Self-Care Practice And Associated Factors Among Hypertensive Patients Who Have Follow-Ups In Public Hospitals of Bahir-Dar City, Northwest Ethiopia, A Mixed Study

Gebremedhin, Hailu

http://ir.bdu.edu.et/handle/123456789/13408
Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY
COLLEGE OF MEDICINE AND HEALTH SCIENCES
SCHOOL OF PUBLIC HEALTH
DEPARTMENT OF HEALTH PROMOTION AND BEHAVIORAL
SCIENCES

SELF-CARE PRACTICE AND ASSOCIATED FACTORS AMONG HYPERTENSIVE PATIENTS WHO HAVE FOLLOW-UPS IN PUBLIC HOSPITALS OF BAHIR-DAR CITY, NORTHWEST ETHIOPIA, A MIXED STUDY

BY: GEBREMEDHIN HAILU (BSC IN PUBLIC HEALTH)

A THESIS REPORT SUBMITTED TO THE DEPARTMENT OF HEALTH PROMOTION AND BEHAVIORAL SCIENCES SCHOOL OF PUBLIC HEALTH, COLLEGE OF MEDICINE AND HEALTH SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS IN HEALTH PROMOTION.

JULY, 2021.
BAHIR DAR, ETHIOPIA

PRINCIPAL INVESTIGATOR: GEBREMEDHINHAILU ALAYU (BSc, PUBLIC HEALTH)

ADRESS: Email: gmedhinhailu@gmail.com Phone: +251938151377/+251946870307

ADVISORS:

1. Mr. HORDOFA GUTEMA (MPH/HP, ASSISTANT PROFESSOR)

ADRESS: EMAIL: pthordeg@ gmail.com PHONE: +251911791775
2. Ms. LYDIA MELKAMU (MPH/HP, LECTURER)

ADRESS: EMAIL: Lydiabey45@gmail.com
PHONE: +251927596801

CANDIDATE'S DECLARATION FORM

Declaration

This is to certify that the thesis entitled "Self-Care Practice and Associated Factors Among Hypertensive Patients Who Have Follow-Ups in Public Hospitals of Bahir-Dar City, Northwest Ethiopia, A Mixed Study", submitted in partial fulfillment of the requirements for the degree of Master of public health in Health Promotion, Department of Health Promotion and behavioral sciences, school of public health, college of medicine and health science, Bahir Dar University, is a record of original work carried out by me and has never been submitted to this or any other institution to get any other degree or certificates. The assistance and help I received during the course of this investigation have been duly acknowledged.

Date
Place

ADVISOR'S AND EXAMINER'S APPROVAL FORM
 BAHIR DAR UNIVERSITY
 COLLEGE OF MEDICINE AND HEALTH SCIENCES SCHOOL OF PUBLIC HEALTH DEPARTMENT OF HEALTH PROMOTION AND BEHAVIORAL SCIENCES

Approval of thesis by advisors

I here by certify that I have supervised, read, and evaluated this thesis/dissertation titled "Self-Care Practice and Associated Factors Among Hypertensive Patients Who Have FollowUps in Public Hospitals of Bahir-Dar City, Northwest Ethiopia, A Mixed Study", by Gebremedhin Hailu Alayu prepared under my guidance. I recommend the thesis be submitted for final defense.

Advisor's Name
 Date
 Signature

1. Mr. Hordofa Gutema (MPH/HP, Assistant prof.)
2. Ms. Lydia Melkamu (MPH/HP, Lecturer)

Approval of thesis by the board of Examiners

We Recommend that the Thesis be Accepted as Fulfilling the Requirement for the degree of Master of Public Health in Health Promotion.

External examiner's name	Signature	Date
	Signature	Date
Chair person's name	Signature	Date

ACKNOWLEDGMENT

First and above all praise be to the almighty God who lets me live and gave me this chance. I would like to express my deepest gratitude to my advisors Mr. Hordofa Gutema (MPH/HP, Assistant Professor) and Ms. Lydia Melkamu (MPH/HP, Lecturer) for their unreserved guidance and invaluable comments. I would like to express my appreciations to Arsi University College of Medicine and Health Sciences for giving me this fully funded educational opportunity. I would also like to acknowledge the department of health promotion and behavioral science, Bahir Dar University, College of Medicine and Health Sciences, School of Public Health for providing me a support letter to the institutions I am supposed to conduct my study. My appreciations are also extended to the demographic and health information system data office workers of Felege Hiwot comprehensive referral hospital, Tibebe Gihon specialized referral hospital, and Addis Alem primary hospitals for providing me relevant information regarding the study settings and study participants. At last but not least I would like to really appreciate participants from all three hospitals for their cooperation and provision of their invaluable time and information during the study period.

Abstract

Background: Hypertension also called high blood pressure is the sustained elevation of the blood pressure to $\geq 140 / 90 \mathrm{mmHg}$. It is the leading worldwide risk factor for cardiovascular disease and deaths. It is responsible for 13% of the total deaths and 7% of the global burden of disease. This can be easily reduced by strictly adapting the different mechanisms of hypertension self-care practices such as; adherence to prescribed anti-hypertension medications, lowering of salt diets, consumption of a balanced diet, avoiding harmful use of alcohol, performing regular physical exercises, and ceasing of tobacco smoking. Objectives: to determine self-care practice and associated factors and to explore its barriers among hypertensive patients in public hospitals of Bahir Dar city, North West Ethiopia. Methods and materials: An institution-based descriptive cross-sectional triangulated with the qualitative study was applied from March, 12 to April 12, 2021. A total of 415 participants selected from three of the study settings were involved. Data from structured questionnaire was entered into EpiData v3.01 and analyzed by using SPSS version 21. Univariable and multivariable binary logistic regression was done. The statistical significance of associations between variables determined using odds ratios with 95% confidence interval (CI) and p-values below 0.05 . For the qualitative, part $n n$ indepth interview was conducted among eight purposively selected individuals.

Results: good hypertension self-care practice was found in 44.8%. Age ≥ 60, secondary school and above, government employees, controlled blood pressure, good knowledge, strong social support, and good perceived health status were significant predictors for good hypertension self-care practice with AOR and 95\% CI of 3.04 (1.26, 7.33), 7.82 (2.79, 21.98), ($1.53,14.90$), 3.14 ($1.70,5.80$), 2.27 ($1.17,4.41$), 2.71 ($1.31,5.61$), and 2.56 (1.35, 4.85) respectively. In addition lack of emotional stability and stress, financial problems, lack of commitment, lack of attention and inappropriate councelling from health professionals were among the major identified barriers. Conclusions: less than half of the participants had good hypertension self-care practice. Strategies, programs and guidelines which can help clients understand the importance's of understanding of the multi-dimensional wellbeing in relation to different domains of hypertension self-care practices should be constructed. In addition, all patients should be intensively provided with adequate and tailored information on the recommended promising self-care practices and evaluated for obstacles to the adherence of such practices.

List of acronyms and abbreviations
AOR: Adjusted Odds Ratio 7
BP: Blood Pressure 2
CI: Confidence Interval 7
CVD: Cardio Vascular Disease 1
DALYs: Disability-AdjustedLlife Years 1
EFY: Ethiopian Fiscal Year 13
FHCSRH: Felege-hiwet comprehensive specialized referral hospital 13
HBP-SCP: High Blood Pressure Self-Care Profile 19
HSC: Hypertension Self-Care 2
HTN:Hypertension 1
IDI: In Depth Interview 16
JNC: Joint National Committee 2
NCDs: Non- Communicable Diseases 1
OR: Odds Ratio 7
OSSS: Oslo Social Support Scale 19
TGSRH: Tibebe Gihon specialized referral hospital 13
Contents
CANDIDATE'S DECLARATION FORM iii
ADVISOR'S APPROVAL FORM iv
EXAMINER'S APPROVAL FORM Error! Bookmark not defined.
ACKNOWLEDGMENTS v
ABSTRACT i
LIST OF TABLES v
LIST OF FIGURES vi
LIST OF ANNEXES vii

1. INTRODUCTION 1
1.1 Background 1
1.2 Statement of the problem 2
1.3 Significance of the study 4
2. LITERATURE REVIEW 5
2.1. Hypertension self-care practices 5
2.2. Factors associated with and barriers to hypertension self-care practices 6
2.2.1. Socio-Demographic factors 7
2.2.2. Knowledge about hypertension and its management practices 8
2.2.3. Empowerment factors (Self-efficacy) 8
2.2.4. Social support 9
2.2.5. Other health-related factors 9
2.3. Conceptual framework of the study 11
3. OBJECTIVES 12
3.1. General objective 12
3.2. Specific objectives 12
4. METHODS AND MATERIALS 13
4.1. \quad Study area \& period 13
4.2. Study Design: 13
4.3. Source Population: 13
4.4. Study Population 13
4.5. Inclusion and Exclusion Criteria 14
4.5.1. Inclusion criteria 14
4.5.2. Exclusion Criteria: Error! Bookmark not defined.
4.6. Sample Size and Sampling Technique 14
4.6.1. Sample Size Determination 14
4.6.2. Sampling Procedure 15
4.7. Data Collection tools 16
4.8. Study Variable: 17
4.8.1. Dependent variable 17
4.8.2. Independent variables 17
4.9. Data Analysis and Processing 17
4.9.1. Data quality control 18
4.10. Operational definitions 18
4.11. Ethical considerations 19
5. RESULTS 20
5.1. Quantitative Results 20
5.1.1. Socio-demographic characteristics of respondents 20
5.1.2. Health profile related characteristics 21
5.1.3. Hypertension self-care practice 21
5.1.4. Factors associated with Hypertension self-care practice 23
5.2. Qualitative results 27
5.2.1. Socio-demographic characteristics 27
5.2.2. Barriers of hypertension self-care practices 27
6. DISCUSSION 31
7. Strengths and limitations of the study 34
7.1. Strengths 34
7.2. Limitations 34
8. CONCLUSIONS AND RECOMMENDATIONS 35
8.1. Conclusions 35
8.2. Recommendations 35
REFERENCES 36
ANNEXES 41

LIST OF TABLES

Table 1: Socio-demographic characteristics of respondents for quantitative study in public hospitals of Bahir Dar city, North West Ethiopia June, 2021 (n=415) 20

Table 2: Health profile related characteristics of respondents in public hospitals of Bahir Dar city, North West Ethiopia June, 2021 ($\mathrm{n}=415$)

Table 3: Distributions of hypertension self-care practices of hypertensive patients in public hospitals of Bahir Dar city, North West Ethiopia June, 2021 ($\mathrm{n}=415$)
Table 4: Bivariable and multivariable logistic regression showing actors associated with selfcare practices of hypertensive patients in Public hospitals of Bahir Dar city, North West Ethiopia June, $2021 \mathrm{n}=415$.25

Table 5: Socio-demographic characteristics of clients involved in qualitative study of H-SCP, in public hospitals of Bahir Dar city, North Western June, 2021 (n=8)27

Table 6: Reliability test of tools utilized to assess Hypertension self-care practice and associated factors among hypertensive patients who have followups in public hospitals of Bahir Dar city, North West Ethiopia, June 2021

LIST OF FIGURES

Figure 1: Conceptual framework of hypertension self-care practices and associated factors. 11 Figure 2: Schematic representation of sampling technique ... 15

LIST OF ANNEXES

Annex 1: Informed Consent for quantitative research survey 41
Annex 2: Structured questionnaire for the quantitative research part 42
Annex 3: Oral Informed Consent for IDI 47
Annex 4: Semi-structured questionnaire for an in-depth interview 48
Annex 5: 入中 50
 51
 57
 58
Annex 9: Reliability test of the tools 60

1. INTRODUCTION

1.1 Background

Hypertension also called high blood pressure level is that the elevation of pressure within the arteries (1). It is sustained elevation of the blood pressure to $\geq 140 / 90 \mathrm{mmHg}$ (2). It is the major risk factor for ischemic and hemorrhagic strokes, MI, heart failure, chronic kidney disease, peripheral vascular disease, cognitive decline, and premature death. It is the leading worldwide risk factor for cardiovascular disease (CVD) and mortality and is responsible for 13% of the total deaths and 7% of the global burden of disease (3).

