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Software experts attempt to advance software quality by building fault prediction models using 

software metrics.  The idea of software fault prediction (SFP) is found on the assumption that if a 

previously developed software component was found faulty under certain environmental conditions, 

then any component currently under development with similar environmental conditions and with 

similar structural properties will tend to be fault-prone, (Kumar & Rathore, 2018). Software fault 

prediction, whose purpose is to predict faulty code parts in the software system, aids developers in 

identifying faults and optimizing their testing efforts.  

Software project development activities, categorize any software components as faulty or non-faulty 

which serve as a defense that may avoid any future unseen risks, which leads finally to increase the 

effectiveness and efficiency of the software product, (Al Qasem & Akour, 2019). Software fault 

prediction studies advocate the use of fault prediction models for the identification of bugs or errors 

earlier to the release of the software,  (Rhmann et al., 2020). Fault prediction models are used to reduce 

the cost and time it takes to develop software. 

Depending on, (Kumar & Rathore, 2018), there are four parts to the software fault prediction model. 

These are: dividing a software component into two categories: faulty and non-faulty (binary class 

classification), the estimated number of faults to each of a given software module instead of classifying 

them into faulty or non-faulty classes (prediction of a number of faults), or predict the number of faults 

a given software module. Moreover, a fault prediction model is made by using the faulty dataset of 

other related software projects (cross-project prediction). A software fault prediction can be used to 

identify fault-tempting changes to offer earlier criticism to the developers (just-in-time prediction). 

Software fault prediction model is found on the information kept in the well-known software metrics 

and the selection of an exact set of metrics becomes an essential part of the model of the building 

process, (Y. H. Wang & Wu, 2009). The main focus of this work is on the selection of software metrics 

for fault prediction, thus improving quality of software measurement data and decreasing the risk of 

software systems and maintenance cost. Furthermore, software metric selection can support the 

software quality assurance team in managing software quality with fewer software metrics. 

. These quality models can be used for systems under development or maintenance. This indicates that 

software metrics have a great role to build an actual software fault prediction. Thus, to predict the 

number of faults, and a class of faults, to evaluate the faultiness of a software system, to measure the 

fortune of a software system, we must select the appropriate software metrics for those fault prediction 

models. 

Different type approaches have been deliberate to bear software metrics selection for software fault 

prediction, which begins with simple equations, expert estimation, statistical analysis, and machine 
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learning techniques. Machine learning has proven to be the most successful approach out of all of them, 

(Meiliana et al., 2018). To predict the fault proneness of modules automatically and to find out the 

number of faults, a large variety of machine learning algorithms are used. Several machine learning 

algorithms for software metrics selection for SFP were discussed in, (Eisty et al., 2018; El Emam et 

al., 2001; Meiliana et al., 2018; Rahman & Devanbu, 2013; H. Wang et al., 2011). Some of them are: 

Support Vector Machine, Random forest, bagging algorithm or known as bootstrap aggregating, 

Artificial Neural Network is being popular lately, such as Multilayer Perceptron (MLP), an instance-

based classifier like K-star and Naive Bayesian. We used some of those machine learning algorithms, 

but what makes our work different from the previous one is that we have checked the effect of each 

software metric on the SFP model.   

1.2 Motivation  

There are various software metrics for software process and product measurement, that are used for 

software fault prediction techniques. During software fault prediction technique each software metrics 

have differet effcte or have different performace result on the prediction model because each software 

metrics have diverse threshold values for dissimilar projects. Since product and process metrics vary 

in charactrestis and and measures different attributes of a software, and also have dissimilar results in 

software fault prediction model. 

As we have seen from different literatures  (Agarwal & Tomar, 2014; Jain & Baniya, 2014; Madeyski 

et al., 2015) most software fault prediction models use all software metrics that have a fault dataset. 

Using all of the metrics found in the dataset is bulky and declines the performance of the model. the 

process of finding and determining a appropriate software metrics is still lacking in term of guidance 

and structure (Bukhari et al., 2018). With feature selection method to evaluate and select suitable 

metrics, selecting the right and significant metrics can not counterbalance the benefits of using them. 

On the other hand, using feature selection methods can reduce the time and complexity for sofyware 

fault prediction but this method will miss metrics which is more significant for software fault 

prediction. 

Although a number of various research work has been done using feature selection to select an 

appropriate software metrics. However, there is a very limited study that can be found in exploring 

each software metrics individually, particularly for the software fault prediction. In the previous works, 

most of the researchers not consider the relationship between each software metrics and software fault 
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prediction. Because there are so several types of software metrics (process and product), choosing the 

right one for a fault prediction model knowing the relationship of each metrics with fault prediction 

model is crucial.  

Consequently, we motivates in explore which product and process metrics have an effect on the 

prediction model and  optimize software fault prediction performance. Due to the dataset that we have 

and time constraints, we focused only on binary class classification of software fault prediction 

(BCCSFP).  

1.3 Problem Statement   

Several software metrics are collected for different purposes throughout the software development life 

cycle. Even if there are several software metrics, it is not essential to use all of them for SFP. Thus, the 

selection of software metrics is a critical problem to build a software fault prediction model. Most 

researchers select either process metrics or product metrics for SFP utilizing various feature selection 

methods. However, there is no work which is done on selecting product and process metrics for SFP 

using metrics threshold values. In this work, we focus on which class of metrics (process and product) 

are improved for binary class software fault predictions. So, how do we know which metrics (product 

and process metrics) are the most significant pointers of software fault prediction? Metric selection for 

the prediction of software faults allows software organizations to identify faulty classes, to find a 

number of faults, and to identify fault-inducing changes. Proper identification and selection of metrics 

that can enhance the performance of software fault prediction methods become highly applicable as 

well as extremely challenging tasks.  

Research questions 

This research intends to answer the following questions at the end of this thesis work. 

1. What are the criteria/methods to select various process and product metrics for fault prediction? 

2. How various process and product metrics affect the performance of binary class software fault 

prediction models? 

3. Which software metrics (process and product metrics) are significant for binary class classification 

of software fault prediction? 
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 : Literature Review 

2.1 Introduction 

As defined in the introductory part of the thesis, the main objective of this study is to select appropriate 

software metrics for software fault prediction using software fault data and metrics data programs. In this 

section, a systematic review of the literature and analysis of related works are presented. The literature is 

on the impression of software metrics, software fault predictions, and the approaches used for selecting 

metrics for fault predictions. In addition, we review literature about software metrics, metric selection 

techniques, and related works from the existing literature. 

