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Abstract

In this thesis, we introduce the notion of fuzzy ideals in a more general context in universal

algebras by the use of ideal terms. Fuzzy ideals generated by a fuzzy set are characterized from

the fuzzy point of view as well as from the algebraic point of view. It is shown that the class

of fuzzy ideals of an algebra A of a given type F forms an algebraic closure fuzzy set system

together with the inclusion ordering of fuzzy sets. The commutator of fuzzy ideals in univer-

sal algebras is defined as a common abstraction of the product of fuzzy normal subgroups in

groups, fuzzy ideals in rings, etc. Using this commutator, we define and characterize fuzzy

prime ideals, fuzzy semiprime ideals, maximal fuzzy ideals, the radical of fuzzy ideals and the

space of fuzzy prime ideals in universal algebras.

On the other hand, we deal with fuzzy congruence relations and their classes so-called fuzzy

congruence classes in universal algebras. We characterize fuzzy congruence relations generated

by a fuzzy relation and we give a representation for fuzzy congruence relations using crisp con-

gruences. Mainly, we make a theoretical study on fuzzy congruence classes of algebras in

different varieties. Several Mal’cev type characterizations are given for a fuzzy subset of an

algebra in a given variety to be a class of some fuzzy congruence. Particularly, finite character-

izations are given for fuzzy congruence classes in regular and permutable varieties.

We also introduce the notion of fuzzy cosets in universal algebras by the use of coset terms.

It is shown that, fuzzy ideas and more generally fuzzy congruence classes are the natural exam-

ples of fuzzy cosets. But the converse does not hold in general. We give sufficient conditions

for fuzzy cosets to be a class of some fuzzy congruence relation. Moreover, the theory of fuzzy

cosets is applied to characterize permutable varieties.
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In some class of algebras (like groups and rings), each ideal I is the zero congruence class

of a unique congruence relation denoted by Iδ , and the map I 7→ Iδ defines a one to one corre-

spondence between the lattice of ideals and the lattice of congruences on that algebra. A class

of such algebras is called ideal determined. In this thesis, we study special fuzzy congruence

classes so-called fuzzy congruence kernels and we give necessary and sufficient conditions (in

a fuzzy sense) for a class of algebras to be an ideal determined. In this view, we study the

structure of quotient algebras induced by fuzzy ideals in ideal determined varieties.
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Introduction

In 1965, L. A. Zadeh [158] introduced the notion of a fuzzy subset of a set X as a function

from X into the unit interval [0,1]. This idea marked a new direction and stirred the interest

of researchers worldwide. It provided tools and an approach to model imprecision and un-

certainty present in phenomena that do not have sharp boundaries. A lot of work on fuzzy

sets has come into being with many applications to various fields such as computer science,

artificial intelligence, expert systems, control systems, decision making, medical diagnosis,

management science, operations research, pattern recognition, neural network and others (see

[80, 135, 153, 164]).

In 1971, Rosenfeld [136] applied fuzzy sets in group theory and has formulated the con-

cept of a fuzzy subgroup of a group. Since then, many researchers have been studying fuzzy

subalgebras of several algebraic structures; fuzzy subgroups and fuzzy normal subgroups of a

group (see [1, 14, 16, 32, 33, 34, 41, 57, 64, 92, 102, 129, 130]), fuzzy action of groups (see

[5, 47]), fuzzy ideals of a semigroup (see [86, 106, 109, 110]), fuzzy subrings and fuzzy ideals

of a ring see (see [2, 65, 66, 113, 122, 123, 132, 99]), prime and maximal fuzzy ideals of a

ring (see [97, 98, 119, 120, 121, 131, 143]), fuzzy sublattices and fuzzy ideals of a lattice (see

[15, 46, 26, 27]), fuzzy ideals of a pseudo-complemented semi-lattice (see [28]), fuzzy ideals

of a poset (see [29, 30]), fuzzy ideals and fuzzy filters of MS-algebras (see [22, 23, 24, 25]),

fuzzy ideals of BCC-algebras (see [68, 69]), fuzzy ideals of BCI/BCK algebras ([125, 87, 88]),

fuzzy submodules of a module (see [3, 117, 161, 162]), fuzzy subspaces of a vector space (see

[44, 58, 89]), etc.

In this thesis, we introduce and investigate the notion of fuzzy ideals in a more general
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context in universal algebras as a common abstraction to most of the existing theories of fuzzy

ideals in different algebraic structures. We apply the general theory of algebraic fuzzy systems

developed in [144, 145] to study the properties of fuzzy ideals that they have in common in

different algebraic structures. In this setting, basic concepts that are connected to ideals like the

generator, the commutator, primeness, semi-primeness, the prime spectrum, maximality and the

radical are extended to the class of fuzzy ideals in universal algebras.

The concept of fuzzy equivalence relations was first defined by Zadeh [159] as a general-

ization of the concept of an equivalence relation. They have been since widely studied as a

way to measure the degree of indistinguishability or similarity between the objects of a given

universe of discourse, and they have shown to be useful in different contexts such as fuzzy

control, approximate reasoning, fuzzy cluster analysis, etc. In literature, fuzzy equivalence

relations appeared in different names such as similarity relations (see [159]), indistinguisha-

bility operators (see [152, 82, 83, 59, 60]), T −equivalences (see [61, 62]), etc. Fuzzy con-

gruence relations on algebraic structures are fuzzy equivalence relations which are compatible

(in a fuzzy sense) with all fundamental operations of the algebra. Fuzzy congruences have

been studied in different algebraic structures; in semigroups (see [56, 108, 138, 148, 157]), in

groups and rings (see [91, 94, 107, 112, 128, 137, 163]), in modules and vectorspaces (see

[70, 142]), in lattice structures (see [21, 46, 146]), and more generally on universal algebras

(see [52, 73, 133, 134, 139, 140]). Other important concepts that we study in this thesis are

fuzzy congruence relations and their classes in universal algebras. We give several Mal’cev

type characterizations in a fuzzy setting. We study, the connection between fuzzy ideals and

fuzzy congruence relations in a general context.

This thesis is organized in seven chapters. The first chapter contains basic concepts of

universal algebras and fuzzy set theory collected from literature. The next three chapters are

devoted to the development of the general theory of fuzzy ideals in universal algebras. Whereas

the last three chapters are concerned with the study of fuzzy congruence relations and fuzzy
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congruence classes in different equational classes of algebras like regular, permutable and ideal-

determined varieties.

To be more specific: in chapter two, we define fuzzy ideals of universal algebras as a nor-

malized fuzzy set which are −→y −closed under each ideal term t(−→x ,−→y ) in −→y . Examples and

several characterizing theorems are given. Mainly, fuzzy ideals generated by fuzzy sets are

fully characterized. Furthermore, fuzzy ideals of fuzzy subalgebras are studied in the chapter.

The main concern of the third chapter is to study fuzzy prime ideals and their generalization by

applying the commutator of fuzzy ideals in universal algebras. We give an internal characteriza-

tion for fuzzy prime ideals of universal algebras analogous to the well-known characterization

of Swamy and Swamy [143] in the case of rings. Those fuzzy ideals (not necessarily 2−valued)

in which every level subset is either the A or prime are also studied in the chapter under a name

generalized fuzzy prime ideals. Moreover, we study maximal fuzzy ideals and their generaliza-

tions in the chapter.

In chapter four, the commutator of fuzzy ideals is applied to define and investigate fuzzy

semi-prime ideals and the radical of fuzzy ideals in universal algebras. The radical of fuzzy ide-

als is described in different ways. Several characterizing theorems are given for a fuzzy ideal

of an algebra A to be fuzzy semi-prime. In addition, the space of fuzzy prime ideals equipped

with the hull-kernel topology is also presented in the chapter.

A. I. Mal’ceve [118] has proved that a nonempty subset H of an algebra A of some type F

is a class of some θ ∈Con(A) if and only if for any a,b ∈ H and any unary polynomial p over

A it holds that

p(a) ∈ H⇒ p(b) ∈ H

One of the main results in this thesis is that we give a Mal’cev type characterization for fuzzy

subsets of an algebra A to be a class of some fuzzy congruence on A. This result is proved in

Chapter five. In particular, in regular and permutable varieties, a polynomial characterization
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is given for fuzzy congruence classes using finite number of finitary terms. Furthermore, some

equivalent conditions are also given for a variety of algebras to posses fuzzy congruence classes

which are also fuzzy subuniverse.

In Chapter six, we define fuzzy cosets in universal algebras and investigate some of their

properties. Fuzzy cosets generated by a fuzzy set are fully characterized. It is shown that fuzzy

ideals and in general fuzzy congruence classes are the natural examples of fuzzy cosets. But

the converse is not true in general. We give a sufficient condition for fuzzy cosets to be a class

of some fuzzy congruence relation. Moreover, we give several characterization for a class of

algebras to be permutable using fuzzy cosets.

The last chapter is about fuzzy ideals and fuzzy congruence relations. A special fuzzy

congruence classes; called fuzzy congruence kernels are studied in the chapter. It is observed

that fuzzy congruence classes are fuzzy ideals but the converse need not necessarily be true.

We obtain a class of algebras in which fuzzy ideals are a kernel of unique fuzzy congruence.

This establishes a one to one correspondence between ideals and fuzzy congruence relations.

Finally, we study the structure of quotient algebras induced by fuzzy ideals in some general

context. We characterize fuzzy prime ideals using their quotient structure.
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Chapter 1

Preliminaries

In this chapter, we present basic notions and results that will be used throughout the thesis.

1.1 Universal Algebras

Most of the results in this section are standard and are collected from [48, 50, 74, 78]

1.1.1 Definitions and Examples

For a nonempty set A and n a nonnegative integer we define A0 = { /0}, and, for n > 0, An is the

set of n−tuples (a1,a2, ...,an) of elements from A.

Definition 1.1.1. An n−ary operation (or function) on a set A is any function f from An to A.

In this case, n is the arity (or rank) of f .

An operation f on A is unary, binary, or ternary if its arity is 1,2, or 3, respectively.

Definition 1.1.2. A language (or type) of algebras is a set F of function symbols such that

a nonnegative integer n is assigned to each member f of F. This integer is called the arity (or

rank) of f , and f is said to be an n−ary function symbol. The subset of n−ary function symbols

in F is denoted by Fn.

Definition 1.1.3. An algebra A of type F is an ordered pair (A,F) where A is a nonempty set and

F is a family of finatary operations f A on A (or a language of algebras). The set A is called the
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universe (or underlying set) of A = (A,F) and the f A’s are called the fundamental operations

of A.

In other words, an algebra is just a model for a first order language F whose nonlogical

symbols are finitary operation symbols f with arity n≥ 0.

If there is no confusion, we prefer to write just f for f A. If F is finite, say F = { f1, ..., fk}, we

often write (A, f1, ..., fk) for (A,F), usually adopting the convention:

arity f1 ≥ arity f2 ≥ ...≥ arity fk

Whenever we deal with a class of algebras, it will be assumed that all the algebras are models

for one language, i.e., that they are of the same similarity type. Thus each class K of algebras

is attached to a language (or a type) F, and K ⊆Mod(F), where of course Mod(F) denotes the

class of all models (or algebras) of the given type F. When A ∈Mod(F) and f ∈ Fk as above,

then f A is called the interpretation of f in A, and it is a k−ary operation on the set A.

Example 1.1.4. A groupoid is an algebra (G,· ) of type (2), i.e., a groupoid is nonempty set G

together with a binary operation ·. A semigroup is an associative groupoid.

Example 1.1.5. A group is an algebra (G, ·,−1 ,e) of type (2,1,0) in which the following iden-

tities are true:

1. a · (b · c) = (a ·b) · c

2. e ·a = a = a · e

3. a ·a−1 = e = a−1 ·a

Sometimes groups are written additively in a form like (G,+,−.0).

Example 1.1.6. A ring is an algebra (R,+,· ,−,0,1) of type (2,2,1,0,0) in which the following

identities are true:

1. (R,+,−,0) is an abelian group

2. a · (b · c) = (a ·b) · c
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3. a · (b+ c) = (a ·b)+(a · c)

Example 1.1.7. A distributive lattice is an algebra (L,∨,∧) of type (2,2) in which the follow-

ing identities are true:

1. a∨b = b∨a and a∧b = b∧a

2. a∨ (b∨ c) = (a∨b)∨ c and a∧ (b∧ c) = (a∧b)∧ c

3. a∧ (a∨b) = a = a∨ (a∧b)

4. a∧ (b∨ c) = (a∧b)∨ (a∧ c) or a∨ (b∧ c) = (a∨b)∧ (a∨ c)

for all a,b,c ∈ L. Moreover, a bounded distributive lattice L is an algebra (L,∨,∧,0,1) of type

(2,2,0,0) such that:

1. (L,∨,∧) is a distributive lattice.

2. 0∧a = 0 and a∧1 = a

for all a ∈ L.

Example 1.1.8. A Boolean algebra is an algebra (B,∨,∧,′ ,0,1) of type (2,2,1,0,0) satisfying

the following identities:

1. (B,∨,∧,0,1) is a bounded distributive lattice

2. a∧a′ = 0 and a∨a′ = 1 for all a ∈ B.

Boolean algebras were of course discovered as a result of Boole’s investigations into the

underlying laws of correct reasoning. Since then they have become vital to electrical engi-

neering, computer science, axiomatic set theory, model theory, and other areas of science and

mathematics.

Example 1.1.9. A Heyting algebra is an algebra (H,∨,∧,→,0,1) with three binary and two

nullary operations such that:

1. (L,∨,∧,0,1) is a bounded distributive lattice
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2. a→ a = 1

3. (a→ b)∧b = b and a∧ (a→ b) = a∧b

4. a→ (b∧ c) = (a→ b)∧ (a→ c) and (a∨b)→ c = (a→ c)∧ (b→ c) for all a,b,c ∈ H.

Heyting algebras were introduced by Birkhoff under a different name, Brouwerian algebras,

and with a different notation (a : b for a→ b).

Example 1.1.10. An implication algebra is a groupoid (A,· ) satisfying the identities

1. (xy)x = x;

2. (xy)y = (yx)x and

3. x(yz) = y(xz)

Implication algebras play an important role in logic.

1.1.2 Homomorphisms and Congruence Relations

Definition 1.1.11. Let A and B be algebras of the same type F. A mapping h : A→ B is called

a homomorphism from A to B if:

h( f A(a1,a2, ...,an)) = f B(h(a1),h(a2), ...,h(an))

for each n−ary operation f in F and each sequence a1,a2, ...,an from A.

Definition 1.1.12. A homomorphism h : A→ B is said to be:

1. a monomorphism, if it is injective (or one-one).

2. an epimorphism, if it is surjective (or onto).

3. an isomorphism, if it is bijective (or a one-to-one correspondence).

We say A is isomorphic to B, written as A∼= B if there is an isomorophism from A onto B.
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Note that, a monomorphism h : A→ B may sometimes be called an embedding of A into B

and in this case we say A can be embedded into B.

Definition 1.1.13. Let A and B be two algebras of the same type. Then B is a subalgebra of A if

B⊆ A and every fundamental operation of B is the restriction of the corresponding operation of

A, i.e., for each function symbol f , f B is f A restricted to B; we write simply B≤ A to say that B

is a subalgebra of A.

Definition 1.1.14. A binary relation θ on A is an equivalence relation on A if, for any elements

a,b,c ∈ A, it satisfies:

1. (a,a) ∈ θ (reflexivity)

2. (a,b) ∈ θ ⇒ (b,a) ∈ θ (symmetry)

3. (a,b),(b,c) ∈ θ ⇒ (a,c) ∈ θ (transitivity)

Sometimes we may write aθb to say that (a,b) ∈ θ . The set of all equivalence relations on A is

denoted by Eq(A), and it is observed that Eq(A) is a complete lattice together with the inclusion

order.

Definition 1.1.15. Let A be an algebra of type F. A binary relation θ on A is called an admissible

relation if θ satisfies the following compatibility property: for each n−ary f ∈ F with n > 0 and

a1, ...,an,b1, ...,bn ∈ A, if (ai,bi) ∈ θ for i = 1, ...,n, then ( f A(a1, ...,an), f A(b1, ...,bn)) ∈ θ

Definition 1.1.16. Let A be an algebra of type F. By a congruence relation on A we mean

an admissible equivalence relation on A. The set of congruence relations on A is denoted by

Con(A) and it is a complete lattice together with the usual inclusion ordering ⊆.

Definition 1.1.17. Let X be a set of (distinct) objects called variables. Let F be a type of

algebras. The set T (X) of terms of type F over X is the smallest set such that:

1. X ∪F0 ⊆ T (X)

2. If p1, p2, ..., pn ∈ T (X) and f ∈ Fn, then the "string" f (p1, p2, ..., pn) ∈ T (X).
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For n ∈ Z+, we denote by Tn the set of all n−ary terms over A. For a binary function symbol "."

we usually prefer to write p1.p2 to .(p1, p2). For pinT (X) we often write p as p(x1, ...,xn) to

indicate that the variables occurring in p are among x1, ...,xn. A term p is n-ary if the number

of variables appearing explicitly in p is ≤ n.

Example 1.1.18. Let F consists of a single binary operation symbol · and let X = {x,y,z}. Then

x,y,z,x · y,y · z,x · (y · z), and (x · y) · z

are some of the terms over X .

Definition 1.1.19. Given a term p(x1, ...,xn) of type F over some set X and given an algebra A

of type F we define a mapping pA : An→ A as follows:

1. If p is a variable xi, then pA(a1, ..,an) = ai for a1, ..,an ∈ A, i.e., pA is the ith projection

map.

2. If p is of the form f (p1(x1, ...,xn), ..., pk(x1, ...,xn)) where f ∈ Fk, then

pA(a1, ..,an) = f A(p1(a1, ..,an), ..., pk(a1, ..,an))

In particular, if p = f ∈ F, then pA = f A. We call pA the term function corresponding to

the term p or in the older literature, derived operations.