Hypertension can be classified based on its cause into primary and secondary. The cause of primary hypertension is not known (4). The other one is secondary hypertension. It pertains to the relatively small number of patients, about $5-10 \%$, of all hypertension. The main types of secondary hypertension are chronic kidney disease; renal artery stenosis; excessive aldosterone secretion; pheochromocytoma and sleep apnea $(4,5)$.

Hypertension is continuously becoming a worldwide urgent issue. By 2010, the global burden of hypertension was estimated at approximately 1.4 billion and is likely to substantially exceed 1.6 billion by 2025 (1). It is also a major contributor to the global burden of noncommunicable diseases (NCDs). In 2016, It contributed to about 17.9 million (44%) deaths out of 40.9 million (71%) global deaths as a result of non-communicable diseases related mortalities (6). About 40% of the world adult population lives with hypertension (7), and 28.5% are in high-income countries while 31.5% are in low-and middle-income countries (1). Accounting for up to 54% of stroke and 47% of ischemic heart disease as well as 13.5% disability-adjusted life years (DALYs) (8).

Africa continent seems to be the most affected region in the world. About 46% for both sexes combined. The age-standardized prevalence of hypertension is 25.9% among different population groups in sub-Saharan Africa (9). Hypertension is continued to be a public health problem in developing countries, including Ethiopia. The national overall prevalence of hypertension (HTN) in Ethiopia was 19.6% (10). In Bahir Dar, the prevalence of hypertension among the adult population was revealed to be 25.1% (11).

Self-care is the maintenance of healthy well-being in a patient's interest by making certain day to day decisions and actions to have control over their illness (12).

The movement towards self-management of a disease has been observed in literature since the 1990s. The proceedings of the National Conference on Self-Management of Chronic Disease, which was held in 2003 in Australia, confirmed that the medical approach to treating these diseases is prescriptive and authoritarian and does not consider the subjectivity of the carrier and the importance of self-management of care (13).

Studies have shown that Hypertensive self-care management practices are essential for the control of high blood pressure and its complications in individuals with hypertension. It encompasses a wide range of behaviors in addition to medication adherence and monitoring of symptoms, such as individuals’ ability to manage physical, psychosocial, and lifestyle behaviors related to their condition (14). Hypertension self-care (HSC) has been defined as "a dynamic and active process requiring knowledge, attitude, discipline, determination, commitment, self-regulation, empowerment and self-efficacy" (15).

It has been recommended by the Joint National Committee (JNC) of seven as a key step in controlling high blood pressure (16). Major hypertensive self-care practices include adherence to anti-hypertensive medications, consumption of low-sodium and low-fat diet, exercise, limiting alcohol drinking, not smoking, weight reduction, self-monitoring blood pressure, regular healthcare visit, and reducing stress (3, 17).

1.2 Statement of the problem

Hypertension has been identified as the leading modifiable risk factor for cardiovascular disease and consequently represents a major cause of premature morbidity and mortality due to adverse cardiovascular and cerebrovascular events (18). Blood pressure (BP) control and management of hypertension can be achieved through antihypertensive drug treatment, which has proved to be clinically effective (19). However, recent evidence (including control rates across 12 countries) suggests that BP control through antihypertensive treatment is suboptimal, with at least 20% of that prescribed treatment failing to achieve control (20).

Hypertension is estimated to affect more than one in three adults aged 25 and over (or about one billion people) worldwide. Africa sees the highest prevalence of hypertension (46 percent of adults aged 25 and over), while the Americas the lowest (35 percent). Owing to
appropriate public policies and better access to health care, high-income countries have a lower prevalence of hypertension (35 percent) than low- and medium-income countries (40 percent) (21).

Hypertension is an iceberg disease that follows the "rule of halves" which is being silent i.e. asymptomatic in the incipient stage, so many people remain undiagnosed (22). In support of this statement, a qualitative study done in Brazil explored that sense of being ill is usually recognized by the clients through incidental measurement of blood pressure, hospital admission examinations, check-up consultations, or sometimes on the appearance of a physical and/or emotional malaise (23). Those who are diagnosed may not have access to treatment and who had access, may not be able to sustain the control over illness. Late detection of hypertension has a significant economic and social impact at the individual, family, community, and national levels due to premature death, disability, loss of income, and healthcare expenditure (22). The medical, economic, and human costs of untreated and inadequately controlled high blood pressure are enormous (24, 25). The total cost of hypertension in some countries is in the order of 2% of the country's gross domestic product, including treatment, medical consultations, and indirect costs such as wages lost as a result of disability or death (26). Africa is also suffering from financial crises as a result of CVDs including hypertension. According to one study in Africa, Sub-Saharan African countries spent on average about US\$ 45 per capita on healthcare. The economic burden of CVDs was $\$ 390$ per capita in South Africa and $\$ 6$ per capita in Ethiopia (27).

Self-care is considered as a basic care for patients with chronic conditions to have a better quality of life by refraining from possibilities of disabilities and to reduce the rising health care expenditure. It has shown that it reduces primary care visits, outpatient visits by 17% and emergency department visit up to 50% (28).

However hypertensive patients often do not implement the recommended self-care practices (29) and ultimately suffer from uncontrolled blood pressure. According to a recent study, about 52.5% and 50% of hypertensive patients in Ayder hospital, Mekelle northern Ethiopia (30), and southwest Ethiopia live with uncontrolled blood pressure respectively (31).

Several factors are known to affect hypertension self-care practice which may include sociodemographic factors such as age, marital status, educational status, occupation, and health literacy, illness duration, empowerment factors such as self-efficacy (32-34), hypertension
knowledge (35,36), and social support ($33,34,37$). Despite these facts: first, the studies done in Ethiopia are solely quantitative (29, 33, 36). Besides, there are important factors that affect hypertension self-care practices yet not fully or adequately addressed especially in our country's context which includes self-efficacy and perceived health status (33).To my knowledge, these important factors are not studied in our country and there are literatures that recommends the necessity of addressing them. Secondly, to my abilities of searching in different databases, there is no qualitative or mixed study that explores barriers of self-care practices among hypertensive patients in Ethiopia. There was also a research which recommended the necessity of qualitative study in this study topic (38).

Therefore, the purpose of this study was to determine the magnitude and associated factors of hypertension self-care practice by incorporating the stated deficient factors and to explore its barriers among patients who have follow-ups in public hospitals in Bahir Dar city, Ethiopia.

1.3 Significance of the study

This study will have a great contribution to the understanding of how patients are executing activities that help cope with their condition and what factors are hindering them from performing scientifically well-recommended actions.

The findings of this research will help professionals in the health system to develop self-care management practice guidelines to educate hypertensive patients, improve their action and their communication with the patient to ensure a better influence on self-care behavior. The contribution of this study to the improvement of health and self-care through acquiring healthy behaviors among the young and elderly in controlling one's blood pressure will not be undermined.

2. LITERATURE REVIEW

2.1. Hypertension self-care practices

People with chronic diseases tend to develop a set of learning and strategies that enable them to live with the disease and self-management can influence the level of maintenance and improvement of their health condition (23). Hypertension self-care practice includes medication taking and life-style modification activities such as; Low-salt diet, Physical activity, Weight management, regular doctor visits, stress reduction, and cessation of smoking and alcohol consumption (39-41).

A clinic-based study on the Assessment of self-care practices among hypertensive patients in a rural area of Singur, West Bengal showed that 62.9% of study participants who were suffering from hypertension had unfavorable self -care practices (42). Another study from south India shown that self-management practices to be average or good among 60.6% of cases. Good compliance with treatment was seen in 78.7% of cases and blood pressure was in control in 72.4% of cases. A regular check of weight (once in six months) was done by 49.8% and regularity with exercises (at least 3 times a week for at least 30 minutes) was done by 51.1% participants (43).

A study from Pokhara, western Nepal, self-care practices among the study population was revealed. To control blood pressure more than 70% of respondent did not take alcohol/smoking, majority (80.6%) respondent took low fat and low salt diet, more than half (59.7\%) respondents monitored blood pressure regularly, 58.2% of respondent used measures to reduce stress, from them most of the respondents used to watch television. Almost eightyfive percent of the respondents took medicine regularly. About the antihypertensive medicine, 16.4% discontinued the medicine, and 4.5% of the respondents used to change the dose of the medicine by themselves (44).

Another study done in Nigeria revealed that among 298 respondents, a minority (11.4\%) of the respondent adhere to medication 14.1 \% had a high practice of lifestyle modification (7). Another study done in Lagos, Nigeria revealed poor practice of diet and salt restriction among the participants (92.1%). In addition, 89.5% of the participants had poor exercise practice, whereas the participants had relatively good alcohol consumption behavior (60.5%), and weight management practices (57.9) (45).

A study from Addis Ababa found that 23% of the respondents adhered to all studied lifestyle recommendations; 69.1% of the respondents adhered to diet-related recommendations; $\sim 85.9 \%$ of participants were nonsmokers or ceased smoking, and 74.8% of the participants were adherent to moderation of alcohol consumption. The majority (68.6%) of the subjects did not engage in regular physical exercise for at least 3 days of the week with a minimum of 30 min duration. Walking (55.3\%) was the most common physical activity among those who were found to be adherent. The study found that the adherence rates of recommended HTN lifestyle modifications were 60% for behaviors related to dietary modification, smoking, and alcohol consumption and were much lower for activities related to physical exercise (46).

A study conducted in South Ethiopia among 205 participants to assess self-care management practices and associated factors among hypertensive patients. The study revealed low lifestyle modification practice $56(27.7 \%)$ among hypertensive patient regarding weight control, treatment adherence, regular physical activity, abstaining from smoking and alcohol and changes in eating only (16.1%) of the participants practice regular exercise 30 min per day for most of the days in a week (47).

A study done from Mekelle, northern Ethiopia, revealed that good self-care practice was found only among 20.3% of respondents. Adherence to not smoking, antihypertensive medication, alcohol abstinence, dietary management, physical exercise, and weight management was found to be $99.1 \%, 74.10 \%, 67.20 \%, 63.10 \%, 49.4 \%$, and 40.6% respectively (29). On the contrary, a study done in the University of Gondar specialized referral hospital showed improved self-care practices to control hypertension which was 59.4% (36).

A study conducted among patients in public health facilities of Dessie town, Ethiopia revealed that 51% of the respondents had poor hypertension self-care practices (33).

2.2. Factors associated with and barriers to hypertension self-care practices

Self-care practices have variables that include low-salt diets, reduced caffeine consumption, cessation of tobacco smoking, stress management, physical activity, weight management, and increasing compliance with treatment regimens. Studies assessing hypertensive patients' perceptions of factors influencing their self-management have demonstrated that barriers are multifactorial (48, 49).

2.2.1. Socio-Demographic factors

Socio-demographic factors are known to have influences on self-care practices of hypertensive patients. Such factors include gender, age, marital status, occupational status, and educational status $(7,29,33,50)$.

A clinic-based study on the Assessment of self-care practices among hypertensive patients in a rural area of Singur, West Bengal showed that age above 60 years were three times more likely to have unfavourable self-care practice compared to younger participants, participants who attended less than primary level education were about four times mor likely to have unfavorable self-care practices as compared to those respondents who attended primary level education and above. Marital status was also significant predictor of hypertension self-care practice. Either widowed or divorced participants were about three time more likely to have unfavorable self-care practice of hypertension compared to married participants (42).

According to a study done in south India, self-management practices and compliance were found to be significantly poor among participants whose age was above 50, males, less educated, unemployed, unskilled, or retired patients (43).

A study done in Dessie, Ethiopia revealed that Divorced participants were about 88% less likely to have good self-care practice compared to those who were single. In addition the study revealed that participants who had traditional clergy-based teaching were 2.2 times more likely to have good self-care practice compared to those who were unable to read and write (33).

A study on lifestyle modifications and factors associated with hypertensive patients attending chronic follow-up units of selected public hospitals in Addis Ababa, Ethiopia shown that Female respondents were found two times more likely to be adherent to recommended lifestyle modifications when compared to their male counterparts. Unemployed respondents were found less likely to be adherent than the employed ones. Respondents in the old aged adult group were found to be six times more adherent than respondents in the young adult age group (46).