2.2 Software Metrics 

A software metric is defined as a measurement-based technique applied to the software process, product, 

and services to supply the industrial and management-based information about software and used to afford 

feedback to advance the software product and process. Software metrics are used to understand the 

software process and product, to evaluate the software process, product, to control the process flow, to 

estimate the final product's quality, (Eisty et al., 2018; Thiruvathukal et al., 2018).  

Software metrics are a treasured unit in the entire software development life cycle. They provide 

measurement for the software development, including software requirement documents, designs, 

implementation, and tests, (Shashi Kadapa, 2016). The rapid development of large-scale software has 

resulted in a level of complexity that makes quality control difficult, (R et al., 2017). Software metrics are 

required for the achievement of software quality. Software metrics allow quantifying the attributes of 

software artifacts and using these quantitative values, software quality can be evaluated, (Meiliana et al., 

2018). 

2.3 Types of Software Metrics 

Software metrics are divided into three categories in terms of software fault prediction. These are product 

metrics, process metrics, and project metrics, (Kumar & Rathore, 2018). These categories are also again 

classified into subcategories.  

2.3.1  Product Metrics 

Product metrics state the software system's characteristics at any stage of its development. This is the set 

of metrics calculated from the end software product. These metrics are commonly used to predict overall 

software quality, such as whether a software product meets ISO-9126 standards or not. Product metrics 
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2. Dynamic metrics: 

These types of metrics are used to capture the software project's dynamic behavior. This set of metrics are 

considered from a running program and is used to identify the objects that are the most run-time coupled 

and complex during execution. These metrics provide different indications of the quality of the software 

design. There are different types of dynamic metrics such as: Yacoub metrics suite, Mitchell metrics suite. 

2.3.2 Process Metrics 

Process metrics highlight the process of software development. The main intentions of process metrics 

are, at process duration, cost incurred and type of methodology used. During the development and 

maintenance phases of software systems, process metrics can be used to advance the system performance, 

(Meiliana et al., 2018). These metrics are used to evaluate the process of software development. These 

metrics can also be used to make informed decisions about the software development process and services, 

resulting in long-term software process improvement. The ability to remove faults during development, 

the patterning of testing defect arrival, and the response time of the fix process are all examples of process 

metrics. Process metrics can be further classified into different subcategories as follows:  

Code delta metrics:  code delta metrics are defined as the difference between versions of the software, 

like delta of LOC and delta of change. Delta changes show that when we are adding and at the same time 

removing the same number of lines of code, delta values between these two versions will be the same, 

(Meiliana et al., 2018). 
Code churn metrics: The sum of code change within a software piece over time is measured by code 

chum metrics. As stated by, (Nagappan & Ball, 2005), it is easily extracted from a system's change history. 

Code churn metrics will report every activity in the code, and the one that performed the best in the case 

of industry. These metrics are used to calculate the change between different versions of the software. 

Code churn metrics include: 

Total LOC: The total LOC in the files refers to the number of non-commented executable lines. 

Churned LOC: is the difference between a baseline version and a new version of the files that make up a 

binary in terms of added and changed lines of code. 

Deleted LOC: is the number of lines of code deleted between the baseline version and the new version of 

a binary. The chummed LOC and the deleted LOC are calculated by the version control systems. 

File count: is the number of files collected to create a binary. 

Weeks of churn: is the average time that a file was opened for editing from the version control system. 

Churn count:  is the difference in the number of changes made to the files between the two versions, 

including a binary. 
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Files churned: is the number of chummed files within the binary. 

Change metrics: this type of metrics includes the following metrics: Revisions, Refactoring, Bug fixes, 

Authors, LOC added, Max LOC Added, Ave LOC Added, LOC Deleted, Max LOC Deleted, Ave LOC 

Deleted, Code churn, Max Code churn, Ave Code churn, Max Change set, Ave Change set and Age. 

Developer-based metrics: This type of metric includes metrics like Number of Lines Reviewed, Number 

of Assurances, Number of Designers Reviewing Module, Number of Single Packages Revised, Number 

of Single Modules Revised, Personal Promise Sequence, Average Amount of Faults Inserted by Commit, 

and Lines of Code Reviewed by Developer. 

Network metrics: Network metrics outperform code metrics at predicting faults when using the stratified 

holdout setup, (Premraj & Herzig, 2011). Some of network metrics are listed as follow: 

Betweenness: The number of direct paths that an entity has between other entities is measured. 

Closeness: The lengths of the shortest paths from all other entities to an object are added together (or to 

an entity). 

Eigenvector: assigns relative weights to all entities in dependency graphs. 

Brokerage: Number of pairs that aren't connected directly. The higher this number is, the more paths pass 

through ego, implying that ego serves as a "broker" in its network. 

Finding the process metrics that influence the efficiency of fault prediction has been the subject of 

extensive research. The metrics similar to NR, NDC, NML, and NDPV are the most commonly used 

among them, (Madeyski et al., 2015). 

Number of Revisions (NR): The NR metric tracks the number of modifications made to a given class 

(regained from the main line of progress in a version control system) throughout the development of a 

software system's discovered release.  

Number of Distinct Committers (NDC): This type of metric yields the number of distinctive writers who 

devoted their variations in a specified class during the creation of the studied discharge of a software 

system. 

Number of Modified Lines (NML): The NML metric adds up all the lines of source code that have been 

added or removed in a given class. Every committed change made during the development of a software 

system's explored release is taken into account. 

Number of Defects in the Previous Version (NDPV): The amount of errors fixed in a given class 

throughout the development of the previous discharge of a software system is returned by the NDPV 

metric. 
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2.5 How to Select Software Metrics 

Since direct measurement of software faults prediction is impossible, thus we need to use various types of 

software metrics for the prediction of faults. The reliable result of prediction depends on the selection of 

software metrics. In object-oriented software, design coupling-based software metrics such as response 

for a class, coupling between objects, message passing coupling are used, (Huda et al., 2017). Once we 

have identified different types of software metrics, it is mandatory to select appropriate metrics, because 

there exists a number of software metrics in a dataset that can make a fault prediction harder and might 

result in unsatisfactory results.  

Different studies have used various types of product and process metrics for software fault prediction, a 

study done on 24 product metrics and 14 process metrics, selected by removing irrelevant and redundant 

features from training dataset, to improve software defect classification models, (H. Wang et al., 2011).  

