
DSpace Institution

DSpace Repository http://dspace.org

Information Technology thesis

2021-07

SOFTWARE METRICS SELECTION

FOR SOFTWARE FAULT PREDICTION

USING MACHINE LEARNING TECHNIQUES

BIHONEGN, ABEBE GETAHUN

http://ir.bdu.edu.et/handle/123456789/12636

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

SOFTWARE METRICS SELECTION FOR SOFTWARE FAULT

PREDICTION USING MACHINE LEARNING TECHNIQUES

BY

BIHONEGN ABEBE GETAHUN

JULY, 2021

BAHIR DAR, ETHIOPIA

i

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

FACULTY OF COMPUTING

Software Metrics Selection for Software Fault Prediction Using

Machine Learning Techniques

By

Bihonegn Abebe Getahun

A thesis submitted

to the school of graduate studies of Bahir Dar Institute of Technology, BDU in partial fulfillment of

the requirement of the degree of Masters in Software Engineering in the Faculty of Computing.

Advisor: Esubalew Alemneh (PhD)
July, 2021

Bahir Dar, Ethiopia

ii

iii

©2021

BIHONEGN ABEBE GETAHUN

ALL RIGHTS ARE RESERVED

iv

SCHOOL OF GRADUATE STUDIES

v

Acknowledgement

As an outstanding chief, I would like to praise my almighty GOD, who favors me from beginning until

now of this study. Without GOD nothing happens forever. I would also thank the Ever-Virgin, St. Marry,

Mother of our Lord.

I would like to express my deepest gratitude to my advisor, Dr. Esubalew Alemneh, for his continuous

support and guidance throughout the various stages of this thesis. He provided critical and useful feedback

and suggestions on how to address the research problems systematically and tactfully. His punctuality,

encouragement, on time contact and constructive criticism helped me to learn and improve a lot throughout

this thesis. His constructive comment always inspired me and helped to overcome good progress and the

preceding of work in time. As supervisors, his observations, guidance and comments help me to find the

right direction of the research at his step and to move forward for this thesis.

In addition, I would like to thank my friends for their practical assistance in the investigations carried out

for this thesis. I would also like to thanks to the source of our dataset NASA MDP repository, software

bug prediction dataset for their free access and various version of their project datasets.

Finally, I would like to say thank you to my family for their love, much respect and moral support all the

time.

vii

Table of Contents

Acknowledgement.. v

Abstract ... vi

Abbreviations ... x

List of figures .. xi

List of Tables.. xii

Chapter 1 : Introduction ... 1

1.1 Background of the Study .. 1

1.2 Motivation .. 3

1.3 Problem Statement ... 4

1.4 Objective of the Study .. 5
1.4.1 General Objective... 5
1.4.2 Specific Objective .. 5

1.5 Scope of the Study ... 5

1.6 Significance of the Study ... 5

1.7 Organization of the Thesis ... 6

Chapter 2 : Literature Review .. 7

2.1 Introduction .. 7

2.2 Software Metrics .. 7

2.3 Types of Software Metrics ... 7
2.3.1 Product Metrics .. 7
2.3.2 Process Metrics .. 12
2.3.3 Project Metrics ... 14

2.4 Need for Software Metrics ... 14

2.5 How to Select Software Metrics .. 15
2.5.1 Most Recent and Frequently Used Metrics .. 18

2.6 Software Metrics Threshold Values ... 19

2.7 Software Faults .. 19

2.8 Software Fault Prediction ... 20
2.8.1 Types of Software Fault Prediction.. 20

viii

2.9 Performance Evaluation Metrics .. 21
2.9.1 Confusion Matrix ... 21
2.9.2 Receiver Operating Characteristic Curve... 23

2.10 Related Work ... 24

Chapter 3 : Design of Methodology ... 29

3.1 Introduction .. 29

3.2 Developed Model for Software Metric Selection .. 29
3.2.1 Flowchart of the Model for Software Metrics Selection .. 31

3.3 Preprocessing ... 32
3.3.1 Data Cleaning ... 32
3.3.2 Feature Selection and Ranking .. 34
3.3.3 Filter-Based Feature Selection ... 34
3.3.4 Variance Threshold Feature Selection ... 35
3.3.5 Correlation-based Feature Selection .. 36

3.4 Classification .. 38
3.4.1 Support Vector Machine Classifier .. 38
3.4.2 Naïve Bayes Classifier ... 40

3.5 Binary Class Classification of Software Fault Prediction .. 40

Chapter 4 : Experiment and Result Discussion .. 42

4.1 Introduction .. 42

4.2 Dataset .. 42
4.2.1 Splitting Training, Validation and Testing Data .. 42
4.2.2 Dataset Selection Criteria ... 43
4.2.3 Software Metrics Dataset Description ... 44

4.3 Implementation .. 46

4.4 Experiments.. 47
4.4.1 Experiment 1 .. 47
4.4.2 Experiment 2 .. 51
4.4.3 Experiment 3 .. 54
4.4.4 Experiment 4 .. 57

4.5 Result and Discussion .. 59

4.6 Comparison of Classifier.. 67

4.7 Comparing Proposed Solution with Existing Works ... 71

Chapter 5 : Conclusion and Recommendation ... 73

5.1 Conclusion ... 73

ix

5.2 Contribution ... 74

5.3 Recommendation.. 75

Reference.. 76

Appendices ... 81

Appendix 1: Accuracy of Some Process and Product Metrics .. 81

Appendix 2: Correlation Matrix for Process Metrics ... 84

Appendix 3: Dataset Sample with its Attributes .. 85

xi

List of figures

Figure 1: Measurement and Software Metrics ... 14

Figure 3: ROC curve for fault prediction ... 23

Figure 4: A developed model of software metric selection ... 30

Figure 5: Flowchart of the model for software metrics selection .. 31

Figure 6: Data cleaning steps ... 33

Figure 7: Camel 1.6, ant 1.7and Jedit 4.0 Cleaned dataset .. 33

Figure 8: how to select feature selection methods ... 35

Figure 9: Variance Threshold Feature Selection methods ... 36

Figure 10: Correlation matrix of each product metrics in a concatenated dataset 37

Figure 11: Linear SVM .. 39

Figure 12: Accuracy of BCCSFP model for each product metrics using SVM................................... 50

Figure 13: Performance measures for faulty modules of 7 product metrics using SVM 51

Figure 14: Performance measures for non-faulty modules of 7 product metrics using SVM 51

Figure 15: Accuracy of BCCSFP model for each process metrics using SVM 53

Figure 16: Accuracy of a model in process metrics using NB ... 57

Figure 17: Accuracy of a model in NB using process metrics ... 59

Figure 18: ROC analysis for CBM product metrics using SVM ... 61

Figure 19: ROC analysis for Max_code churn process metrics using SVM 63

Figure 20: ROC analysis for DAM product metrics using NB .. 64

Figure 21: Figure 20: ROC analysis for NDC process metrics using NB ... 66

Figure 22: Comparing the accuracy of a model in SVM and NB using product metrics 69