Another study done in Ayder feferal hospital, Mekelle revealed that sel-care practice to be associated with sex in which females were found about 2.3 times more likely to have good self-care practice than males, age in which respondents whose age were less than 65 years were about 3 times more likely to have good self-care practice than patients greatere than or equal to 65 years old, and educational status in which participnts who had college and above education were found to be about 4.2 times more likely to have good self-care practice than unable to read and write. In addition, the study revealed that participants whose blood pressure was controlled were about three times more likely to have good hypertension selfcare practices compared to those participants whose BP was uncontrolled (29).

2.2.2. Knowledge about hypertension and its management practices

A qualitative study aimed to explore hypertensive patients' perspectives on quality use of medication and issues related to hypertension management at the community level in Malaysia, found that poor medication adherence and different strategies were taken to overcome the barriers towards adherence. The use of herbal and traditional therapies was perceived as an alternative method in controlling blood pressure instead of taking antihypertensive medication. The participants were found to have poor knowledge of the side effect and mechanism of action of hypertensive medication (51).

A study done in Mekelle, Ethiopia revealed that good knowledge was found about 6 times more positively associated with good self-care practice than poor knowledge (29) another study done on recommended lifestyle adherence among hypertensives in public health facilities in Addis Ababa found that compared to the non-knowledgeable respondents, respondents who had good knowledge to be about thirteen times more likely to be adherent (46). According to a hospital-based cross-sectional study conducted in Gondar specialized referral hospital revealed that higher frequency of good self-care practice was observed among those who had good hypertension knowledge (36).

2.2.3. Empowerment factors (Self-efficacy)

Empowerment is a complex concept that can be defined as a combination of influencing factors, including self-efficacy (34). It is a process by which people can gain control over their lives and enables patients to take on increased responsibilities for their daily self-care (52).

A study conducted among Filipinos in the United States showed that self-efficacy, or the individual's perceived confidence in carrying out self-care behaviors that relate to managing a chronic illness including HTN significantly contributed to the regression model that accounted for 29.5% of the variance in HTN self-care (53). A study conducted in local communities in china revealed that a ten unit increase in self-efficacy was related to an increased for performing a regular physical exercise (37).

Chronic disease management requires the individual to perform varying forms of self-care behaviors. Self-efficacy, a widely used psychosocial concept, is associated with the ability to manage chronic disease. According to a study done among African-Americans over half (59\%) of participants reported having good self-efficacy to manage their hypertension. Hypertension self-efficacy is strongly associated with adherence to five of six prescribed selfcare activities among African Americans with hypertension. Ensuring that African Americans feel confident that hypertension is a manageable condition and that they are knowledgeable about appropriate self-care behaviors are important factors in improving hypertension selfcare and blood pressure control (54).

2.2.4. Social support

Several studies report that social support is a predictor of compliance and positive health behavior (33, 34, 55, 56).

According to a study done in Korea to assess the predictors of self-care among hypertensive patients, significant positive correlations with social support (34). A study conducted in local communities in china revealed that each 10 -unit increase in family social support to be associated with about 1.4 and 1.33 for medication adherence and measuring BP regularly, respectively (37). Another study done in Dessie, Ethiopia revealed that respondents who had good social support were more likely to engage in favorable hypertension self-care practices(33).

2.2.5. Other health-related factors

Other general health-related factors which include; illness duration, family history of HBP, information related to HBP, place to make exercise, and presence of co-comorbidities are also known to affect the levels of self-care practices among hypertensive clients (7, 29, 33, 46, 57).

According to a study done in Dessie, Ethiopia found that participant who had no access to self-care related information were about 92% less likely to have good self-care practice. It also shown that participants who had a convenient place for exercise to be about 3 times more likely to have good self-care practice compared to those who had not (33).

Duration since the time of diagnosis was also a predictor for self-care practices of hypertension. A study done in Ayder comprehensive specialized referral hospital, Ethiopia showed that respondents with ≥ 4 years of disease duration were about three times more likely to practice good self-care as compared to those with less than two years of disease duration (29). According to a study done in Addis Ababa to assess adherence to recommended lifestyle modifications and factors associated with hypertensive patients attending chronic follow-up units of selected public hospitals; a longer time since diagnosis was found to be significantly associated compared to shorter-duration since diagnosis.

Presence or absence of certain Respondents with no comorbidities were found to be 76% less likely to be adherent than those who had them (AOR $=0.24,95 \%$ CI: $0.11,0.50$) (46).

A qualitative study done in US explored that patients' daily-lived experiences such as an isolated lifestyle, serious competing health problems, a lack of habits and routines, barriers to exercise and prioritizing lifestyle choices interfered with optimal hypertension selfmanagement (48). Another qualitative study conducted in colombia among hypertensive patients explored barriers to accessing treatment included co-payments for medication; costs of transport to health care facilities; unavailability of drugs; and poor access to specialist care (58).

2.3. Conceptual framework of the study

The conceptual framework of the study is developed from different related literatures as follows.

Figure 1: Conceptual framework of hypertension self-care practices and associated factors

3. OBJECTIVES

3.1. General objective

To assess the magnitude of self-care practices and associated factors among hypertensive patients who have follow-ups in public hospitals in Bahir-Dar, Amhara, northwestern Ethiopia, 2021.

3.2. Specific objectives

\checkmark To determine the magnitude of self-care practices of hypertensive patients
\checkmark To identify factors associated with hypertension self-care practices of hypertensive patients and
\checkmark To explore barriers of hypertension self-care practices of hypertensive patients

4. METHODS AND MATERIALS

4.1. Study area \& period

This study was conducted in public hospitals in Bahirdar city, Northwest Ethiopia from March, 12 to April, 12, 2021G.C. the city has three public hospitals in which the two are specialized and the other one is a primary hospital. These hospitals are namely Felege-hiwet comprehensive specialized referral hospital (FHCSRH), Tibebe Gihon specialized referral hospital (TGSRH), and Adis alem primary hospitals. Bahir-dar is located approximately 578 km north-northwest of Addis Ababa. According to Ethiopian fiscal year (EFY) of 2012, the city has around 324,323 populations, of which $51.3 \%(166,388)$ of them are females and the remaining $48.7 \%(157,945)$ are males (59). Felege-hiwet and Tibebegihon specialized hospitals are known to provide services on four major wards namely internal medicine, surgery, pediatrics, and gynecology and obstetrics. In addition to these services, it provides different services for different chronic diseases including hypertension. Felege Hiwot hospital has two hypertensive care clinics while Ttibebe Gihon has one hypertensive care clinic. Adisalem hospital is a primary hospital and it is known to provide services under four wards and it has one hypertensive care clinic which provides five days services every week. The total numbers of hypertensive patients who have follow-ups in Felege-hiwot, Tibebe Gihon, and Adis-alem hospitals are $4,540,1388$, and 2579 respectively (60-62). So the total source population for this study is 8507 . On average; Felege hiwot, Tibebe Gihon, and Adis-Alem hospitals serve approximately 408,130 , and 235 hypertensive clients each month respectively.

4.2. Study Design:

An institution-based cross-sectional supported by qualitative method was applied.

4.3. Source Population:

All hypertensive patients who had follow-ups in public hospitals in Bahir Dar city

4.4. Study Population

Quantitative part: All selected hypertensive patients who had follow-ups in public hospitals in Bahir Dar city at the time of data collection.

Qualitative part: purposively selected particicipants that weren't involved in the quantitative study.

4.5. Inclusion and Exclusion Criteria

4.5.1. Inclusion criteria

All hypertensive patients who had follow-ups in public hospitals of Bahir Dar city.

4.6. Sample Size and Sampling Technique

4.6.1. Sample Size Determination

For the quantitative part: The sample size was calculated using the formula for a single population Proportion:

$$
n_{0}=\frac{\left(Z^{\alpha} / 2\right)^{2} \times p(1-p)}{d^{2}}
$$

Where $n_{0}=$ required sample size for a very large population ($\mathrm{N}>10000$), $\mathrm{Z}=$ critical value for normal distribution at 95% confidence level which equals to 1.96 at $\alpha=0.05, \mathrm{P}=$ prevalence of hypertension self-care practice, and $\mathrm{d}=0.05$ (5% margin of error)

Assumptions: With the assumptions of 95% CI, 5\% desired precision, established prevalence of poor H-SCP among patients in public health facilities of Dessie town, Ethiopia which was $51 \% ~(\mathrm{P}=0.51)$, (33), the formula yields $n_{0}=385$. The stated P - value was selected because it was found to yield maximum sample size after reading different similar literatures.

The sample size for the second objective:

Variables	\% Outcome in unexposed	AOR	Power 80\%	Sample size
Knowledge regarding	HTN \& its SCPs (29)	30.3	6.196	80%

As it is shown above, comparatively the sample size for the first objective was greater than that of the second objective. So the required sample size was $384.006 \sim 385$. Adding 10% of the non-response rate the final total sample size was calculated to be 423 .

For the qualitative component, 8 individuals were involved in the IDI based on the general rule in qualitative research (saturation), continue to sample until not getting any new information or no longer gaining new insights (63).

4.6.2. Sampling Procedure

For the quantitative part, 423 study participants was selected by using a systematic random sampling method. These participants were proportionally allocated to the study areas as shown in figure 2.

Figure 2: Schematic representation of sampling technique

The respective required number of participants was selected systematically. I.e. every other patient was involved. To do this first; the card numbers of patients who were appointed to visit the health facilities during the data collection period was requested to use it as a sampling frame. Second; from this list of cards, the first participant involved was selected by using simple random sampling. Finally, every other patient was interviewed to collect the needed data.

Qualitative part: Purposive sampling technique through hetrogenous sampling method was used to select study participants for the qualitative part of the study. I say this to mean that I
involved the clients in the in depth interview (IDI) by considering their age, sex, place of residence duration of their illness, and presence or absence of other comorbidities.

4.7. Data Collection tools

Quantitative part: face-to-face interviews using a structured questionnaire which was developed from different similar literature and articles were adapted to assess the level of hypertensive self-care practices and their associated factors of hypertensive patients.

The questionnaires were prepared in English and translated to the Amharic language. The instrument had four main sections.

Section one: socio-demographic variables which included age, sex, marital status, educational status, and occupation were assessed.

Section two: was about health profile characteristics which included family history of HBP, measured BP, sources of information related to HTN, duration of illness, presence of other comorbidities, and availability of a place for physical exercise.

Section three: was about hypertensive self-care practice. The behavioral scale of Hypertension Self-Care Profile (HBP-SCP) was used to measure the self-care practice of participants in this study. The HBP-SCP is a 20 -item measure with each question having 4 response options: not at all $=1$, sometimes $=2$, often $=3$, and always $=4(64)$.

Section four: was about items that assess H-SCP associated factors.
Four data collectors were recruited by the principal investigator. These data collectors were supervised by the principal investigator and two other additional supervisors.

Qualitative part: To explore the barriers prohibiting clients from experiencing adequate selfcare practices to cope with their condition, an in-depth interview (IDI) was conducted using a semi-structured, open-ended questionnaire which was developed by the PI. I prefered this method of data collection because first; this method is more preferable in addressing a specific research question or focused research topic i.e. in my case barriers of self-care practice among hypertensive clients, second; the participants which I intend to involve are geographically dispersed, and Third; fear of the spread of COVID 19 and emergence of the new strain of that virus even though still not reported in our country in which precaution is better. The interview guideline was constructed by the principal investigator by using how and why's. The principal investigator utilized a digital audio recorder at the time of data collection to make documentation of the data.

4.8. Study Variable:

4.8.1. Dependent variable

Hypertension self-care practice

4.8.2. Independent variables

- Socio-demographic variables (Age, sex, marital status, place of residence, educational status, and occupation),
- Empowerment factor (self-efficacy), - Knowledge,
- Social support, - Perceived health status, and
- Other health-related factors (illness duration, family history of HBP, source of information related to HBP, availability of a place to make exercise, and presence of co-comorbidities).