However no formal rules/criteria on how to select various metrics from the process and product metrics. 

In this study, to select software metrics from product and process metrics we reviewed from different 

documents and articles which is more related to the area of our study, and focused on metrics that were 

used for binary class classification of software fault prediction. The following table shows the different 

software metrics used for software fault prediction. 
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Table 1: previously used Metrics 

 
No Title of the paper  Fault 

predicti

on types  

Metrics category used in the paper Reason 

of 

selection Process metrics Product metrics 

1 Which process metrics 

can significantly improve 

defect prediction 

models? An empirical 

study (2014) 

Binary 

class 

NR, NDC, NML,NDPV LCOM3, Chidamber and 

Kemerer, QMOOD, WMC, 

NOC ,DIT, CBO, McCabe, 

LOC, RFC,CBO, DAM, 

MOA, IC, CAM, CBM, 

AMC  

used by 

several 

researcher

s 

2 Within-project Defect 

Prediction of 

Infrastructure-as-Code 

Using Product and 

Process Metrics (2020) 

Within-

project, 

which is 

binary 

class  

NDC, Delta NDPV, the 

total number of added and 

removed lines, NML, NR 

LOC, number of 

configuration tasks, MFA, 

DIT, CBM, WMC, 

RFC,CE, CA, IC, CBO, 

LCOM, NOC, DAM, CAM 

No resean 

3 Software fault prediction 

based on change metrics 

using hybrid 

algorithms 

(2019) 

Binary 

class  

CODE CHURN, MAX 

CODECHURN AVERAGE 

CODE CHURN,LOC-

ADDED,LOC-DELETED, 

LOC-CHANGED, MAX-

LOCADDED,MAX_LOCC

HANGED,MAX_LOC_DE

LETED, 

---------------------- No reason 

2 Software Fault 

Prediction Using Deep 

Learning Algorithms 

(2019) 

Binary 

class 

------------------ LOC, Halstead metrics, 

FANIN McCabe metrics, 

branch-count, MOA,MFA, 

CAM,NPM, FANOUT 

No reason 

5 A Framework for 

Software Defect 

Prediction and Metric 

Selection (2017) 

Binary 

class 

------------------ Halstead Metrics, McCabe 

Essential Complexity, LOC, 

CBO, RFC, MPM, ICP, 

MFA, MOA, CBM, CAM, 

NOC, DIT 

No reason  
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6 A Study on the 

Significance of Software 

Metrics in Defect 

Prediction 

(2013) 

Binary 

class 

---------------- LOC,, LOC_COMMENTS, 

DESIGN_COMPLEXITYH

ALSTEAD_CONTENT, 

LOC_TOTAL, 

HALSTEAD_EFFORT 

HALSTEAD_VOLUME 

 

7 Artificial neural 

network-based metric 

selection for software 

fault-prone prediction 

model (2012) 

Binary 

class 

------ LOCode, LOComment, 

LOBlank, LOCec, LOC, 

BR, basic Halstead Metrics, 

McCabe, FAININ, 

FANOUT 

 

8 An empirical study on 

predicting defect 

numbers (2015) 

Number 

of fault  

----- CK metrics suite (WMC, 

NOC ,DIT, CBO, LOCM, 

RFC,CBM) and LOC 

 

9 A Feature Selection 

Based Model for 

Software Defect 

Prediction (2014) 

Binary 

class 

----------- LOC, MAX_CC, AVG_CC, 

LCOM, N,V, L, CE, IC,CA, 

CBO 

No reason 

10 The application of ROC 

analysis in, threshold 

identification, data 

imbalance and metrics 

selection for SFP (2017) 

Binary 

class 

------------- CK metrics suite (WMC, 

NOC ,DIT, CBO, LOCM, 

RFC, CBM), MAX_CC, 

IC,CE,CA, NPM, AMC, 

FANIN,FANOUT 

No reason 

11 Choosing software metrics 

for DP an investigation on 

feature selection 

techniques (2011) 

 

Binary  

class 

DESPR, BETA PR, 

DESFIX, REQ BETAFIX, 

TOTUPD  

LOC, CA, CE, FILINCUQ, 

LGPATH, NDSPND, 

NDSEXT, NDSENT, 

NDSINT,KNT, DAM 

CTRNSTMX, NPM,AMC  

No reason 
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2.5.1 Most Recent and Frequently Used Metrics 

From the above table, more than one metric is used in different kinds of literature. Many metrics are used 

more frequently, as listed in the above table. From 11 papers listed in the above table, the most recent and 

more frequently used software processes and product metrics are shown in the following table. 

Table 2: Most frequently and recently used metrics 

As shown in the above table we have selected process metrics with frequency of used 1 and above because 

in most papers no more process metrics is avalible for software fault prediction. 

Based on the above table, in this work, we used ten (10) process metrics and twenty-two (22) product 

metrics for software fault prediction. Among those metrics, we selected the most appropriate ones.  

Process metrics Frequency   Product metrics 

NR 2  

 

 

LOC 

Frequency 

of used 

 

 

 

AMC 

Frequency of used 

 

3 9 

NDC 2 CA 4 IC 5 

NML 2 WMC 4 CE 4 

NDPV 2 NOC 5 NPM 4 

number of commits to a file 1 DIT 5 MAX-CC 5 

Delta metrics 2 CBO 6 AVG-CC 5 

Delta line comment 2 MFA 3 CAM 4 

the total number of added and 

removed lines 

1 LCOM 5 LCOM3 5 

The number of files 

committed 

1 RFC 5 DAM 3 

CHURN LOC count 2 CBM 5   

MAX-CODE CHURN 2 MOA 3   

AVERAGE-CODE CHURN 2 FAN_IN 3   

Total-LOC 2 FAN_OUT 3   
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 Just-in-Time Software Fault Prediction: In just-in-time fault prediction, the changes-inducing faults 

are identified at the earlier phase and feedback has been provided to the developer to recall those 

changes, (Kamei et al., 2016). The advantages of just-in-time fault prediction are: (1) the fault 

prediction is made at the very fine granularity level, i.e., for a change in a code, and (2) the prediction 

recommendations can be easily applied since it identifies fault-inducing changes at the developer level 

and it is easy for the developer to recall those changes because design decisions are still fresh. 