Theorem 1.1.20. For any algebras A and B of the same type F we have the following

1. Let p be an n−ary term of type F, θ ∈ Con(A), and suppose (ai,bi) ∈ θ for 1 ≤ i ≤ n.

Then, (pA(a1, ..,an), pA(b1, ..,bn))) ∈ θ

2. If p is an n−ary term of type F, and h : A→ B a homomorphism, then

h(pA(a1, ..,an)) = pB(h(a1), ...,h(an))

for all a1, ..,an ∈ A.
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Definition 1.1.21. The polynomial operations of A constitute the smallest set that is closed

under composition and contains the basic operations of A, the projection operations, and the

constant nullary operations on A.

Definition 1.1.22. For each polynomial operation f (x1, ...,xn) of A, there exist an (m+n)−ary

term operation p(y1, ...,ym,x1, ...,xn) and elements a1, ...,am ∈ A, such that

f (x1, ...,xn) = p(a1, ...,am,x1, ...,xn)

for all x1, ...,xn ∈ A. Specifically, if f (x) is a unary polynomial over A, then there exists an

(m+1)−ary term p(y1, ...,ym,x) and elements a1, ...,am ∈ A, such that

f (x) = p(a1, ...,am,x)

The expression algebraic function is often used in the old literature to refer to what we call a

polynomial operation. For n ∈ Z+, the set of all n−ary polynomials over A is denoted by Pn(A).

Suppose that K is a class of algebras of a given type F and A ∈K . Let p = p(x1, ...,xn)

and t = t(y1, ...,yn) be terms of type F. The formula p ≈ t is called an equation. We write

A |= p ≈ t to say that pA = tA, i.e., pA(a1, ...,an) = tA(a1, ...,an) for all a1, ...,an ∈ A. When

A |= p≈ t holds, we say that p≈ t is an identity (or an equation) of A. K |= p≈ t means that

A |= p≈ t for all A ∈K . If Σ is a set of equations of type F, then

Mod(Σ) = {A ∈Mod(F) : A |= ε for all ε ∈ Σ}

Classes of the form Mod(Σ), where Σ is a set of equations of F are called varieties (or equational

classes). By a theorem of G. Birkhoff [43], a class K ⊆Mod(F) is a variety if and only if K

is closed under the formation of homomorphic images, subalgebras and products. The smallest

variety containing a class K ⊆Mod(F) is identical with HSP(K ), where H, S and P are the

operators which close classes under homomorphic images, subalgebras and direct products, re-

spectively. We interpret these operators in such a way that the closure of K under any of them

contains all isomorphic copies of its members.
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1.1.3 Ideals in Universal Algebras

The results presented in this subsection are taken from [79, 149]. For a positive integer n, we

write −→a to denote the n−tuple 〈a1,a2, ...,an〉 ∈ An.

Definition 1.1.23. A term p(−→x ,−→y ) is said to be an ideal term in−→y if and only if p(a1, ...,an,0,0, ...0)=

0 for all a1, ...,an ∈ A.

Example 1.1.24. Let (G,· ,−1 ,e) be a group. Then

1. p(y) = y−1 is an ideal term in y

2. p(y1,y2) = y1.y2 is an ideal term in −→y = (y1,y2).

3. p(x,y) = xyx−1 is an ideal term in y.

And all other ideal terms in G are the compositions of these terms only.

Example 1.1.25. Let (R,+,· ,−,0) be a ring. Then

1. p(y) =−y is an ideal term in y

2. p(y1,y2) = y1 + y2 is an ideal term in −→y = (y1,y2).

3. p(x,y) = xy is an ideal term in y.

And all other ideal terms in R are the compositions of these terms only.

Example 1.1.26. Let (L,∨,∧,0,1) be a distributive lattice with zero. Then

1. p(y1,y2) = y1∨ y2 is an ideal term in −→y = (y1,y2).

2. p(x,y) = x∧ y is an ideal term in y.

And all other ideal terms in L are the compositions of these terms only.

Definition 1.1.27. A nonempty subset I of A is called an ideal of A if and only if for each

a1, ...,an ∈ A,b1, ...,bm ∈ I and any ideal term p(−→x ,−→y ) in −→y , p(a1, ...,an,b1, ...,bm) ∈ I.
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We denote the class of all ideals of A, by I(A). It is easy to check that the intersection of any

family of ideas of A is an ideal. So, for a subset S⊆ A, always there exists a smallest ideal of A

containing S which we call it the ideal of A generated by S and it is denoted by 〈S〉. Note that

x ∈ 〈S〉 if and only if x = p(a1, ...an,b1, ...,bm) for some a1, ...an ∈ A, and b1, ...,bm ∈ S where

p(−→x ,−→y ) is an (n+m)−ary ideal term in −→y . If S = {a}, then we write 〈a〉 instead of 〈S〉. In

this case, x ∈ 〈a〉 if and only if x = p(a1, ...an,a) for some a1, ...an ∈ A, where p(−→x ,−→y ) is an

(n+1)−ary ideal term in −→y .

A nonzero element u in A is said to be a formal unit, if A = 〈u〉, i.e., A is generated by u as an

ideal. A cyclic group, a ring with unity, a bounded lattice and an almost distributive lattice with

maximal elements are examples of an algebra having a formal unit. A formal unit (if it exists)

in an algebra is not necessarily unique (e.g., cyclic groups and almost distributive lattices may

have several formal units).

Definition 1.1.28. A class K of algebras is called an ideal determined if every ideal I is the

zero congruence class of a unique congruence relation denoted by Iδ . In this case the map

I 7→ Iδ defines an isomorphism between the lattice of ideals and congruences on A.

Definition 1.1.29. A term t(−→x ,−→y ,−→z ) is said to be a commutator term in −→y ,−→z if and only if

it is an ideal term in −→y and an ideal term in −→z .

Definition 1.1.30. For each I,J ∈ I(A), their commutator [I,J] is defined by:

[I,J] = {t(−→a ,
−→
i ,
−→
j ) :−→a ∈ An,

−→
i ∈ Im and

−→
j ∈ Jk, t(−→x ,−→y ,−→z ) is a commutator term in −→y ,−→z }

The following theorem gives a characterization for the commutator of ideals using the gen-

eral commutator of congruences in ideal determined varieties.

Theorem 1.1.31. In an ideal determined variety, the commutator [I,J] of ideals I and J is the

zero congruence class of the commutator congruence [Iδ ,Jδ ].

For subsets H,G of A, [H,G] denotes the product [〈H〉,〈G〉]. In particular, for a,b ∈ A,

[〈a〉,〈b〉] is denoted by [a,b]. A proper ideal P of A is called prime (respectively semi-prime) if
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and only if for all I,J ∈ I(A):

[I,J]⊆ P⇒ I ⊆ P or J ⊆ P (respectively [I, I]⊆ P⇒ I ⊆ P)

It is observed that, for a proper ideal P of A to be prime (respectively semi-prime) it is necessary

and sufficient that:

[a,b]⊆ P⇒ a ∈ P or b ∈ P (respectively [a,a]⊆ P⇒ a ∈ P)

for all a,b ∈ A.

Definition 1.1.32. A nonempty subset M of A is said to be an m−system (respectively an

n−system) of A if for any a,b ∈M, it holds that M∩ [a,b] 6= /0 (respectively M∩ [a,a] 6= /0).

1.2 L−Fuzzy Sets

This section is concerned to present the basic definitions and results on L−fuzzy sets. We begin

by defining Brouwerian lattices.

1.2.1 Complete Lattices

Definition 1.2.1. A partially ordered set (poset) is a non-empty set P together with a binary

relation ≤ which satisfies for all x,y,z ∈ P the following conditions:

(P1) x≤ x (Reflexive)

(P2) If x≤ y and y≤ x, then x = y (Antisymmetry)

(P3) If x≤ y and y≤ z, then x≤ z (Transitivity)

An upper bound of a subset A of a poset P is an element x ∈ P such that a≤ x for all a ∈ A.

The least upper bound (or suprimum) of A is an upper bound x of A for which x≤ y for all upper

bounds y of A. The notion of a lower bound and a greatest lower bond (or infimum) of A are
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defined dually. It is clear from (P2) that a subset of a poset can have at most one suprimum and

one infimum.

Definition 1.2.2. A lattice is a poset L in which any two elements have infimum and supremum.

In this case, the infimum and supremum of x,y ∈ L are denoted by x∧ y and x∨ y respectively.

Remark. Lattices can also be defined as an algebra with two binary operations as given in

Definition 1.1.7.

Definition 1.2.3. A lattice L is said to be complete if each of its subset S has both infimum and

supremum in L.

Definition 1.2.4. Let L be a lattice. An element a∈ L is said to be compact if for a subset A⊆ L

for which ∨A exists, a ≤ ∨A implies a ≤ ∨F for some finite subset F of A. L is compactly

generated if and only if every element in L is the supremum of a set of compact elements in L.

A lattice L is called algebraic if it is complete and compactly generated.

Definition 1.2.5. By a complete Brouwerian lattice, we mean a complete lattice L satisfying the

infinite meet distributive law; i.e.,

α ∧ (
∨

β∈M

β ) =
∨

β∈M

(α ∧β )

for all α ∈ L and any M ⊆ L.

From now onwards L = (L,∧,∨,0,1) is a complete Brouwerian lattice; i.e., L is a complete

lattice satisfying the infinite meet distributive law. For more detail on lattices we refer to [42, 77]

1.2.2 L-Fuzzy Sets

The results in this subsection are collected from [75, 111, 126].

Definition 1.2.6. By an L− fuzzy subset of a nonempty set X , we mean a function µ from X

into L, i.e, µ : X → L. In this case µ is called the membership function and the value µ(x) is

thought of as the degree of membership of the element x to the L−fuzzy subset of X defined by

the membership function µ . The set of all L−fuzzy subsets of X is denoted by LX .
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For the sake of convenience, we drop the prefix L− and simply write fuzzy subset instead

of L−fuzzy subset. We use lower case Greece letters µ,ν ,η ... to denote fuzzy subsets.

Definition 1.2.7. Let µ ∈ LX . Then the set Img(µ) = {µ(x) : x ∈ X} is called the image of

µ and it may sometimes be denoted by µ(X). A fuzzy subset µ of X is called normalized or

unitary if 1 ∈ Img(µ).

Definition 1.2.8. Let µ ∈ LX . Then µ is said to have the sup property if for every A⊆ X there

exists a ∈ A such that

µ(a) =
∨
{µ(x) : x ∈ A}

The class LX is a complete lattice with the point-wise ordering induced by the ordering of L.

Using this ordering, the notions of inclusion, equality, strict inclusion, union, intersection and

complement of fuzzy subsets are defined in the following way.

Definition 1.2.9. For µ,ν ∈ LX :

1. µ ≤ ν (inclusion) if and only if µ(x)≤ ν(x) for all x ∈ X .

2. µ = ν (equality) if and only if µ ≤ ν and ν ≤ µ .

3. µ < ν (strict inclusion) if and only if µ ≤ ν and µ(x) 6= ν(x) for at least one x ∈ X .

4. µ ∩ν (intersection) is defined as

(µ ∩ν)(x) = µ(x)∧ν(x) for all x ∈ X

where ∧ is the infimum of elements in L. More generally, if {µi}i∈∆ is a family of fuzzy

subsets of X , then
⋂

i∈∆ µi (the arbitrary intersection) is a fuzzy subset of X defined by:

⋂
i∈∆

µi(x) =
∧
i∈∆

µi(x) for all x ∈ X

5. µ ∪ν (union) is defined as

(µ ∪ν)(x) = µ(x)∨ν(x) for all x ∈ X
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where ∨ is the supremum of elements in L. More generally, if {µi}i∈∆ is a family of fuzzy

subsets of X , then
⋃

i∈∆ µi (the arbitrary union) is a fuzzy subset of X defined by:

⋃
i∈∆

µi(x) =
∨
i∈∆

µi(x) for all x ∈ X

Definition 1.2.10. Let µ ∈ LX . For α ∈ L define µα as follows

µα = {x ∈ X : µ(x)≥ α}

µα is called the α−level set (the α−cut) of µ .

Every fuzzy subset λ can be describe as follows. The theorem is taken from [93].

Theorem 1.2.11. For any fuzzy subset λ of A and each x ∈ A, we have

λ (x) =
∨
{α ∈ L : x ∈ λα}

Definition 1.2.12. For each H ⊆ X , and α ∈ L we define a fuzzy subset αH of X as follows:

αH(x) =


1 if x ∈ H

α otherwise

In particular 1X (resp. 0X ) denotes the fuzzy set

1X(y) = 1( resp. 0X(y) = 0) for all y ∈ X

and we call it the improper (resp. the empty) fuzzy subset of X .

Definition 1.2.13. [156] For each x ∈ X and 0 6= α ∈ L, the fuzzy subset xα of X given by:

xα(z) =


α if z = x

0 otherwise
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is called an L−fuzzy point (or a fuzzy point for short) of X . In this case x is called the support

of xα and α its value. For a fuzzy subset µ of X and a fuzzy point xα of X , we write xα ∈ µ

whenever µ(x)≥ α .

We now turn our attention to defining mappings between fuzzy subsets of two sets. So let X

and Y be two non-empty sets and let f be a mapping from X to Y . Then f extends to a mapping

from LX to LY in the following way. For each µ ∈ LX , f (µ) ∈ LY is defined as:

f (µ)(y) =


0 if f−1(y) = /0

∨
{µ(x) : x ∈ f−1(y)} otherwise

for all y ∈ Y , where f−1(y) denotes f−1({y}). f (µ) is referred to as the image of the fuzzy set

µ under f . Further, for each ν ∈ LY , f−1(ν) ∈ LX is defined as:

f−1(ν)(x) = ν( f (x))

for all x ∈ X . f−1(ν) is the pre-image (or the inverse image) of ν under f .

Definition 1.2.14. Let f : X→Y be a mapping. A fuzzy subset µ of X is said to be f−invariant

if for each x,y ∈ Y , f (x) = f (y) implies µ(x) = µ(y).

1.2.3 Closure Systems in Fuzzy Sets

The results in this subsection are due to Swamy et.al [144] and V. Murali [133] . Let C be a

nonempty collection of fuzzy subsets of a nonempty set X .

Definition 1.2.15. C is said to be a closure system in LX if it is closed under arbitrary intersec-

tion of fuzzy sets, i.e., if for any subcollection D of fuzzy subsets of X in C it holds that

∧
µ∈D

µ ∈ C

A closure system of fuzzy sets is also known as the "Moor family" of fuzzy sets.
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Remark. If C is a closure system in LX , then it contains the fuzzy subset 1X of X . This

is because the fuzzy set 1X can be expressed as the infimum of an empty collection of fuzzy

subsets of X .

Theorem 1.2.16. If C is a closure fuzzy set system in LX , then (C ,≤) forms a complete lattice,

where ≤ is the inclusion ordering of fuzzy sets.

Definition 1.2.17. A nonempty collection C of fuzzy subsets of X is called inductive if every

nonempty chain in C has a supremum in C .

Definition 1.2.18. An inductive closure fuzzy set system C in LX is called an algebraic closure

fuzzy set system.
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Chapter 2

L−Fuzzy Ideals

Introduction

The concept of a ring ideal, a lattice ideal and a normal subgroup were extended to the notion

of an ideal in a universal algebra having a constant 0 by A. Ursini [150]. However, the origin of

this concept can be found in papers by R. Magari [116], E. Beutler ([38, 39, 40]), K. Fichtner

[72], H. J. Hoehnke [81] and G. Matthiessen [124]. A remarkable development of the theory

started with papers by A. Ursini ([149, 150, 151]), by P. Agliano ([9, 10, 11, 12, 13]), by H. P.

Gumm and A. Ursini [79] and by G. Janelidze [84].

Loosely speaking, an ideal of an algebra with a constant 0 is a nonempty set which is

−→y −closed under each ideal term t(−→x ,−→y ) in −→y , where by an ideal term in −→y we mean a

term t(−→x ,−→y ) such that

t(a1, ...,an,0,0, ...,0) = 0

for all a1, ...,an ∈ A.

In this chapter, we introduce the notion of fuzzy ideals in universal algebras having a con-

stant 0. This subsumes the well know structures: fuzzy normal subgroups in groups, fuzzy

ideals in rings, fuzzy submodule in modules, fuzzy subspaces in vector spaces, fuzzy ideals

in lattices with least element 0, etc. Mainly, we give several characterization for fuzzy ide-

als generated by fuzzy sets and show that the class of fuzzy ideals in universal algebras forms
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an algebraic closure fuzzy set system. Fuzzy ideals of fuzzy subalgebras are also defined and

characterized in detail.

Throughout this thesis, unless and otherwise it is mentioned, A ∈K , where K is a class of

algebras of a fixed type F and we assume that there is an equationaly definable constant in all

algebras of K denoted by 0.

2.1 Fuzzy Ideals: Definition and Examples

The following concept of a −→y −closed subset of an algebra was introduced recently by R.

Bělohlávek [35].

Definition 2.1.1. A subset H of A is said to be −→y closed under the (n+m)−ary term operation

p(−→x ,−→y ) if for all a1, ...,an,b1, ...,bm ∈ A,

b1, ...,bm ∈ H⇒ p(a1, ...,an,b1, ...,bm) ∈ H

Analogous to this concept, we define the following in a fuzzy setting.

Definition 2.1.2. A fuzzy subset µ of A is said to be −→y closed under the (n+m)−ary term

operation p(−→x ,−→y ) if

µ(p(a1, ...,an,b1, ...,bm))≥ µ(b1)∧ ...∧µ(bm)

for all a1, ...,an,b1, ...,bm ∈ A.

We use this concept to define fuzzy ideals.