4.9.Data Analysis and Processing

Quantitative part: the template was created by and entered into EpiData v3.01 software. Then data was exported to SPSS version 21 for analysis. Descriptive statistics such as frequencies, percentages, mean values, and standard deviations computed for respondent characteristics and other measured study variables. The outcome variable i.e. H-SCP was dichotomized into good and poor based on the analyzed mean scores. Binary logistic regression was done to see the associations between the outcome variable and each of the explanatory variables. The statistical significance of associations between variables was determined using odds ratios with 95% confidence interval (CI) and p-values below 0.05 . then those independent variables with less than or equal to 0.2 was selected to became a candidate for multivarible logistic regression (33). Again after doing multivariable logistic regression, the statistical significance of associations between variables was determined using odds ratios with 95% confidence interval (CI) and p-values below 0.05 .

For the qualitative part, First of all, the researcher managed the data by creating and organizing files through data collection, transcription, and translation. Then the translated data were read and reread until the full meaning of the contents understood. Codes were attached to each quotes of the participants. Data was displayed to capture the variation, or richness, of each code. Data reduction done to distill the information to make the most essential concepts and relationships, and finally; the data was interpreted. To facilitate this analysis Atlas ti. 7 software was used.

Quantitative and qualitative data were collected simultaneously, analyzed side by side, and finally, results of each data source combined to give meaning (63).

4.9.1. Data quality control

Quantitative part: Before the actual data collection commences, the questionnaire was pretested on 5% (22) of the sample size in Han health center. After the pretest, the questionnaire was accordingly modified. The data obtained from pretest wasn't included in the final analysis.

The pretest was conducted to ensure the completeness of the data collecting instrument. Training was given to the data collectors and supervisors before the actual data collection on the contents of the questionnaires and how to maintain confidentiality and privacy of the study subjects. Every day after data collection, questionnaires were reviewed and checked for completeness, accuracy, and clarity by the PI, supervisors, and data collectors.
Qualitative part: the rigor and trustworthiness of the study was ensured by considering the criteria of credibility, dependability, conformability, and transferability (65). To ensure credibility, data was collected from different background perspectives of respondents. to ensure dependability; accurate documentation by minimizing spelling errors through frequent check described. The analyzed and interpreted data was continuously peer-reviewed. Conformability was achieved by using quotes (linking the words of the participants and with the discoveries). The digital records of the interviews are not deleted to enable others to track the process. Transferability was achieved by providing evidence, detailed description of the study starting from sampling to data analysis to provide opportunities for replication or to determine the generalizability of results.

Both the quantitative and qualitative data are stored in a secured place for confidentiality and in time of need for a backup of the data.

4.10. Operational definitions

Hypertension self-care practice: was measured by the 20 -item measure of Hypertension Self-Care Profile (HBP-SCP) and those who scored above the mean are considered to have favorable/good self-care practices (33).

Knowledge: was measured by the overall summation of 12 items of true/false bases after reverse coding of the negatively worded items and those respondents who scored above the mean were considered as having good knowledge towards hypertension and its self-care practices (36).

Perceived social support: was measured by the 3-item measure of Oslo social support scale (OSSS-3) and participants are classified as having low, moderate, and strong social support (66).

Self-efficacy: was measured by summing of results 5 -item measures which were rated from 1-10 and those respondents who scored mean and above were considered to have high selfefficacy (54).

Perceived health status: was measured by summing of results 12 -item measures of the short form (SF-12) health survey and participants who scored mean and above were considered to have good perceived health status (67).

4.11. Ethical considerations

Ethical approval was obtained from the Ethical committee of Bahir Dar University, College of Medicine and Health Sciences from the office of chief academic and research diractor on march 5, 2021 and the letter is registered under reference number of /11116/1.4.4. The IDI was conducted in a separate area from the follow-up room after the selected patient completed his/her treatments. For both the quantitative and qualitative parts, the interviewees were informed about the objectives and data collection procedures. Informed consent was obtained from each of the participants. The participants were allowed to consider their participation and they were allowed to withdraw from the study when they wished to do so. Participant's name or personal identifier wasn't included in the IDI and structured interviews to ensure participants' confidentiality. All transcripts and other data were/are kept in a locked file.

5. RESULTS

5.1. Quantitative Results

5.1.1. Socio-demographic characteristics of respondents

From a total of 423 sampled participants, 415 hypertensive patients who had follow-ups in public hospitals of Bahir Dar city participated in the study, which makes a response rate of 98.1%. Out of the total respondents 213 (51.3\%) were females (Table 1). The mean age of the study population was $53.52+13.7$ SD years. Majority of the participants were married accounted for 234 (56.4%). Of all the respondents 27666.5%) were residents of urban areas. As to the educational status 149 (35.9%), 113 (27.2%) of the participants were unable to read and write and attended college and above respectively. One hundred eight (26%) of the respondents were government employees (Table1).

Table 1: Socio-demographic characteristics of respondents for quantitative study in public hospitals of Bahir Dar city, North West Ethiopia June, 2021 (n=415)

Variables		Number	Percent
Sex	Male	202	48.7
	Female	213	51.3
Age	<=40	82	19.8
	41-59	183	44.1
Mean $=53.52 \pm$ 13.7 SD	>=60	150	36.1
Marital status	Single	45	10.8
	Married	234	56.4
	Divorced	67	16.1
	Widowed	69	16.6
Residence	Urban	276	66.5
	Rural	139	33.5
Education	'Unable To Read And Write'	149	35.9
	'Able To Read And Write'	53	12.8
	'Primary School'	46	11.1
	'Secondary School'	54	13.0
	'College or Above'	113	27.2
Occupation	Farmer	82	19.8
	Government Employee	108	26.0
	Private Employee	84	20.2
	Daily Laborer	12	2.9
	House wife	76	18.3
	Other	53	12.8

5.1.2. Health profile related characteristics

Out of 415 respondents 157 (37.8%) had family history of hypertension. All of the participants had access to health education. The average duration of illness of the respondents was 5.98 ± 4.404 years. One hundred forty two (34.2%) of the respondents were with at least one possible comorbidities. Only $81(19.5 \%)$ of the study participants had available place for physical exercise. The mean systolic and diastolic blood pressure of the participants was 138.2 and 85.3 mmhg respectively (Table 2)

Table 2: Health profile related characteristics of respondents in public hospitals of Bahir Dar city, North West Ethiopia June, 2021 (n=415)

Variables		Number	Percentages
Family history of HBP	Yes	157	37.8
	No	258	62.2
Source of health information	Books	37	8.9
	Magazines	8	1.9
	Electronic media	123	29.6
	Health education	415	100.0
Duration of illness; mean $=5.98 \pm 4.404$, Minimum $=1 \mathbf{y r}$, maximum $=22$ yrs.			
Place for physical exercise	Yes	88	21.2
	No	327	78.8
Presence of comorbidities	Diabetes mellitus	88	21.2
	Chronic kidney disease	25	6.0
	Chronic heart failure	31	7.5
	Stroke	11	2.7
	Overall	142	34.2
Measured SBP(in mmhg)	Mean=138.23 ± 12.105		
Measured DBP(in mmhg)	Mean $=85.29 \pm 7.576$		

5.1.3. Hypertension self-care practice

The overall mean of hypertension self-care practice was 52.9 ± 10.7. Among the 415 study participants, 186(44.8\%) had good Hypertension self-care practice with confidence interval (CI) of (40.0, 49.6) at 5% level of significance. among all of the respondents involved in the study, 112 (27\%) of them never engaged in regular physical exercise. 129 (31.1\%) and 158 (38.1%) of the participants were practicing the consumption of less than 1 teaspoon of table salt per day always and most of the times respectively. From the entire participant, 187 (45.1%) of them always practiced the recommended moderation of alcohol consumption. Only $44(10.1 \%)$ of the respondents were engaged in the consumption of 5 or more servings of fruits and vegetables daily (Table 3). Majority of the participants never checked their
blood pressure at home which accounted for 289 (69.6\%). Majority of the respondents practice non-smoking which accounted for 378 (91.1%) (Table 3).

Table 3: Distributions of hypertension self-care practices of hypertensive patients in public hospitals of Bahir Dar city, North West Ethiopia June, 2021 (n=415)

Practices	Frequencies (\%)			
	Always	Often	Sometime s	Not at all
Take part regular physical activity (e.g., 30 minutes of walking 4-5 times per week)?	$73(17.6)$	$107(25.8)$	$123(29.6)$	$112(27)$
Read nutrition facts label to check information on sodium content?	$55(13.3)$	$94(22.7)$	$66(15.9)$	$200(48.2)$
Eat low-salt foods (e.g, fresh vegetables)?	$131(31.6)$	$192(46.3)$	$85(20.5)$	$7(1.7)$
Limit the use of high-salt condiments?	$99(23.9)$	$131(31.6)$	$127(30.6)$	$58(14)$
Eat less than 1 teaspoon of table salt per day?	$129(31.1)$	$158(38.1)$	$77(18.6)$	$51(12.3)$
Avoid consuming fatty foods?	$70(16.9)$	$193(46.5)$	$139(33.5)$	$13(3.1)$
Eat fewer foods that are high in fat (e.g., red meat, butter)?	$78(18.8)$	$162(39)$	$138(33.3)$	$37(8.9)$
Replace traditional high-fat foods (e.g., deep-fried chicken) with low-fat products	$40(9.6)$	$70(16.9)$	$126(30.4)$	$179(43.1)$
(e.g., baked chicken)?				
Use bake or steam instead of frying when cooking?	$95(22.9)$	$108(26)$	$81(19.5)$	$131(31.6)$
Read the nutrition label to check info on fat products (e.g., butter, red meat)?	$60(14.5)$	$77(18.6)$	$71(17.1)$	$207(49.9)$
Eat 5 or more servings of fruits and vegetables daily?	$22(5.3)$	$20(4.8)$	$153(36.9)$	$220(53)$
Practice moderation in drinking alcohol daily (2 glasses or less for men; 1 glass or less for women)?	$187(45.1)$	$69(16.6)$	$69(16.6)$	$90(21.7)$
Practice non-smoking?	$378(91.1)$	$8(1.9)$	$13(3.1)$	$16(3.9)$
Check your blood pressure at home?	$89(21.4)$	$22(5.3)$	$15(3.6)$	$289(69.6)$

Remember to take your blood pressure medicine?	$251(60.5)$	$136(32.8)$	$6(1.4)$	$22(5.3)$
Remember to fill your prescriptions?	$331(79.8)$	$56(13.5)$	$15(3.6)$	$13(3.1)$
Keep your weight down?	$77(18.6)$	$121(29.2)$	$100(24.1)$	$117(28.2)$
Monitor situations that cause a high level of stress (e.g., arguments, death in the family) resulting in blood pressure elevation?	$71(17.1)$	$161(38.8)$	$86(20.7)$	$97(23.4)$
Engage in activities that can lower stress (e.g., deep breathing, meditation?	$140(33.7)$	$196(47.2)$	$52(12.5)$	$27(6.5)$
See a doctor regularly?	$140(33.7)$	$196(47.2)$	$52(12.5)$	$27(6.5)$
Overall mean	$\mathbf{5 2 . 8 7}$			
Scored	$\mathbf{1 8 6 (4 4 . 8 \%})$			
	Above mean	$\mathbf{2 2 9 (5 5 . 2 \%})$		

5.1.4. Factors associated with Hypertension self-care practice

First; Univariable binary logistic regression was done and it was followed by multivariable binary logistic regression with those variables that were found to be significant with a p-value of ≤ 0.2. In the univariable regression process; gender, age, marital status, educational status, occupational status, residence, family history of HBP, duration since diagnosis, availability of place for physical exercise, sources of information for regulating HBP, hypertension status, knowledge, social support, perceived health status, and self-efficacy were significant predictors for hypertension self-care practices. Whereas in the multivariable logistic regression process; only age, educational status, occupational status, hypertension status, knowledge, social support, and perceived health status were significant predictors. Backward LR method was used to identify the independent predictors of hypertension self-care practice. The model containing the best predictors was fit to explain the factors determining good selfcare practices $($ Hosmer- Lemeshow statistic $=0.372)($ Table 4).