2.9 Performance Evaluation Metrics 

To measure the performance of the model, we used the confusion matrix and Precision-Recall curve, 

which is commonly used for a number of fault prediction and binary classification problem that used to 

describe the performance of classification of the model or classifier on the given set of test data for which 

the true values are well-known, (Haouari et al., 2020). Accuracy, Precision, Recall, and F1-score, are 

widely used evolution metrics in software metrics selection for fault prediction. And they accurately report 

how accurately they learn the machine. 

2.9.1 Confusion Matrix  

A binary classification confusion matrix is a two-by-two matrix formed by counting the number of binary 

ML classifier outcomes. Confusion Matrix is desired for finding Accuracy, Precision, Recall, and F1-

score. From these four measures, four evaluation metrics have been calculated, (Shatnawi, 2017). The 

performance is analyzed and evaluated through various measures generated from the confusion matrix. A 

confusion matrix consists of the following four parameters, (Prakash, 2018). 

True Positive (TP): An instance that is positive and is classified correctly as positive instances, e.g., 

classified as faulty data which is in fact as faulty within a selected software metrics. 

True Negative (TN): An instance that is negative and is classified correctly as negative instances, i.e., 

classified non-faulty data which is in fact as non-faulty within a selected software metrics. 

False Positive (FP): An instance that is negative but is classified wrongly as positive instances, i.e., 

classified faulty data which is in fact as non-faulty within a selected software metrics. 

False Negative (FN): An instance that is positive but is classified incorrectly as negative instances, i.e., 

classifying non-faulty data which is in fact as faulty within a selected software metrics. 
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key metrics that have a 

significant impact on defect 

prediction in a software module. 

Raed 

Shatnaw

i 

2017 The application 

of ROC analysis 

in, threshold 

identification, 

data imbalance 

and metrics 

selection for SFP 

For feature selection, the ROC 

analysis is used. The use of ROC 

to identify thresholds for four 

metrics was validated in this 

study (WMC, CBO, RFC and 

LCOM). In most datasets, the 

ROC analysis selects the same 

metrics (WMC, CBO, and RFC), 

whereas other techniques select 

metrics differently 

95% Focused only 4 

product metrics 

and select an 

appropriate one 

among 4 metrics 

using feature 

selection methods  
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 : Design of Methodology 

3.1 Introduction  

The proposed solution for software process and product metrics selection for binary class classification 

of software fault prediction systems is discussed in detail in this section. It has a sequence of steps 

starting from dataset extraction from NASA Metric Repository, preprocessing the data, feature 

selection, building a model, and learning to classify into predefined binary classes which are faulty or 

non-faulty software in case of the selected metrics.  

The overall organization of this chapter is, in section 3.2, a general description of the proposed solution 

which is software product and process metrics selection for software fault prediction is discussed in 

detail. In the subsequent section, the data preprocessing process: data cleaning, feature selection is 

described in detail. Finally, selected process and product metrics for binary class classification are 

discussed. 

3.2 Developed Model for Software Metric Selection 

We choose the appropriate process and product metrics for binary class classification of SFP in the 

proposed model. Every metric data is used to train and test the SFP model, as well as to check the 

model's performance for the metrics, during the metric selection process. The proposed model has three 

phases: selecting frequently used metrics, data preprocessing (which includes data balancing, Data 

cleaning, feature selection), and classification. When we select the most frequently used metrics, we 

have reviewed eleven papers that are most recent and more related to the area of the study. In data 

cleaning, we take out duplicate and missing data. In the feature selection process, we used variance 

threshold filter-based feature selection techniques to selecting the most significant and appropriate 

metrics used for fault prediction and compared this result to our proposed model. 

We have used machine learning techniques to solve the stated problem. As a general form, machine 

learning algorithms are divided as tree-based (like the random forest, decision tree) and Bayesian-based 

(like Naïve Bayes, Logistic regression, and support vector machine), (Journal et al., 2020). Bayesian-

based machine learning algorithms are most commonly used for classification purposes. Using specific 

software metrics, we classify a software module as faulty or non-faulty, thus for the classification 

process, we used Naïve Bayes and support vector machine algorithm. The classification includes two 

main parts, the training and testing phase. In the training phase, we used 80% of the data to train (70% 

for train and 10% for validation) binary class classification of the SFP model, and 20% of the data is 
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used for testing the proposed. Finally, an appropriate metric is selected based on the performance of 

the model, the higher the performance of the model means the appropriate metric is used to train and 

test the model. 

 

Figure 3: A developed model of software metric selection 

As shown in Figure 4, the proposed model for metrics selection for the SFP process takes different 

process and product metrics with threshold values and faulty data. Software metrics and faulty data are 

collected from the NASA MDP repository, (Bug Prediction Dataset, n.d.; NASA MDP Software 

Defects Data Sets, n.d.; PROMISE DATASETS PAGE, n.d.). These datasets have numerical values 

since software metrics are frequently extracted from the different process and product metrics like, 

Size, Quality, McCabe, Halstead, MOOD, CK metrics, and other metrics. Therefore, the proposed 

model accepts software metrics threshold values which is numerical value faulty data as input.  



 

31 
 

3.2.1 Flowchart of the Model for Software Metrics Selection  

The flowchart of a model shows the steps of the model at a time during software metrics selection for 

SPF. As shown in fig. 5 below the flowchart of the model shows an iterative process to select the most 

appropriate metrics.  

 

Figure 4: Flowchart of the model for software metrics selection 

The flowchart of the model for software metrics selection has eight steps 

Step 1: Select the most frequently used process and product metrics and extract the dataset of those 

selected metrics from the NASA Metric Repository. 

Step 2: Splitting the dataset (train and test data) of a single metric at a time and preprocessing the data 

(which includes excluding constant features, filling missing values, and remove duplicated features). 

Step 3: Applying different machine learning classification algorithms to build the model. These 

classification algorithms are Naïve Bayes and SVM. 

Step 4: Building a binary class classification model using those two machines learning classifiers and 

training a model with a selected metric (step 2) dataset. 

Step 5: Testing the model with a selected metrics (step 2) dataset. 
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Step 6: Making a decision, is there any more metrics from the most frequently used metrics, if the 

answer is Yes, the flaw chart back to step 1 and iterates like ways until the decision is No. the decision 

is No when all frequently used metrics are checked. 

Step 7: If the decision is No the selected metrics is sorted in increasing or decreasing order of the model 

performance.  

Step 8: Display the result, all used metrics, and the performance of the model in each metrics. 