Definition 2.1.3. An L−fuzzy subset µ of A is said to be an L−fuzzy ideal of A (or shortly a

fuzzy ideal of A) if and only if the following conditions are satisfied:

1. µ(0) = 1 and
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2. µ is−→y closed under each ideal term p(−→x ,−→y ) in−→y , i.e., for each (n+m)−ary ideal term

p(−→x ,−→y ) in −→y and each a1, ...,an,b1, ...,bm ∈ A, it holds that

µ(p(a1, ...,an,b1, ...,bm))≥ µ(b1)∧ ...∧µ(bm)

We denote by FI(A), the set of all fuzzy ideals of A. It follows immediately from the definition

that both 10 and 1A are the smallest and the largest fuzzy ideals of A respectively.

Remark. The condition (1) in the definition is just to put a restriction µ be nonempty in the

fuzzy sense. In fact, one may think that, to be nonempty, it is enough to assume µ(0)> 1. But

for our purpose we chose the value of µ(0) to be 1, i.e., the element 0 certainly belongs to the

fuzzy ideal µ .

Example 2.1.4. Let (G,· ,−1 ,e) be a group. A fuzzy subset µ of G is a fuzzy ideal of G if and

only if:

1. µ(e) = 1

2. µ(xy)≥ µ(x)∧µ(y)

3. µ(y−1)≥ µ(y)

4. µ(xyx−1)≥ µ(y)

According to [137], µ is a fuzzy normal subgroup of G. Rosenfield [136], in his definition does

not assume the condition µ(e) = 1.

Example 2.1.5. Let (R,+,· ,−,0,1) be a ring. A fuzzy subset µ of R is a fuzzy ideal of R if and

only if:

1. µ(0) = 1

2. µ(x+ y)≥ µ(x)∧µ(y)

3. µ(−y)≥ µ(y)
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4. µ(xy)≥ µ(x)∨µ(y)

These properties coincide with that of [137]. In other words µ is a normalized fuzzy ideal of R

in the sense of [113].

Example 2.1.6. Let (L,∨,∧,0) be a distributive lattice with least element 0. A fuzzy subset µ

of L is a fuzzy ideal of L if and only if:

1. µ(0) = 1

2. µ(x∨ y)≥ µ(x)∧µ(y)

3. µ(x∧ y)≥ µ(x)∨µ(y)

In other words, µ is fuzzy ideal of L in the sense of [146].

2.2 Some Characterizations

Definition 2.2.1. Let p(−→x ) be an n−ary term operation on A. For each fuzzy subsets η1, ...,ηn

of A define

p : LA× ...×LA→ LA

p(η1, ...,ηn) 7→ η

where, η(x) =
∨
{η1(x1)∧ ...∧ ηn(xn) : p(x1, ...,xn) = x}. Supremum being taken over all

n−tuples (x1, ...,xn) ∈ An for which p(x1, ...,xn) = x.

Theorem 2.2.2. A fuzzy subset µ of A is a fuzzy ideal of A if and only if

1. µ(0) = 1, and

2. For each fuzzy subsets η1, ...,ηn of A, and each (n+m)−ary ideal term p(−→x ,−→y ) in −→y it

holds that: p(η1, ...,ηn,µ,µ, ...,µ)≤ µ
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Proof. Suppose that µ is a fuzzy ideal of A. Let p(−→x ,−→y ) be an (n+m)−ary ideal term in −→y

and η1, ...,ηn be arbitrary fuzzy subsets of A. For simplicity, let us put η = p(η1, ...,ηn,µ,µ, ...,µ).

For x∈A, if there are no (n+m)−tuples (x1, ...,xn,y1, ...,ym)∈An+m such that x= p(x1, ...,xn,y1, ...,ym),

then η(x) = 0 and hence η(x) ≤ µ(x). Assume that there are such (n + m)−tuples. Let

(a1, ...,an,b1, ...,bm) ∈ An+m be an (n+m)−tuple such that x = p(a1, ...,an,b1, ...,bm). Since

p(−→x ,−→y ) is an ideal term in −→y and µ is a fuzzy ideal we get:

µ(x) ≥ µ(b1)∧ ...∧µ(bm)

≥ η1(a1)∧ ...∧ηn(an)∧µ(b1)∧ ...∧µ(bm)

This implies that

µ(x)≥
∨
{η1(x1)∧ ...∧ηn(xn)∧µ(y1)∧ ...µ(ym) : p(x1, ...,xn,y1, ...,ym) = x}= η(x)

Thus, η ≤ µ . Conversely suppose that the above two conditions are satisfied. We show that µ is

−→y closed under each (n+m)−ary ideal term p(−→x ,−→y ) in −→y . Let p(−→x ,−→y ) be an (n+m)−ary

ideal term in −→y , and let a1, ...,an,b1, ...,bm ∈ A. Put x = p(a1, ...,an,b1, ...,bm). For each

i,1≤ i≤ n define fuzzy subsets ηi of A by:

ηi(z) =


1 if z = ai

0 otherwise

for all z ∈ A. Again put η = p(η1, ...,ηn,µ,µ, ...,µ). By condition (2), we have η(x) ≤ µ(x),

which implies that µ(x) ≥ µ(b1)∧ ...∧ µ(bm). Therefore µ is a fuzzy ideal of A. Hence

proved.

The following theorem gives an equivalent condition for fuzzy subsets to be a fuzzy ideal in

terms of their level sets.

Theorem 2.2.3. A fuzzy subset µ of A is a fuzzy ideal of A if and only if µα is an ideal of A for

all α ∈ L.
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Proof. Suppose that µ is a fuzzy ideal of A. For any α ∈ L, let a1, ...,an ∈ A and b1, ...,bm ∈ µα .

Then, µ(bi) ≥ α for all 1 ≤ i ≤ m. This implies µ(b1)∧ ...∧ µ(bm) ≥ α . Let p(−→x ,−→y ) be an

ideal term in −→y . Since µ is given to be a fuzzy ideal of A, we have

µ(p(a1, ...,an,b1, ...,bm))≥ µ(b1)∧ ...∧µ(bm)≥ α

So, we get p(a1, ...,an,b1, ...,bm) ∈ µα and hence each µα is an ideal of A. Conversely, suppose

that the level subset µα is an ideal of A for all α ∈ L. In particular µα is an ideal for α = 1. So

that µ(0) = 1. Let p(−→x ,−→y ) be an ideal term in−→y and a1, ...,an,b1, , , .bm ∈ A. Put α = µ(b1)∧

...∧µ(bm). Then b1, ...,bm ∈ µα . Since each µα is an ideal of A, we get p(a1, ...,an,b1, ...,bm)∈

µα . So that

µ(p(a1, ...,an,b1, ...,bm))≥ α = µ(b1)∧ ...∧µ(bm)

Therefore µ is a fuzzy ideal of A.

The previous theorem confirms that a fuzzy ideal of A is precisely a fuzzy L-subset of A, in

the sense of [144]; where L is the set of all ideals of A.

Lemma 2.2.4. A subset I of A is an ideal of A if and only if αI is a fuzzy ideal of A, for any

α ∈ L−{1}, where αI is as given in Definition 1.2.12.

Proof. Suppose that I is an ideal of A and let α ∈ L−{1}. Then 0 ∈ I and hence αI(0) = 1. Let

a1, ...,an,b1, ...,bm ∈ A and p(−→x ,−→y ) be an ideal term in −→y . If αI(b j) = α for some j, then

αI(b1)∧ ...∧αI(bm) = α ≤ αI(p(a1, ...,an,b1, ...,bm))

Assume that αI(b j) 6= α for all 1≤ j ≤m. Then b1, ...,bm ∈ I. By our assumption, I is an ideal

of A. So, p(a1, ...,an,b1, ...,bm) ∈ I and hence

αI(p(a1, ...,an,b1, ...,bm)) = 1≥ αI(b1)∧ ...∧αI(bm)

Thus αI is a fuzzy ideal of A. Conversely, suppose that αI is a fuzzy ideal of A for some

α ∈ L−{1}. Then αI(0) = 1 and hence 0 ∈ I; that is, I is nonempty. Also, let a1, ...,an ∈ A,

b1, ...,bm ∈ I and p(−→x ,−→y ) be an ideal term in −→y . Then αI(b j) = 1 for all 1 ≤ j ≤ m, which

gives, αI(b1)∧ ...∧αI(bm) = 1. Being αI a fuzzy ideal, we obtain αI(p(a1, ...,an,b1, ...,bm)) =
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1. Equivalently, p(a1, ...,an,b1, ...,bm) ∈ I and hence I is an ideal of A. This completes the

proof.

Corollary 2.2.5. A subset I of A is an ideal of A if and only if its characteristic mapping χI is a

fuzzy ideal of A.

Lemma 2.2.6. Let µ be a fuzzy ideal of A. If A has a unit element say u, then µ(u)≤ µ(x) for

all x ∈ A.

Lemma 2.2.7. Let µ be a fuzzy ideal of A and x ∈ A. Then we have the following:

1. For each a ∈ A, if x ∈ 〈a〉, then µ(x)≥ µ(a).

2. For any a1, ...,am ∈ A, if x ∈ 〈{a1, ...,am}〉, then µ(x) ≥ µ(a1)∧ ...∧ µ(am). More gen-

erally, for any nonempty subset S of A, if x ∈ 〈S〉, then there exist a1, ...,am ∈ S such that

µ(x)≥ µ(a1)∧ ...∧µ(am).

Proof. 1. Suppose that x ∈ 〈a〉. Then x = p(a1, ...,an,a) for some a1, ...,an ∈ A and an

(n+1)−ary ideal term p(−→x ,y) in y. Being µ a fuzzy ideal, we get

µ(x) = µ(p(a1, ...,an,a))≥ µ(a)

2. Suppose that x ∈ 〈{a1, ...,am}〉. Then, x = p(b1, ...,bn,a1, ...,am) for some b1, ...,bn ∈ A

and some ideal term p(−→x ,−→y ) in −→y . So we have the following:

µ(x) = µ(p(b1, ...,bn,a1, ...,am))≥ µ(a1)∧ ...∧µ(am)

Hence proved.

Theorem 2.2.8. A fuzzy subset µ of A is a fuzzy ideal of A if and only if for each m ≥ 0 and

each b1,b2, ...,bm ∈ A, if x ∈ 〈{b1, ...,bm}〉, then µ(x)≥ µ(b1)∧ ...∧µ(bm).
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Proof. One part of this theorem is proved in Lemma 6.1.6. So we proceed to the converse part.

Assume the given condition is satisfied for µ . Let us put Sm = {b1, ...,bm}. If we take m = 0,

then Sm = /0 and it is known that 〈 /0〉= {0}. So by our assumption, we have

µ(0)≥
∧
b∈ /0

µ(b) = 1

Thus µ(0) = 1. Let a1, ...,an,b1, ...,bm ∈ A and p(−→x ,−→y ) be an ideal term in −→y . If we put

Sm = {b1, ...,bm}, then one can observe that p(a1, ...,an,b1, ...,bm) ∈ 〈Sm〉. It follows from our

assumption that µ(p(a1, ...,an,b1, ...,bm)) ≥ µ(b1)∧ ...∧ µ(bm). Therefore µ is a fuzzy ideal

of A. Hence proved.

In the following theorem, we give a more general setting to characterize fuzzy ideals.

Theorem 2.2.9. A fuzzy subset µ of A is a fuzzy ideal of A if and only if for any subset S of A

µ(a)≥
∧
x∈S

µ(x) for all a ∈ 〈S〉

Proof. Suppose that µ is a fuzzy ideal of A. If S = /0, then 〈S〉 = (0) and the condition holds

trivially. Assume that S is nonempty and let a ∈ 〈S〉. Then a = t(a1, ...,an,b1, ...,bm) for some

b1, ...,bm ∈ S, a1, ...,an ∈A and some ideal term t(−→x ,−→y ) in−→y . Since µ is fuzzy ideal, it follows

that

µ(a)≥ µ(b1)∧ ...∧µ(bm)≥
∧
b∈S

µ(b)

The converse part follows from the above Theorem 6.1.7 by assuming the condition for finite

sets.

2.3 Fuzzy Ideals Generated by a Fuzzy Set

In this section, we characterize fuzzy ideals generated by fuzzy sets in different ways.

Theorem 2.3.1. If {µi}i∈∆ is a family of fuzzy ideals of A, then ∩i∈∆µi is a fuzzy ideal of A.
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Proof. Let us put µ =
⋂

i∈∆ µi; i.e., for each x ∈ A

µ(x) =
∧
i∈∆

µi(x)

for all x ∈ A. It is clear that µ(0) = 1. Let a1, ...,an,b1, ...,bm ∈ A, and p(−→x ,−→y ) be an an ideal

term in −→y . Consider the following:

µ(p(a1, ...,an,b1, ...,bm)) =
∧
i∈∆

µi(p(a1, ...,an,b1, ...,bm))

≥
∧
i∈∆

(µi(b1)∧ ...∧µi(bm))

=

(∧
i∈∆

µi(b1)

)
∧ ...∧

(∧
i∈∆

µi(bm)

)
= µ(b1)∧ ...∧µ(bm)

Thus µ =
⋂

i∈∆ µi is a fuzzy ideal.

This theorem confirms that, for any fuzzy subset λ of A always there exists a smallest fuzzy

ideal containing λ which we call it the fuzzy ideal of A generated by λ and is denoted by 〈λ 〉.

Lemma 2.3.2. Let µ and η be fuzzy subsets of A. Then

1. µ ∈ FI(A) if and only if 〈µ〉= µ

2. µ ≤ η ⇒ 〈µ〉 ≤ 〈η〉

It can be deduced from this lemma that the map µ 7→ 〈µ〉 forms a closure operator on the

lattice LA of fuzzy subsets of A, and fuzzy ideals of A are those closed elements of LA with

respect to this closure operator.

Lemma 2.3.3. For any subset S of A and each α ∈ L−{1}, 〈αS〉= α〈S〉.

Proof. We show that α〈S〉 is the smallest fuzzy ideal of A containing αS. Since 〈S〉 is an ideal

of A, it follows from Lemma 2.2.4 that α〈S〉 is a fuzzy ideal of A. It is also clear that αS ≤ α〈S〉.

Suppose λ is a fuzzy ideal of A such that αS ≤ λ . Then λ (s) = 1 for all s ∈ S. More generally,
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λ (z) ≥ α for all z ∈ A. Let z be any element in A. If z /∈ 〈S〉, then α〈S〉(z) = α ≤ λ (z). Also,

if z ∈ 〈S〉, then z = p(a1, ...,an,s1, ...,sm) for some a1, ...,an ∈ A, s1, ...,sm ∈ S and some ideal

term p(−→x ,−→y ) in −→y . Now consider:

λ (z) = λ (p(a1, ...,an,s1, ...,sm))≥ λ (s1)∧ ...∧λ (sm) = 1

So that α〈S〉 ≤ λ . Therefore α〈S〉 = 〈αS〉.

Corollary 2.3.4. Let S be any subset of A and χS its characteristic function. Then 〈χS〉= χ〈S〉.

In the following theorem, we characterize a fuzzy ideal generated by a fuzzy set in terms of

its level sets.

Theorem 2.3.5. For a fuzzy subset λ of A, let λ̂ be a fuzzy subset of A defined by:

λ̂ (x) =
∨
{α ∈ L : x ∈ 〈λα〉}

for all x ∈ A. Then λ̂ = 〈λ 〉.

Proof. We show that λ̂ is the smallest fuzzy ideal of A containing λ . Let us first show that λ̂ is

a fuzzy ideal.

1. λ̂ (0) =
∨
{α ∈ L : 0 ∈ 〈λα〉}= 1

2. Let −→a ∈ An,
−→
b ∈ Am and p(−→x ,−→y ) be an ideal term in −→y . Then consider:

(λ̂ )m(
−→
b ) =

m∧
i=1

λ̂ (bi)

=
m∧

i=1

{
∨
{αi ∈ L : bi ∈ 〈λαi〉}}

=
∨
{
∧
{αi ∈ L : 1≤ i≤ m} : bi ∈ 〈λαi〉}

If we put β =
∧
{αi ∈ L : 1 ≤ i ≤ m}, where bi ∈ 〈λαi〉, then we get λαi ⊆ λβ for all

1≤ i≤ m, which gives that

〈λαi〉 ⊆ 〈λβ 〉
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for all 1≤ i≤ m. So that b1, ...,bm ∈ 〈λβ 〉. Now it follows from the above equality that;

(λ̂ )m(
−→
b ) =

∨
{
∧
{αi ∈ L : 1≤ i≤ m} : bi ∈ 〈λαi〉}

≤
∨
{β ∈ L : b1, ...,bm ∈ 〈λβ 〉}

≤
∨
{β ∈ L : p(a1...,an,b1, ...,bm) ∈ 〈λβ 〉}

= λ̂ (p(−→a ,
−→
b ))

Therefore λ̂ is a fuzzy ideal of A. It is also clear to see that λ ≤ λ̂ . Suppose that µ is any other

fuzzy ideal of A such that λ ≤ µ . Then 〈λα〉 ⊆ µα for all α ∈ L. Now for any x ∈ A consider:

λ̂ (x) =
∨
{α ∈ L : x ∈ 〈λα〉}

≤
∨
{α ∈ L : x ∈ µα}

= µ(x) (by Theorem 1.2.11)

Therefore λ̂ is the smallest fuzzy ideal containing λ and hence λ̂ = 〈λ 〉.

Corollary 2.3.6. For any fuzzy subset µ of A and each α ∈ L, 〈µα〉 ⊆ 〈µ〉α . Moreover, if L is a

chain and µ is finite valued or equivalently if µ has sup property, then the equality holds.

The following theorem gives a better description for α−level cuts of the fuzzy ideal gener-

ated by a fuzzy set.