Figure 23: Comparing the accuracy of a model in SVM and NB using process metrics 70

xii

List of Tables

Table 1: previously used Metrics ... 16

Table 2: Most frequently and recently used metrics .. 18

Table 3: Confusion matrix ... 22

Table 4: summary of related works ... 26

Table 5: process and product metrics dataset description .. 43

Table 6: A concatenated dataset of camel, ant, and jedit projects ... 44

Table 7: product metrics description .. 45

Table 8: process metrics description .. 46

Table 9: the result of BCCSFP model using AMC metrics ... 47

Table 10: the result of BCCSFP model using LCOM metrics ... 47

Table 11: the result of BCCSFP model using DAM metrics ... 48

Table 12: the result of BCCSFP model using IC metrics .. 48

Table 13: an experimental result of product metrics using SVM .. 49

Table 14: the result of BCCSFP model using Churned LOC count process metrics 52

Table 15: the result of BCCSFP model using NDPV process metrics .. 52

Table 16: Experimental result of process metrics using SVM ... 52

Table 17: the result of BCCSFP model in CA product metrics using NB ... 54

Table 18: Table 17: the result of BCCSFP model in CBO product metrics using NB 54

Table 19: Table 17: the result of BCCSFP model in FanIn product metrics using NB 55

Table 20: an experimental result of product metrics using NB ... 55

Table 21: the result of BCCSFP model in max_code churn process metrics using NB 57

Table 22: the result of BCCSFP model in NR process metrics using NB ... 58

Table 23: experimental result of process metrics using NB .. 58

Table 24: Product metrics accuracy comparison in SVM and NB .. 68

Table 25: Process metrics accuracy comparison in SVM and NB... 69

Table 26: Comparison of proposed model performance with previous related works 71

2

Software experts attempt to advance software quality by building fault prediction models using

software metrics. The idea of software fault prediction (SFP) is found on the assumption that if a

previously developed software component was found faulty under certain environmental conditions,

then any component currently under development with similar environmental conditions and with

similar structural properties will tend to be fault-prone, (Kumar & Rathore, 2018). Software fault

prediction, whose purpose is to predict faulty code parts in the software system, aids developers in

identifying faults and optimizing their testing efforts.

Software project development activities, categorize any software components as faulty or non-faulty

which serve as a defense that may avoid any future unseen risks, which leads finally to increase the

effectiveness and efficiency of the software product, (Al Qasem & Akour, 2019). Software fault

prediction studies advocate the use of fault prediction models for the identification of bugs or errors

earlier to the release of the software, (Rhmann et al., 2020). Fault prediction models are used to reduce

the cost and time it takes to develop software.

Depending on, (Kumar & Rathore, 2018), there are four parts to the software fault prediction model.

These are: dividing a software component into two categories: faulty and non-faulty (binary class

classification), the estimated number of faults to each of a given software module instead of classifying

them into faulty or non-faulty classes (prediction of a number of faults), or predict the number of faults

a given software module. Moreover, a fault prediction model is made by using the faulty dataset of

other related software projects (cross-project prediction). A software fault prediction can be used to

identify fault-tempting changes to offer earlier criticism to the developers (just-in-time prediction).

Software fault prediction model is found on the information kept in the well-known software metrics

and the selection of an exact set of metrics becomes an essential part of the model of the building

process, (Y. H. Wang & Wu, 2009). The main focus of this work is on the selection of software metrics

for fault prediction, thus improving quality of software measurement data and decreasing the risk of

software systems and maintenance cost. Furthermore, software metric selection can support the

software quality assurance team in managing software quality with fewer software metrics.

. These quality models can be used for systems under development or maintenance. This indicates that

software metrics have a great role to build an actual software fault prediction. Thus, to predict the

number of faults, and a class of faults, to evaluate the faultiness of a software system, to measure the

fortune of a software system, we must select the appropriate software metrics for those fault prediction

models.

Different type approaches have been deliberate to bear software metrics selection for software fault

prediction, which begins with simple equations, expert estimation, statistical analysis, and machine

3

learning techniques. Machine learning has proven to be the most successful approach out of all of them,

(Meiliana et al., 2018). To predict the fault proneness of modules automatically and to find out the

number of faults, a large variety of machine learning algorithms are used. Several machine learning

algorithms for software metrics selection for SFP were discussed in, (Eisty et al., 2018; El Emam et

al., 2001; Meiliana et al., 2018; Rahman & Devanbu, 2013; H. Wang et al., 2011). Some of them are:

Support Vector Machine, Random forest, bagging algorithm or known as bootstrap aggregating,

Artificial Neural Network is being popular lately, such as Multilayer Perceptron (MLP), an instance-

based classifier like K-star and Naive Bayesian. We used some of those machine learning algorithms,

but what makes our work different from the previous one is that we have checked the effect of each

software metric on the SFP model.

1.2 Motivation

There are various software metrics for software process and product measurement, that are used for

software fault prediction techniques. During software fault prediction technique each software metrics

have differet effcte or have different performace result on the prediction model because each software

metrics have diverse threshold values for dissimilar projects. Since product and process metrics vary

in charactrestis and and measures different attributes of a software, and also have dissimilar results in

software fault prediction model.

As we have seen from different literatures (Agarwal & Tomar, 2014; Jain & Baniya, 2014; Madeyski

et al., 2015) most software fault prediction models use all software metrics that have a fault dataset.

Using all of the metrics found in the dataset is bulky and declines the performance of the model. the

process of finding and determining a appropriate software metrics is still lacking in term of guidance

and structure (Bukhari et al., 2018). With feature selection method to evaluate and select suitable

metrics, selecting the right and significant metrics can not counterbalance the benefits of using them.

On the other hand, using feature selection methods can reduce the time and complexity for sofyware

fault prediction but this method will miss metrics which is more significant for software fault

prediction.

Although a number of various research work has been done using feature selection to select an

appropriate software metrics. However, there is a very limited study that can be found in exploring

each software metrics individually, particularly for the software fault prediction. In the previous works,

most of the researchers not consider the relationship between each software metrics and software fault

4

prediction. Because there are so several types of software metrics (process and product), choosing the

right one for a fault prediction model knowing the relationship of each metrics with fault prediction

model is crucial.

Consequently, we motivates in explore which product and process metrics have an effect on the

prediction model and optimize software fault prediction performance. Due to the dataset that we have

and time constraints, we focused only on binary class classification of software fault prediction

(BCCSFP).

1.3 Problem Statement

Several software metrics are collected for different purposes throughout the software development life

cycle. Even if there are several software metrics, it is not essential to use all of them for SFP. Thus, the

selection of software metrics is a critical problem to build a software fault prediction model. Most

researchers select either process metrics or product metrics for SFP utilizing various feature selection

methods. However, there is no work which is done on selecting product and process metrics for SFP

using metrics threshold values. In this work, we focus on which class of metrics (process and product)

are improved for binary class software fault predictions. So, how do we know which metrics (product

and process metrics) are the most significant pointers of software fault prediction? Metric selection for

the prediction of software faults allows software organizations to identify faulty classes, to find a

number of faults, and to identify fault-inducing changes. Proper identification and selection of metrics

that can enhance the performance of software fault prediction methods become highly applicable as

well as extremely challenging tasks.

Research questions

This research intends to answer the following questions at the end of this thesis work.

1. What are the criteria/methods to select various process and product metrics for fault prediction?

2. How various process and product metrics affect the performance of binary class software fault

prediction models?

3. Which software metrics (process and product metrics) are significant for binary class classification

of software fault prediction?