3.3 Preprocessing 

Data preprocessing techniques are important and commonly used in machine learning, which is the 

basis of most software fault prediction studies, (H. Wang et al., 2011). There are many factors that 

affect the performance of fault prediction models such as redundancy of metric dataset, missing 

features, and irrelevant information on the software metrics datasets. Those problems are eliminated 

by using data preprocessing techniques. Data preprocessing technique includes data cleaning and 

feature selection and classification. The preprocessing activities undertaken in this research are 

described below.  

3.3.1 Data Cleaning 

NASA metric dataset values are directly extracted or calculated from the source code of the software 

using OO, McCabe, Halsted, dynamic and code churn metrics that contain duplicate, redundant, 

incomplete, and irrelevant features that adversely affect the performance of the classification model. 

Therefore, data cleaning relieves these challenges when we apply metrics selection for fault prediction 

models. Delete attributes every instance has the same value since such attributes have no contribution 

to the data (Aleryani et al., n.d.; Houari, 2014). These data contain missing values: 

Missing Values: The attributes for which at least one instance value is not present are known as 

attributes with missing values. The possible solution is either to remove all instances which contain 

missing values or replace the missing values with zero (Elhassan et al., 2021). We have faced such 

problems in the process metrics dataset, among 13 process metrics 3 of them were contained missing 

values. We have alleviated such problems by dropping such metrics because other metrics have the 

same frequency of such metrics. 
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Figure 5: Data cleaning steps 

The software fault dataset has 22 features/metrics. We have used sklearn python library for feature 

selection. Accordingly, constant and irrelevant features are selected using the filter threshold method. 

Finally, we removed all these instances in all datasets that we used in this work. After the data cleaning 

process of data preprocessing, we get all the metrics with no missing, duplicate value, and non-null of 

2016 instances in 22 metrics, in camel 1.6, ant 1.7, and jedit 4.0 product metrics dataset shown below 

in the following figure. 

 

Figure 6: Camel 1.6, ant 1.7and Jedit 4.0 Cleaned dataset 
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3.3.2 Feature Selection and Ranking 

The process of identifying and selecting the most relevant attributes of software metrics for software 

fault prediction is known as feature selection. The feature selection method determines which features 

will be used as independent variables in the fault prediction model. Feature ranking techniques assess 

attributes individually based on a given criterion and order them accordingly. However, it was 

discovered that while an attribute may be less useful on its own, when combined with other attributes, 

it can have a significant impact, (Yu et al., 2017). Feature subset selection approaches reflect the issue 

by searching and selecting subsets of metrics that collectively have good performance. Therefore, 

instead of considering all the features, it would be more useful to select the best features which are 

relevant and significant for fault prediction in any software module, (Asim et al., 2020).  

The reason why we used such a feature selection technique is that to compare feature selection methods 

and our proposed model which select appropriate metrics for SFP by splitting the dataset of each metric 

threshold value as training and testing without feature selection methods. We compared the 

performance of the model based on our technique/without feature selection and feature selection 

techniques. Even if there are several types of feature selection methods available, the most commonly 

used feature selection methods in the area of software engineering are wrapper-based feature selection, 

filter-based feature selection, and ensemble feature selection methods.  

3.3.3 Filter-Based Feature Selection 

Filter-Based Feature Selection (FBFS) methods were used in this study. Because FBFS is 

computationally very fast and works based on different statistical methods like threshold variance, chi-

square, and correlation coefficient. This method uses the computational characteristics of datasets to 

independently assess and rank attributes in datasets that are found to be independent of the prediction 

model, (Nanda et al., 2018). The filter-based approach uses a given metric for feature selection to 

practice the intrinsic features of the data and does not rely on the learner algorithm's training, (Asim et 

al., 2020).  

Features are chosen for their correlation with the outcome variable based on their scores in various 

statistical tests. A linear grouping of features that typifies or separates two or more classes of a 

categorical variable is treasured using linear discriminant analysis, (Shatnawi, 2017). Since our input 

data has numeric values and we use classification problems, for such types of work variance threshold 

is better. The following diagram shows how to select feature selection methods for different types of 

datasets. 
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2. After the feature subsets are obtained, we have used them to train each of the machine learning 

algorithms mentioned above to obtain the high accuracy of a model corresponding to each 

subset.  

3. Figure 9 below is a graph showing important features/metrics versus threshold value metrics 

that has been plotted for variance thresholding.  

4. The variance threshold provides the highest importance features/metrics obtained after applying 

each of the machine learning algorithms listed above, is considered.  

 

Figure 8: Variance Threshold Feature Selection methods 

According to the above figure NOC, RFC, AMC, CAM, and so on product metrics are more significant 

for SFP using feature selection techniques. But when train and test the model with each metrics dataset 

individually no same result is scored. Metrics that have less feature importance (like FanIn) can score 

high performance of our model. 

3.3.5 Correlation-based Feature Selection 

Correlation-based Feature Selection (CFS) uses a correlation-based heuristic to estimate the wealth of 

features. By using appropriate correlation measures, this technique is easy, quick to implement, and 

easily extends to continuous class problems. This heuristic takes into account the usefulness of 

individual metrics for predicting faulty or non-faulty class labels along with the level of inter-

correlation among them, (Lewandowski et al., 2015). In the following figure, the heat map's flasher or 

light color indicates that the covariance is high. The heat map's dark or dull color means that the 
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In the above figure, we have checked the correlation of each metrics with software bugs and the 

correlation metrics themselves. In fact, highly correlated metrics with the bug class are more appropriate, 

and highly correlated metrics to other metrics are not accepted. 

 
3.4 Classification 

Once we have identified software metrics, it is necessary to decide which techniques will be used for 

selecting appropriate metrics for fault predictions. Naïve Bayes, Logistic regression, and support vector 

machines are Bayesian-based machine learning algorithms that are commonly used for classification 

purposes, (Journal et al., 2020). The performance of each technique varies according to the dataset. In 

this thesis, we used the following machine learning classification techniques and compared the result 

among them. 

3.4.1 Support Vector Machine Classifier 

This work focused on selecting appropriate software metrics and classifying a software module as 

faulty or non-faulty using the selected metrics dataset. Thus, in the classification phase, we used a 

support vector machine classifier for predicting whether the software modules are faulty or non-faulty 

with a specific software metrics dataset. Since we select different process and product metrics for 

binary classification of SFP, These techniques use the concept of a hyperplane to separate the dataset 

into fault-prone and not fault-prone instances, (Haouari et al., 2020).  