In this study; participants whose age was 41-59 and sixty and above were about 3 and 2.3 times more likely to have good H -SCP than younger population whose age was less than or equal to forty $2.3(\mathrm{AOR}=2.32,95 \% \mathrm{CI}=1.03,5.20)$ and $(\mathrm{AOR}=3.22,95 \% \mathrm{CI}=1.29,8.06)$ respectively. Respondents who attended primary school, secondary school, and college and above were about $2.9,5.9$, and 7.8 times more likely to have good hypertension self-care
practices as compared to those respondents who can't read and write respectively with (AOR $=2.91,95 \% \mathrm{CI}=1.35,6.29),(\mathrm{AOR}=5.90, \mathrm{CI}=2.10,16.58)$, and $(\mathrm{AOR}=7.82,95 \% \mathrm{CI}=$ $2.79,21.98$), respectively. As to occupational status; government employees were about 4.8 times more likely to engage in good self-care practices of hypertension (AOR $=4.77,95 \% \mathrm{CI}$ $=1.53,14.90$) (table 4).

Blood pressure status during the study period was found to be a significant predictor of selfcare practices towards hypertension. As result respondents with controlled blood pressure i.e. a systolic blood pressure of less than 140 mmhg and a diastolic blood pressure of less than 90 mmhg were around 3.1 times more likely to have favorable hypertension self-care practices as compared to those participants whose blood pressure was uncontrolled ($\geq 140 / 90 \mathrm{mmhg}$) ($\mathrm{AOR}=3.14,95 \% \mathrm{CI}=1.70,5.80$) (table 4).

Participants who had good knowledge about hypertension and its self-management practices were about 2.3 times more likely to engage in favorable hypertension self-care practices ($\mathrm{AOR}=2.27,95 \% \mathrm{CI}=1.17,4.41$ (table 4).

Social support was also one of the significantly associated predictors of self-care practice of hypertensive clients. Participants who had strong social support were about 2.7 times more likely to have good hypertension self-care practices as compared to those respondents with low social support $(\mathrm{AOR}=2.71,95 \% \mathrm{CI}=1.31,5.61)($ table 4$)$.

Participants who had good perceived health status were about 2.6 times more likely to engage in good hypertension self-care practices as compared to those clients who had poor perceived health status $(\mathrm{AOR}=2.56,95 \% \mathrm{CI}=1.35,4.85)($ table 4$)$.

Table 4: Bivariable and multivariable logistic regression showing actors associated with selfcare practices of hypertensive patients in Public hospitals of Bahir Dar city, North West Ethiopia June, $2021 \mathrm{n}=415$

Variable	Categories	Self-care practice		COR at 95\% CI	AOR at 95\% CI	Pvalue
		$\boldsymbol{G o o d}(\mathbf{n})$	Poor (n)			
Gender	Male	106	96	1	1	
	Female	80	133	0.55 (0.37, 0.81)	0.84 (0.45, 1.57)	0.576
Age	≤ 40	46	36	1	1	
	41-59	107	102	0.77 (0.46, 1.31)	2.32 (1.03, 5.20)	0.042
	≥ 60	33	91	0.38 (0.22, 0.66)	3.04 (1.26, 7.33)	0.013
Marital status	Single	27	18	1	1	
	Married	132	102	0.86 (0.45, 1.65)	1.77 (0.62, 5.09)	0.287
	Divorced	16	51	0.21 (0.09, 0.48)	1.01 (0.30, 4.44)	0.986
	Widowed	11	58	0.13 (0.05, 0.30)	0.86 (0.23, 3.23)	0.825
Residence	Urban	147	129	1	1	
	Rural	39	100	0.34 (0.22, 0.53)	1.33 (0.54, 3.25)	0.537
Educational status	Illiterate	23	126	1	1	
	Primary school	34	65	2.86 (1.56, 5.26)	2.91 (1.35, 6.29)	0.006
	Secondary school	32	22	7.97 (3.95, 16.1)	5.90 (2.10, 16.58)	0.001
	College/above	97	16	33.2 (16.6, 66.3)	7.82 (2.79, 21.98)	0.000
Occupation	Farmer	18	64	1	1	
	Government Employee	96	12	28.4 (12.83, 63)	4.77 (1.53, 14.90)	0.007
	Private Employee	33	51	2.30 (1.16, 4.55)	1.36 (0.53, 3.52)	0.522
	Housewife	16	60	0.95 (0.44, 2.03)	0.61 (0.24, 1.60)	0.316

	Other	23	42	1.36 (0.72, 2.58)	1.94 (0.73, 5.16)	0.185
$\begin{aligned} & \text { Family Hx } \\ & \text { of HBP } \end{aligned}$	Yes	93	64	1	1	
	No	93	165	0.39 (0.26, 0.58)	1.02 (0.52, 1.94)	0.995
Sources of information	Health education	100	166	1	1	
	HE \& others	86	63	2.27 (1.51, 3.41)	0.72 (0.37, 1.39)	0.323
Duration of illness	< 5 years	92	92	1	1	
	≥ 5 years	94	137	0.69 (0.46, 1.01)	1.24 (0.61, 2.52)	0.549
Place of exercise	Yes	27	202	1	1	
	No	54	132	0.43 (0.26, 0.69)	0.97 (0.46, 2.06)	0.941
BP control	Uncontrolled	103	174	1	1	
	Controlled	83	55	2.55 (1.68, 3.88)	3.14 (1.70, 5.80)	0.000
Knowledge	Poor	24	130	1	1	
	Good	162	99	8.86 (5.37, 14.6)	2.27 (1.17, 4.41)	0.015
Selfefficacy	Low	34	143	1	1	
	High	152	86	7.43 (4.7, 11.75)	0.92 (0.42, 1.99)	0.825
Perceived health status	Poor	31	132	1	1	
	Good	155	97	6.8 (4.27, 10.85)	2.56 (1.35, 4.85)	0.004
Social support	Low	37	118	1	1	
	Moderate	68	70	3.1 (1.88, 5.1)	1.65 (0.82, 3.33)	0.055
	Strong	81	41	6.3 (3.72, 10.67)	2.71 (1.31, 5.61)	0.007

5.2. Qualitative results

5.2.1. Socio-demographic characteristics

In the qualitative part, eight purposively selected hypertensive clients who were not involved in the quantitative study were involved in the IDI. The indepth interview took an average of 15 minutes. Five of the respondents were males. Six of them were married and two of them had comorbidities (Table 5).

Table 5: Socio-demographic characteristics of clients involved in qualitative study of H-SCP, in public hospitals of Bahir Dar city, North Western June, 2021 (n=8)

$\begin{aligned} & \text { S. } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \mathrm{Co} \\ & \text { de } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{S} \\ \mathrm{e} \\ \mathrm{x} \end{array}$	Ag e	Instituti on	Resid ence	Dura tion of illne ss	Marital status	Occupational status	Educatio nal status	Comor biditie s
1.	P 1	M	50	FHCRH	Urban	24	Married	Gov.t employee	MA	Dm
2.	P 2	M	65	FHCRH	Urban	15	Married	Government employee/lo wyer	12+1	No
3.	P 3	F	48	FHCRH	Urban	9	Married	Govornment employee/pol ice	12	No
4.	P 4	F	29	FHCRH	Rural	3	Married	Farmer	Illiterate	No
5.	P 5	M	80	$\mathrm{AA1}^{0} \mathrm{H}$	Rural	2	Divorced	Farmer	Illiterate	CKD
6.	P 6	M	60	TGSRH	Urban	1	Married	Government employee/Te acher	12+4	CHF
7.	P 7	M	55	TGSRH	Urban	2	Married \& separated	Prisoner	Diploma	No
8.	P 8	F	25	TGSRH	Rural	$\begin{aligned} & \hline 7 \\ & \text { mont } \\ & \text { hs } \end{aligned}$	Single	Farmer	illiterate	No

5.2.2. Barriers of hypertension self-care practices

Following the data collection in Amharic by using the indepth interview, word by word transcription done, translated into English, read and reread it. Atlas ti. 7 software was utilizedand the following three themes were explored among the indepth interview of eihgt study participants. These thems are listed and discussed as follow.

1. Individual barriers
2. Health facility barriers, and
3. Social and/or economic barriers

5.2.2.1. Individual level barriers

One of the main barriers of hypertension self-care practices at individual level was lack of knowledge/awareness about how to manage their condition. Practices which were repeatedly explained by the respondents were only as they should take medications regularly; restrict salt during preparing their foods; and limit excessive consumption of alcohol.
"the only thing I know to control my condition [hypertension] is to take medications ordered by the doctors and I do know nothing else'’ (29 years old, female, P4)

Lack of emotional stability and stress was also stated as a main barrier to the performance of self-management of hypertension.
".... Being emotional is often the thing that really hurts me because things like this happen out of my control. I understand that I have this problem as a problem, but even I try not to do that it really happens and this makes me not to care to my condition and consequently sometimes leads my blood pressure even to worsen". (50 years old, male, P1)

Another client who was a prisoner in sebatamit maremiya bet and following his treatment in Tibebe Gihon hospital stated about the stress which was leading him to feel not confortable or not to follow the recommended H-SCP. He said that
"Sometimes stress at me, especially if I don't find my family, ...because my families are living at rent and when I watch my family suffering as a result of increased costs of expenditure... I got stressed and even sometimes forget taking my medications and doing physical exercises which I usually perform with my other prison mates". (55 years old, male, P7)

Lack of committement and determination towards different self-care practices was also another identified individual level barrier.
"...and it takes determination. Sometimes laziness, sometimes getting up in the morning... and doing physical exercise is not comfortable". (65 years old, male, P2)

The other personal barriers identified were related to the nature of their work.
"I am a teacher and the medication they [doctors] gave me is ordered to be taken twice a day one tablet at a time and that makes me to have a frequent urination. At this time while I am giving a lecture I can't interrupt the class. So what I decided is to reduce the dose of the medication into a half on my own. Consequently my blood pressure didn't show any improvement as time goes... ". (60 years old, male, P6)

Day to day perceived health status and satisfaction of foods were also identified individual level barriers. Participants tend to direct their self-care practices based on their day to day perceptions of their health. i.e. phs help them to adjust their self-care practices.
".... Sometimes when I became very sick I eat foods without salts and feel normal. Then when I feel improved, again I increase the amount of salt. That's why I told you it has coming and going mannercomes. (Bamegagebem ene enja yale chew yedero fift new slemnbabal eyebelahu lmut elalehu endegena degmo medhanit eyeqamku new mndn new yhn yakl entn yemilegn elalew)". (a 48 years old, female, P3)
".... when I feel uncomfortable, experience headache, or get board...I try to defend myself by saying that there is something wrong with my actions. Then I either go out and refresh or do physical exercise". (50 years old, male, P1)

5.2.2.2. Institutional barriers

Under this theme such barriers of hypertension self-care practices discussed by/with the clients include lack of attention from health professionals and improper councelling of patients. In support of this perspective, a participant narrated that
"we meet doctors once every three months or every four months... Doctors are also uncomfortable for us[patients]. In one room, four doctors and four clients are examined together. It is not easy for the client to express his heart, but other than that, as a personal friend, I have many medical friends and relatives, so I have not had so many problems". (A 50 years old, male, P1)

5.2.2.3. Social and/or economic barriers

Such barriers include lack of family support, peer pressure, finanitial problems, problems related to the nature of their work.