Theorem 2.3.7. Let µ be a fuzzy subset of A and α ∈ L:

〈µ〉α =
⋃
{
⋂

γ∈M

〈µγ〉 : M ⊆ L and α ≤ supM}

Proof. Let us put

H =
⋃
{
⋂

γ∈M

〈µγ〉 : α ≤ supM}
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If x ∈ H, then x ∈
⋂

γ∈M〈µγ〉 for some M ⊆ L with α ≤ supM; i.e., x ∈ 〈µγ〉 for all γ ∈M and

α ≤ supM. By Theorem 2.3.5 we have the following

〈µ〉(x) =
∨
{β ∈ L : x ∈ 〈µβ 〉}

So that 〈µ〉(x)≥ γ for all γ ∈M. This gives 〈µ〉(x)≥ α . Thus x ∈ 〈µ〉α and hence H ⊆ 〈µ〉α .

To prove the other inequality, let us take x ∈ 〈µ〉α . Then

∨
{β ∈ L : x ∈ 〈µβ 〉} ≥ α

If we put M = {β ∈ L : x ∈ 〈µβ 〉}, then M ⊆ L such that α ≤ supM and x ∈ 〈µγ〉 for all γ ∈M.

This means that x ∈
⋂

γ∈M〈µγ〉 and α ≤ supM. Thus x ∈ H, and hence the proof ends.

In the following, we give an algebraic characterization for fuzzy ideals generated by fuzzy

sets.

Definition 2.3.8. For a fuzzy subset λ of A, define λ to be a fuzzy subset of A as follows:

λ (0) = 1 and for 0 6= x ∈ A

λ (x) =
∨
{λ m(

−→
b ) :
−→
b ∈ Am, p(−→a ,

−→
b ) = x,−→a ∈ An, p(−→x ,−→y ) is an ideal term in −→y }

Theorem 2.3.9. For any fuzzy subset λ of A, λ = 〈λ 〉.

Proof. By Theorem 2.3.5 it is enough to show that λ = λ̂ . It is clear from the definition that

λ (0) = λ̂ (0). For each 0 6= x ∈ A, let us define two sets Hx and Gx as follows:

Hx = {λ m(
−→
b ) :
−→
b ∈ Am,P(−→a ,

−→
b ) = x,−→a ∈ An,P(−→x ,−→y ) is an ideal term in −→y }

Gx = {α ∈ L : x ∈ 〈λα〉}

Clearly both Hx and Gx are nonempty subsets of L. Our claim is to show that:
∨

Hx =
∨

Gx. If

α ∈Hx, then α = λ m(
−→
b ) = λ (b1)∧ ...∧λ (bm), for some b1, ...,bm ∈ A, with p(−→a ,

−→
b ) = x for
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some a1, ...,an ∈A, where p(−→x ,−→y ) is an ideal term in−→y . That is,
−→
b ∈ (λα)

m. So that x∈ 〈λα〉,

which gives α ∈ Gx. Thus Hx ⊆ Gx and hence
∨

Hx ≤
∨

Gx. To prove the other inequality it is

enough to show that, for each α ∈ Gx, there exists β ∈ Hx such that α ≤ β . Let α ∈ Gx. Then

x ∈ 〈λα〉; that is, x = p(−→a ,
−→
b ) for some

−→
b ∈ (λα)

m, and −→a ∈ An where p(−→x ,−→y ) is an ideal

term in −→y . If we put β = λ m(
−→
b ), then β ∈ Hx such that α ≤ β . This completes the proof.

Corollary 2.3.10. For each x ∈ A and α ∈ L−{0}, the fuzzy ideal of A generated by the fuzzy

point xα is characterized as:

〈xα〉(z) =


1 if z = 0

α if z ∈ 〈x〉−{0}

0 otherwise

for all z ∈ A.

Notation. We write F ⊂⊂ A, to say that F is a finite subset of A.

In the following theorem we characterize fuzzy ideals generated by a fuzzy set using finitely

generated crisp ideals.

Theorem 2.3.11. For a fuzzy subset µ of A, let µ be a fuzzy subset of A defined by:

µ(x) =
∨
{
∧

a∈F

µ(a) : x ∈ 〈F〉,F ⊂⊂ A}

for all x ∈ A. Then µ = 〈µ〉.

Proof. It is enough if we show that µ = µ̂ . Clearly, µ(0) ≥
∧

a∈F µ(a) for all finite subsets F

of A (since 0 ∈ 〈F〉, ∀F ⊂⊂ A). In particular,

µ(0)≥
∧
a∈ /0

µ(a) = 1
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Thus µ(0) = 1. For each 0 6= x ∈ A, let us take the set Gx as in Theorem 2.3.9 and define a set

Hx as follows:

Hx = {
∧

a∈F

µ(a) : x ∈ 〈F〉,F ⊂⊂ A}

Our claim is to show that:

∨
{α : α ∈ Hx}=

∨
{α : α ∈ Gx}

One way we show that Hx ⊆ Gx. If α ∈ Hx, then α =
∧

a∈F µ(a) and x ∈ 〈F〉 for some finite

subset F of A. That is, a ∈ µα for all a ∈ F and x ∈ 〈F〉. So that x ∈ 〈µα〉. Then α ∈ Gx

and hence Hx ⊆ Gx. The other way, we prove that, for each α ∈ Gx, there exists β ∈ Hx such

that α ≤ β . For, let α ∈ Gx. Then x ∈ 〈λα〉; that is, x = P(−→a ,
−→
b ) for some

−→
b ∈ (λα)

m, and

−→a ∈ An where p(−→x ,−→y ) is an ideal term in −→y . Let
−→
b = (b1,b2, ...,bm) and β =

∧m
i=1 µ(bi).

Then β ≥ α . Moreover, if we put F = {b1,b2, ...,bm}, then F is a finite subset of A such that

x ∈ 〈F〉. Thus β ∈ Hx such that α ≤ β . This completes the proof.

Theorem 2.3.12. Suppose that {Iα}α∈L is a family of ideals of A such that

⋂
α∈M

Iα = IsupM

for all M ⊆ L. Then, there is a unique fuzzy ideal µ of A for which µα = Iα for all α ∈ L.

Moreover, every fuzzy ideal of A is obtained in this way only.

Proof. We first show that the map α 7→ Iα is antitone; in the sense that, for each α,β ∈ L

α ≤ β ⇒ Iβ ⊆ Iα . Let α,β ∈ L such that α ≤ β . Put M = {α,β}. Then supM = β . By our

hypothesis Iα ∩ Iβ = IsupM = Iβ . So that Iβ ⊆ Iα and hence the map α 7→ Iα is antitone. Define

a fuzzy subset µ of A by:

µ(x) =
∨
{α ∈ L : x ∈ Iα}
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for all x ∈ A. Clearly µ is well defined. Our aim is to show that µα = Iα for all α ∈ L. The

inclusion Iα ⊆ µα follows easily from the definition of µ . To prove the other inclusion, let

x ∈ µα . Then µ(x)≥ α , i.e., ∨
{γ ∈ L : x ∈ Iγ} ≥ α

If we put M = {γ ∈ L : x ∈ Iγ}, then M ⊆ L such that α ≤ supM and x ∈ Iγ for all γ ∈M, i.e.,

x ∈
⋂

γ∈M

Iγ

By our assumption it follows that x ∈ IsupM. Since α ≤ supM and the map α 7→ Iα is antitone

we get x ∈ Iα . Thus Iα = µα . This means that µ is a fuzzy subset of A for which its α−level

sets are Iα ’s. Each Iα being an ideal of A, it follows from Theorem 2.2.3 that µ is a fuzzy ideal.

The uniqueness of µ follows from the fact µα = Iα for all α ∈ L.

2.4 The Lattice of Fuzzy Ideals

As observed in the previous section, the intersection of any family of fuzzy ideals of A is a

fuzzy ideal, i.e., the subfamily FI(A) of the lattice LA is closed under arbitrary intersection of

fuzzy sets. So that (FI(A),≤) forms a closure fuzzy set system and hence by Theorem 1.2.16

it is a complete lattice, where ≤ is a pointwise ordering of fuzzy sets. The following theorem

summarizes this.

Theorem 2.4.1. The set of all fuzzy ideals of A forms a complete lattice where the infimum and

supremum of any family {µi : i ∈ ∆} of fuzzy ideals of A is given by:

∧
µi = ∩µi and

∨
µi = 〈∪µi〉

Theorem 2.4.2. (FI(A),≤) is an algebraic closure fuzzy set system.

Proof. By Definition 1.2.18, it is enough to show that FI(A) is inductive in LA. Let {µi}i∈∆ be

a chain in FI(A). Let us put

η =
⋃
i∈∆

µi
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We show that η is a fuzzy ideal of A. Clearly η(0) = 1. Let a1, ...,an,b1, ...,bm ∈ A and

p(−→x ,−→y ) be an ideal term in−→y . First observe that, for each m−tuples i1, ..., im ∈ ∆, there exists

k ∈ {1,2, ...,m} such that µi j ≤ µik for all j ∈ {1,2, ...,m}. Now consider the following:

η(b1)∧ ...∧η(bm) =

(∨
i1∈∆

µi1(b1)

)
∧ ...∧

( ∨
im∈∆

µim(bm)

)
=

∨
i1,...,im∈∆

(µi1(b1)∧ ...∧µim(bm))

≤
∨

ik∈∆

(µik(b1)∧ ...∧µik(bm))

≤
∨

ik∈∆

µik(p(a1, ...,an,b1, ...,bm))

= η(p(a1, ...,an,b1, ...,bm))

Therefore η is a fuzzy ideal of A and this completes the proof.

2.5 Homomorphisms and Fuzzy Ideals

Let A and B be algebras of the same type F. A mapping h : A→ B is called a homomorphism

from A to B if:

h( f A(a1,a2, ...,an)) = f B(h(a1),h(a2), ...,h(an))

for each n−ary operation f ∈ F and each sequence a1,a2, ...,an from A. It is observed that if p

is an n−ary term of type F, then

h(pA(a1,a2, ...,an)) = pB(h(a1),h(a2), ...,h(an))

for all a1,a2, ...,an ∈ A.

Theorem 2.5.1. Let h : A→ B be a homomorphism. Then we have the following:

1. If σ is a fuzzy ideal of B, then h−1(σ) is a fuzzy ideal of A

2. If µ is a fuzzy ideal of A and h is surjective, then h(µ) is a fuzzy ideal of B.
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Proof. Let h : A→ B be a homomorphism.

1. Suppose that σ is a fuzzy ideal of B and let a1,a2, ...,an,b1,b2, ...,bm ∈ A. Then

h(a1),h(a2), ...,h(an),h(b1),h(b2), ...,h(bm) ∈ B. If p(−→x ,−→y ) is an (n+m)−ary ideal

term in −→y , then we get:

σ(pB(h(a1),h(a2), ...,h(an),h(b1),h(b2), ...,h(bm)))≥ σ(h(b1))∧ ...∧σ(h(bm))

Now consider the following:

h−1(σ)(pA(a1, ...,an,b1, ...,bm)) = σ(h(pA(a1, ...,an,b1, ...,bm)))

= σ(pB(h(a1), ...,h(an),h(b1), ...,h(bm)))

≥ σ(h(b1))∧ ...∧σ(h(bm))

= h−1(σ)(b1)∧ ...∧h−1(σ)(bm)

Therefore h−1(σ) is a fuzzy ideal of A.

2. Suppose that h is surjective and let µ be a fuzzy ideal of A. If u1,u2, ...,un,v1,v2, ...,vm ∈

B, then there exist a1,a2, ...,an,b1,b2, ...,bm ∈ A such that h(ai) = ui and h(b j) = v j for

all i, j. If p(−→x ,−→y ) is an n+m ideal term in −→y , then we get:

h(pA(a1, ...,an,b1, ...,bm)) = pB(h(a1), ...,h(an),h(b1), ...,h(bm))

= pB(u1, ...,un,v1, ...,vm)

So that pA(a1, ...,an,b1, ...,bm)∈ h−1(pB(u1, ...,un,v1, ...,vm)). Now consider the follow-

ing:

h(µ)(pB((u1, ...,un,v1, ...,vm)) =
∨
{µ(a) : a ∈ h−1(pB((u1, ...,un,v1, ...,vm))}

≥ µ(pA(a1, ...,an,b1, ...,bm))

≥ µ(b1)∧ ...∧µ(bm)
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Since b j is arbitrary in h−1(v j) for all j = 1,2, ...,m, it follows that

h(µ)(pB((u1, ...,un,v1, ...,vm)) ≥

 ∨
b1∈h−1(v1)

µ(b1)

∧ ...∧
 ∨

bm∈h−1(vm)

µ(bm)


= h(µ)(v1)∧ ...∧h(µ)(vm)

Therefore h(µ) is a fuzzy ideal of B.

Theorem 2.5.2. If h : A→ B is an onto homomorphism, then the mapping µ 7→ h(µ) defines a

one-to-one correspondence between the set of all h-invariant fuzzy ideals of A and the set of all

fuzzy ideals of B.

Proof. By (2) of the above theorem, µ 7→ h(µ) is well-defined. To show that it is onto, let

σ be a fuzzy ideal of B. Put µ = h−1(σ). Then it follows from the above theorem that µ is

an h−invariant fuzzy ideal of A such that h(µ) = σ . So that the map µ 7→ h(µ) is onto. It

remains to show that it one-one. Let µ1 and µ2 be an h-invariant fuzzy ideals of A such that

h(µ1)= h(µ2). Let x∈A. Then h(x)∈B and h(µ1)(h(x))= h(µ2)(h(x)). Since µ1 is h-invariant

we have µ1(x) = µ1(a) for all a ∈ h−1(x). So,

µ1(x) =
∨
{µ1(a) : a ∈ h−1(x)}

= h(µ1)(h(x))

= h(µ2)(h(x))

=
∨
{µ2(b) : b ∈ h−1(x)}

= µ2(x)

Thus µ1 = µ2 and hence the map µ 7→ h(µ) is a one-to-one correspondence.
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Theorem 2.5.3. Let h : A→ B be a homomorphism, µ and ν be fuzzy ideals of A. Then

h(µ ∨ν) = h(µ)∨h(ν)

Proof. We show that h(µ ∨ν) is the smallest fuzzy ideal of B containing both h(µ) and h(ν).

By Theorem 2.5.1, h(µ ∨ν) is a fuzzy ideal of B. Now let y ∈ B. If h−1(y) = /0, then h(µ)(y) =

0≤ h(µ ∨ν)(y). Also if h−1(y) 6= /0, then consider the following:

h(µ)(y) =
∨
{µ(x) : x ∈ h−1(y)}

≤
∨
{(µ ∨ν)(x) : x ∈ h−1(y)}

= h(µ ∨ν)(y)

So that h(µ) ≤ h(µ ∨ ν). Similarly, we can verify that h(ν) ≤ h(µ ∨ ν). Now for any fuzzy

ideal η of B:

h(µ)≤ η ,h(ν)≤ η ⇒ h−1(h(µ))≤ h−1(η),h−1(h(ν))≤ h−1(η)

⇒ µ ≤ h−1(η),ν ≤ h−1(η)

⇒ µ ∨ν ≤ h−1(η)

⇒ h(µ ∨ν)≤ h(h−1(η))≤ η

Therefore h(µ ∨ ν) is the smallest fuzzy ideal of B containing both h(µ) and h(ν). So that,

h(µ ∨ν) = h(µ)∨h(ν).

Theorem 2.5.4. Let h : A→ B be a homomorphism, and µ and ν be fuzzy ideals of A. Then

h(µ ∧ν)≤ h(µ)∧h(ν)

Moreover, if either µ or ν is h−invariant, then the equality holds.
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Proof. Let y be any element in B. If h−1(y) = /0, then h(µ)(y) = 0 = h(ν)(y) = h(µ ∧ ν)(y).

Let h−1(y) 6= /0. Then consider the following:

h(µ ∧ν)(y) =
∨
{(µ ∧ν)(x) : x ∈ h−1(y)}

=
∨
{µ(x)∧ν(x) : x ∈ h−1(y)}

≤
∨
{µ(a)∧ν(b) : a,b ∈ h−1(y)}

=
∨
{µ(a) : a ∈ h−1(y)}∧

∨
{ν(b) : b ∈ h−1(y)}

= h(µ)(y)∧h(ν)(y)

Therefore h(µ ∧ ν) ≤ h(µ)∧ h(ν). Moreover, assume without loss of generality that µ is

h−invariant. Then µ(a) = µ(b), whenever h(a) = h(b). Now for each y ∈ B, with h−1(y) 6= /0,

consider the following:

h(µ)(y)∧h(ν)(y) =
∨
{µ(a) : a ∈ h−1(y)}∧

∨
{ν(b) : b ∈ h−1(y)}

=
∨
{µ(a)∧ν(b) : a,b ∈ h−1(y)}

=
∨
{µ(x)∧ν(x) : x ∈ h−1(y)}

=
∨
{(µ ∧ν)(x) : x ∈ h−1(y)}

= h(µ ∧ν)(y)

Therefore h(µ ∧ν) = h(µ)∧h(ν).

Theorem 2.5.5. Let h : A→ B be a homomorphism, and σ and θ be fuzzy ideals of B. Then

h−1(σ)∨h−1(θ)≤ h−1(σ ∨θ)

Moreover, the equality holds whenever h is surjective.

Proof. For each x ∈ A, consider:

h−1(σ)(x) = σ(h(x))≤ (σ ∨θ)(h(x)) = h−1(σ ∨θ)(x)
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So that h−1(σ)≤ h−1(σ ∨θ). Similarly it can be verified that h−1(θ)≤ h−1(σ ∨θ). Therefore

h−1(σ)∨ h−1(θ) ≤ h−1(σ ∨ θ). Further, let we assume that h is surjective. To prove the

equality, it is enough if we show that h−1(σ ∨θ) is the smallest fuzzy ideal of A containing both

h−1(σ) and h−1(θ). From Theorem 2.5.1 we have that h−1(σ ∨θ) is a fuzzy ideal of A. From

the above inequality also we have h−1(σ)≤ h−1(σ ∨θ) and h−1(θ)≤ h−1(σ ∨θ). Now let µ

be any other fuzzy ideal of A such that h−1(σ)≤ µ and h−1(θ)≤ µ . Then h(h−1(σ))≤ h(µ)

and h(h−1(θ)) ≤ h(µ). Since h is surjective, it follows that σ ≤ h(µ) and θ ≤ h(µ). So that,

σ ∨θ ≤ h(µ), which gives h−1(σ ∨θ)≤ h−1(h(µ)). Our aim is to show that h−1(σ ∨θ)≤ µ .