The purpose of SVM in this work is to find the optimal hyperplane that splits groups of vector in such 

a way that cases with one group of faulty and non-faulty modules (independent variable) on one side 

of the plane and software metrics  (dependent variable) with the other group on the other side of the 

plane, (A et al., 2013). The main impression of SVM is looking for a hyperplane in a high-dimensional 

space as a parting plane for two aspects to ensure a minimum error rate. Then, we find the ideal 

hyperplane that differentiates between the two classes using a kernel function.  

Linear soft margin classifier (Kernel): is a type of SVM classifier which is used for controlling 

linearly non-separable input features that are overlapping or linearly non-separable classes. This 

classifier with dissimilar kernel functions can convert a linear non-separable problem into a linearly 

divisible problem by projecting data into the feature space. That means it separates the training data of 

the two classes with a minimal number of errors. In practice, the SVM algorithm is implemented with 

a kernel function that changes an input dataset space into the essential form. 
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2018), software fault prediction models made in between 70 and 90% approximate accuracy of a model. 

This less accuracy can occur due to a sophisticated misclassification rate. Diverse techniques gave a 

different performance for different software fault prediction techniques, and none of the techniques 

proved better than the other techniques across different software fault prediction systems. One 

imaginable cause for the model performance of fault prediction techniques is a poor feature/metric 

selection methods for software fault prediction techniques. 

Furthermore, the fault dataset found in NASA Repository, software bug prediction repository, eclips 

and apache are not more appropriate for cross-project SFP. Because of that cross-project SFP uses the 

related project dataset. It is also not more acceptable for just-in-time SFP because this type of SFP 

focuses on design time rather than implementation time. Most of the metrics found in the NASA 

repository are considered at implementation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

42 
 

 
 : Experiment and Result Discussion 

4.1 Introduction  

In this chapter, we described the experimental results and evaluation of the experimental results of the 

proposed solution for software metric selection for the BCCSFP model. The experimental evaluation 

of the model for software fault prediction using selected metrics is discussed in detail. The 

Experimental results are evaluated using a confusion matrix and ROC-score curve. Additionally, the 

dataset used, characteristics of the dataset, and the implementation of the proposed solution of software 

metric selection for the SFP model, and the effect of metrics selection on the performance of the 

software fault prediction model are discussed in detail. Finally, the experimental results of our study 

are compared with state-of-the-art models. 

4.2 Dataset 

Datasets used for this thesis are collected from NASA MDP promises repository (Bug Prediction 

Dataset, 2010; NASA MDP Software Defects Data Sets, 2018; PROMISE DATASETS PAGE, 2004.). 

NASA MDP promise repository stores a collection of the software metric data and software fault data 

which are commonly used by many software engineering research community to build software fault 

prediction model and selecting an appropriate metric for those models, (Leslie et al., 2017; Madeyski 

& Jureczko, 2014).  

4.2.1 Splitting Training, Validation and Testing Data 

We have used three well-known software projects, product metrics with fault data from NASA metric 

dataset repository: these are Camel 1.6, Ant 1.7, and Jedit 4.0 which have 965, 745, and 306 instances 

(records) respectively, when we sum up these three datasets there is 2016 instance in total.  From the 

total of these instances, we used 70% (1450), among 1450 instances 308 instances labeled as faulty and 

1065 instances are labeled as non-faulty for training data and 20% (404) instances for testing data. 

These software project datasets are written in similar programming languages, i.e., Java programming 

languages.  

Unlike product metrics the dataset for process metrics is not more available on NASA Repository and 

we used only one software project for those metrics with appropriate faults. This dataset has 1169 

instances (records), from the total of these instances, we used 70% (841), and among 841 instances 284 

instances labeled as faulty and 557 instances are labeled as non-faulty for training data and 20% (234) 
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instances for testing data.  Therefore, this can be used as a baseline for our research so that the results 

of the proposed model can be compared and easily verified with those datasets. We have used 10% 

(162 from product metrics and 94 from process metrics) of the data to validate our model which 

minimize bias and overfitting in the training set, and variance in the validation set. 

4.2.2 Dataset Selection Criteria  

Since we used online datasets, it is necessary to set some criteria to select metrics which is related to 

our problem and scientifically accepted. The criteria for the selection of the dataset, which can help us 

to answer the research questions are: 

1. The datasets of each metric must have a ground-truth class which indicates the presence or absence 

of faults in each software module. 

2. All datasets selected must have standardized feature types, in other words, the same category of 

software metrics must be present in all datasets. 

3. For each software metrics selected, there must be available datasets reflecting the development of 

different software projects in multiple versions. 

4. All selected data must be available for study and replication. 

All of the datasets contain the project name, software metrics, programming language and number of 

software modules, number of faulty and non-faulty modules. Each of these dataset features has a 

numerical value. 

Table 5: process and product metrics dataset description 

Dataset Total no. of 

modules 

Faulty 

modules 

Non-faulty 

modules 

Number of 

metrics/attributes 

Product 

metrics  

Camel 1.6 965 188 777  

22 

 

Jedit 4.0 306 75 231 

Ant 1.7 745 166 579 

Process metrics 1169 295 874 10 

The following table (Table 6) shows the values of the sample concatenated dataset of camel, ant, and 

jedit projects which have 22 software metrics with a faulty and non-faulty class. 
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Table 6: A concatenated dataset of camel, ant, and jedit projects 

 

4.2.3 Software Metrics Dataset Description  

Product metrics: 

Table 7, shows the description of each of the software product metrics used in this work. 22 software 

product metrics are derived from different categories of product metrics like basic software metrics, 

Halstead metrics, CK metrics, and one target class which are useful to identify whether the software 

has any faulty modules or not. 
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Table 8: process metrics description 

Process metrics Descriptions 

NR Number of Revisions 

NDC Number of Distinct Committers 

NML Number of Modified Lines 

NDPV Number of Defects in Previous Version 

Number of commits to a file number of commits to a single file in any project 

Delta metrics The difference between versions of the software. 

Number of developers that changed a file Developer based metric, no developers who participate in 

a single file change 

Churned LOC added the number of added files 

Files committed The number of files committed 

CODE CHURN Over time, the amount of code change within a software 

unit is measured 

MAX-CODECHURN Over time, calculate the maximum number of code 

changes that occur within a software unit. 

AVERAGE-CODE CHURN Over time, calculate the average number of code changes 

in a software unit. 

Total-LOC The number of lines in the files that are not commented 

executable lines. 