7

 : Literature Review

2.1 Introduction

As defined in the introductory part of the thesis, the main objective of this study is to select appropriate

software metrics for software fault prediction using software fault data and metrics data programs. In this

section, a systematic review of the literature and analysis of related works are presented. The literature is

on the impression of software metrics, software fault predictions, and the approaches used for selecting

metrics for fault predictions. In addition, we review literature about software metrics, metric selection

techniques, and related works from the existing literature.

2.2 Software Metrics

A software metric is defined as a measurement-based technique applied to the software process, product,

and services to supply the industrial and management-based information about software and used to afford

feedback to advance the software product and process. Software metrics are used to understand the

software process and product, to evaluate the software process, product, to control the process flow, to

estimate the final product's quality, (Eisty et al., 2018; Thiruvathukal et al., 2018).

Software metrics are a treasured unit in the entire software development life cycle. They provide

measurement for the software development, including software requirement documents, designs,

implementation, and tests, (Shashi Kadapa, 2016). The rapid development of large-scale software has

resulted in a level of complexity that makes quality control difficult, (R et al., 2017). Software metrics are

required for the achievement of software quality. Software metrics allow quantifying the attributes of

software artifacts and using these quantitative values, software quality can be evaluated, (Meiliana et al.,

2018).

2.3 Types of Software Metrics

Software metrics are divided into three categories in terms of software fault prediction. These are product

metrics, process metrics, and project metrics, (Kumar & Rathore, 2018). These categories are also again

classified into subcategories.

2.3.1 Product Metrics

Product metrics state the software system's characteristics at any stage of its development. This is the set

of metrics calculated from the end software product. These metrics are commonly used to predict overall

software quality, such as whether a software product meets ISO-9126 standards or not. Product metrics

12

2. Dynamic metrics:

These types of metrics are used to capture the software project's dynamic behavior. This set of metrics are

considered from a running program and is used to identify the objects that are the most run-time coupled

and complex during execution. These metrics provide different indications of the quality of the software

design. There are different types of dynamic metrics such as: Yacoub metrics suite, Mitchell metrics suite.

2.3.2 Process Metrics

Process metrics highlight the process of software development. The main intentions of process metrics

are, at process duration, cost incurred and type of methodology used. During the development and

maintenance phases of software systems, process metrics can be used to advance the system performance,

(Meiliana et al., 2018). These metrics are used to evaluate the process of software development. These

metrics can also be used to make informed decisions about the software development process and services,

resulting in long-term software process improvement. The ability to remove faults during development,

the patterning of testing defect arrival, and the response time of the fix process are all examples of process

metrics. Process metrics can be further classified into different subcategories as follows:

Code delta metrics: code delta metrics are defined as the difference between versions of the software,

like delta of LOC and delta of change. Delta changes show that when we are adding and at the same time

removing the same number of lines of code, delta values between these two versions will be the same,

(Meiliana et al., 2018).
Code churn metrics: The sum of code change within a software piece over time is measured by code

chum metrics. As stated by, (Nagappan & Ball, 2005), it is easily extracted from a system's change history.

Code churn metrics will report every activity in the code, and the one that performed the best in the case

of industry. These metrics are used to calculate the change between different versions of the software.

Code churn metrics include:

Total LOC: The total LOC in the files refers to the number of non-commented executable lines.

Churned LOC: is the difference between a baseline version and a new version of the files that make up a

binary in terms of added and changed lines of code.

Deleted LOC: is the number of lines of code deleted between the baseline version and the new version of

a binary. The chummed LOC and the deleted LOC are calculated by the version control systems.

File count: is the number of files collected to create a binary.

Weeks of churn: is the average time that a file was opened for editing from the version control system.

Churn count: is the difference in the number of changes made to the files between the two versions,

including a binary.

13

Files churned: is the number of chummed files within the binary.

Change metrics: this type of metrics includes the following metrics: Revisions, Refactoring, Bug fixes,

Authors, LOC added, Max LOC Added, Ave LOC Added, LOC Deleted, Max LOC Deleted, Ave LOC

Deleted, Code churn, Max Code churn, Ave Code churn, Max Change set, Ave Change set and Age.

Developer-based metrics: This type of metric includes metrics like Number of Lines Reviewed, Number

of Assurances, Number of Designers Reviewing Module, Number of Single Packages Revised, Number

of Single Modules Revised, Personal Promise Sequence, Average Amount of Faults Inserted by Commit,

and Lines of Code Reviewed by Developer.

Network metrics: Network metrics outperform code metrics at predicting faults when using the stratified

holdout setup, (Premraj & Herzig, 2011). Some of network metrics are listed as follow:

Betweenness: The number of direct paths that an entity has between other entities is measured.

Closeness: The lengths of the shortest paths from all other entities to an object are added together (or to

an entity).

Eigenvector: assigns relative weights to all entities in dependency graphs.

Brokerage: Number of pairs that aren't connected directly. The higher this number is, the more paths pass

through ego, implying that ego serves as a "broker" in its network.

Finding the process metrics that influence the efficiency of fault prediction has been the subject of

extensive research. The metrics similar to NR, NDC, NML, and NDPV are the most commonly used

among them, (Madeyski et al., 2015).

Number of Revisions (NR): The NR metric tracks the number of modifications made to a given class

(regained from the main line of progress in a version control system) throughout the development of a

software system's discovered release.

Number of Distinct Committers (NDC): This type of metric yields the number of distinctive writers who

devoted their variations in a specified class during the creation of the studied discharge of a software

system.

Number of Modified Lines (NML): The NML metric adds up all the lines of source code that have been

added or removed in a given class. Every committed change made during the development of a software

system's explored release is taken into account.

Number of Defects in the Previous Version (NDPV): The amount of errors fixed in a given class

throughout the development of the previous discharge of a software system is returned by the NDPV

metric.

15

2.5 How to Select Software Metrics

Since direct measurement of software faults prediction is impossible, thus we need to use various types of

software metrics for the prediction of faults. The reliable result of prediction depends on the selection of

software metrics. In object-oriented software, design coupling-based software metrics such as response

for a class, coupling between objects, message passing coupling are used, (Huda et al., 2017). Once we

have identified different types of software metrics, it is mandatory to select appropriate metrics, because

there exists a number of software metrics in a dataset that can make a fault prediction harder and might

result in unsatisfactory results.

Different studies have used various types of product and process metrics for software fault prediction, a

study done on 24 product metrics and 14 process metrics, selected by removing irrelevant and redundant

features from training dataset, to improve software defect classification models, (H. Wang et al., 2011).

However no formal rules/criteria on how to select various metrics from the process and product metrics.

In this study, to select software metrics from product and process metrics we reviewed from different

documents and articles which is more related to the area of our study, and focused on metrics that were

used for binary class classification of software fault prediction. The following table shows the different

software metrics used for software fault prediction.