Suppose not. Then there exists a ∈ A such that h−1(σ ∨θ)(a)≤ µ(a). If we put z = h(a), then

we get (σ ∨ θ)(z) � h(µ)(z), which is a contradiction. Therefore h−1(σ ∨ θ) ≤ µ and hence

the equality holds.

Theorem 2.5.6. Let h : A→ B be a homomorphism, and σ and θ be fuzzy ideals of B. Then

h−1(σ ∧θ) = h−1(σ)∧h−1(θ)

Proof. For each a ∈ A, consider the following:

h−1(σ ∧θ)(a) = (σ ∧θ)(h(a))

= σ(h(a))∧θ(h(a))

= h−1(σ)(a)∧h−1(θ)(a)

= (h−1(σ)∧h−1(θ))(a)

Therefore h−1(σ ∧θ) = h−1(σ)∧h−1(θ).

Theorem 2.5.7. Let h : A→ B be a surjective homomorphism. For any h-invariant fuzzy subset

µ of A, we have:

h(〈µ〉) = 〈h(µ)〉
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Proof. For any y ∈ B, consider:

h(〈µ〉)(y) =
∨
{〈µ〉(x) : x ∈ h−1(y)}

=
∨
{
∨
{α ∈ L : x ∈ 〈µα〉} : x ∈ h−1(y)}

=
∨
{α ∈ L : x ∈ 〈µα〉 and h(x) = y}

=
∨
{α ∈ L : y ∈ h(〈µα〉)}

on the other hand

〈h(µ)〉(y) =
∨
{α ∈ L : y ∈ 〈h(µ)α〉}

Now it is enough to show that

h(〈µα〉) = 〈h(µ)α〉

Let z ∈ h(〈µα〉). Then z = h(x) for some x ∈ 〈µα〉. There exist a1, ...,an ∈ A, b1, ...,bm ∈ µα

and an ideal term p(−→x ,−→y ) in −→y such that x = pA(a1, ...,an,b1, ...,bm). So,

z = h(x)

= h(pA(a1, ...,an,b1, ...,bm))

= pB(h(a1), ...,h(an),h(b1), ...,h(bm))

For each j = 1,2, ...,m we have

h(µ)(h(b j)) =
∨
{µ(x) : x ∈ h−1(h(b j))}

Since µ is h-invariant and each b j ∈ µα , we get

h(µ)(h(b j)) = µ(b j)≥ α
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for all j = 1,2, ...,m; that is h(b j) ∈ h(µ)α for all j and z = pB(h(a1), ...,h(an),h(b1), ...,h(bm).

This means z ∈ 〈h(µ)α〉. So that

h(〈µα〉)⊆ 〈h(µ)α〉

To prove the other inclusion, let z ∈ 〈h(µ)α〉. Then z = pB(−→u ,−→v ) for some u1, ...,un ∈ B,

v1, ...,vm ∈ h(µ)α and some ideal term p(−→x ,−→y ) in −→y . Since h is surjective, there exist

a1, ...,an,b1, ...,bm ∈ A such that h(ai) = ui and h(b j) = v j for all i = 1, ...,n and j = 1, ...,m.

As each v j ∈ h(µ)α , we have h(µ)(h(b j)) ≥ α . Since µ is h-invariant we get µ(b j) ≥ α; that

is, b j ∈ µα for all j. Put x = pA(a1, ...an,b1, ...bm). Then x ∈ 〈µα〉. Moreover

h(x) = h(pA(a1, ...,an,b1, ...,bm))

= pB(h(a1), ...,h(an),h(b1), ...,h(bm)))

= pB(u1, ...,un,v1, ...,vm)

= z

That is, z = h(x), where x ∈ 〈µα〉, which gives z ∈ h(〈µα〉). Thus 〈h(µ)α〉 ⊆ h(〈µα〉). Hence

h(〈µα〉) = 〈h(µ)α〉 and this completes the proof.

2.6 Fuzzy Ideals of Fuzzy Subalgebras

In this section, we introduce the notion of fuzzy ideals of fuzzy subalgebras in universal algebra.

The following definition is due to V. Murali [133].

Definition 2.6.1. An L−fuzzy subset µ of A is called an L−fuzzy subalgebra of A if the fol-

lowing are satisfied:

1. µ( f A) = 1 for all nullary operation symbols f in F.

2. If f is an n−ary operation symbol with n > 0 and a1, ...,an ∈ A, then

µ( f A(a1, ...,an))≥ µ(a1)∧ ...∧µ(an)
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It is obvious that subalgebras of A are closed under term functions. In the sense that, if B

is a subalgebra of A, p(x1, ...,xm) is an m−ary term and a1, ...,am ∈ B, then p(a1, ...,am) ∈ B.

Similarly, one can verify that fuzzy subalgebras are also closed (in the fuzzy sense) under term

functions. In the sense that, if µ is a fuzzy subalgebra of A, p(x1, ...,xm) is an m−ary term, then

µ(p(a1, ...,am))≥ µ(a1)∧ ...∧µ(am)

for all a1, ...,am ∈ A. Fundamental operations of A can be viewed as an ideal term operation on

A. using this fact, one can easily verify that fuzzy ideals of A are also fuzzy subalgebras of A.

Theorem 2.6.2. A fuzzy subset µ of A is a fuzzy subalgebra of A if and only if the level subset

µα is a subalgebra of A for any α ∈ L.

Lemma 2.6.3. A subset S ⊆ A is a subalgebra of A if and only if αS is a fuzzy subalgebra of A

for some α ∈ L−{1}.

Definition 2.6.4. Let µ and η be fuzzy subalgebras of A such that µ ≤ η . Then µ is called

a fuzzy ideal of η if the following holds for each a1, ...,an,b1, ...,bm ∈ A and any ideal term

p(−→x ,−→y ) in −→y ,

µ(p(a1, ...,an,b1, ...,bm))≥ η(a1)∧ ...∧η(an)∧µ(b1)∧ ...∧µ(bm)

Lemma 2.6.5. Every fuzzy subalgebra of A is a fuzzy ideal of itself.

Proof. Let µ be a fuzzy subalgebra of A. Let a1, ...,an,b1, ...,bm ∈ A and p(−→x ,−→y ) be an (n+

m)−ary ideal term in −→y . Since fuzzy subalgebras are closed under term functions, we get

µ(p(a1, ...,an,b1, ...,bm))≥ µ(a1)∧ ...∧µ(an)∧µ(b1)∧ ...∧µ(bm)

Therefore µ is a fuzzy ideal of itself.

Lemma 2.6.6. Let µ and η be fuzzy subalgebras of A. Then
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1. µ ∈ FI(A) if and only if µ is a fuzzy ideal of the fuzzy set 1A.

2. If µ ∈ FI(A) and µ ≤ η , then µ is a fuzzy ideal of η .

3. If µ ∈ FI(A), then µ ∩η is a fuzzy ideal of η .

Theorem 2.6.7. Let µ and η be fuzzy subalgebras of A. Then, µ is a fuzzy ideal of η if and

only if µα is an ideal of ηα for all α ∈ L.

Proof. Suppose that µ is a fuzzy ideal of η . Let α ∈ L. By Theorem 2.6.2, both µα and ηα are

subalgebras of A such that µα ⊆ ηα . Let a1, ...,an ∈ ηα , b1, ...,bm ∈ µα . Then

η(a1)∧ ...∧η(an)≥ α and µ(b1)∧ ...∧µ(bm)≥ α

Let p(−→x ,−→y ) be an (n+m)−ary ideal term in −→y . Since µ is a fuzzy ideal of η , we get

µ(p(−→a ,
−→
b ))≥ η(a1)∧ ...∧η(an)∧µ(b1)∧ ...∧µ(bm)≥ α

So that p(−→a ,
−→
b ) ∈ µα . Thus µα is an ideal of ηα . Conversely, suppose that µα is an ideal of

ηα for each α ∈ L. Let a1, ...,an,b1, ...,bm ∈ A, and p(−→x ,−→y ) be an (n+m)−ary ideal term in

−→y . Let us put

α = η(a1)∧ ...∧η(an)∧µ(b1)∧ ...∧µ(bm)

Then

a1, ...,an ∈ ηα and b1, ...,bm ∈ µα

Since µα is an ideal of ηα , we get

p(−→a ,
−→
b ) ∈ µα

So that

µ(p(−→a ,
−→
b ))≥ α = η(a1)∧ ...∧η(an)∧µ(b1)∧ ...∧µ(bm)

Thus µ is a fuzzy ideal of η . Hence proved.
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Theorem 2.6.8. Let I and B be subalgebras of A. Then, I is an ideal of B if and only if αI is a

fuzzy ideal of αB for all α ∈ L−{1}.

Theorem 2.6.9. Let h : A→ B be a homomorphism. Let η and θ be fuzzy subalgebras of A and

B respectively. Then we have the following:

1. If σ is a fuzzy ideal of θ , then h−1(σ) is a fuzzy ideal of h−1(θ).

2. If µ is a fuzzy ideal of η and h is surjective, then h(µ) is a fuzzy ideal of h(η).

Theorem 2.6.10. Let η be a fuzzy subalgebra of A. If {µi}i∈I is a family of fuzzy ideals of η ,

then ∩i∈Iµi is a fuzzy ideal of η .

Given a fuzzy subalgebra η of A, the above theorem shows that the family FI(η) of all

fuzzy ideals of A forms a closure fuzzy set system together with the inclusion ordering of fuzzy

sets. So, by Theorem 1.2.16 it is a complete lattice. Note that its least element is χ{0} and the

largest element is η .

Theorem 2.6.11. (FI(η),≤) is an algebraic closure fuzzy set system.

Proof. By Definition 1.2.18, it is enough to show that FI(η) is inductive in LA. Let {µi}i∈∆ be

a chain in FI(η). Let us put

µ =
⋃
i∈∆

µi

We show that µ is a fuzzy ideal of η . Clearly µ(0) = 1. Let a1, ...,an,b1, ...,bm ∈ A and

p(−→x ,−→y ) be an ideal term in−→y . First observe that, for each m−tuples i1, ..., im ∈ ∆, there exists
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k ∈ {1,2, ...,m} such that µi j ≤ µik for all j ∈ {1,2, ...,m}. Now consider the following:

η(a1)∧ ...∧η(an)∧µ(b1)∧ ...∧µ(bm) = η(a1)∧ ...∧η(an)∧

(∨
i1∈∆

µi1(b1)

)
∧ ...∧

( ∨
im∈∆

µim(bm)

)

= η(a1)∧ ...∧η(an)∧

( ∨
i1,...,im∈∆

(µi1(b1)∧ ...∧µim(bm))

)

≤ η(a1)∧ ...∧η(an)∧

(∨
ik∈∆

(µik(b1)∧ ...∧µik(bm))

)
=

∨
ik∈∆

(η(a1)∧ ...∧η(an)∧µik(b1)∧ ...∧µik(bm))

≤
∨

ik∈∆

µik(p(a1, ...,an,b1, ...,bm))

= µ(p(a1, ...,an,b1, ...,bm))

Therefore µ is a fuzzy ideal of η and this completes the proof.
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Chapter 3

L−Fuzzy Prime Ideals

Introduction

In the theory of groups, the important concepts of Abelian group, solvable group, nilpotent

group, the center of a group and centralizers, are all defined from the binary operation [x,y] =

x−1y−1xy. Each of these notions, except centralizers of elements, may also be defined in terms

of the commutator of normal subgroups. The commutator [M,N] (where M and N are normal

subgroups of a group) is the (normal) subgroup generated by all the commutators [x,y] with

x ∈M, y ∈ N. Similarly, the commutator of ideals I and J of a ring R, written as IJ, is the ideal

of R generated by all products i j and ji, with i ∈ I and j ∈ J; i.e.,

IJ = {x ∈ R : x = Σ
n
i=1yizi,yi ∈ I,zi ∈ J}

The concept of commutators has also been extended to the class of distributive lattices. This

has a significant role to have a ring theoretic interpretation for the problems in order theory. For

ideals I and J of a distributive lattice L, their commutator [I,J] is an ideal of L generated by

those elements of the form a∧b where a ∈ I and b ∈ J, i.e.’

[I,J] = {a∧b : a ∈ I,b ∈ J}
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Swamy and Swamy [143] defined the commutator (or the product) of L−fuzzy ideals µ and σ

of a ring R as follows:

[µ,σ ](x) =
∨
{

n∧
i=1

(µ(yi)∧σ(zi)) : x = Σ
n
i=1yizi}

for all x ∈ R. They have used this commutator to define L−fuzzy prime ideals of rings.

In this chapter, we define and characterize the commutator of fuzzy ideals in a more general

context, in universal algebras. We use this commutator to study fuzzy prime ideals, fuzzy semi-

prime ideals and the radical of fuzzy ideals in universal algebras.

3.1 The Commutator of Fuzzy Ideals

It is observed in the second chapter that, a fuzzy subset µ of A is a fuzzy ideal of A if and only

if every α−level set of µ is an ideal of A. Here we define the commutator of fuzzy ideals using

their level ideals.

Definition 3.1.1. The commutator of fuzzy ideals µ and σ of A denoted by [µ,σ ] is a fuzzy

subset of A defined by:

[µ,σ ](x) =
∨
{α ∧β : α,β ∈ L,x ∈ [µα ,σβ ]}

for all x ∈ A.

For each α,β and λ in L with λ = α ∧β , it can be verified that,

x ∈ [µα ,σβ ]⇒ x ∈ [µλ ,σλ ]

So the commutator of fuzzy ideals can be equivalently redefined as follows:

[µ,σ ](x) =
∨
{λ ∈ L : x ∈ [µλ ,σλ ]}
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For fuzzy subsets η and θ of A, [η ,θ ] denotes the [〈η〉,〈θ〉]. In particular, for fuzzy points xα

and yβ of A, [〈xα〉,〈yβ 〉] is denoted by [xα ,yβ ].

The following lemmas can be verified easily.

Lemma 3.1.2. For any fuzzy ideals µ and σ of A, [µ,σ ] is a fuzzy ideal of A such that: [µ,σ ]≤

µ ∩σ .

Lemma 3.1.3. For any ideals I and J of A χ[I,J] = [χI,χJ].

In the following theorem, we give an algebraic characterization for the commutator of fuzzy

ideals.

Theorem 3.1.4. For each x ∈ A, and fuzzy ideals µ and σ of A:

[µ,σ ](x) =
∨
{µm(

−→
b )∧σ

k(−→c ) : x = t(−→a ,
−→
b ,−→c ),−→a ∈ An,

−→
b ∈ Am,−→c ∈ Ak, and

t(−→x ,−→y ,−→z ) is a commutator term in −→y ,−→z }

Proof. For each x ∈ A, let us define two sets Hx and Gx as follows:

Hx = {µm(
−→
b )∧σ

k(−→c ) : x = t(−→a ,
−→
b ,−→c ),−→a ∈ An,

−→
b ∈ Am,−→c ∈ Ak

and t(−→x ,−→y ,−→z ) is a commutator term in −→y ,−→z }

Gx = {α ∈ L : x ∈ [µα ,σα ]}

Clearly both Hx and Gx are nonempty subsets of L. Our claim is to see that ∨Hx = ∨Gx. If

α ∈Hx, then α = µm(
−→
b )∧σ k(−→c ), where x = t(−→a ,

−→
b ,−→c ) for some −→a ∈ An,

−→
b ∈ Am,−→c ∈ Ak

and some commutator term t(−→x ,−→y ,−→z ) in −→y ,−→z . That is,
−→
b ∈ (µα)

m and −→c ∈ (σα)
k. So that

x ∈ [µα ,σα ]. Then α ∈ Gx and hence Hx ⊆ Gx. To prove the other inequality, we show that for

each α ∈ Gx, there exists β ∈ Hx such that α ≤ β . Let α ∈ Gx. Then x ∈ [µα ,σα ]. So that x =

t(−→a ,
−→
b ,−→c ) for some−→a ∈ An,

−→
b ∈ (µα)

m, and−→c ∈ (σα)
k, where t(−→x ,−→y ,−→z ) is a commutator

term in −→y ,−→z . That is, µm(
−→
b ) ≥ α and σ k(−→c ) ≥ α . If we put β = µm(

−→
b )∧σ k(−→c ), then

β ≥ α and β ∈ Hx. This completes the proof.
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Corollary 3.1.5. For each µ,σ ∈ FI(A) and each α ∈ L,

[µα ,σα ]⊆ [µ,σ ]α

Theorem 3.1.6. For each µ,σ ∈ FI(A) and each α ∈ L,

[µ,σ ]α =
⋃
{
⋂

γ∈M

[µγ ,σγ ] : M ⊆ L and α ≤ supM}

Definition 3.1.7. For each a ∈ A and µ ∈ FI(A), we define [a,µ] to be [χ{a},µ].

The following Theorem is an easy consequence of Theorem 3.1.4.

Theorem 3.1.8. Let a ∈ A and µ ∈ FI(A). Then for each x ∈ A,

[a,µ](x) =
∨
{α ∈ L : x ∈ [a,µα ]}

Theorem 3.1.9. If xα and yβ are fuzzy points of A, then the commutator [xα ,yβ ] is characterized

as:

[xα ,yβ ](z) =


1 if z = 0

α ∧β if z ∈ [x,y]−{0}

0 otherwise

The following theorem gives a finite representation for the commutator of fuzzy ideals.