                      

4.3 Implementation 

All experiments to solve the stated problems are done based on the model developed with Anaconda 

(TensorFlow as a backend) on Intel(R) Core (TM) i5, CPU M520, @ 2.40GH, and 4 GB of RAM. 

Anaconda within the Jupyter Notebook environment is a source delivery and editor of python 

programming language for systematic computing. Jupyter Notebook is talented in consecutively on the 

upper of TensorFlow. Tensor Flow is a representative machine learning library like the math public 

library and is used for machine learning applications. The data is split into training (70%), testing 

datasets (20%) and (10%) for validating our model. 
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4.4 Experiments 
4.4.1 Experiment 1 

Experiment one is done on 22 product metrics in camel-1.6, ant 1.7, and jedit 4.0 datasets using SVM. 

We have experimented with each metric and found the performance of the model in terms of faulty and 

non-fault modules. In experiment one there are 22 sub experiments for each type of product metrics.  

Sub experiment one: this experiment is done on Average Method Complexity (AMC) product metrics. 

By using this metrics dataset, we train and test binary class classification of software fault prediction 

models. Finally, we have measured the performance of the model using a confusion matrix and got the 

following outputs. 

Table 9: the result of BCCSFP model using AMC metrics 

 

Sub experiment two: this experiment is done on the Lack of cohesion of methods (LCOM) product 

metrics. By using this metrics dataset, we train and test binary class classification of software fault 

prediction models. Finally, we have measured the performance of the model using a confusion matrix 

and got the following outputs. 

Table 10: the result of BCCSFP model using LCOM metrics 
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Sub experiment three: this experiment is done on data Access metrics (DAM) product metrics. By 

using this metrics dataset, we train and test binary class classification of software fault prediction 

models. Finally, we have measured the performance of the model using a confusion matrix and got the 

following outputs. 

Table 11: the result of BCCSFP model using DAM metrics 

 

Sub experiment four: this experiment is done on Number of Inheritance Coupling (IC) product 

metrics. By using this metrics dataset, we train and test binary class classification of software fault 

prediction models. Finally, we have measured the performance of the model using a confusion matrix 

and got the following outputs. 

Table 12: the result of BCCSFP model using IC metrics 

 

After completing experimenting with all 22 product metrics we have displayed the performance of the 

model for each metrics in the following table. 
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Table 13: an experimental result of product metrics using SVM 

Metrics Modules Precision Recall F1-score Support Accuracy 

WMC Faulty 0.57 0.05 0.09 81 80.1% 

Non-faulty 0.81 0.99 0.89 323 

NOC Faulty 1.00 0.02 0.05 84 79.7% 

Non-faulty 0.80 1.00 0.89 320 

DIT Faulty 1.00 0.92 0.96 87 96.8% 

Non-faulty 0.98 1.00 0.99 317 

CBO Faulty 0.98 0.82 0.89 96 95.2% 

Non-faulty 0.95 0.99 0.97 308 

LCOM Faulty 0.62 0.06 0.10 90 78.2% 

Non-faulty 0.79 0.99 0.88 314 

CA Faulty 0.95 0.90 0.92 82 98.2% 

Non-faulty 0.98 0.99 0.98 322 

CE Faulty 1.00 0.80 0.89 79 96.0% 

Non-faulty 0.95 1.00 0.98 325 

IC Faulty 1.00 0.62 0.76 84 92.0% 

Non-faulty 0.91 1.00 0.95 320 

LCOM3 Faulty 1.00 0.82 0.90 83 96.2% 

Non-faulty 0.96 1.00 0.98 321 

RFC Faulty 0.62 0.12 0.20 85 83.6% 

Non-faulty 0.81 0.98 0.89 319 

MOA Faulty 1.00 0.57 0.72 81 91.3% 

Non-faulty 0.90 1.00 0.95 323 

MFA Faulty 1.00 0.19 0.31 86 83.9% 

Non-faulty 0.82 1.00 0.90 318 

CAM Faulty 1.00 0.80 0.89 84 95.7% 

Non-faulty 0.95 1.00 0.97 320 

DAM Faulty 1.00 0.77 0.87 92 94.8% 

Non-faulty 0.94 1.00 0.97 312 

AMC Faulty 1.00 0.84 0.92 90 96.5% 
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Non-faulty 0.96 1.00 0.98 314 

NPM Faulty 0.90 0.86 0.88 76 95.5% 

Non-faulty 0.97 0.98 0.97 328 

CBM Faulty 1.00 0.93 0.96 85 98.5% 

Non-faulty 0.98 1.00 0.99 319 

FANIN Faulty 1.00 0.94 0.97 77 98.7% 

Non-faulty 0.98 1.00 0.99 327 

FANOUT Faulty 1.00 0.87 0.93 86 97.2% 

Non-faulty 0.97 1.00 0.98 318 

LOC Faulty 0.61 0.23 0.34 81 81.7% 

Non-faulty 0.83 0.96 0.89 323 

MAX-CC Faulty 0.93 0.60 0.73 89 90.0% 

Non-faulty 0.90 0.99 0.94 315 

AVG-CC Faulty 1.00 0.86 0.93 88 97.0% 

Non-faulty 0.96 1.00 0.98 316 

                  

 

 

Figure 11: Accuracy of BCCSFP model for each product metrics using SVM 
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Figure 12: Performance measures for faulty modules of 7 product metrics using SVM 

 
Figure 13: Performance measures for non-faulty modules of 7 product metrics using SVM 

4.4.2 Experiment 2 

Experiment 2 is done on 10 process metrics using SVM classifier. We have experimented with each 

metric and found the performance of the model in terms of faulty and non-fault modules. This 

experiment also has 10 sub experiments for each process metrics. 

Sub experiment one: this experiment is done on code churn count process metrics. By using this 

metrics dataset, we train and test binary class classification of the software fault prediction model. 

Finally, we have measured the performance of the model using a confusion matrix and got the following 

outputs. 
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Table 14: the result of BCCSFP model using Churned LOC count process metrics 

 

Sub experiment two: this experiment is done on delta line code process metrics. By using this metrics 

dataset, we train and test binary class classification of software fault prediction models. Finally, we 

have measured the performance of the model using a confusion matrix and got the following outputs. 

Table 15: the result of BCCSFP model using NDPV process metrics 

 

The experiment continues like in the above ways, until all of the 10 process metrics are completed and 

the performance of the model in each metrics is listed in the following table. 