Lack of support from families was identified to be one of key barriers for self-care practice of hypertension. In support of this concept a participant narrated that
".... the source of frustration is the family. The source of the food is also the family. What is wrong with the family is that they can be sometimes unwilling to prepare low or salt free foods for people like me [hypertensive patients] and sometimes they can forget and add to much salt. As a result there were times I forced to eat the foods prepared for the whole family... there were also times I decided to eat out of home otherwise. What is out there is also not working as well as it should. Stop eating out or you are ready to eat salty things... " (a 65 year old, male, P2)

Pressures that came from friends including colleagues and neighbors were stated as contributing barriers to not perform different self-care practices.
"... I have a problem with food and drinks. When I tell them [his friends] that I shouldn't eat and/or drink a certain foods/drinks they try to convince me by saying "just it is for only one or two days and it will not have that much effect on your health." Again when I resist to this extent they label me as (ante degmo kifu amel alebh). Then finally in order not to offend my friends, sometimes I try to chill with them." ..." (a 50 year old, male, P1)

Financial problems like inadequate money to buy vegitables and/or fruits and sport equipments which are helpful to facilitate physical exercise and that are recommended by the professionals were also another barriers explored at this level.
"...it is difficult to eat vegitables and fruit five time per day. Because the increased cost of expenditure. If you see the price for 1 kg of banana is 40 ETB and for 1 kg of orange is 80 ETB. Even if I buy such fruits one or twice a week or a month, there are children in the house and they need it. So instead of eating myself I usually give it to the children". (60 years old, male, P6)
"... But to do regular physical exercise, sports equipment need to be used. It takes places to do it and this might be difficult as I can't afford for it"'. (65 years old, male, P2)

6. DISCUSSION

This study was intended to determine the magnitude of self-care practice and assess the factors associated with such practices in public hospitals of Bahir Dar city, north western Ethiopia by using a cross sectional study triangulated with a qualitative one. It revealed that the overall mean of hypertension self-care practices to be 52.87% and good hypertension selfcare practices was found in 44.8% with 95 CI being between 40.0 and 49.6. this finding goes in line with studies conducted in Dessie (33) and lagos, Nigeria(45) in which good hypertension self-care practice was found to be 47.4% and 48.7% respectively. This finding is higher than the studies done in Mekelle (29), Addis Ababa (46), south Ethiopia (47), Nigeria (68), and Singur(West Bengal) (42). On the contrary this finding is lower than the findings of such studies done in Gondar (36), and india(43). This incongruence might be mainly due to discrepancy of health related information being provided and/or received, and the differences in the tools that were utilized to assess the outcome variable in question. The increased level of uncontrolled hypertension may also explain for the low magnitude of good self-care.

The study also found that the socio-demographic variables specifically Age, educational status, and occupation to be significant predictors of hypertension self-care practice. Participants whose age was between 41 to 59 and greater than or equal to 60 were around 2.3 and 3.2 times more likely to engage in favorable self-care practices as compared to younger participants whose age was less than or equal to 40 . This finding goes in line with a study done in Addis Ababa public hospitals (46), Ghana (69), and Israel (70). On the other hand this finding is in contradiction with studies done in Mekelle (29), South Ethiopia (47), and India (43) in which older clients were more likely to be found with poor self-care practices and recommended life style modifications to control hypertension. This discrepancy might be due to the differences in participants' age categorization and sample size.

Respondents who attended primary school, secondary school, and college and above were about $2.9,5.9$, and 7.8 times more likely to have good hypertension self-care practices as compared to those respondents who can't read and write respectively. This findings goes in line with studies done in Mekelle (29), and Dessie (38) in which participants who had an educational status of college and above had 4.21, 4.85, more good self-care practice than those who cannot read and write. The findings are also consistent with studies conducted in Ghana (69), India (42), China (71), and Saudi Arabia (72). On the other hand, results from a
study done in south Ethiopia seemed contradictory in which clients with no formal education were two (2) times more likely to practice the recommended life style modifications (47).

As to occupational status; compared with farmers, government employees were about 3.4 times more likely to engage in favorable self-care practices of hypertension. This meight be explained by the increased knowledge of government employees on hypertension self-care management practices in the study.

Respondents with controlled blood pressure ($\mathrm{BP}<140 / 90 \mathrm{mmh}$) were around 3.1 times more likely to have favorable hypertension self-care practices as compared to those participants whose blood pressure was uncontrolled ($\geq 140 / 90 \mathrm{mmhg}$). This finding goes in line with a study conducted in Mekelle in which clients with such BP 2.73 more likely associated with good self-care practice (29). This result might explain the possibilities that HTN is controllable and reduced by good self-care practices.

Knowledge was also found to be a significant factor for H-SCP. It was found that participants who had good knowledge about hypertension and its self-management practices were about 2.3 times more likely to engage in favorable hypertension self-care practices. In support of this premise; the qualitative analysis also explored that lack of knowledge about hypertension and its self-management practices such as inadequate knowledge on the amount of salt to be consumed per day and the mounts and types of regular physical exercises that should be undertaken to be a major barrier. The quantitative finding is lower than the result found from Mekelle (29), south Ethiopia (47) and Addis Ababa (73) in which Good knowledge was 6.19, 6.19, 13 times more associated to good self-care practice respectively and higher than a study conducted in Dessie teaching and referal hospital in which Good knowledge was about 1.8 times more associated to good self-care practice (38).

In this study, Social support was also one of the significantly associated predictors of selfcare practice of hypertensive clients. Participants who had strong social support were about 2.7 times more likely to have good hypertension self-care practices as compared to those respondents with low social support. This was supported by a result from the qualitative part in which clients expressed the potential barriers that were facing to them from their friends, colleagues, and families which included forgetting to prepare food with appropriate amount of salt, pressuring clients to engage in unfavorable self-care practices like to drink alcohol and eat fat containing foods. This finding was found to be less than that of the findings from Addis Ababa in which Having support from the society was associated with adherence to
lifestyle modifications as the respondents who had support were about 11 times more likely to be adherent (46). This discrepancy might be mainly explained by the difference in the tools used by the researchers to assess social support.
Clients who had good perceived health status were about 2.6 times more likely to engage in favorable hypertension self-care practices as compared to those clients who had poor perceived health status. On the contrary one study conducted in West Bengal, India (42) revealed the absence of association between perceived health status and hypertension selfcare practice. This descripancy meight be due to the difference in socio-demographic characteristics of the respondents, tools utilized to assess perceived health status, and sample size in which the stated research was done in relatively small participants (124). The finding is also in contrary with the qualitative findings in which participants stated by relating poor day-to-day perceived health status to be an alarming condition to modify their self-care practices, meaning having poor perceived health status opens the dore for the examination of their practices and directing them to fill their gaps in controlling their conditions.

7. Strengths and limitations of the study

7.1. Strengths

Mixed study design was used.

7.2. Limitations

Recall, about time of initiation, about duration and patterns of hypertension self-care practice are the potential recall bias. Social desirability bias since the self-care practices of the study participants were based on self-reports.

8. CONCLUSIONS AND RECOMMENDATIONS

8.1. Conclusions

In this study, only 44.8% of the respondents had good hypertension self-care practices. Age, educational status, occupational status, hypertension status, knowledge, social support, and perceived health status were significant predictors of hypertension self-care practices.

Lack of knowledge/awareness about how to manage their condition, lack of emotional stability and stress, lack of commitment, lack of family support, pear pressure, financial problems, barriers related to their nature of work, and lack of attention and improper councelling by health professionals.

8.2. Recommendations

For Policy makers

\checkmark Shall create strategies, programs and guidelines which can help clients understand the importance's of understanding of the multi-dimensional wellbeing in relation to different domains of hypertension self-care practices.

For Amhara regional health buruea and APHI

\checkmark Shall create programs to increase hypertensive self-care practices. This can be achieved by tailored information dissemination on up to-date means of self-care practices. There shall also be a means of regular evaluation of its practical actions.

For Health care providers:

\checkmark Shall act as a mediators and encouragers of the relationships of clients with their family members and significant others. This can be done by creation of hypertension support groups and associations in order to share their expriences.
\checkmark To increase the magnitude of good hypertension self-care practices, Health-care providers in the hospitals should give special attention for the proper hypertension self-care practices. In addition, all patients should be intensively provided with adequate and tailored information on the recommended promising self-care practices and evaluated for obstacles to the adherence of such practices.

Future researchers:

\checkmark Applications of models and involvement of broad population, may be at regional or country level are prompted.