Theorem 3.1.10. For each x ∈ A, and fuzzy ideals µ and σ of A:

[µ,σ ](x) =
∨
{

∧
a∈E,b∈F

(µ(a)∧σ(b)) : x ∈ [E,F ],E,F ⊂⊂ A}

Proof. For each x ∈ A, let us take the set Gx as in Theorem 3.1.4 and define a set Hx as follows:

Hx = {
∧

a∈E,b∈F

(µ(a)∧σ(b)) : x ∈ [E,F ],E,F ⊂⊂ A}
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Our claim is to show that ∨Hx = ∨Gx. If α ∈ Hx, then

α =
∧

a∈E,b∈F

(µ(a)∧σ(b))

where E and F are finite subsets of A such that x∈ [E,F ]. That is, µ(a)∧σ(b)≥ α for all a∈ E

and all b∈ F . Then E ⊆ µα and F ⊆ σα . So that [E,F ]⊆ [µα ,σα ]. Thus x∈ [µα ,σα ] and hence

α ∈Gx. Therefore Hx ⊆Gx. To prove the other inequality, we show that for each α ∈Gx, there

exists β ∈ Hx such that α ≤ β . Let α ∈ Gx. Then, x ∈ [µα ,σα ]. So x = t(−→a ,
−→
b ,−→c ) for some

−→a ∈ An,
−→
b = 〈b1,b2, ...,bm〉 ∈ (µα)

m, and −→c = 〈c1,c2, ...,ck〉 ∈ (σα)
k, where t(−→x ,−→y ,−→z ) is a

commutator term in −→y ,−→z . That is,

µ
m(
−→
b ) = µ(b1)∧ ....∧µ(bm)≥ α and σ

k(−→c ) = σ(c1)∧ ....∧σ(cm)≥ α

If we put E = {b1,b2, ...,bm} and F = {c1,c2, ...,ck}, then E and F are both finite subsets of A

such that x ∈ [E,F ]. Moreover, if we take

β =
∧

a∈E,b∈F

(µ(a)∧σ(b))

then β ∈ Hx such that α ≤ β . This completes the proof.

Definition 3.1.11. For each µ ∈ FI(A), we define by induction:

µ
(1) = µ = µ

1;

µ
(n+1) = [µ(n),µ(n)] and µ

n+1 = [µn,µ]

Definition 3.1.12. Let µ,η ∈ FI(A).

1. µ is said to be fuzzy solvable over η , if µ(n) ≤ η for some n ∈ Z+. µ is fuzzy solvable if

it is solvable over χ(0).
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2. µ is said to be fuzzy nilpotent over η , if µn ≤ η for some n ∈ Z+. µ is fuzzy nilpotent if

it is solvable over χ(0).

Lemma 3.1.13. A fuzzy subset µ of A is fuzzy nilpotent (resp. fuzzy solvable) if and only if µα

is nilpotent (resp. solvable) for all α ∈ L.

Definition 3.1.14. An algebra A is called solvable (resp. nilpotent) if A is solvable (resp. nilpo-

tent) as an ideal; i.e., if

A(n) = (0) (resp. An = (0))

for some n ∈ Z+.

3.2 Fuzzy Prime Ideals

In this section we define fuzzy prime ideals and investigate some of their properties. This

generalizes fuzzy prime ideals of those well known structures: semigroups [63, 141], rings

[119, 131, 143], semirings [63], ternary semirings [95], Γ-rings [71], modules [3], lattices [146]

and others.

Definition 3.2.1. A non-constant fuzzy ideal µ of A is called fuzzy prime if and only if:

[ν ,σ ]≤ µ ⇒ either ν ≤ µ or σ ≤ µ

for all ν ,σ ∈ FI(A).

In the following theorem we characterize fuzzy prime ideals using fuzzy points.

Theorem 3.2.2. A non-constant fuzzy ideal µ of A is fuzzy prime if and only if for any fuzzy

points xα and yβ of A:

[xα ,yβ ]≤ µ ⇒ either xα ∈ µ or yβ ∈ µ

Proof. Suppose that µ satisfies the condition:

[xα ,yβ ]≤ µ ⇒ either xα ∈ µ or yβ ∈ µ
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for all fuzzy points xα and yβ of A. Let σ and θ be fuzzy ideals of A such that [σ ,θ ] ≤ µ .

Suppose if possible that σ � µ and θ � µ . Then there exist x,y ∈ A such that σ(x)� µ(x) and

θ(y)� µ(y). If we put α = σ(x) and β = θ(y), then xα and yβ are fuzzy points of A such that

xα ∈ σ but xα /∈ µ and yβ ∈ θ but yβ /∈ µ . So that [xα ,yβ ]≤ [σ ,θ ]≤ µ , but xα /∈ µ and yβ /∈ µ .

This contradicts to our hypothesis. Thus either σ ≤ µ or θ ≤ µ . Therefore µ is prime. The

other way is clear.

In the following theorem, we give an internal characterization for fuzzy prime ideals of

universal algebras analogous to the well-known characterization of Swamy et al. [143] in the

case of rings.

Theorem 3.2.3. A non-constant fuzzy ideal µ is a fuzzy prime ideal if and only if Img(µ) =

{1,α}, where α is a prime element in L and the set µ∗ = {x ∈ A : µ(x) = 1} is a prime ideal of

A.

Proof. Suppose that µ is a prime fuzzy ideal. Clearly 1 ∈ Img(µ) and since µ is non-constant

there is some a ∈ A such that µ(a) < 1. We show that µ(a) = µ(b) for all a,b ∈ A− µ∗. Let

a,b ∈ A such that µ(a) < 1 and µ(b) < 1. Let us define L−fuzzy subsets σ and θ of A as

follows:

σ(x) =


1 if x ∈ 〈a〉

0 otherwise

and

θ(x) =


1 if x = 0

µ(a) otherwise

for all x ∈ A. Then it can be verified that both σ and θ are fuzzy ideals of A. Moreover, for each

x ∈ A we have:

[σ ,θ ](x) =


1 if x = 0

µ(a) if x ∈ [a,a]−{0}

0 otherwise
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Then [σ ,θ ] ≤ µ . But σ(a) = 1 > µ(a). So σ � µ . Since µ is fuzzy prime, we get θ ≤ µ ,

which gives θ(b) ≤ µ(b); that is, µ(a) ≤ µ(b). Similarly it can be verified that µ(b) ≤ µ(a).

So that µ(a) = µ(b) for all a,b ∈ A− µ∗. Thus Img(µ) = {1,α} for some α 6= 1 in L. Next

we show that the level ideal µ∗ is prime. Put P = µ∗ and let I and J be ideas of A such that

[I,J]⊆ P. Then χ[I,J] ≤ χP ≤ µ . That is, [χI,χJ]≤ µ . Since µ is fuzzy prime, either χI ≤ µ or

χJ ≤ µ implying that either I ⊆ P or J ⊆ P. Therefore P is prime. It remains to show that α is

a prime element in L. Let β ,γ ∈ L such that β ∧ γ ≤ α . Consider L−fuzzy subsets β and γ of A

defined by:

β (x) =


1 if x = 0

β otherwise

and

γ(x) =


1 if x = 0

γ otherwise

for all x ∈ A. Then β and γ are both fuzzy ideals of A such that [β ,γ]≤ µ . Since µ is L−fuzzy

prime, either β ≤ µ or γ ≤ µ . So that either β ≤α or γ ≤α . Hence α is prime in L. Conversely,

suppose that Img(µ) = {1,α}, where α is a prime element in L and P = µ∗ is a prime ideal of

A. Let σ and θ be fuzzy ideals of A such that [σ ,θ ] ≤ µ . Suppose if possible that, there exist

x,y ∈ A such that σ(x)� µ(x) and θ(y)� µ(y). Since µ is 2−valued, µ(x) = µ(y)< 1 so that

both x and y do not belong to P. Since P is prime, there exists z ∈ [x,y] such that z /∈ P; that is,

µ(z) = α . Otherwise if [x,y]⊆ P, then either x ∈ P or y ∈ P. As z ∈ [x,y], z = t(−→a ,
−→
b ,−→c ) for

some −→a ∈ An,
−→
b ∈ 〈x〉m,−→c ∈ 〈y〉k, where t(−→u ,−→v ,−→w ) is a commutator term in −→v ,−→w . Now

consider the following:

α = µ(z)

≥ [σ ,θ ](z)

≥ σ
m(
−→
b )∧θ

k(−→c )

≥ σ(x)∧θ(y)
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That is, σ(x)∧θ(y)≤ α . Since α is a prime element in L it follows that either σ(x)≤ α = µ(x)

or θ(y)≤ α = µ(y), which is a contradiction. Therefore µ is fuzzy prime.

Let P be a prime ideal of A and α be a prime element in L. Consider a fuzzy subset αP of A

defined by:

αP(x) =


1 if x ∈ P

α otherwise

for all x ∈ A. The above theorem confirms that fuzzy prime ideals of A are only of the form αP.

This establishes a one-to-one correspondence between the class of all fuzzy prime ideals of A

and the collection of all pairs (P,α) where P is a prime ideal in A and α is a prime element in

L.

Corollary 3.2.4. Let P be an ideal of A and α a prime element in L. Then P is a prime ideal if

and only if αP is a fuzzy prime ideal.

Definition 3.2.5. A fuzzy subset λ of A is called a fuzzy m−system (resp. a fuzzy n−system)

if for all a,b ∈ A, there exists x ∈ [a,b] (resp. there exists x ∈ [a,a]) such that

λ (x)≥ λ (a)∧λ (b) (resp. λ (x)≥ λ (a))

Lemma 3.2.6. A fuzzy subset λ of A is a fuzzy m−system (resp. a fuzzy n−system) if and only

if the level set λα is an m−system (resp. an n−system) for all α ∈ L.

Definition 3.2.7. For a normalized fuzzy subset µ of A, define a fuzzy subset µc of A by:

µ
c(x) =


∧

y∈A µ(y) if µ(x) = 1

1 otherwise

for all x ∈ A. We call µc, the generalized complement of µ .

Theorem 3.2.8. If µ is a fuzzy prime ideal of A, then µc is a fuzzy m−system.
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Proof. Suppose that µ is prime. Then Img(µ) = {1,α} for some prime element α ∈ L and µ∗

is a prime ideal. In this case µc is of the form

µ
c(x) =


α if x ∈ µ∗

1 otherwise

for all x ∈ A. Now let a,b ∈ A. If µc(a)∧ µc(b) = α , then the result holds trivially. Let

µc(a)∧ µc(b) = 1. Then µc(a) = 1 = µc(b), i.e., a /∈ µ∗ and b /∈ µ∗. Being µ∗ a prime ideal,

we get [a,b]* µ∗. So there exists x ∈ [a,b] such that x /∈ µ∗, i.e.,

µ
c(x) = 1≥ µ

c(a)∧µ
c(b)

Therefore µc is a fuzzy m−system.

Theorem 3.2.9. Suppose that µ is a fuzzy ideal of A such that Img(µ) = {1,α} where α is a

prime element in L. If µc is a fuzzy m−system, then µ is fuzzy prime.

Proof. By Theorem 3.2.3, It is enough to show that the set µ∗ = {x ∈ A : µ(x) = 1} is a prime

ideal of A. It is clear that µ∗ is a proper ideal of A. Let a,b ∈ A such that [a,b] ⊆ µ∗. Then

µ(x) = 1 for all x ∈ [a,b], i.e., µc(x) = α for all x ∈ [a,b]. Since µc is a fuzzy m−system, there

exists x ∈ [a,b] such that

α = µ
c(x)≥ µ

c(a)∧µ
c(b)

So that µc(a)∧µc(b) =α . Since α is prime either µc(a) =α or µc(b) =α , i.e., either µ(a) = 1

or µ(b) = 1, which implies either a ∈ µ∗ or b ∈ µ∗. So that µ∗ is prime and this completes the

proof.

It is natural to question our self that does every algebra in K has fuzzy prime ideals. Of

course, probably no. In the following theorem we give a sufficient condition for an algebra A to

have fuzzy prime ideals.

Theorem 3.2.10. Let A be an algebra satisfying:
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x ∈ [x,x] for all x ∈ A

If a ∈ A, and µ is a fuzzy ideal of A such that µ(a)≤ α where α is an irreducible element in L.

Then there exists a fuzzy prime ideal θ of A such that:

µ ≤ θ and θ(a)≤ α

Proof. Put F= {σ ∈ FI(A) : µ ≤ σ and σ(a)≤ α}. Clearly µ ∈ F so that F is nonempty and

hence it forms a poset under the inclusion ordering of fuzzy sets. By applying Zorn’s lemma we

can choose a maximal element say θ in F. Now it is enough to show that θ is prime. Suppose

not. Then there exist fuzzy ideals σ and ν of A such that [σ ,ν ]≤ θ but σ � θ and ν � θ . Put

θ1 = θ ∨σ and θ2 = θ ∨ν . Then θ1 and θ2 are fuzzy ideals of A such that θ � θ1 and θ � θ2.

By the maximality of θ in F both θ1 and θ2 do not belong to F. Thus

θ1(a)� α and θ2(a)� α

Since α is ∧−irreducible element in L, θ1(a)∧ θ2(a) � α . Again since a ∈ [a,a] it holds

that [θ1,θ2](a) ≥ θ1(a)∧ θ2(a) and hence [θ1,θ2](a) � α , implying that θ(a) � α . This is a

contradiction. Therefore θ is prime.

If A is a non-trivial algebra such that a ∈ [a,a] for all a ∈ A, then it can be deduced from the

above theorem that fuzzy prime ideals exist in A, provided that L has irreducible elements.

Theorem 3.2.11. Let µ be a fuzzy ideal of A and λ a fuzzy m−system such that µ ∩ λ ≤ α ,

where α is an irreducible element in L. Then there exists a fuzzy prime ideal θ of A such that

µ ≤ θ and θ ∩λ ≤ α

Proof. Put F= {σ ∈ FI(A) : µ ≤ σ and σ ∩λ ≤ α}. Clearly µ ∈ F so that F is nonempty and

hence it forms a poset under the inclusion ordering of fuzzy sets. By applying Zorn’s lemma we

can choose a maximal element say θ in F. Now it is enough to show that θ is prime. Suppose
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not. Then there exist fuzzy ideals σ and ν of A such that [σ ,ν ]≤ θ but σ � θ and ν � θ . Put

θ1 = θ ∨σ and θ2 = θ ∨ν . Then θ1 and θ2 are fuzzy ideals of A such that θ � θ1 and θ � θ2.

By the maximality of θ in F both θ1 and θ2 does not belongs to F so there exists a,b ∈ A such

that:

(θ1∩λ )(a)� α and (θ2∩λ )(b)� α

This gives θ1(a)� α,λ (a)� α,θ2(b)� α and λ (b)� α , which implies that θ1(a)∧θ2(b)� α

and λ (a)∧λ (b)� α . Since [σ ,ν ]≤ θ , we have [θ1,θ2]≤ θ . If x ∈ [a,b], then x = t(−→c ,−→u ,−→v )

for some−→c ∈ An, −→u ∈ 〈a〉m, −→v ∈ 〈b〉k and some commutator term t(−→x ,−→y ,−→z ) in−→y ,−→z . Then

for each x ∈ [a,b] it holds that:

θ(x)≥ [θ1,θ2](x)≥ θ1(a)∧θ2(b)

Also we have θ1(a)∧θ2(b)� α , which gives that θ(x)� α . But since θ ∩λ ≤ α and α is an

irreducible element in L we get that λ (x) ≤ α for all x ∈ [a,b]. This contradicts to that; λ is a

fuzzy m−system. Therefore θ is prime.

For a non trivial algebra A, to have a fuzzy m−system is a sufficient condition for A to

possess fuzzy prime ideals, provided that L has irreducible elements.

3.3 Generalized Fuzzy Prime Ideals

Definition 3.3.1. A non-constant fuzzy ideal µ of A is called generalized fuzzy prime ideal if

and only if each level ideal µα is either A or prime.

Theorem 3.3.2. A non-constant fuzzy ideal µ of A is generalized fuzzy prime ideal if and only

if

either µ(a)≥
∧

x∈[a,b]
µ(x) or µ(b)≥

∧
x∈[a,b]

µ(x)

for all a,b ∈ A.
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Proof. Suppose that µ is generalized fuzzy prime and let a,b ∈ A such that

µ(a)�
∧

x∈[a,b]
µ(x)

Let us put ∧
x∈[a,b]

µ(x) = α

Then µ(x) ≥ α for all x ∈ [a,b] and µ(a) � α , i.e., [a,b] ⊆ µα and a /∈ µα . So that µα is a

proper ideal of A such that [a,b] ⊆ µα . By our hypothesis µα is prime and hence b ∈ µα , i.e.,

µ(b)≥ α . Hence proved.

To prove the converse part, let α ∈ L such that µα is a proper ideal. We need to show that µα is

prime. Let a,b ∈ A such that [a,b]⊆ µα . Then µ(x)≥ α for all x ∈ [a,b], i.e.,

∧
x∈[a,b]

µ(x)≥ α

By our assumption, either µ(a) ≥ α or µ(b) ≥ α , which implies that either a ∈ µα or b ∈ µα .

Mean that µα is prime and this completes the proof.

It can be deduced from the previous theorem that, for a non constant fuzzy ideal µ of A, to

be generalized fuzzy prime is equivalent to satisfy the condition:

µ(a)∨µ(b)≥
∧

x∈[a,b]
µ(x)

for all a,b ∈ A, provided that Img(µ) is a chain.

Theorem 3.3.3. If µ is generalized fuzzy prime, then Img(µ) is a chain in L.

Proof. Let a,b ∈ A such that µ(a) 6= µ(b). We show that either µ(a) ≤ µ(b) or µ(b) ≤ µ(a).

