent of the 

correlation and significances of the relationships between crop phenological variables and climate variables. The 

correlation coefficient measures the strength of the relationships while coefficient determination expresses the 

percentage of variation in a crop phenological variable explained by a climate variable. 
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   CHAPTER FOUR 

4. RESULTS 

The major findings of the study described in this chapter. This section included trends in crop phenology, precipitation 

and land surface temperatures during crop growing months. Besides, the relationships of crop phenological variables 

with the climate variables are also detected. 

The result shows (Table 2) the beginning of SOS ranges from 170th to 187th DOY.  EOS ranges from 318th to 337th 

DOY. LOS ranges from 134 to 165 days. The peak greenness time ranges from 252 to 268 days in the pat twenty years 

in the studied area. 

 Table 2: Crop phenological indices in Lake Tana Subbasin (2001-2020) 

Years SOS (DOY) EOS (DOY) LOS (Days) POS (day) 

2001 177 336 159 264 

2002 179 331 152 262 

2003 186 336 150 268 

2004 183 327 144 265 

2005 187 330 143 265 

2006 172 337 165 258 

2007 182 325 144 259 

2008 179 331 153 261 

2009 187 331 144 260 

2010 184 326 142 263 

2011 177 332 155 260 

2012 184 333 149 266 

2013 185 328 143 263 

2014 172 324 153 252 

2015 179 326 147 257 

2016 184 318 134 263 

2017 170 324 154 259 

2018 174 327 153 255 

2019 179 326 146 260 

2020 180 328 148 263 
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4.1.1. Trends in crop phenological variables 

The result of time series MODIS data showed that trend in crop phenological variables advanced and shortened in the 

past twenty years.  SOS (figure 2A) (slope = -0.203, p = 0.436), EOS (figure 2B) (slope = -0.469, p = 0.021),  POS 

(figure 2C) (slope = -0.230, p = 0.112) and length of crop growing period (figure 3D) (Slope = - 0.171, p = 0.496) 

showed decline trends in the past two decades. However, EOS showed substantial negative trend in the past twenty 

years (p < 0.05). The results implied that crop types or varieties that need short crop growth season should be 

considered in agricultural practices.   

 

 

Figure 2. Trend in crop phenological variables in Lake Tana basin:  start of crop growing  season (A), end of crop 

growing season (B), length of crop growth period(C), peak greenness time (D) 
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4.2.Trends in climate variables  

4.2.1. Trend in precipitation 

Figure 3 shows trends in precipitation in crop growing months. In the past twenty years, precipitation showed positive 

trends in May (figure 3A) (slope = 5.025, p = 0.013), in June (figure 3B) (slope = -1.305, p = 0.363), in July (figure 

3C) (Slope = 0.482, p = 0.864), in August (figure 3D) (Slope = 0.768, p = 0.09), in September(figure 3E)  (slope = 

2.407), p = 0.23, and in October (figure 3F)  (slope = 1.275, p = 0.299). Whereas, June precipitation trend showed 

negative trend (Slope = -1.305, p = 0.363) for the past twenty years. However, substantial increasing trend observed 

in May precipitation in the past twenty years (p = 0.013). As observed in the graph (Figure 3), precipitation showed 

increasing trend in crop growing season except in June in the past twenty years. 
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 Figure 3. Trends in precipitations in crop growing months: precipitation in May (A), precipitation in June (B), 

precipitation in July (C) precipitation in August (D) precipitation in September (E) precipitation in October (F)  

4.2.2. Trends in land surface temperatures  

Land surface temperatures showed declining trends (Figure 4) in crop growing months. For the past twenty years, 

maximum land surface temperature showed negative trend in May (figure 3A) (slope = -0.50, p = 0.002), and in June 

(figure 3B) (slope = -0.081, p = 0.284). The mean maximum land surface temperature also showed negative trend 

(figure 4C) in the crop growing months (slope = -0.118, p = 0.006). May minimum land surface temperature (Figure 

4D) also showed declining trend. According to the study finding implies substantial heat stress has not been observed 

in the past twenty years. 
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Figure 4. Trends of land surface temperatures in crop growing months in the study area:  maximum temperature in 

May (A), maximum temperature in June (B), mean maximum temperature (C), mean minimum temperature (D) 

4.3. Crop phenological variables relationships with climatic variables  

4.3.1. Crop phenological variables relationships with precipitation  

Precipitation showed negative correlations with SOS and POS, but positive correlation with EOS and LOS (Figure 5).  