REFERENCES

1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441-50.
2. Du Z, Bian W, Wu S, Gao B, Sun Y, Kang Z, et al. Effects of blood pressure goals on cardiovascular outcomes in hypertensive patients. Archives of medical science: AMS. 2019;15(6):1381.
3. Organization WH. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. World Health Organization; 2013.
4. Weber MA, Schiffrin EL, White WB, Mann S, Lindholm LH, Kenerson JG, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. Journal of hypertension. 2014;32(1):3-15.
5. Carey RM, Whelton PK. Prevention, detection, evaluation, and management of high blood pressure in adults: synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline. Annals of internal medicine. 2018;168(5):351-8.
6. Organization WH. Global Health Observatory (GHO) data: NCD mortality and morbidity. Retrieved August. 2016;23:2016.
7. Adeola OE, Salawu RA, Adamolekun MM, Adewoyin FR, Ojo IC. ASSESSMENT OF SELF-CARE MANAGEMENT PRACTICE AMONG HYPERTENSIVE PATIENTS ATTENDING TEACHING HOSPITAL IN ONDO STATE, NIGERIA. ASSESSMENT. 2020;3(2):10-34.
8. Abel N, Contino K, Jain N, Grewal N, Grand E, Hagans I, et al. Eighth joint national committee (JNC-8) guidelines and the outpatient management of hypertension in the African-American population. North American journal of medical sciences. 2015;7(10):438.
9. Ekwunife OI, Udeogaranya PO, Nwatu IL. Prevalence, awareness, treatment and control of hypertension in a Nigerian population. 2010.
10. Kibret KT, Mesfin YM. Prevalence of hypertension in Ethiopia: a systematic meta-analysis. Public Health Reviews. 2015;36(1):1-12.
11. Henok Gebreyohaness. Prevalence of hypertension and associated factors among adults in Bahir-Dar city, Northwest
Ethiopia,
. Webinar on Hypertension and Healthcare,. 2020;;S(4),.
12. Health Do. Public Attitudes to self care: baseline survey. Department of Health London; 2005.
13. Ekstedt M, Fagerberg I. Lived experiences of the time preceding burnout. Journal of advanced nursing. 2005;49(1):59-67.
14. Lyu J, Lee SH, Kim HY. Associations between healthy lifestyles and health outcomes among older K oreans. Geriatrics \& Gerontology International. 2016;16(6):663-9.
15. Balduino FA, Mantovani FM, Lacerda MR, Meier MJ. Conceptual selfmanagement analysis of hypertensive individuals. Revista gaucha de enfermagem. 2013;34(4):37-44.
16. Han HR, Chan K, Song H, Nguyen T, Lee JE, Kim MT. Development and evaluation of a hypertension knowledge test for Korean hypertensive patients. The Journal of Clinical Hypertension. 2011;13(10):750-7.
17. Han H-R, Song H-J, Nguyen T, Kim MT. Measuring self-care in patients with hypertension: a systematic review of literature. Journal of Cardiovascular Nursing. 2014;29(1):55-67.
18. Amici A, Cicconetti P, Sagrafoli C, Baratta A, Passador P, Pecci T, et al. Exaggerated morning blood pressure surge and cardiovascular events. A 5-year longitudinal study in normotensive and well-controlled hypertensive elderly. Archives of gerontology and geriatrics. 2009;49(2):e105-e9.
19. Chen YJ, Li LJ, Tang WL, Song JY, Qiu R, Li Q, et al. First-line drugs inhibiting the renin angiotensin system versus other first-line antihypertensive drug classes for hypertension. Cochrane database of systematic reviews. 2018(11).
20. Zhou B, Danaei G, Stevens GA, Bixby H, Taddei C, Carrillo-Larco RM, et al. Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys. The Lancet. 2019;394(10199):639-51.
21. WHO A. global brief on hypertension. Silent killer, global public health crisis. World Health Organization, Geneva, Switzerland. 2013.
22. Assembly UG. Political declaration of the High-level Meeting of the General Assembly on the Prevention and Control of Non-communicable Diseases. United Nations A/66/L. 1. Sept 16, 2011. 2016.
23. Balduino AdFA, Mantovani MdF, Lacerda MR, Marin MJS, Wal ML. Experience of hypertensive patients with self-management of health care. Journal of advanced nursing. 2016;72(11):2684-94.
24. Elliott WJ. The economic impact of hypertension. The Journal of Clinical Hypertension. 2003;5(3):3-13.
25. Constant AF, Geladari EV, Geladari CV. The Economic Burden of Hypertension. Hypertension and Cardiovascular Disease. 2016:351.
26. Arredondo A, Zúñiga A. Epidemiologic changes and economic burden of hypertension in Latin America: evidence from Mexico. American journal of Hypertension. 2006;19(6):553-9.
27. Gaziano TA. Economic burden and the cost-effectiveness of treatment of cardiovascular diseases in Africa. Heart. 2008;94(2):140-4.
28. Carrier J. Managing long-term conditions and chronic illness in primary care: a guide to good practice: Routledge; 2015.
29. Gebremichael GB, Berhe KK, Beyene BG, Gebrekidan KB. Self-care practices and associated factors among adult hypertensive patients in Ayder Comprehensive Specialized Hospital, Tigray, Ethiopia, 2018. BMC research notes. 2019;12(1):489.
30. Gebremichael GB, Berhe KK, Zemichael TM. Uncontrolled hypertension and associated factors among adult hypertensive patients in Ayder comprehensive specialized hospital, Tigray, Ethiopia, 2018. BMC cardiovascular disorders. 2019;19(1):121.
31. Asgedom SW, Gudina EK, Desse TA. Assessment of blood pressure control among hypertensive patients in Southwest Ethiopia. PloS one. 2016;11(11):e0166432.
32. Lee J-E, Han H-R, Song H, Kim J, Kim KB, Ryu JP, et al. Correlates of selfcare behaviors for managing hypertension among Korean Americans: a questionnaire survey. International journal of nursing studies. 2010;47(4):411-7.
33. Ademe S, Aga F, Gela D. Hypertension self-care practice and associated factors among patients in public health facilities of Dessie town, Ethiopia. BMC Health Services Research. 2019;19(1):51.
34. Chang AK, Lee EJ. Factors affecting self-care in elderly patients with hypertension in K orea. International journal of nursing practice. 2015;21(5):584-91.
35. Bilal M, Haseeb A, Lashkerwala SS, Zahid I, Siddiq K, Saad M, et al. Knowledge, awareness and self-care practices of hypertension among cardiac hypertensive patients. Global journal of health science. 2016;8(2):9.
36. Worku Kassahun C, Asasahegn A, Hagos D, Ashenafi E, Tamene F, Addis G, et al. Knowledge on Hypertension and Self-Care Practice among Adult Hypertensive Patients at University of Gondar Comprehensive Specialized Hospital, Ethiopia, 2019. International Journal of Hypertension. 2020;2020.
37. $\mathrm{Hu} \mathrm{H}, \mathrm{Li} \mathrm{G}$, Arao T. The association of family social support, depression, anxiety and self-efficacy with specific hypertension self-care behaviours in Chinese local community. Journal of human hypertension. 2015;29(3):198-203.
38. Andualem A, Gelaye H, Damtie Y. Adherence to Lifestyle Modifications and Associated Factors Among Adult Hypertensive Patients Attending Chronic Follow-Up Units of Dessie Referral Hospital, North East Ethiopia, 2020. Integrated Blood Pressure Control. 2020;13:145.
39. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Miller NH, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2014;63(25 Part B):2960-84.
40. Fan AZ, Mallawaarachchi DSV, Gilbertz D, Li Y, Mokdad AH. Lifestyle behaviors and receipt of preventive health care services among hypertensive Americans aged 45 years or older in 2007. Preventive medicine. 2010;50(3):138-42. 41. Jen K-LC, Brogan K, Washington OG, Flack JM, Artinian NT. Poor nutrient intake and high obese rate in an urban African American population with hypertension. Journal of the American College of Nutrition. 2007;26(1):57-65.
41. Dasgupta A, Sembiah S, Paul B, Ghosh A, Biswas B, Mallick N. Assessment of self-care practices among hypertensive patients: a clinic based study in rural area of Singur, West Bengal. Int J Community Med Public Health. 2017;5(1):262-7.
42. Joseph N, Chiranjeevi M, Sen S, Singh P, Saini M, Beg S. Awareness on hypertension and its self-management practices among hypertensive patients attending outreach clinics of a medical college in south India. Kathmandu Univ Med J. 2016;55(3):202-9.
43. Karmacharya R, Paudel K. Awareness on hypertension and its selfmanagement practices among hypertensive patients in Pokhara, western Nepal. Janapriya Journal of Interdisciplinary Studies. 2017;6:110-20.
44. Ajiboye RO, Okafor NA, Abiodun IO. Knowledge and Practice of Lifestyle Modification among Hypertensive Patients in a General Hospital Lagos.
45. Tibebu A, Mengistu D, Negesa L. Adherence to recommended lifestyle modifications and factors associated for hypertensive patients attending chronic follow-up units of selected public hospitals in Addis Ababa, Ethiopia. Patient preference and adherence. 2017;11:323.
46. Buda ES, Hanfore LK, Fite RO, Buda AS. Lifestyle modification practice and associated factors among diagnosed hypertensive patients in selected hospitals, South Ethiopia. Clinical hypertension. 2017;23(1):26.
47. Bokhour BG, Cohn ES, Cortés DE, Solomon JL, Fix GM, Elwy AR, et al. The role of patients' explanatory models and daily-lived experience in hypertension selfmanagement. Journal of general internal medicine. 2012;27(12):1626-34.
48. Mansyur CL, Pavlik VN, Hyman DJ, Taylor WC, Goodrick GK. Self-efficacy and barriers to multiple behavior change in low-income African Americans with hypertension. Journal of Behavioral Medicine. 2013;36(1):75-85.
49. Rozani M. Self-care and Related Factors in Hypertensive Patients: a Literature Review. DINAMIKA KESEHATAN: JURNAL KEBIDANAN DAN
KEPERAWATAN. 2019;10(1):266-78.
50. Tan CS, Hassali MA, Neoh CF, Saleem F. A qualitative exploration of hypertensive patients' perception towards quality use of medication and hypertension management at the community level. Pharmacy Practice (Granada). 2017;15(4).
51. Lynch CP, Egede LE. Optimizing diabetes self-care in low literacy and minority populations-Problem-solving, empowerment, peer support and technologybased approaches. Journal of general internal medicine. 2011;26(9):953-5.
52. Ea EE, Colbert A, Turk M, Dickson VV. Self-care among Filipinos in the United States who have hypertension. Applied Nursing Research. 2018;39:71-6.
53. Warren-Findlow J, Seymour RB, Huber LRB. The association between selfefficacy and hypertension self-care activities among African American adults. Journal of community health. 2012;37(1):15-24.
54. Connelly CE. An empirical study of a model of self-care in chronic illness. Clinical nurse specialist CNS. 1993;7(5):247-53.
55. Rockwell JM, Riegel B. Predictors of self-care in persons with heart failure. Heart \& Lung. 2001;30(1):18-25.
56. Akhter N. Self-management among patient with hypertension in Bangladesh: Prince of Songkla University; 2010.
57. Legido-Quigley H, Lopez PAC, Balabanova D, Perel P, Lopez-Jaramillo P, Nieuwlaat R, et al. Patients' knowledge, attitudes, behaviour and health care experiences on the prevention, detection, management and control of hypertension in Colombia: a qualitative study. PloS one. 2015;10(4):e0122112.
58. agency Es. Ethiopian fiscal year, 2012.; 2019.
59. Hospital TGSR. DHIS Office data. Bahi Dar University Tibebe Gihon Specialized Referral Hospital, Bahir Dar, Ethiopia.; 2020, .
60. Bahi Dar University Tibebe Gihon Specialized Referral Hospital. DHIS Office Data. Bahi Dar University Tibebe Gihon Specialized Referral Hospital, Bahir Dar, Ethiopia.; 2020.
61. Addisalem Hospital OoD. DHIS data. ADDIS Alem Hospital; 2020.
62. Tolley EE, Ulin PR, Mack N, Robinson ET, Succop SM. Qualitative methods in public health: a field guide for applied research: John Wiley \& Sons; 2016.
63. Han H-R, Lee H, Commodore-Mensah Y, Kim M. Development and validation of the hypertension self-care profile: a practical tool to measure hypertension selfcare. The Journal of cardiovascular nursing. 2014;29(3):E11.
64. Creswell JW, Poth CN. Qualitative inquiry and research design: Choosing among five approaches: Sage publications; 2016.
65. Kocalevent R-D, Berg L, Beutel ME, Hinz A, Zenger M, Härter M, et al. Social Support in the General Population: Standardization of the Oslo Social Support Scale (OSSS-3). BMC psychology. 2018;6(1):31.
66. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care. 1996:220-33.
67. Iloh GUP, Amadi AN, Okafor GOC, Ikwudinma AO, Odu FU, Godswill-Uko EU. Adherence to lifestyle modifications among adult hypertensive Nigerians with essential hypertension in a primary care clinic of a tertiary hospital in resource-poor environment of Eastern Nigeria. Journal of Advances in Medicine and Medical Research. 2014:3478-90.
68. Obirikorang Y, Obirikorang C, Acheampong E, Anto EO, Amoah B, Fosu E, et al. Adherence to lifestyle modification among hypertensive clients: A descriptive cross-sectional study. Open Access Library Journal. 2018;5(2):1-13.
69. Heymann AD, Gross R, Tabenkin H, Porter B, Porath A. Factors associated with hypertensive patients' compliance with recommended lifestyle behaviors. IMAJIsrael Medical Association Journal. 2011;13(9):553.
70. Tam HL, Wong EML, Cheung K. Effectiveness of educational interventions on adherence to lifestyle modifications among hypertensive patients: an integrative review. International journal of environmental research and public health. 2020;17(7):2513.
71. Elbur AI. Level of adherence to lifestyle changes and medications among male hypertensive patients in two hospitals in Taif; Kingdom of Saudi Arabia. Int J Pharm Pharm Sci. 2015;7(4):168-72.
72. Ahmed SM, Teferi MB. Assessment of Knowledge, Self-care Practice, and Associated Factors Among Hypertensive Patients the Public Hospital of Addis Ababa Ethiopia 2016 GC. International Journal of Cardiovascular and Thoracic Surgery. 2020;6(2):28.

ANNEXES

Annex 1: Informed Consent for quantitative research survey

Dear sir/madam

Hello. My name is \qquad . I am a post-graduate student at Bahir-Dar University College of medicine and health sciences, department of health promotion and behavioral sciences. As a part of academic requirements, I am conducting research on self-care practices and associated factors among hypertensive patients in Bahir Dar city public hospitals namely FHCRH, TGSRH, and Addis Alem primary hospitals.

As a result, I am interviewing these hypertensive clients. I would appreciate your participation in this survey. This information will help to identify levels, associated factors, and explore barriers to favorable hypertension self-care practices. Usually, this interview takes upto \qquad minutes.

Your name will not be written in this form and the information you give is kept confidential. If you do not want to answer, all or some of the questions you do have the right to do so. However, your support and willingness in responding to my questions during the survey have paramount importance for the success of my study.