Put α = µ(a)∨µ(b). Since µ(a) 6= µ(b) the level ideal µα does not contain one of µ(a),µ(b)

so that it is proper. Since µ is generalized fuzzy prime µα is a prime ideal in A. Now consider
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the following:

x ∈ [a,b] ⇒ µ(x)≥ µ(a) and µ(x)≥ µ(b)

⇒ µ(x)≥ µ(a)∨µ(b) = α

⇒ x ∈ µα

Thus [a,b] ⊆ µα . Being µα prime, either a ∈ µα or b ∈ µα , i.e., either µ(a) ≥ α ≥ µ(b) or

µ(b)≥ α ≥ µ(a). Hence proved.

Theorem 3.3.4. Every fuzzy prime ideal of A is generalized fuzzy prime.

Proof. Suppose that µ is fuzzy prime. By Theorem 3.2.3 µ has only two level ideals namely A

and µ∗ = {x ∈ A : µ(x) = 1}, which is prime. Then µ is generalized fuzzy prime.

Theorem 3.3.5. Suppose that µ is a fuzzy ideal of A such that Img(µ) = {1,α}, where α is a

prime element in L. If µ is generalized fuzzy prime, then it is fuzzy prime.

Proof. The proof follows from Theorem 3.2.3.

3.4 Homomorphisms and Fuzzy Prime Ideals

Theorem 3.4.1. Let h : A→ B be a surjective homomorphism.

1. If µ and σ are fuzzy ideals of A, then

h([µ,σ ]) = [h(µ),h(σ)]

2. If σ and θ are fuzzy ideals of B, then

[h−1(σ),h−1(θ)]≤ h−1([σ ,θ ])
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Proof. (1) Let y ∈ B. Since h is assumed to be surjective, the set h−1(y) is always nonempty.

By definition we have:

h([µ,η ])(y) =
∨
{[µ,η ](x) : x ∈ h−1(y)}

=
∨
{
∨
{µm(

−→
b )∧η

k(−→c ) : x = tA(−→a ,
−→
b ,−→c )} : x ∈ h−1(y)}

=
∨
{µm(

−→
b )∧η

k(−→c ) : y = h(tA(−→a ,
−→
b ,−→c ))}

which gives

h([µ,η ])(y)≥ µ
m(
−→
b )∧η

k(−→c ) (3.4.1)

for any b1, ...,bm,c1, ...,ck ∈A, with y= h(tA(−→a ,
−→
b ,−→c )) for some commutator term t(−→x ,−→y ,−→z )

in −→y ,−→z and some a1, ...,an ∈ A. Now let y = tB(−→u ,−→v ,−→w ) be any expression of y using

commutator terms, where u1, ...,un,v1, ...,vm,w1, ...,wk ∈ B. Since h is surjective there ex-

ist a1, ...,an,b1, ...,bm,c1, ...,ck ∈ A such that h(ai) = ui, h(b j) = v j and h(cr) = wr for all

i = 1,2, ...,n, j = 1,2, ...,m and r = 1,2, ...,k. Equivalently, each ai ∈ h−1(ui), b j ∈ h−1(v j)

and cr ∈ h−1(wr). Now consider:

h(tA(−→a ,
−→
b ,−→c )) = tB(h(a1), ...,h(aa),h(b1), ...,h(bm),h(c1), ...,h(ck))

= tB(u1, ...,un,v1, ...,vm,w1, ...,wk)

= tB(−→u ,−→v ,−→w )

= y

So, by eq. (3.4.1) we get

h([µ,η ])(y)≥ µ(b1)∧ ...∧µ(bm)∧η(c1)∧ ...∧η(ck)
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Since each b j (respectively cr) is arbitrary in h−1(v j) (respectively in h−1(wr)), it follows that

h([µ,η ])(y) ≥

 ∨
b1∈h−1(v1)

µ(b1)

∧ ...∧
 ∨

bm∈h−1(vm)

µ(bm)

∧
 ∨

c1∈h−1(w1)

η(c1)

∧ ...
...∧

 ∨
ck∈h−1(wk)

η(ck)


= h(µ)(v1)∧ ...∧h(µ)(vm)∧h(η)(w1)∧ ...∧h(η)(wk)

= h(µ)m(−→v )∧h(η)k(−→w )

This gives

h([µ,η ])(y) ≥
∨
{h(µ)m(−→v )∧h(η)k(−→w ) : y = tB(−→u ,−→v ,−→w )}

= [h(µ),h(η)](y)

Therefore [h(µ),h(η)]≤ h([µ,η ]). To prove the other inequality, consider

[h(µ),h(η)](y) =
∨
{h(µ)m(−→v )∧h(η)k(−→w ) : y = tB(−→u ,−→v ,−→w )}

So that

[h(µ),h(η)](y) ≥ h(µ)m(−→v )∧h(η)k(−→w ) (3.4.2)

for all v1, ...,vm,w1, ...,wk ∈ B, with y = tB(−→u ,−→v ,−→w )}, for some commutator term t(−→x ,−→y ,−→z )

in−→y ,−→z and some u1, ...,un ∈B. Now let y= h(tA(−→a ,
−→
b ,−→c )) for some a1, ...,an,b1, ...,bm,c1, ...,ck ∈

A and commutator term t(−→x ,−→y ,−→z ) in −→y ,−→z . That is,

y = tB(h(a1), ...,h(an),h(b1), ...,h(bm)),h(c1), ...,h(ck))
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By eq. (3.4.2) we get

[h(µ),h(η)](y) ≥ h(µ)(h(b1))∧ ...∧h(µ)(h(bm))∧h(η)(h(c1))∧ ...∧h(η)(h(ck))

using the fact that h(µ)(h(a))≥ µ(a) for all a ∈ A, we get the following:

[h(µ),h(η)](y) ≥ h(µ)(h(b1))∧ ...∧h(µ)(h(bm))∧h(η)(h(c1))∧ ...∧h(η)(h(ck))

≥ µ(b1)∧ ...∧µ(bm)∧η(c1)∧ ...∧η(ck)

= µ
m(
−→
b )∧η

k(−→c )

Since these bi’s and c j’s are arbitrary, it follows that

[h(µ),h(η)](y) ≥
∨
{µm(

−→
b )∧η

k(−→c ) : y = h(tA(−→a ,
−→
b ,−→c ))}

= h([µ,η ])(y)

which gives h([µ,η ])≤ [h(µ),h(η)] and therefore the equality holds.

(2) Let x ∈ A be any element. Then

[h−1(σ),h−1(θ)](x) =
∨
{µm(

−→
b )∧σ

k(−→c ) : x = t(−→a ,
−→
b ,−→c ),

where t(−→x ,−→y ,−→z ) is a commutator term in −→y ,−→z }

Now let x = tA(−→a ,
−→
b ,−→c ); for some commutator term t(−→x ,−→y ,−→z ) in −→y ,−→z and

a1, ...,an,b1, ...,bm,c1, ...,ck ∈ A. Then

h(x) = h(tA(−→a ,
−→
b ,−→c ))

= tB(h(a1), ...,h(an),h(b1), ...,h(bm),h(c1), ...,h(ck))
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Consider the following:

h−1([σ ,θ ])(x) = [σ ,θ ](h(x))

=
∨
{σm(−→v )∧θ

k(−→w ) : h(x) = tB(−→u ,−→v ,−→w )}

≥ σ(h(b1))∧ ...∧σ(h(bm))∧θ(h(c1))∧ ...∧θ(h(ck)))

= h−1(σ)(b1)∧ ...∧h−1(σ)(bm)∧h−1(θ)(c1)∧ ...∧h−1(θ)(ck)

= (h−1(σ))m(b)∧ (h−1(θ))k(−→c )

Since each a1, ...,an,b1, ...,bm,c1, ...,ck are arbitrary, we get

h−1([σ ,θ ])(x) ≥
∨
{(h−1(σ))m(

−→
b )∧ (h−1(θ))k(−→c ) : x = tA(−→a ,

−→
b ,−→c )}

= [h−1(σ),h−1(θ)](x)

Therefore [h−1(σ),h−1(θ)]≤ h−1([σ ,θ ]).

Theorem 3.4.2. If h : A→ B is an onto homomorphism and µ is an h−invariant fuzzy prime

ideal of A, then h(µ) is a fuzzy prime ideal of B.

Proof. Suppose that µ is an h−invariant fuzzy prime ideal of A. It follows from Theorem 2.5.1

that h(µ) is a fuzzy ideal of B. Let σ and θ be fuzzy ideals of B such that [σ ,θ ]≤ h(µ). Then,

h−1([σ ,θ ]) ≤ h−1(h(µ)). Since µ is given to be an h-invariant, we have h−1(h(µ)) = µ . So

that, h−1([σ ,θ ])≤ µ . Also, by (2) of Theorem 3.4.1, we have [h−1(σ),h−1(θ)]≤ h−1([σ ,θ ]),

which gives [h−1(σ),h−1(θ)]≤ µ . Since µ is fuzzy prime, either h−1(σ)≤ µ or h−1(θ)≤ µ ,

which implies either h(h−1(σ)) ≤ h(µ) or h(h−1(θ)) ≤ h(µ); that is, either σ ≤ h(µ) or θ ≤

h(µ). This means h(µ) is fuzzy prime.

Theorem 3.4.3. If h is a homomorphism from A onto B and σ is a fuzzy prime ideal of B, then

h−1(σ) is a fuzzy prime ideal of A.

Proof. Suppose that θ is a fuzzy prime ideal of B. By Theorem 2.5.1 h−1(θ) is a fuzzy ideal of

A. Let µ and η be fuzzy ideals of A such that [µ,η ] ≤ h−1(θ). Then, h([µ,η ]) ≤ h(h−1(θ)).
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Since h is surjective, h(h−1(θ))= θ and by (1) of Theorem 3.4.1, we have h([µ,η ])= [h(µ),h(η)].

So that [h(µ),h(η)] ≤ θ . Since θ is fuzzy prime, either h(µ) ≤ θ or h(η) ≤ θ . This provides

that either µ ≤ h−1(θ) or η ≤ h−1(θ). Therefore h−1(θ) is fuzzy prime.

Theorem 3.4.4. If h : A→ B is an onto homomorphism, then the mapping µ 7→ h(µ) defines a

one-to-one correspondence between the set of all h-invariant fuzzy prime ideals of A and the set

of all fuzzy prime ideals of B.

Proof. The above two theorems confirm that µ 7→ h(µ) is an onto map from the set of all h-

invariant fuzzy prime ideals of A to the set of all fuzzy prime ideals of B. It remains to show that

it one-one. Let µ1 and µ2 be an h-invariant fuzzy prime ideals of A such that h(µ1) = h(µ2).

Let x ∈ A. Then h(x) ∈ B and h(µ1)(h(x)) = h(µ2)(h(x)). Since µ1 is h-invariant we have

µ1(x) = µ1(a) for all a ∈ h−1(x). So,

µ1(x) =
∨
{µ1(a) : a ∈ h−1(x)}

= h(µ1)(h(x))

= h(µ2)(h(x))

=
∨
{µ2(b) : b ∈ h−1(x)}

= µ2(x)

Thus µ1 = µ2 and hence the map µ 7→ h(µ) is a one-to-one correspondence.

3.5 Maximal Fuzzy Ideals

A maximal fuzzy ideal of A is a maximal element in the collection of all non-constant fuzzy

ideals of A under the pointwise partial ordering of fuzzy sets.

An element 1 6=α in L is called a dual atom if there is no β in L such that α < β < 1. In other

words α is maximal in L−{1}. In the following theorem, we give an internal characterization

of maximal fuzzy ideals in A.
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Theorem 3.5.1. A fuzzy ideal µ of A is maximal if and only if Img(µ) = {1,α}, where α is a

dual atom in L and the set µ∗ = {x ∈ A : µ(x) = 1} is a maximal ideal of A.

Proof. Suppose that µ is maximal. Clearly 1 ∈ Img(µ) and since µ is non-constant there is

some a ∈ A such that µ(a) < 1. We first show that µ assumes exactly one value other than 1.

Let x,y ∈ A such that µ(x)< 1 and µ(y)< 1. Put α = µ(x) and β = µ(y). Define fuzzy subsets

µ∨α and µ∨
β

of A as follows:

µ
∨
α (z) = µ(z)∨α and µ

∨
β
(z) = µ(z)∨β

for all z ∈ A. Then it can be verified that both µ∨α and µ∨
β

are fuzzy ideals of A such that µ ≤ µ∨α

and µ ≤ µ∨
β

. By the maximality of µ we get that µ = µ∨α and µ = µ∨
β

. Thus α = β . Therefore

Img(µ) = {1,α} for some α ∈ L−{1}. Next we prove that α is a dual atom. Let β ∈ L such

that α < β . Define a fuzzy subset σ of A by:

σ(z) =


1 if µ(z) = 1

β otherwise

for all z ∈ A. Then σ is a fuzzy ideal of A such that µ < σ . By the maximality of µ it yields

that σ = 1A; i.e., σ(z) = 1 for all z ∈ A. So β = 1. Therefore α is a dual atom. It remain to

show that µ∗ is a maximal ideal of A. Clearly it is a proper ideal. Let J be a proper ideal of A

such that µ∗ ⊆ J. Define an L−fuzzy subset σ of A by:

σ(z) =


1 if z ∈ J

α otherwise

for all z ∈ A. Then σ is a non-constant fuzzy ideal of A such that µ ≤ σ . Since µ is maximal

we get µ = σ . So µ∗ = J. Therefore µ∗ is maximal among all proper ideals of A. Conversely

suppose that Img(µ)= {1,α}, where α is a dual atom in L and the set µ∗= {x∈A : µ(x)= 1} is

a maximal ideal of A. Let σ be a non-constant fuzzy ideal of A such that µ ≤ σ . Then σ(x) = 1
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for all x ∈ µ∗ and α ≤ σ(x) for all x ∈ A−µ∗. We show that σ = µ . Suppose not. Then there

exists x∈ A such that σ(x)> µ(x). So x∈ A−µ∗. If σ(x) = 1, then x∈ σ∗ = {z∈ A : σ(z) = 1}

and µ∗ σ∗ A. This contradicts to the maximality of µ∗. Also if σ(x)< 1, then α ≤σ(x)< 1.

Again this contradicts to the hypothesis ’α is a dual atom’. Therefore σ = µ . Hence µ is

maximal.

The above theorem shows that there is a one to one correspondence between the class of all

maximal fuzzy ideals and the set of all pairs (M,α) where M is a maximal ideal in A and α is a

dual atom in L.

Theorem 3.5.2. If A is an algebra in which every maximal ideal is a prime ideal and L has a

dual atom, then every maximal fuzzy ideal is a fuzzy prime ideal.

For instance, if [A,A] = A or if A has a formal unit, then every maximal fuzzy ideal of A is

a fuzzy prime ideal, provided that L has a formal unit.

Theorem 3.5.3. If h : A→ B is an onto homomorphism and µ is a maximal fuzzy ideal of A,

then h(µ) is a maximal fuzzy ideal of B.

Proof. Suppose that µ is a maximal fuzzy ideal of A. Clearly, h(µ) is a fuzzy ideal of B. Let

σ be a proper fuzzy ideal of B such that h(µ) ≤ σ . Then, h−1(h(µ)) ≤ h−1(σ). Since µ is

h-invariant, we have µ = h−1(h(µ)). So that µ ≤ h−1(σ). By Theorem 2.5.1, h−1(σ) is a

fuzzy ideal of A. Moreover, since σ is proper, there exists y ∈ B such that σ(y) < 1; that is,

σ(y) = h(h−1(σ))(y)< 1, which gives h−1(σ)(x)< 1 for all x ∈ h−1(y). This means, h−1(σ)

is a proper fuzzy ideal of A such that µ ≤ h−1(σ). Since µ is maximal, we get that µ = h−1(σ),

which implies h(µ) = h(h−1(σ)) = σ . Therefore h(µ) is a maximal fuzzy ideal in A.

Theorem 3.5.4. If h is a homomorphism from A onto B and σ is a maximal fuzzy ideal of B,

then h−1(σ) is maximal in the class of h−invariant fuzzy ideals of A.

Proof. Suppose that σ is a maximal fuzzy ideal of B. By Theorem 2.5.1, h−1(σ) is a fuzzy

ideal of A. Let µ be a proper h-invariant fuzzy ideal of A such that h−1(σ) ≤ µ . Then h(µ)

is a proper fuzzy ideal of B such that h(h−1(σ)) ≤ h(µ), which gives σ ≤ h(µ). Being σ a
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maximal fuzzy ideal, it follows that σ = h(µ). So that h−1(σ) = h(h−1(µ)) = µ . Thus h−1(σ)

is maximal in the class of h−invariant fuzzy ideal of A.

Theorem 3.5.5. If h : A→ B is an onto homomorphism, then the mapping µ 7→ h(µ) defines

aone-to-one correspondence between the set of all h-invariant maximal fuzzy ideals of A and

the set of all maximal fuzzy ideals of B.

3.6 Generalized Maximal Fuzzy Ideals

In this section, A is assumed to have a formal unit say u.

Theorem 3.6.1. Let M be a maximal ideal of A and µ be a non-constant fuzzy ideal. Then

χM ≤ µ if and only if µ = αM for some α ∈ L−{1}.

Proof. Suppose that χM ≤ µ . Then (χM)α ⊆ µα for all α ∈ L. In particular, M ⊆ µ∗, where

µ∗ = {x ∈ A : µ(x) = 1}. Since µ is non-constant, µ∗ is a proper ideal. M being maximal,

it holds that M = µ∗. We show that µ attains exactly one value other than 1. Let a,b ∈ A

such that µ(a) < 1 and µ(b) < 1. If we put α = µ(a) and β = µ(b), then M is properly

contained in the level ideal µα . Since M is maximal, it follows that µα = A. So that b ∈ µα ,

i.e., µ(b)≥ α = µ(a). Similarly, by interchanging a and b we can show that µ(a)≥ µ(b) and

hence the µ(a) = µ(b). This confirms that µ = αM for some α ∈ L−{0}. The converse part is

straight forward.