40.1% variation of SOS explained by variation in May precipitation amount (Figure 5A), and 40.2 % variation of SOS 

explained by variation of amount of precipitation in July (figure 5B). 20.2% of variation of EOS explained by 

precipitation amount variation in August (figure 5C) (p = 0. 0 465). 37.1% of variation in LOS in July (Figure 5D), 

37.6% variation of LOS in August (Figure 5E), and 10.1% of variation of LOS in October (figure 5F) explained by 

the variations of precipitation amount in the last twenty years. 21% of variation of POS in May (figure 5G); 24.3% of 
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variation of POS in July (figure 5H), and 43.3% of variation of POS in October (figure 5I) explained by variation of 

precipitation in the months.  The correlations of amount precipitation with phenological metrics in crop growing 

season were statistically significant (p < 0.05).  

 

 

 

 



 

29 
 

  

 

Figure 5 Crop phenological variables relationships with monthly precipitations: start of growing season relationship 

with precipitation in May (A), start of growing season relationship with precipitation in July (B), end of growing 

season relationship with precipitation August (C),  length of growing period relationship with precipitation in May 

(D), length of growing period relationship with precipitation in July (E), length of growing period relationship with 

precipitation in August (F), peak greenness time relationship with precipitation in July(G), peak greenness time  

relationship with  precipitation in October(I) 

4.3.2.Crop growth relationships with land surface temperatures   

Maximum land surface temperature showed strong positive correlations with SOS and POS (Figure 5). Maximum 

land surface temperature in May (Figure 5A) explained 20.9 % variation of day of the year of SOS, and 32.7%  

variation of day of the year of SOS in July (figure 5B) in the past twenty years. The mean land surface temperature of 

crop growth period from May to October (figure 5C) explained around 30.5 % variations of day of the years of start 

of crop growing season.  On the other hand, 24% of variation in date of EOS explained by maximum land surface 
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temperature in June (figure 5D).  The correlation of maximum land surface temperature with SOS and POS was 

statistically significant (p < 0.05). May minimum land surface temperature explained 34% of the variation in start 

growing season. Besides May minimum temperature explained 25% variation in length of growing period. 
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Figure 6 Crop phenological variables relationship with monthly land surface temperatures: start of growing season relationship 

with maximum surface temperatures in May (A), start of growing season relationship with maximum temperatures in July (B), start 

of growing season relationship with maximum temperatures in June (C), end of growing season relationship with maximum 

temperature in October (D), start of growing season relationship with minimum temperatures in May (E), Length of crop growing 

period relationship with minimum temperatures in May (F) 
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4.  DISCUSION  

Our research findings revealed that the trends of crop phenological variables advanced and the length of crop growing 

duration shorten. The substantial advanced of end of crop growing season has led shortening of length of the growing 

season. This implies consideration of types or varieties of crops which need short growth and development duration 

is indispensable in agronomic activities in the studied area. A delayed start of crop cropping season results to water 

stress in flowering and ripening periods,  lead to crop failure (Brown et al.2017). Early green up and water stress in 

flowering and fruiting stages of crop reported in the northern Ethiopia (Brown et al. 2017; Funk et al. 2015). 

Monitoring trends in crop phenological variables and the climate drivers supports in devising adaptive agricultural 

system. Information on crop phonology in connection with climate variability uses as an input to predict crop yield 

and monitoring the state of food security. Besides climate variability, crop phenology influenced by anthropogenic 

activities such as agricultural management (Wakjira et al. 2021).  

  

In past twenty years, precipitation amount increased in crop growth season except in June the present study. The 

ground data supported this finding.  This implies that water deficit in growing season may face in June in the studied 

area, and the deficit needs to be regulated through precision agriculture. However, May precipitation amount revealed 

substantial increasing trend. Precipitation is a key climate element in crop growing season. Rainfall periodic 

fluctuations and timing affect crop yield in rained agricultural system (Wakjira et al. 2021). Amorality of amount 

precipitation found be high in the study area although the trends of precipitation found to be positive in the past twenty 

years. Wakjira et al. (2021) reported amorality of rainfall in the northern Ethiopia in crop growing periods.  Rainfed 

agriculture practices is influenced by the temporal distribution of rainfall in the cropping period in a given season of 

the year (Hao et al. 2013).   

Crop phonological variables showed strong correlation with climate variables of crop growth periods in the studied 

area. Start of crop growing season positively influenced by the amount precipitation in May and in July. Whereas, 

lengths of crop phenology considerably influenced by the amount of precipitation in July and August. Furthermore, 

peak greenness period portrayed strong negative correlation with amount of precipitation in crop growth periods. 