16

Table 1: previously used Metrics

No Title of the paper Fault

predicti

on types

Metrics category used in the paper Reason

of

selection Process metrics Product metrics

1 Which process metrics

can significantly improve

defect prediction

models? An empirical

study (2014)

Binary

class

NR, NDC, NML,NDPV LCOM3, Chidamber and

Kemerer, QMOOD, WMC,

NOC ,DIT, CBO, McCabe,

LOC, RFC,CBO, DAM,

MOA, IC, CAM, CBM,

AMC

used by

several

researcher

s

2 Within-project Defect

Prediction of

Infrastructure-as-Code

Using Product and

Process Metrics (2020)

Within-

project,

which is

binary

class

NDC, Delta NDPV, the

total number of added and

removed lines, NML, NR

LOC, number of

configuration tasks, MFA,

DIT, CBM, WMC,

RFC,CE, CA, IC, CBO,

LCOM, NOC, DAM, CAM

No resean

3 Software fault prediction

based on change metrics

using hybrid

algorithms

(2019)

Binary

class

CODE CHURN, MAX

CODECHURN AVERAGE

CODE CHURN,LOC-

ADDED,LOC-DELETED,

LOC-CHANGED, MAX-

LOCADDED,MAX_LOCC

HANGED,MAX_LOC_DE

LETED,

---------------------- No reason

2 Software Fault

Prediction Using Deep

Learning Algorithms

(2019)

Binary

class

------------------ LOC, Halstead metrics,

FANIN McCabe metrics,

branch-count, MOA,MFA,

CAM,NPM, FANOUT

No reason

5 A Framework for

Software Defect

Prediction and Metric

Selection (2017)

Binary

class

------------------ Halstead Metrics, McCabe

Essential Complexity, LOC,

CBO, RFC, MPM, ICP,

MFA, MOA, CBM, CAM,

NOC, DIT

No reason

17

6 A Study on the

Significance of Software

Metrics in Defect

Prediction

(2013)

Binary

class

---------------- LOC,, LOC_COMMENTS,

DESIGN_COMPLEXITYH

ALSTEAD_CONTENT,

LOC_TOTAL,

HALSTEAD_EFFORT

HALSTEAD_VOLUME

7 Artificial neural

network-based metric

selection for software

fault-prone prediction

model (2012)

Binary

class

------ LOCode, LOComment,

LOBlank, LOCec, LOC,

BR, basic Halstead Metrics,

McCabe, FAININ,

FANOUT

8 An empirical study on

predicting defect

numbers (2015)

Number

of fault

----- CK metrics suite (WMC,

NOC ,DIT, CBO, LOCM,

RFC,CBM) and LOC

9 A Feature Selection

Based Model for

Software Defect

Prediction (2014)

Binary

class

----------- LOC, MAX_CC, AVG_CC,

LCOM, N,V, L, CE, IC,CA,

CBO

No reason

10 The application of ROC

analysis in, threshold

identification, data

imbalance and metrics

selection for SFP (2017)

Binary

class

------------- CK metrics suite (WMC,

NOC ,DIT, CBO, LOCM,

RFC, CBM), MAX_CC,

IC,CE,CA, NPM, AMC,

FANIN,FANOUT

No reason

11 Choosing software metrics

for DP an investigation on

feature selection

techniques (2011)

Binary

class

DESPR, BETA PR,

DESFIX, REQ BETAFIX,

TOTUPD

LOC, CA, CE, FILINCUQ,

LGPATH, NDSPND,

NDSEXT, NDSENT,

NDSINT,KNT, DAM

CTRNSTMX, NPM,AMC

No reason

18

2.5.1 Most Recent and Frequently Used Metrics

From the above table, more than one metric is used in different kinds of literature. Many metrics are used

more frequently, as listed in the above table. From 11 papers listed in the above table, the most recent and

more frequently used software processes and product metrics are shown in the following table.

Table 2: Most frequently and recently used metrics

As shown in the above table we have selected process metrics with frequency of used 1 and above because

in most papers no more process metrics is avalible for software fault prediction.

Based on the above table, in this work, we used ten (10) process metrics and twenty-two (22) product

metrics for software fault prediction. Among those metrics, we selected the most appropriate ones.

Process metrics Frequency Product metrics

NR 2

LOC

Frequency

of used

AMC

Frequency of used

3 9

NDC 2 CA 4 IC 5

NML 2 WMC 4 CE 4

NDPV 2 NOC 5 NPM 4

number of commits to a file 1 DIT 5 MAX-CC 5

Delta metrics 2 CBO 6 AVG-CC 5

Delta line comment 2 MFA 3 CAM 4

the total number of added and

removed lines

1 LCOM 5 LCOM3 5

The number of files

committed

1 RFC 5 DAM 3

CHURN LOC count 2 CBM 5

MAX-CODE CHURN 2 MOA 3

AVERAGE-CODE CHURN 2 FAN_IN 3

Total-LOC 2 FAN_OUT 3

21

 Just-in-Time Software Fault Prediction: In just-in-time fault prediction, the changes-inducing faults

are identified at the earlier phase and feedback has been provided to the developer to recall those

changes, (Kamei et al., 2016). The advantages of just-in-time fault prediction are: (1) the fault

prediction is made at the very fine granularity level, i.e., for a change in a code, and (2) the prediction

recommendations can be easily applied since it identifies fault-inducing changes at the developer level

and it is easy for the developer to recall those changes because design decisions are still fresh.

2.9 Performance Evaluation Metrics

To measure the performance of the model, we used the confusion matrix and Precision-Recall curve,

which is commonly used for a number of fault prediction and binary classification problem that used to

describe the performance of classification of the model or classifier on the given set of test data for which

the true values are well-known, (Haouari et al., 2020). Accuracy, Precision, Recall, and F1-score, are

widely used evolution metrics in software metrics selection for fault prediction. And they accurately report

how accurately they learn the machine.

2.9.1 Confusion Matrix

A binary classification confusion matrix is a two-by-two matrix formed by counting the number of binary

ML classifier outcomes. Confusion Matrix is desired for finding Accuracy, Precision, Recall, and F1-

score. From these four measures, four evaluation metrics have been calculated, (Shatnawi, 2017). The

performance is analyzed and evaluated through various measures generated from the confusion matrix. A

confusion matrix consists of the following four parameters, (Prakash, 2018).

True Positive (TP): An instance that is positive and is classified correctly as positive instances, e.g.,

classified as faulty data which is in fact as faulty within a selected software metrics.

True Negative (TN): An instance that is negative and is classified correctly as negative instances, i.e.,

classified non-faulty data which is in fact as non-faulty within a selected software metrics.

False Positive (FP): An instance that is negative but is classified wrongly as positive instances, i.e.,

classified faulty data which is in fact as non-faulty within a selected software metrics.

False Negative (FN): An instance that is positive but is classified incorrectly as negative instances, i.e.,

classifying non-faulty data which is in fact as faulty within a selected software metrics.

28

key metrics that have a

significant impact on defect

prediction in a software module.

Raed

Shatnaw

i

2017 The application

of ROC analysis

in, threshold

identification,

data imbalance

and metrics

selection for SFP

For feature selection, the ROC

analysis is used. The use of ROC

to identify thresholds for four

metrics was validated in this

study (WMC, CBO, RFC and

LCOM). In most datasets, the

ROC analysis selects the same

metrics (WMC, CBO, and RFC),

whereas other techniques select

metrics differently

95% Focused only 4

product metrics

and select an

appropriate one

among 4 metrics

using feature

selection methods

29

 : Design of Methodology

3.1 Introduction

The proposed solution for software process and product metrics selection for binary class classification

of software fault prediction systems is discussed in detail in this section. It has a sequence of steps

starting from dataset extraction from NASA Metric Repository, preprocessing the data, feature

selection, building a model, and learning to classify into predefined binary classes which are faulty or

non-faulty software in case of the selected metrics.

The overall organization of this chapter is, in section 3.2, a general description of the proposed solution

which is software product and process metrics selection for software fault prediction is discussed in

detail. In the subsequent section, the data preprocessing process: data cleaning, feature selection is

described in detail. Finally, selected process and product metrics for binary class classification are

discussed.