Thank you very much for your cooperation and assistance in this endeavor.
Now, do you want to ask me anything about the survey?
Would you be willing to participate? 1. Yes 2. No
Interviewer name: \qquad
Signature: \qquad
Date: \qquad

Annex 2: Structured questionnaire for the quantitative research part
SECTION I: socio-demographic characteristics

S.No	Questions	Responses	Skip to
101	Age	years	
102	Sex	1. Male 2. Female	
103	Marital status	1. Single 2. Married and together 3. Divorced 4. Widowed	
104	Place of residence	1. Urban 2. Rural	
105	Educational status	1. Unable to read \& write 2. Traditional clergy-based teaching 3. Primary school 4. Secondary school 5. University/college	
106	Occupation	1. Farmer 2. Government employee 3. Private employee 4. Merchant 5. Housewife 6. Other	
107	Average monthly income (in ETB)		

SECTION II: Health-Related Data Assessment Form

SECTION III: Self-Care Practice Assessment Form

Direction: Listed below are common recommendations for persons with hypertension. How often do you do the following?		1. Not at all 2. Sometimes 3. Often a. always
$\mathbf{3 0 1}$	Take part in regular physical activity (e.g., 30 minutes of walking $4-5$ times per week)?	
$\mathbf{3 0 2}$	Read nutrition facts label to check information on sodium content?	
$\mathbf{3 0 3}$	Eat low-salt foods (e.g., homemade soups, fresh vegetables)?	
$\mathbf{3 0 4}$	Limit the use of high-salt condiments?	
$\mathbf{3 0 5}$	Eat less than 1 teaspoon of table salt per day?	
$\mathbf{3 0 6}$	Avoid consuming fatty foods?	
$\mathbf{3 0 7}$	Eat fewer foods that are high in fat (e.g., red meat, butter)?	
$\mathbf{3 0 8}$	Replace traditional high-fat foods (e.g., deep-fried chicken) with low-fat products (e.g., baked chicken)?	
$\mathbf{3 0 9}$	Use broil, bake or steam instead of frying when cooking?	
$\mathbf{3 1 0}$	Read the nutrition label to check info on fat products (e.g., butter, red meat)?	
$\mathbf{3 1 1}$	Eat 5 or more servings of fruits and vegetables daily?	
$\mathbf{3 1 2}$	Practice moderation in drinking alcohol daily (2 glasses or less for men; 1 glass or less for women)?	
$\mathbf{3 1 3}$	Practice non-smoking?	
$\mathbf{3 1 4}$	Check your blood pressure at home?	
$\mathbf{3 1 5}$	Remember to take your blood pressure medicine?	
$\mathbf{3 1 6}$	Remember to fill your prescriptions?	
$\mathbf{3 1 7}$	Keep your weight down?	See a doctor regularly? meditation?
$\mathbf{3 1 8}$	Monitor situations that cause a high level of stress (e.g., arguments,	
$\mathbf{3 1 9}$	Engage in activities that can lower stress (e.g., deep breathing,	

SECTION IV: Items to Assess Factors Associated With Hypertension Self-Care Practices

A. Items used to assess the knowledge regarding hypertension and its self-care practices			1. True 2. False
401	Hypertension is a serious condition that can lead to complications?		
402	An individual with hypertension should not have check-ups regularly?		
403	A patient with hypertension needs to have a reliable means of blood pressure monitoring between visits to their health care provider?		
404	A blood pressure level of above 130/90 is considered normal?		
405	A blood pressure level of less than 120/80 is considered to be high?		
406	Cigarette smoking has negative health consequences for a person with hypertension?		
407	Drinking alcohol has a good effect on persons with hypertension?		
408	Increased physical exercise actually increases the blood pressure of a person with hypertension?		
409	A diet that contains fruits and vegetables is good for a person with hypertension?		
410	A diet consisting of low-fat milk and whole wheat bread is good for a person with hypertension?		
411	Corned beef and salted meat are good for a person with hypertension?		
412	A meal rich in green bananas, baked chicken, and beans is good for a person with hypertension?		
B. Oslo social support scale (OSSS-3)			
413	How many people are so close to you that you can count on them if you have great personal problems?	$\begin{aligned} & \hline 1 \text { 'none' } \\ & 2{ }^{\prime} 1-2 \prime \\ & 3 ' 3-5 \prime \\ & 4{ }^{\prime} 5+ \end{aligned}$	
414	How much interest and concern do people show in what you do?	1 'none' 2 'little' 3 'uncertain' 4 'some' 5 'a lot'	

$\mathbf{4 1 5}$	How easy is it to get practical help from neighbors if you should need it?	1 'very difficult'
		2 'difficult'
3 'possible'		
		4 'easy'
5 'very easy'		

B. Items used to assess self-efficacy regarding hypertensive self-care practice;							
To be rated from $\mathbf{1}$ to $\mathbf{1 0}$			$	$	$\mathbf{4 1 6}$	I am confident that I can do all the things necessary to manage my high blood pressure regularly.	
:---	:---	:---					
$\mathbf{4 1 7}$	I am confident that I can judge when changes in my high blood pressure mean I should visit a doctor.	I am confident that I can do the different tasks and activities needed to manage my high blood pressure to reduce my need to see a doctor.					
$\mathbf{4 1 9}$	I am confident that I can reduce the emotional distress caused by my high blood pressure so that it does not affect my everyday life.						
$\mathbf{4 2 0}$	I am confident that I can do things other than just taking medication to reduce how much my high blood pressure affects my everyday life.						

C. Item used to assess perceived health status.		
$\mathbf{4 2 1}$	In general, would you say your health is:	$1=$ Very good, 2= Good, $3=$ fair, 4= bad, 5= very bad
	Does your health now limit you in these activities?	
$\mathbf{4 2 2}$	Moderate activities such as moving a table.	$1=$ A lot, 2= A little, 3= Not at all
$\mathbf{4 2 3}$	Climbing several stairs/mountains.	$1=$ A lot, 2= A little, 3= Not at all
	During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of your physical health (4\&5) and emotional health (6 \&7)?	
$\mathbf{4 2 4}$	Accomplished less than you would like.	$1=$ yes 2= No
$\mathbf{4 3 5}$	Were limited in the kind of work or other activities.	$1=$ yes 2= No

426	Accomplished less than you would like.	$1=$ yes $2=$ No
427	Did work or activities less carefully than usual.	1= yes 2= No
428	During the past 4 weeks, how much did pain interfere with your normal work?	$\begin{aligned} & 1=\text { Not at all, } \\ & 2=\text { A little bit, } \\ & 3=\text { Moderately, } \\ & 4=\text { Quite a bit, } \\ & 5=\text { Extremely } \end{aligned}$
	How much of the time during the past 4 weeks...	$\begin{aligned} & 1=\text { All of the time, }, \\ & 2=\text { Most the time, } \\ & 3=\text { Much of the time } \\ & 4=\text { Some of the time, } \\ & 5=\text { A little of the time, } \\ & 6=\text { None of the time } \end{aligned}$
429	Have you felt calm \& peaceful?	
430	Did you have a lot of energy?	
431	Have you felt down-hearted and blue?	
432	Your physical health or emotional problems interfered with your social activities (like visiting friends, relatives, etc.)?	

Annex 3: Oral Informed Consent for IDI

Title of research study \qquad
This interview is for a research study that is being done by me as a part of my academic requirement.

This research will gather information on hypertensive clients' self-care practices to cope with their condition. I am talking to people who have their follow-ups in the government hospital in Bahir Dar city.

The interview will include questions on the barriers to hypertension self-care practices. It will take most people about \qquad minutes/hours to finish the interview.

The names of people who agree to be interviewed will not be recorded.
Your participation is voluntary, and there is no penalty for refusing to take part. (If you do not take part, it will not affect any health care that you would normally receive.)

You may refuse to answer any question in the interview or stop the interview at any time.
(Signature of the person obtaining consent) (Date)

Annex 4: Semi-structured questionnaire for an in-depth interview

Section I: characteristics of IDI participants

S.no	Participant code	Sex	Age	Place of residence	Illness duration	Marital status	Occupation	Family history of HBP
1.	P1							
2.	P2							
3.	P3							
4.	P4							
5.	P5							
6.	P6							
7.	P7							
8.	P8							

Section II: open-ended questions to explore perceived barriers of hypertension self-care practices

1. How did you first recognize you have hypertension?
2. What do you know about the ways of self-managing hypertension?
\qquad
3. What things do you do to cope with your condition (hypertension)?
4. What do you think the barriers to not performing the mechanisms of hypertension self-care that you know?
\checkmark What does prevent you from limiting your dietary salt?
\checkmark What things do prevent you from being careful about the foods you consume to manage your weight?
\checkmark What makes you not fill your prescriptions regularly as directed by your physician?
\checkmark What does prevent you from performing regular physical exercise?
\checkmark What things do prevent you from limiting your alcohol consumption?
\checkmark What things do prevent you from stopping cigarette smoking?
5. How do you express the role of people around you (family, friends, and significant others) in helping you to manage your condition?
\checkmark Rol (challenges or supports) of your family (Husband/wife, father, mother, son, daughter, grandparents...)?
\checkmark Role (challenges or supports) of your friends?
\checkmark Role (challenges or supports) of your other significant others (religious leaders, doctors, edir/equb leaders...?
6. What does prevent you from making decisions to perform the discussed hypertension self-care practices?
7. What do you think about the results in your health status if you perform the recommended hypertension self-care practices?

Thank you for your cooperation!

 \qquad

 Р叫向

 \qquad Р中， C6．马d：

方 \boldsymbol{P} \qquad
 \qquad ネのロウの
 กタロ \qquad $6 C \square$ \qquad中3 \qquad

＋．${ }^{\text {P }}$	TアФФ年		のค．．．え入ヶ
101	玄号煰	Qロロー	
102	8，	$\begin{array}{\|l\|l\|} \text { 1. ब3P } \\ \text { 2. } 九 7 \end{array}$	
103	アアプ戸 びられ	1．$\rho \wedge 7 \cap-$ 2．$\Omega 7 ก$ 3．$P+4$ ¢ 	
104		1． $\mathrm{h}+\sigma^{\square}$ 2． 7 m C	
105	ア7タロリく7 คくす	 Рぃく族	
106		1．そん そ そ ค 4． 6．$\lambda \lambda$ の λ R	
107		－	

201		1．ネア 2. ア入タロ	
202	ウ入	 2．ทวН円 4．九力叫号 $\rho \varnothing$ 年 5．ทダアタロ	
203	せ゚゙かれ？	—＿rom\％	
204			
205		1．Рウhん กत̆ 3．РАनी คூクタロ กั゙ゥ 4．กヶСヶ 5．$\lambda \lambda$ \qquad 6． 9 ロクロロ	
206	 	mmHg	

 		1．9D390 2．К3ヵ3， 3．ネードら゙ロ3 4．UA2H
301	 	
302	 	
303		
304	だくФ示 入」？	
305		

306		
307	 	
308	 	
309	 	
310	 	
311		
312	 	
313		
314		
315		
316	吅乌それ	
317		
318	 ефтのにか？	
319	 	
320		

 － 0 の日甲年

401			
402			
403	 		
404			
405			
406			
407	そ入のー？		
408	アคC．アف？		
409			
410			
411			
412			
413	 	1．＇Рイダロ 2．＇1－2＇ 3．＇3－5＇ 4．＇5＋	
414	 	1．＇Р入タロロ 2．＇7 3 ก̆＇ 4．＇久 $3 \rho 3 \mathrm{~g}$＂ 5．＇กПけ＇	
415	 	 2．＇hnp＇ 3．＇上ア入入＇ 4．＇$\phi \lambda \lambda^{\prime}$＇ 5．＇$\cap$ 毋ダロ $\phi \lambda$＇	

h 1 夫तh 10 คくぁ parint	
416	
417	
418	 ：：
419	
420	 关年入入U：

421	 	 4．		
422	四3へ7：			
423				
424			$1=え$ ¢	$2=$ ¢ 2
425			$1=え$ ¢	$2=$ ¢ 2
426			$1=$ yes	$2=\mathrm{No}$
427			$1=$ yes	$2=\mathrm{No}$

428	アリオ mdゅ 7नी土d？	1．ก๘bくん 2． 73 4．กாேロロ 5．玄予の ก円タロロ
ก入自		1．U－ 2 H 2．नीit 2，b 3．คร poqñ 2,4 4．Рナロウ 2 2， 5．个中市 $2 H$
429	Р＋くア	
430		
431		
432	 	

6．ФР：

 \qquad
ते \qquad

 و゙オオ

 \qquad
 عロウゥ』：

 \qquad （中3） \qquad

＋．¢	$\begin{aligned} & \text { P+h;-6 } \\ & \text { h } \mathbf{\rho}^{\prime} \end{aligned}$	8．	O．P．${ }^{\text {at }}$	P\％adg $\mathrm{H}^{\mathrm{CD}} 3$		P⿳亠二口丿 そとヶう	のに午 かくh
9.	＋1						
10.	＋2						
11.	＋3						
12.	＋4						
13.	＋5						
14.	＋6						
15.	＋7						
16.	＋8						

\qquad

セク入ウฝ゙みめ？
\qquad

\qquad
\checkmark アクオうの
\qquad

\qquad

Annex 9: Reliability test of the tools

Table 6: Reliability test of tools utilized to assess Hypertension self-care practice and associated factors among hypertensive patients who have followups in public hospitals of Bahir Dar city, North West Ethiopia, June 2021

S.No	Variables	Number of items	Chronbach's alpha
1.	Hypertension self-care practice	20	0.879
2.	Knowledge	12	0.789
3.	Social support	3	0.766
4.	Self-efficacy	5	0.945
5.	Perceived health status	12	0.912