Table 16: Experimental result of process metrics using SVM 

Metrics Modules Precision Recall F1-score Support Accura

cy 

NR Faulty 1.00 0.99 0.99 193 96.5% 

Non-faulty 0.95 1.00 0.98 41 

NDC Faulty 0.99 0.99 0.99 154 72.6% 
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Non-faulty 0.98 0.99 0.98 80 

NML Faulty 0.60 0.95 0.74 120 92.5% 

Non-faulty 0.87 0.34 0.49 114 

NDPV Faulty 0.80 0.35 0.49 80 73.5% 

Non-faulty 0.74 0.95 0.83 154 

Delta metrics Faulty 1.00 0.98 0.99 101 91.8% 

Non-faulty 0.99 1.00 0.99 133 

Delta line comment Faulty 1.00 0.97 0.83 14 98.2% 

Non-faulty 0.98 1.00 0.99 220 

Churned LOC count Faulty 1.00 0.97 0.99 119 97.4% 

Non-faulty 0.97 1.00 0.99 115 

MAX-CODE 

CHURN 

Faulty 0.99 0.97 0.98 155 97.8% 

Non-faulty 0.97 0.99 0.98 196 

AVERAGE-CODE 

CHURN 

Faulty 1.00 0.97 0.98 122 94.3% 

Non-faulty 0.97 1.00 0.98 112 

Total-LOC Faulty 1.00 0.29 0.45 17 98.7% 

Non-faulty 0.95 1.00 0.97 217 

           

 

Figure 14: Accuracy of BCCSFP model for each process metrics using SVM 
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4.4.3 Experiment 3 

Experiment 3 is done on 22 product metrics in camel-1.6, ant 1.7, and jedit 4.0 dataset using NB 

classifier. We have experimented with each product metric and measure the performance of the model 

in terms of faulty and non-fault modules. In experiment 3 there are 22 sub experiments for each type 

of product metrics.  

Sub experiment one: this experiment is done on afferent coupling (CA) product metrics. By using 

these metrics dataset threshold values, we train and test binary class classification of software fault 

prediction models. Finally, we have measured the performance of the model using a confusion matrix 

and got the following outputs. 

Table 17: the result of BCCSFP model in CA product metrics using NB 

 

Sub experiment two: this experiment is done on coupling between objects (CBO) product metrics. By 

using this metrics dataset threshold values, we trained and test binary class classification of software 

fault prediction models. Finally, we have measured the performance of the model using a confusion 

matrix and got the following outputs. 

 

Table 18: Table 17: the result of BCCSFP model in CBO product metrics using NB 
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Sub experiment three: this experiment is done on function in (FanIn) product metrics. By using this 

metrics dataset threshold values, we trained and test binary class classification of software fault 

prediction models. Finally, we have measured the performance of the model using a confusion matrix 

and got the following outputs. 

Table 19: Table 17: the result of BCCSFP model in FanIn product metrics using NB 

 

The experiment is continuing like in the above ways until all 22 product metrics are completed and the 

performance of the model in each metrics is listed in the following table. 

Table 20: an experimental result of product metrics using NB 

Metrics Modules Precision Recall F1-score Support Accuracy 

WMC Faulty 1.00 0.89 0.94 81 90.6% 

Non-faulty 0.67 1.00 0.80 323 

NOC Faulty 0.52 1.00 0.69 84 97.9% 

Non-faulty 1.00 0.95 0.97 320 

DIT Faulty 0.87 1.00 0.93 87 93.2% 

Non-faulty 1.00 0.87 0.93 317 

CBO Faulty 1.00 0.96 0.98 96 99.0% 

Non-faulty 0.99 1.00 0.99 308 

LCOM Faulty 1.00 0.96 0.98 90 97.9% 

Non-faulty 0.96 1.00 0.98 314 

CA Faulty 1.00 0.96 0.98 82 98.2% 

Non-faulty 0.99 1.00 1.00 322 

CE Faulty 0.94 0.89 0.91 79 98.4% 
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Non-faulty 0.99 0.99 0.99 325 

IC Faulty 0.40 1.00 0.57 84 98.5% 

Non-faulty 1.00 0.98 0.99 320 

LCOM3 Faulty 0.87 0.90 0.88 83 89.1% 

Non-faulty 0.91 0.88 0.90 321 

RFC Faulty 0.94 0.82 0.88 85 94.3% 

Non-faulty 0.95 0.99 0.96 319 

MOA Faulty 0.40 1.00 0.57 81 98.4% 

Non-faulty 1.00 0.98 0.99 323 

MFA Faulty 0.96 0.99 0.97 86 97.9% 

Non-faulty 0.99 0.97 0.98 318 

CAM Faulty 0.91 0.96 0.93 84 94.7% 

Non-faulty 0.97 0.93 0.95 320 

DAM Faulty 1.00 0.99 1.00 92 99.1% 

Non-faulty 0.99 1.00 0.99 312 

AMC Faulty 1.00 0.75 0.85 94 91.7% 

Non-faulty 0.89 1.00 0.94 310 

NPM Faulty 1.00 0.82 0.90 76 91.7% 

Non-faulty 0.86 1.00 0.93 328 

CBM Faulty 0.57 1.00 0.73 85 96.8% 

Non-faulty 1.00 0.97 0.98 319 

FANIN Faulty 1.00 0.94 0.97 86 98.1% 

Non-faulty 0.98 1.00 0.99 318 

FANOUT Faulty 1.00 0.86 0.96 86 94.8% 

Non-faulty 0.92 1.00 0.97 318 

LOC Faulty 1.00 0.85 0.92 81 96.8% 

Non-faulty 0.96 1.00 0.98 323 

MAX-CC Faulty 0.27 1.00 0.43 80 95.8% 

Non-faulty 1.00 0.96 0.98 324 

AVG-CC Faulty 0.92 0.86 0.89 88 91.4% 

Non-faulty 0.99 0.99 0.99 316 
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Figure 15: Accuracy of a model in process metrics using NB 

4.4.4 Experiment 4 

This experiment is done on the same dataset as experiment 2, which is done on 10 process metrics, and 

follows the same procedures, the only difference is that the classification algorithms i.e., naïve Bayes 

algorithms instead of SVM. This experiment also has 10 sub experiments. 

Sub experiment one: this experiment is done on max_code churn process metrics. By using this 

metrics dataset threshold values, we trained and test binary class classification of software fault 

prediction models. Finally, we have measured the performance of the model using a confusion matrix 

and got the following outputs. 

 

Table 21: the result of BCCSFP model in max_code churn process metrics using NB 
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