3.2 Developed Model for Software Metric Selection

We choose the appropriate process and product metrics for binary class classification of SFP in the

proposed model. Every metric data is used to train and test the SFP model, as well as to check the

model's performance for the metrics, during the metric selection process. The proposed model has three

phases: selecting frequently used metrics, data preprocessing (which includes data balancing, Data

cleaning, feature selection), and classification. When we select the most frequently used metrics, we

have reviewed eleven papers that are most recent and more related to the area of the study. In data

cleaning, we take out duplicate and missing data. In the feature selection process, we used variance

threshold filter-based feature selection techniques to selecting the most significant and appropriate

metrics used for fault prediction and compared this result to our proposed model.

We have used machine learning techniques to solve the stated problem. As a general form, machine

learning algorithms are divided as tree-based (like the random forest, decision tree) and Bayesian-based

(like Naïve Bayes, Logistic regression, and support vector machine), (Journal et al., 2020). Bayesian-

based machine learning algorithms are most commonly used for classification purposes. Using specific

software metrics, we classify a software module as faulty or non-faulty, thus for the classification

process, we used Naïve Bayes and support vector machine algorithm. The classification includes two

main parts, the training and testing phase. In the training phase, we used 80% of the data to train (70%

for train and 10% for validation) binary class classification of the SFP model, and 20% of the data is

30

used for testing the proposed. Finally, an appropriate metric is selected based on the performance of

the model, the higher the performance of the model means the appropriate metric is used to train and

test the model.

Figure 3: A developed model of software metric selection

As shown in Figure 4, the proposed model for metrics selection for the SFP process takes different

process and product metrics with threshold values and faulty data. Software metrics and faulty data are

collected from the NASA MDP repository, (Bug Prediction Dataset, n.d.; NASA MDP Software

Defects Data Sets, n.d.; PROMISE DATASETS PAGE, n.d.). These datasets have numerical values

since software metrics are frequently extracted from the different process and product metrics like,

Size, Quality, McCabe, Halstead, MOOD, CK metrics, and other metrics. Therefore, the proposed

model accepts software metrics threshold values which is numerical value faulty data as input.

31

3.2.1 Flowchart of the Model for Software Metrics Selection

The flowchart of a model shows the steps of the model at a time during software metrics selection for

SPF. As shown in fig. 5 below the flowchart of the model shows an iterative process to select the most

appropriate metrics.

Figure 4: Flowchart of the model for software metrics selection

The flowchart of the model for software metrics selection has eight steps

Step 1: Select the most frequently used process and product metrics and extract the dataset of those

selected metrics from the NASA Metric Repository.

Step 2: Splitting the dataset (train and test data) of a single metric at a time and preprocessing the data

(which includes excluding constant features, filling missing values, and remove duplicated features).

Step 3: Applying different machine learning classification algorithms to build the model. These

classification algorithms are Naïve Bayes and SVM.

Step 4: Building a binary class classification model using those two machines learning classifiers and

training a model with a selected metric (step 2) dataset.

Step 5: Testing the model with a selected metrics (step 2) dataset.

32

Step 6: Making a decision, is there any more metrics from the most frequently used metrics, if the

answer is Yes, the flaw chart back to step 1 and iterates like ways until the decision is No. the decision

is No when all frequently used metrics are checked.

Step 7: If the decision is No the selected metrics is sorted in increasing or decreasing order of the model

performance.

Step 8: Display the result, all used metrics, and the performance of the model in each metrics.

3.3 Preprocessing

Data preprocessing techniques are important and commonly used in machine learning, which is the

basis of most software fault prediction studies, (H. Wang et al., 2011). There are many factors that

affect the performance of fault prediction models such as redundancy of metric dataset, missing

features, and irrelevant information on the software metrics datasets. Those problems are eliminated

by using data preprocessing techniques. Data preprocessing technique includes data cleaning and

feature selection and classification. The preprocessing activities undertaken in this research are

described below.

3.3.1 Data Cleaning

NASA metric dataset values are directly extracted or calculated from the source code of the software

using OO, McCabe, Halsted, dynamic and code churn metrics that contain duplicate, redundant,

incomplete, and irrelevant features that adversely affect the performance of the classification model.

Therefore, data cleaning relieves these challenges when we apply metrics selection for fault prediction

models. Delete attributes every instance has the same value since such attributes have no contribution

to the data (Aleryani et al., n.d.; Houari, 2014). These data contain missing values:

Missing Values: The attributes for which at least one instance value is not present are known as

attributes with missing values. The possible solution is either to remove all instances which contain

missing values or replace the missing values with zero (Elhassan et al., 2021). We have faced such

problems in the process metrics dataset, among 13 process metrics 3 of them were contained missing

values. We have alleviated such problems by dropping such metrics because other metrics have the

same frequency of such metrics.

33

Figure 5: Data cleaning steps

The software fault dataset has 22 features/metrics. We have used sklearn python library for feature

selection. Accordingly, constant and irrelevant features are selected using the filter threshold method.

Finally, we removed all these instances in all datasets that we used in this work. After the data cleaning

process of data preprocessing, we get all the metrics with no missing, duplicate value, and non-null of

2016 instances in 22 metrics, in camel 1.6, ant 1.7, and jedit 4.0 product metrics dataset shown below

in the following figure.

Figure 6: Camel 1.6, ant 1.7and Jedit 4.0 Cleaned dataset

34

3.3.2 Feature Selection and Ranking

The process of identifying and selecting the most relevant attributes of software metrics for software

fault prediction is known as feature selection. The feature selection method determines which features

will be used as independent variables in the fault prediction model. Feature ranking techniques assess

attributes individually based on a given criterion and order them accordingly. However, it was

discovered that while an attribute may be less useful on its own, when combined with other attributes,

it can have a significant impact, (Yu et al., 2017). Feature subset selection approaches reflect the issue

by searching and selecting subsets of metrics that collectively have good performance. Therefore,

instead of considering all the features, it would be more useful to select the best features which are

relevant and significant for fault prediction in any software module, (Asim et al., 2020).

The reason why we used such a feature selection technique is that to compare feature selection methods

and our proposed model which select appropriate metrics for SFP by splitting the dataset of each metric

threshold value as training and testing without feature selection methods. We compared the

performance of the model based on our technique/without feature selection and feature selection

techniques. Even if there are several types of feature selection methods available, the most commonly

used feature selection methods in the area of software engineering are wrapper-based feature selection,

filter-based feature selection, and ensemble feature selection methods.

3.3.3 Filter-Based Feature Selection

Filter-Based Feature Selection (FBFS) methods were used in this study. Because FBFS is

computationally very fast and works based on different statistical methods like threshold variance, chi-

square, and correlation coefficient. This method uses the computational characteristics of datasets to

independently assess and rank attributes in datasets that are found to be independent of the prediction

model, (Nanda et al., 2018). The filter-based approach uses a given metric for feature selection to

practice the intrinsic features of the data and does not rely on the learner algorithm's training, (Asim et

al., 2020).

Features are chosen for their correlation with the outcome variable based on their scores in various

statistical tests. A linear grouping of features that typifies or separates two or more classes of a

categorical variable is treasured using linear discriminant analysis, (Shatnawi, 2017). Since our input

data has numeric values and we use classification problems, for such types of work variance threshold

is better. The following diagram shows how to select feature selection methods for different types of

datasets.