Climate variables affect crop development by influencing crop phenology, growth, and yield productivity (Brown et 

al.2017). The onset of the main rainy season starts in advance in the northeast Ethiopia (Wakjira et al. 2021). Generally, 

amount precipitation in crop development months more importantly affected crop development in the studied area. 
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Land surface temperature showed negative trend in the study area in crop growing months. However, mean land 

surface temperature and May land surface temperature showed substantial decreasing trends for the past twenty years. 

This implies heat stress were important limiting factors for the past twenty years.  Maximum land surface temperature 

and minimum land surface temperature in May positively influence start of crop growing season. Crop phenology 

showed strong correlations with land surface temperatures. However, May minimum land surface temperature 

negatively influenced length of crop growing period. Temperature influence the growth, rate of development and 

yields of crops (Luo 2011). Land surface temperature changes rapidly in space as well as in time. It is strongly affected 

by high land surface heterogeneity such as surface albedo, vegetation, topography, and soil moisture (Wan et al. 2002; 

Khandelwal 2018). The declining of land surface temperature in the study area in crop growing period might be due 

to the vegetation cover and high soil moisture due to increasing precipitation amount in the crop growth season. This 

study, decreasing of mean maximum temperature in crop development period positively influenced crop greenness 

period. Climate variability impacts agriculture by shifting phenology timing mainly due to increases in temperature 

and/or the seasonality of rainfall amount and rainfall intensity (Brown et al. 2010). Variability of climate elements in 

key phenological stages has a large influence on agriculture (Brown et al. 2010; Hmimina et al. 2013). The variability 

of climate variables such as temperatures and precipitations in key phenological stages impose challenges on 

agriculture (Hmimina et al. 2013). For instance, a late start of season may cause exposure to temperature and water 

stresses in flowering and fruit ripening periods. These in turn could result in crop growth failures and declining 

productivity (Brown et al. 2017). 

 

Though shorten and advance of crop phenological variables, increasing of precipitation and decline of land surface 

temperatures observed in crop growing period in the study area, high irregularity patterns have been observed. 

Information on trends in crop growth development in relation with climate variables help agricultural stakeholders to 

formulate effective climate change adaptation strategies (Mo et al.2016; Bai et al. 2019; Zhao et al.2019;  Liu et al. 

2021). Crop phenology is affected by both climate conditions and agricultural management processes such as sowing 

date adjustment and cultivar improvement (Zhao et al. 2015). Implementing practical agricultural management 

measures is an effective means to deal with climate variable impacts on crop phonology (He et al. 2020). Advancing 

sowing dates and sowing crop varieties or types that need shorter growing duration as well as precision agriculture 
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are management adaptations to cope up climate impacts on crop phenology, growth and yield (Zhao et al.2015; Ye et 

al.2019). With the cooling of climate condition and increasing of precipitation, the growing period has advanced and 

shorten. Trend analysis in temperature and precipitation is very indispensable for rainfed agricultural system, where 

farmland is primarily dependent on precipitation. It supports better water resource management in agricultural water 

use and regulation as well as for better planning in agricultural activities. 

5. Conclusion and recommendations  

Anomaly trend anomaly in crop phenological variables, land surface temperature and precipitation found to be highly 

in the study area. Declining trend in crop phenological variables detected in the present study. However, end of crop 

growing season showed substantial advanced and shorten trend. Crop phenological variables showed strong 

correlations with amount of precipitations in crop growing months. Start of crop growing season showed strong 

negative correlation with increasing amount precipitation in May and in July. The length of crop growing period 

showed strong positive correlation with the amount of precipitation in July and August. The trends in precipitation 

amount in crop growth season were positive except trend in June. On the other hand, peak greenness period negatively 

influenced by the amount of precipitation in May, July and October. While amount of precipitation increase, dates of 

peak greenness time advanced in the study area.  Maximum land surface temperature in May and June, and minimum 

land surface temperature in May positively influence start of crop development. The higher the minimum land surface 

temperature in May lead to the shorter length of crop growing period. Mean maximum temperature of crop growing 

period positively influenced crop greenness period. Generally, crop phenological variables extracted from the MODIS 

NDVI time series, MODIS LST time series data, and CHRIPS data provided a valuable information on trends in crop 

phenology and the climate variables.  

The findings indicated that farmers should consider crop types or varieties which need short growing duration. 

However, this research have not addressed the knowhow of the farmers about changing trends in the crop phenological 

variable and how the farmers respond for the changes. Besides, the agricultural system in the studied basin is 

characterized by fragmented agriculture. In this study, information synthetized using data constructed from satellite 

observations having moderate spatial resolution, MODIS sensor. Therefore, cross validation of the findings through 

data extracted from satellite sensors which have fine resolution is indispensable. 
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