36

2. After the feature subsets are obtained, we have used them to train each of the machine learning

algorithms mentioned above to obtain the high accuracy of a model corresponding to each

subset.

3. Figure 9 below is a graph showing important features/metrics versus threshold value metrics

that has been plotted for variance thresholding.

4. The variance threshold provides the highest importance features/metrics obtained after applying

each of the machine learning algorithms listed above, is considered.

Figure 8: Variance Threshold Feature Selection methods

According to the above figure NOC, RFC, AMC, CAM, and so on product metrics are more significant

for SFP using feature selection techniques. But when train and test the model with each metrics dataset

individually no same result is scored. Metrics that have less feature importance (like FanIn) can score

high performance of our model.

3.3.5 Correlation-based Feature Selection

Correlation-based Feature Selection (CFS) uses a correlation-based heuristic to estimate the wealth of

features. By using appropriate correlation measures, this technique is easy, quick to implement, and

easily extends to continuous class problems. This heuristic takes into account the usefulness of

individual metrics for predicting faulty or non-faulty class labels along with the level of inter-

correlation among them, (Lewandowski et al., 2015). In the following figure, the heat map's flasher or

light color indicates that the covariance is high. The heat map's dark or dull color means that the

38

In the above figure, we have checked the correlation of each metrics with software bugs and the

correlation metrics themselves. In fact, highly correlated metrics with the bug class are more appropriate,

and highly correlated metrics to other metrics are not accepted.

3.4 Classification

Once we have identified software metrics, it is necessary to decide which techniques will be used for

selecting appropriate metrics for fault predictions. Naïve Bayes, Logistic regression, and support vector

machines are Bayesian-based machine learning algorithms that are commonly used for classification

purposes, (Journal et al., 2020). The performance of each technique varies according to the dataset. In

this thesis, we used the following machine learning classification techniques and compared the result

among them.

3.4.1 Support Vector Machine Classifier

This work focused on selecting appropriate software metrics and classifying a software module as

faulty or non-faulty using the selected metrics dataset. Thus, in the classification phase, we used a

support vector machine classifier for predicting whether the software modules are faulty or non-faulty

with a specific software metrics dataset. Since we select different process and product metrics for

binary classification of SFP, These techniques use the concept of a hyperplane to separate the dataset

into fault-prone and not fault-prone instances, (Haouari et al., 2020).

The purpose of SVM in this work is to find the optimal hyperplane that splits groups of vector in such

a way that cases with one group of faulty and non-faulty modules (independent variable) on one side

of the plane and software metrics (dependent variable) with the other group on the other side of the

plane, (A et al., 2013). The main impression of SVM is looking for a hyperplane in a high-dimensional

space as a parting plane for two aspects to ensure a minimum error rate. Then, we find the ideal

hyperplane that differentiates between the two classes using a kernel function.

Linear soft margin classifier (Kernel): is a type of SVM classifier which is used for controlling

linearly non-separable input features that are overlapping or linearly non-separable classes. This

classifier with dissimilar kernel functions can convert a linear non-separable problem into a linearly

divisible problem by projecting data into the feature space. That means it separates the training data of

the two classes with a minimal number of errors. In practice, the SVM algorithm is implemented with

a kernel function that changes an input dataset space into the essential form.

41

2018), software fault prediction models made in between 70 and 90% approximate accuracy of a model.

This less accuracy can occur due to a sophisticated misclassification rate. Diverse techniques gave a

different performance for different software fault prediction techniques, and none of the techniques

proved better than the other techniques across different software fault prediction systems. One

imaginable cause for the model performance of fault prediction techniques is a poor feature/metric

selection methods for software fault prediction techniques.

Furthermore, the fault dataset found in NASA Repository, software bug prediction repository, eclips

and apache are not more appropriate for cross-project SFP. Because of that cross-project SFP uses the

related project dataset. It is also not more acceptable for just-in-time SFP because this type of SFP

focuses on design time rather than implementation time. Most of the metrics found in the NASA

repository are considered at implementation time.

42

 : Experiment and Result Discussion

4.1 Introduction

In this chapter, we described the experimental results and evaluation of the experimental results of the

proposed solution for software metric selection for the BCCSFP model. The experimental evaluation

of the model for software fault prediction using selected metrics is discussed in detail. The

Experimental results are evaluated using a confusion matrix and ROC-score curve. Additionally, the

dataset used, characteristics of the dataset, and the implementation of the proposed solution of software

metric selection for the SFP model, and the effect of metrics selection on the performance of the

software fault prediction model are discussed in detail. Finally, the experimental results of our study

are compared with state-of-the-art models.

4.2 Dataset

Datasets used for this thesis are collected from NASA MDP promises repository (Bug Prediction

Dataset, 2010; NASA MDP Software Defects Data Sets, 2018; PROMISE DATASETS PAGE, 2004.).

NASA MDP promise repository stores a collection of the software metric data and software fault data

which are commonly used by many software engineering research community to build software fault

prediction model and selecting an appropriate metric for those models, (Leslie et al., 2017; Madeyski

& Jureczko, 2014).

4.2.1 Splitting Training, Validation and Testing Data

We have used three well-known software projects, product metrics with fault data from NASA metric

dataset repository: these are Camel 1.6, Ant 1.7, and Jedit 4.0 which have 965, 745, and 306 instances

(records) respectively, when we sum up these three datasets there is 2016 instance in total. From the

total of these instances, we used 70% (1450), among 1450 instances 308 instances labeled as faulty and

1065 instances are labeled as non-faulty for training data and 20% (404) instances for testing data.

These software project datasets are written in similar programming languages, i.e., Java programming

languages.

Unlike product metrics the dataset for process metrics is not more available on NASA Repository and

we used only one software project for those metrics with appropriate faults. This dataset has 1169

instances (records), from the total of these instances, we used 70% (841), and among 841 instances 284

instances labeled as faulty and 557 instances are labeled as non-faulty for training data and 20% (234)

43

instances for testing data. Therefore, this can be used as a baseline for our research so that the results

of the proposed model can be compared and easily verified with those datasets. We have used 10%

(162 from product metrics and 94 from process metrics) of the data to validate our model which

minimize bias and overfitting in the training set, and variance in the validation set.

4.2.2 Dataset Selection Criteria

Since we used online datasets, it is necessary to set some criteria to select metrics which is related to

our problem and scientifically accepted. The criteria for the selection of the dataset, which can help us

to answer the research questions are:

1. The datasets of each metric must have a ground-truth class which indicates the presence or absence

of faults in each software module.

2. All datasets selected must have standardized feature types, in other words, the same category of

software metrics must be present in all datasets.

3. For each software metrics selected, there must be available datasets reflecting the development of

different software projects in multiple versions.

4. All selected data must be available for study and replication.

All of the datasets contain the project name, software metrics, programming language and number of

software modules, number of faulty and non-faulty modules. Each of these dataset features has a

numerical value.

Table 5: process and product metrics dataset description

Dataset Total no. of

modules

Faulty

modules

Non-faulty

modules

Number of

metrics/attributes

Product

metrics

Camel 1.6 965 188 777

22

Jedit 4.0 306 75 231

Ant 1.7 745 166 579

Process metrics 1169 295 874 10

The following table (Table 6) shows the values of the sample concatenated dataset of camel, ant, and

jedit projects which have 22 software metrics with a faulty and non-faulty class.

44

Table 6: A concatenated dataset of camel, ant, and jedit projects

4.2.3 Software Metrics Dataset Description

Product metrics:

Table 7, shows the description of each of the software product metrics used in this work. 22 software

product metrics are derived from different categories of product metrics like basic software metrics,

Halstead metrics, CK metrics, and one target class which are useful to identify whether the software

has any faulty modules or not.

46

Table 8: process metrics description

Process metrics Descriptions

NR Number of Revisions

NDC Number of Distinct Committers

NML Number of Modified Lines

NDPV Number of Defects in Previous Version

Number of commits to a file number of commits to a single file in any project

Delta metrics The difference between versions of the software.

Number of developers that changed a file Developer based metric, no developers who participate in

a single file change

Churned LOC added the number of added files

Files committed The number of files committed

CODE CHURN Over time, the amount of code change within a software

unit is measured

MAX-CODECHURN Over time, calculate the maximum number of code

changes that occur within a software unit.

AVERAGE-CODE CHURN Over time, calculate the average number of code changes

in a software unit.

Total-LOC The number of lines in the files that are not commented

executable lines.

4.3 Implementation

All experiments to solve the stated problems are done based on the model developed with Anaconda

(TensorFlow as a backend) on Intel(R) Core (TM) i5, CPU M520, @ 2.40GH, and 4 GB of RAM.

Anaconda within the Jupyter Notebook environment is a source delivery and editor of python

programming language for systematic computing. Jupyter Notebook is talented in consecutively on the

upper of TensorFlow. Tensor Flow is a representative machine learning library like the math public

library and is used for machine learning applications. The data is split into training (70%), testing

datasets (20%) and (10%) for validating our model.

47

4.4 Experiments
4.4.1 Experiment 1

Experiment one is done on 22 product metrics in camel-1.6, ant 1.7, and jedit 4.0 datasets using SVM.

We have experimented with each metric and found the performance of the model in terms of faulty and

non-fault modules. In experiment one there are 22 sub experiments for each type of product metrics.

Sub experiment one: this experiment is done on Average Method Complexity (AMC) product metrics.

By using this metrics dataset, we train and test binary class classification of software fault prediction

models. Finally, we have measured the performance of the model using a confusion matrix and got the

following outputs.

Table 9: the result of BCCSFP model using AMC metrics

Sub experiment two: this experiment is done on the Lack of cohesion of methods (LCOM) product

metrics. By using this metrics dataset, we train and test binary class classification of software fault

prediction models. Finally, we have measured the performance of the model using a confusion matrix

and got the following outputs.

Table 10: the result of BCCSFP model using LCOM metrics

48

Sub experiment three: this experiment is done on data Access metrics (DAM) product metrics. By

using this metrics dataset, we train and test binary class classification of software fault prediction

models. Finally, we have measured the performance of the model using a confusion matrix and got the

following outputs.

Table 11: the result of BCCSFP model using DAM metrics

Sub experiment four: this experiment is done on Number of Inheritance Coupling (IC) product

metrics. By using this metrics dataset, we train and test binary class classification of software fault

prediction models. Finally, we have measured the performance of the model using a confusion matrix

and got the following outputs.

Table 12: the result of BCCSFP model using IC metrics

After completing experimenting with all 22 product metrics we have displayed the performance of the

model for each metrics in the following table.

49

Table 13: an experimental result of product metrics using SVM

Metrics Modules Precision Recall F1-score Support Accuracy

WMC Faulty 0.57 0.05 0.09 81 80.1%

Non-faulty 0.81 0.99 0.89 323

NOC Faulty 1.00 0.02 0.05 84 79.7%

Non-faulty 0.80 1.00 0.89 320

DIT Faulty 1.00 0.92 0.96 87 96.8%

Non-faulty 0.98 1.00 0.99 317

CBO Faulty 0.98 0.82 0.89 96 95.2%

Non-faulty 0.95 0.99 0.97 308

LCOM Faulty 0.62 0.06 0.10 90 78.2%

Non-faulty 0.79 0.99 0.88 314

CA Faulty 0.95 0.90 0.92 82 98.2%

Non-faulty 0.98 0.99 0.98 322

CE Faulty 1.00 0.80 0.89 79 96.0%

Non-faulty 0.95 1.00 0.98 325

IC Faulty 1.00 0.62 0.76 84 92.0%

Non-faulty 0.91 1.00 0.95 320

LCOM3 Faulty 1.00 0.82 0.90 83 96.2%

Non-faulty 0.96 1.00 0.98 321

RFC Faulty 0.62 0.12 0.20 85 83.6%

Non-faulty 0.81 0.98 0.89 319

MOA Faulty 1.00 0.57 0.72 81 91.3%

Non-faulty 0.90 1.00 0.95 323

MFA Faulty 1.00 0.19 0.31 86 83.9%

Non-faulty 0.82 1.00 0.90 318

CAM Faulty 1.00 0.80 0.89 84 95.7%

Non-faulty 0.95 1.00 0.97 320

DAM Faulty 1.00 0.77 0.87 92 94.8%

Non-faulty 0.94 1.00 0.97 312

AMC Faulty 1.00 0.84 0.92 90 96.5%

50

Non-faulty 0.96 1.00 0.98 314

NPM Faulty 0.90 0.86 0.88 76 95.5%

Non-faulty 0.97 0.98 0.97 328

CBM Faulty 1.00 0.93 0.96 85 98.5%

Non-faulty 0.98 1.00 0.99 319

FANIN Faulty 1.00 0.94 0.97 77 98.7%

Non-faulty 0.98 1.00 0.99 327

FANOUT Faulty 1.00 0.87 0.93 86 97.2%

Non-faulty 0.97 1.00 0.98 318

LOC Faulty 0.61 0.23 0.34 81 81.7%

Non-faulty 0.83 0.96 0.89 323

MAX-CC Faulty 0.93 0.60 0.73 89 90.0%

Non-faulty 0.90 0.99 0.94 315

AVG-CC Faulty 1.00 0.86 0.93 88 97.0%

Non-faulty 0.96 1.00 0.98 316

Figure 11: Accuracy of BCCSFP model for each product metrics using SVM

80.1%79.9

96.8 95.2

78.2

96.298.296 92
83.6

91.3
83.9

95.7 94.8
96.5

95.5 98.598.797.2

81.7
90

97

0

20

40

60

80

100

ac
cu

ra
cy

Product metrics

51

Figure 12: Performance measures for faulty modules of 7 product metrics using SVM

Figure 13: Performance measures for non-faulty modules of 7 product metrics using SVM

4.4.2 Experiment 2

Experiment 2 is done on 10 process metrics using SVM classifier. We have experimented with each

metric and found the performance of the model in terms of faulty and non-fault modules. This

experiment also has 10 sub experiments for each process metrics.

Sub experiment one: this experiment is done on code churn count process metrics. By using this

metrics dataset, we train and test binary class classification of the software fault prediction model.

Finally, we have measured the performance of the model using a confusion matrix and got the following

outputs.

WMC NOC DIT CBO LCOM CA FanIn
prcecision 100 100 100 64 87 100 96
Recall 99 64 14 51 90 85 80
F1-score 99 78 25 57 88 92 87

pe
rf

or
m

an
ce

 m
ea

su
re

s

Metrics

WMC NOC DIT CBO LCOM CA FanIn
prcecision 95 98 97 81 91 96 96
Recall 100 100 100 88 88 100 99
F1-score 97 99 98 85 90 98 98

pe
rf

or
m

an
ce

 m
ea

su
rs

Metrics

52

Table 14: the result of BCCSFP model using Churned LOC count process metrics

Sub experiment two: this experiment is done on delta line code process metrics. By using this metrics

dataset, we train and test binary class classification of software fault prediction models. Finally, we

have measured the performance of the model using a confusion matrix and got the following outputs.

Table 15: the result of BCCSFP model using NDPV process metrics

The experiment continues like in the above ways, until all of the 10 process metrics are completed and

the performance of the model in each metrics is listed in the following table.

Table 16: Experimental result of process metrics using SVM

Metrics Modules Precision Recall F1-score Support Accura

cy

NR Faulty 1.00 0.99 0.99 193 96.5%

Non-faulty 0.95 1.00 0.98 41

NDC Faulty 0.99 0.99 0.99 154 72.6%

53

Non-faulty 0.98 0.99 0.98 80

NML Faulty 0.60 0.95 0.74 120 92.5%

Non-faulty 0.87 0.34 0.49 114

NDPV Faulty 0.80 0.35 0.49 80 73.5%

Non-faulty 0.74 0.95 0.83 154

Delta metrics Faulty 1.00 0.98 0.99 101 91.8%

Non-faulty 0.99 1.00 0.99 133

Delta line comment Faulty 1.00 0.97 0.83 14 98.2%

Non-faulty 0.98 1.00 0.99 220

Churned LOC count Faulty 1.00 0.97 0.99 119 97.4%

Non-faulty 0.97 1.00 0.99 115

MAX-CODE

CHURN

Faulty 0.99 0.97 0.98 155 97.8%

Non-faulty 0.97 0.99 0.98 196

AVERAGE-CODE

CHURN

Faulty 1.00 0.97 0.98 122 94.3%

Non-faulty 0.97 1.00 0.98 112

Total-LOC Faulty 1.00 0.29 0.45 17 98.7%

Non-faulty 0.95 1.00 0.97 217

Figure 14: Accuracy of BCCSFP model for each process metrics using SVM

96.5%

72.6

95.2
73.5

99.1 98.2 91.8 97.8 94.3 98.7

0

20

40

60

80

100

A
cc

ur
ac

y

Metrics

54

4.4.3 Experiment 3

Experiment 3 is done on 22 product metrics in camel-1.6, ant 1.7, and jedit 4.0 dataset using NB

classifier. We have experimented with each product metric and measure the performance of the model

in terms of faulty and non-fault modules. In experiment 3 there are 22 sub experiments for each type

of product metrics.

Sub experiment one: this experiment is done on afferent coupling (CA) product metrics. By using

these metrics dataset threshold values, we train and test binary class classification of software fault

prediction models. Finally, we have measured the performance of the model using a confusion matrix

and got the following outputs.

Table 17: the result of BCCSFP model in CA product metrics using NB

Sub experiment two: this experiment is done on coupling between objects (CBO) product metrics. By

using this metrics dataset threshold values, we trained and test binary class classification of software

fault prediction models. Finally, we have measured the performance of the model using a confusion

matrix and got the following outputs.

Table 18: Table 17: the result of BCCSFP model in CBO product metrics using NB

55

Sub experiment three: this experiment is done on function in (FanIn) product metrics. By using this

metrics dataset threshold values, we trained and test binary class classification of software fault

prediction models. Finally, we have measured the performance of the model using a confusion matrix

and got the following outputs.

Table 19: Table 17: the result of BCCSFP model in FanIn product metrics using NB

The experiment is continuing like in the above ways until all 22 product metrics are completed and the

performance of the model in each metrics is listed in the following table.

Table 20: an experimental result of product metrics using NB

Metrics Modules Precision Recall F1-score Support Accuracy

WMC Faulty 1.00 0.89 0.94 81 90.6%

Non-faulty 0.67 1.00 0.80 323

NOC Faulty 0.52 1.00 0.69 84 97.9%

Non-faulty 1.00 0.95 0.97 320

DIT Faulty 0.87 1.00 0.93 87 93.2%

Non-faulty 1.00 0.87 0.93 317

CBO Faulty 1.00 0.96 0.98 96 99.0%

Non-faulty 0.99 1.00 0.99 308

LCOM Faulty 1.00 0.96 0.98 90 97.9%

Non-faulty 0.96 1.00 0.98 314

CA Faulty 1.00 0.96 0.98 82 98.2%

Non-faulty 0.99 1.00 1.00 322

CE Faulty 0.94 0.89 0.91 79 98.4%

56

Non-faulty 0.99 0.99 0.99 325

IC Faulty 0.40 1.00 0.57 84 98.5%

Non-faulty 1.00 0.98 0.99 320

LCOM3 Faulty 0.87 0.90 0.88 83 89.1%

Non-faulty 0.91 0.88 0.90 321

RFC Faulty 0.94 0.82 0.88 85 94.3%

Non-faulty 0.95 0.99 0.96 319

MOA Faulty 0.40 1.00 0.57 81 98.4%

Non-faulty 1.00 0.98 0.99 323

MFA Faulty 0.96 0.99 0.97 86 97.9%

Non-faulty 0.99 0.97 0.98 318

CAM Faulty 0.91 0.96 0.93 84 94.7%

Non-faulty 0.97 0.93 0.95 320

DAM Faulty 1.00 0.99 1.00 92 99.1%

Non-faulty 0.99 1.00 0.99 312

AMC Faulty 1.00 0.75 0.85 94 91.7%

Non-faulty 0.89 1.00 0.94 310

NPM Faulty 1.00 0.82 0.90 76 91.7%

Non-faulty 0.86 1.00 0.93 328

CBM Faulty 0.57 1.00 0.73 85 96.8%

Non-faulty 1.00 0.97 0.98 319

FANIN Faulty 1.00 0.94 0.97 86 98.1%

Non-faulty 0.98 1.00 0.99 318

FANOUT Faulty 1.00 0.86 0.96 86 94.8%

Non-faulty 0.92 1.00 0.97 318

LOC Faulty 1.00 0.85 0.92 81 96.8%

Non-faulty 0.96 1.00 0.98 323

MAX-CC Faulty 0.27 1.00 0.43 80 95.8%

Non-faulty 1.00 0.96 0.98 324

AVG-CC Faulty 0.92 0.86 0.89 88 91.4%

Non-faulty 0.99 0.99 0.99 316

57

Figure 15: Accuracy of a model in process metrics using NB

4.4.4 Experiment 4

This experiment is done on the same dataset as experiment 2, which is done on 10 process metrics, and

follows the same procedures, the only difference is that the classification algorithms i.e., naïve Bayes

algorithms instead of SVM. This experiment also has 10 sub experiments.

Sub experiment one: this experiment is done on max_code churn process metrics. By using this

metrics dataset threshold values, we trained and test binary class classification of software fault

prediction models. Finally, we have measured the performance of the model using a confusion matrix

and got the following outputs.

Table 21: the result of BCCSFP model in max_code churn process metrics using NB

99.1

89.1

98.4 98.5 98.4

91.4

99
98.1 98.2

91.7 91.7
90.6

84
86
88
90
92
94
96
98

100