Definition 3.6.2. A non-constant fuzzy ideal µ of A is called generalized maximal fuzzy ideal

if and only if each level ideal µα is either A or a maximal ideal in A.

Theorem 3.6.3. Let M be a proper ideal of A and α ∈ L−{1}. Then M is maximal if and only

if αM is generalized maximal fuzzy ideal.

Corollary 3.6.4. A proper ideal M of A is maximal if and only if χM is generalized maximal

fuzzy ideal.
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Theorem 3.6.5. A non-constant fuzzy ideal µ of A is generalized maximal fuzzy ideal if and

only if µ = αM for some maximal ideal M of A and α ∈ L−{1}.

Proof. If µ = αM for some α ∈ L−{0} and some maximal ideal M, then it is clear from the

definition that αM is generalized fuzzy maximal. Conversely, assume that µ is generalized fuzzy

maximal. Then every level ideal of A is either A or maximal. If we put M = {x ∈ A : µ(x) = 1},

then M is a maximal ideal of A such that χM ≤ µ . By Theorem 3.6.1, there exists some α ∈

L−{1} such that µ = αM. Hence proved.
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Chapter 4

L−Fuzzy Semi-Prime Ideals

Introduction

Several attempts have been made to fuzzify the concept of semiprime ideals in rings (see [66,

98, 96, 104, 109, 160]). Dixit et al. [66] and Zahedi [160] have defined semiprime fuzzy ideal

of a ring R as a fuzzy ideal µ , which satisfies the condition, that if σn ≤ µ (σ2 ≤ µ), then

σ ≤ µ for all fuzzy ideals σ of R. These definitions, however, make no reference to the grade

of membership of an element of R. With this view, later Kumbhojkar et al. [104] defined fuzzy

semiprime ideals of a ring R as a fuzzy ideal µ , satisfying the condition: µ(x2) = µ(x) for all

x ∈ R. This helps to see the effect of semi-primeness on the elements of R.

In this chapter, we define fuzzy semi-prime ideals of universal algebras in the sense of [66]

by applying the commutator of fuzzy ideals given in the previous chapter. We show that this

definition is equivalent to that of [104]. In addition, we define the radical of fuzzy ideals in

universal algebras and give several characterizing theorems describing the properties of fuzzy

semi-prime ideals. In the last section, we study the space of fuzzy prime ideals equipped with

the hull kernel topology.
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4.1 Fuzzy Semi-Prime Ideals

Definition 4.1.1. A fuzzy ideal µ of A is called fuzzy semi-prime if:

[θ ,θ ]≤ µ ⇒ θ ≤ µ

for all θ ∈ FI(A).

It is clear that every fuzzy prime ideal is fuzzy semi-prime.

Theorem 4.1.2. A fuzzy ideal µ of A is fuzzy semi-prime if and only if µα is semi-prime for all

α ∈ L.

Proof. Suppose that µ is fuzzy semi-prime and let α ∈ L. Let I be an ideal of A such that

[I, I]⊆ µα . We show that I ⊆ µα . Define a fuzzy subset σ of A as follows:

σ(x) =


1 if x = 0

α if x ∈ I−{0}

0 otherwise

for all x ∈ A. Then it is easy to check that σ is a fuzzy ideal of A. Moreover, for each x ∈ A we

have:

[σ ,σ ](x) =


1 if x = 0

α if x ∈ [I, I]−{0}

0 otherwise

It follows from our hypothesis; [I, I]⊆ µα that [σ ,σ ]≤ µ . Since µ is fuzzy semi-prime, σ ≤ µ .

Thus the level ideal σα which is precisely I will be included in µα and hence µα is semi-prime.

Conversely, suppose that µα is semi-prime for all α ∈ L. Let σ ∈ FI(A) such that [σ ,σ ] ≤ µ .

Then [σ ,σ ]α ≤ µα for all α ∈ L. By Corollary 3.1.5, we have

[σα ,σα ]⊆ [σ ,σ ]α ≤ µα
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Since each µα is semi-prime, it follows that σα ⊆ µα for all α ∈ L. Thus σ ≤ µ and hence µ is

fuzzy semi-prime.

Theorem 4.1.3. An ideal I of A is semi-prime if and only if its characteristic function χI is fuzzy

semi-prime.

Proof. Suppose that I is semi-prime. Let µ be a fuzzy ideal of A such that [µ,µ]≤ χI . We show

that µ ≤ χI . Suppose not. There exists x ∈ A− I such that µ(x) > 0. Since I is semi-prime,

[x,x]* I. Choose an element a in [x,x] and a /∈ I. We can verify that [µ,µ](a)≥ µ(x)> 0, which

is a contradiction. Therefore χI is fuzzy semi-prime. The converse part is straight forward.

Theorem 4.1.4. A non-constant fuzzy ideal µ of A is fuzzy semi-prime if and only if for any

fuzzy point xα of A:

[xα ,xα ]≤ µ ⇒ xα ∈ µ

Proof. Suppose that µ satisfies the condition:

[xα ,xα ]≤ µ ⇒ xα ∈ µ

for each fuzzy point xα of A. We show that µ is fuzzy semi-prime. Let σ be a fuzzy ideal of

A such that [σ ,σ ] ≤ µ . Suppose on contrary that σ � µ . Then there exists x ∈ A such that

σ(x)� µ(x). If we put α = σ(x), then xα is a fuzzy point of A such that xα ∈ σ but xα /∈ µ . So

[xα ,xα ]≤ [σ ,σ ]≤ µ , but xα /∈ µ . This contradicts to our hypothesis. Thus σ ≤ µ and therefore

µ is fuzzy semi-prime. The converse part is clear.

Theorem 4.1.5. A fuzzy ideal µ of A is fuzzy semi-prime if and only if:

µ(a)≥
∧
{µ(x) : x ∈ [a,a]} (4.1.1)

for all a ∈ A.
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Proof. Suppose that µ is fuzzy semi-prime. We use contradiction. Assume that there exists

a ∈ A such that

µ(a)�
∧
{µ(x) : x ∈ [a,a]}

Put α = ∧{µ(x) : x ∈ [a,a]} and define a fuzzy subset θ of A by:

θ(x) =


1 if x = 0

α if x ∈ 〈a〉−{0}

0 otherwise

for all x ∈ A. Then θ is a fuzzy ideal of A such that for each x ∈ A we have:

[θ ,θ ](x) =


1 if x = 0

α if x ∈ [a,a]−{0}

0 otherwise

So that [θ ,θ ] ≤ µ . Since µ is fuzzy semi-prime it yields that θ ≤ µ . This is a contradiction,

because θ(a) � µ(a). Therefore the inequality 4.1.1 holds for all a ∈ A. Conversely, suppose

that the inequality 4.1.1 holds for all a ∈ A. Let θ be any fuzzy ideal of A such that [θ ,θ ]≤ µ .

We show that θ ≤ µ . Suppose not. Then there exists a ∈ A such that θ(a) � µ(a). For each

x ∈ [a,a], we can verify that [θ ,θ ](x) ≥ θ(a). Since [θ ,θ ] ≤ µ , it yields that µ(x) ≥ θ(a) for

all x ∈ [a,a]. So that

µ(a)≥
∧
{µ(x) : x ∈ [a,a]} ≥ θ(a)

This is a contradiction. Therefore µ is fuzzy semi-prime.

Theorem 4.1.6. If h : A→ B is an onto homomorphism and µ is an h−invariant fuzzy semi-

prime ideal of A, then h(µ) is a fuzzy semi-prime ideal of B.

Proof. Suppose that µ is an h−invariant fuzzy semi-prime ideal of A. It follows from Theorem

2.5.1 that h(µ) is a fuzzy ideal of B. Let θ be fuzzy a ideal of B such that [θ ,θ ]≤ h(µ). Then,



4.2. The Radical of Fuzzy Ideals 77

h−1([θ ,θ ])≤ h−1(h(µ)). Since µ is given to be h-invariant, we have h−1(h(µ)) = µ . So that,

h−1([θ ,θ ])≤ µ . Also, by (2) of Theorem 3.4.1, we have [h−1(θ),h−1(θ)]≤ h−1([θ ,θ ]), which

gives [h−1(θ),h−1(θ)] ≤ µ . Since µ is fuzzy semi-prime, we get h−1(θ) ≤ µ , which implies

that h(h−1(θ))≤ h(µ); that is, θ ≤ h(µ). This means h(µ) is fuzzy semi-prime.

Theorem 4.1.7. If h is a homomorphism from A to B and σ is a fuzzy semi-prime ideal of B,

then h−1(σ) is a fuzzy semi-prime ideal of A.

Proof. Suppose that θ is a fuzzy semi-prime ideal of B. By Theorem 2.5.1 h−1(θ) is a fuzzy

ideal of A. Let µ be a fuzzy ideal of A such that [µ,µ]≤ h−1(θ). Then, h([µ,µ])≤ h(h−1(θ)).

Since h is surjective, h(h−1(θ))= θ and by (1) of Theorem 3.4.1, we have h([µ,µ])= [h(µ),h(µ)].

So that [h(µ),h(µ)] ≤ θ . Since θ is fuzzy semi-prime, we get h(µ) ≤ θ . This provides that

µ ≤ h−1(θ). Therefore h−1(θ) is fuzzy semi-prime.

Theorem 4.1.8. If h : A→ B is an onto homomorphism, then the mapping µ 7→ h(µ) defines a

one-to-one correspondence between the set of all h-invariant fuzzy semi-prime ideals of A and

the set of all fuzzy semi-prime ideals of B.

Proof. The proof is similar to that of Theorem 3.4.4.

4.2 The Radical of Fuzzy Ideals

According to [149], the prime radical of an ideal I of A, denoted by
√

I is the intersection of

all prime ideals of A containing I. Here we define the prime radical of fuzzy ideals using their

level ideals.

Definition 4.2.1. For a fuzzy ideal µ of A, its prime radical of µ denoted by
√

µ is defined as a

fuzzy subset of A such that, for each x ∈ A:

√
µ(x) = α if and only if x ∈√µα and x /∈√µβ for all β � α in L.

If the algebra we are assuming is a ring, then this definition coincides with that of Kumar

[97].
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Lemma 4.2.2. Let µ be a fuzzy ideal of A and x ∈ A. Then

√
µ(x) =

∨
{α ∈ L : x ∈

√
µα}

Lemma 4.2.3. The following holds for all µ,ν ∈ FI(A):

1.
√

(µα) = (
√

µ)α for all α ∈ L

2. µ ≤√µ

3. µ ≤ ν ⇒√µ ≤
√

ν

Lemma 4.2.4. For any µ ∈ FI(A),
√

µ is a fuzzy ideal of A.

Proof. It is clear that
√

µ(0) = 1. Let −→a ∈ An,
−→
b ∈ Am and P(−→x ,−→y ) be an ideal term in −→y .

Then consider:

(
√

µ)m(
−→
b ) =

∧
{
√

µ(bi) : 1≤ i≤ m}

=
∧
{
∨
{αi ∈ L : bi ∈

√
µαi} : 1≤ i≤ m}

=
∨
{
∧
{αi ∈ L : 1≤ i≤ m} : bi ∈

√
µαi}

If we put β = ∧{αi ∈ L : 1≤ i≤ m}, then we get µαi ⊆ µβ for all 1≤ i≤ m. This implies that
√

µαi ⊆
√

µβ for all 1≤ i≤ m. Then we have the following:

(
√

µ)m(
−→
b ) =

∨
{
∧
{αi ∈ L : 1≤ i≤ m} : bi ∈

√
µαi}

≤
∨
{β ∈ L : bi ∈

√
µβ , for all 1≤ i≤ m}

=
∨
{β ∈ L :

−→
b ∈ (

√
µβ )

m}

≤
∨
{β ∈ L : P(−→a ,

−→
b ) ∈

√
µβ}

=
√

µ(P(−→a ,
−→
b ))

Therefore
√

µ is a fuzzy ideal of A.
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Lemma 4.2.5. For any µ ∈ FI(A),
√

µ is fuzzy semi-prime.

Proof. The proof follows from (1) of Lemma 4.2.3 and Theorem 4.1.2.

Lemma 4.2.6. For any θ ∈ FI(A), if θ is fuzzy semi-prime, then
√

θ = θ .

Proof. Suppose that θ is fuzzy semi-prime. By Theorem 4.1.2, every level ideal θα is semi-

prime. By the equivalence in (3.5) of [149], we get
√

θα = θα for all α ∈ L. This confirms that
√

θ = θ .

Corollary 4.2.7. For any µ ∈ FI(A),
√√

µ =
√

µ .

Lemma 4.2.8. For any µ ∈ FI(A), if θ is a fuzzy semi-prime ideal of A such that µ ≤ θ , then
√

µ ≤ θ .

Proof. The proof is straight forward.

Corollary 4.2.9. For any µ ∈ FI(A),

√
µ = ∩{θ : θ is a fuzzy semi-prime ideal of A,µ ≤ θ}

Lemma 4.2.10. For any µ,ν ∈ FI(A),

√
[µ,ν ] =

√
µ ∩ν =

√
µ ∩
√

ν

Proof. For any x ∈ A, it is clear to see that:

√
[µ,ν ](x)≤

√
µ ∩ν(x)≤

√
µ(x)∧

√
ν(x)

It is enough to show that
√

µ(x)∧
√

ν(x)≤
√

[µ,ν ](x). Let α ∈ L such that
√

µ(x)∧
√

ν(x) =

α . Then x ∈ (
√

µ)α =
√

µα and x ∈ (
√

ν)α =
√

να . So that x ∈ P for all prime ideals P

containing µα (respectively να ). Let Q be any prime ideal of A such that [µ,ν ]α ⊆ Q. Since

[µ,ν ]α = [µα ,να ], we get that either µα ⊆Q or να ⊆Q. So that x ∈Q. Thus x ∈
√

[µ,ν ]α and

hence
√

[µ,ν ](x)≥ α =
√

µ(x)∧
√

ν(x).
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Theorem 4.2.11. If L is a chain and µ is a fuzzy ideal of A satisfying the sup property, then

√
µ = ∩{θ : θ is a fuzzy prime ideal of A,µ ≤ θ}

Proof. Let x ∈ A and α ∈ L. Suppose that
√

µ(x) = α . Then x ∈ √µα and x /∈ √µβ for all

β � α . So that x ∈ P for all prime ideals P of A with µα ⊆ P. Let θ be any fuzzy prime ideal

of A such that µ ≤ θ . By Theorem 3.2.3, Img(θ) = {1,β}, where β ∈ L−{1} and the set

θ∗ = {x ∈ A : θ(x) = 1} is a prime ideal of A.

Case(1) If β ≥ α , then it is clear that θ(x)≥ α .

Case(2) If β < α , then we can verify that θα = θ∗ (which is a prime ideal of A) and µα ⊆ θα = θ∗.

That is, θ∗ is a prime ideal of A containing µα . So that x ∈ θ∗ and hence θ(x)≥ α .

Therefore ∧
{θ(x) : θ is a fuzzy prime ideal of A,µ ≤ θ} ≥ α

To prove the other side of the inequality, Let

α =
∧
{θ(x) : θ is a fuzzy prime ideal of A,µ ≤ θ}

Then θ(x) ≥ α for all fuzzy prime ideals θ of A with µ ≤ θ . Let P be any prime ideal of A

such that µα ⊆ P. We show that x ∈ P. If x ∈ µα , then it is clear. Assume that x /∈ µα . Then

µ(x)< α . Put β = ∨{µ(y) : y /∈ P}. Since µ has the sup-property, β < α . Let us define a fuzzy

subset θP of A as follows:

θP(z) =


1 if z ∈ P

β otherwise

for all z ∈ A. Then θP is a fuzzy prime ideal of A such that µ ≤ θP. Thus θP(x) ≥ α > β and

hence θP(x) = 1. So that x ∈ P, which implies that x ∈ √µα . This confirms that the equality

holds.
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Theorem 4.2.12. If the commutator [ , ] of ideals in A is finitary and µ has the sup-property,

then
√

µ(a) =
∨
{
∧

x∈(a)(n)
µ(x) : n ∈ Z+}

for all a ∈ A.

Proof. Let α ∈ L such that
∨
{
∧

x∈(a)(n) µ(x) : n ∈ Z+} = α . Then there exists n ∈ Z+ such

that (a)(n) ⊆ µα . If P is any prime ideal containing µα , then (a)(n) ⊆ P. So that a ∈ P. Thus

a ∈ √µα and hence
√

µ(a) ≥ α . To prove the other side of the inequality, let β =
√

µ(a).

Then it follows from Corollary 4.2.9 that, θ(a)≥ β for all fuzzy semi-prime ideals θ of A with

µ ≤ θ . We need to show that

∨
{
∧

x∈(a)(n)
µ(x) : n ∈ Z+} ≥ β

Suppose not. Then

β �
∧

x∈(a)(n)
µ(x) for all n ∈ Z+

That is; for each n ∈ Z+, (a)(n) * µβ . Then the set

F= {I ∈I (A) : µβ ⊆ I,(a)(n) * I for all n ∈ Z+}

is nonempty. Moreover, F together with the usual inclusion order forms a poset satisfying the

hypothesis of Zorn’s Lemma (here we use the condition; [ , ] is finitary). So that F has a maximal

element, say M. Our aim is to show that M is semi-prime. Take b /∈M. Then M∨〈b〉 /∈ F. By

the property of F, (a)(n) ⊆M∨〈b〉 for some n ∈ Z+. Then

(a)(n+1) = [(a)(n),(a)(n)]

⊆ [M∨〈b〉,M∨〈b〉]

= [M,M]∨ [M,〈b〉]∨ [b,b]

⊆ M∨ [b,b]
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So that M∨ [b,b] /∈ F and hence [b,b] *M. Therefore M is a semi-prime ideal of A such that

µβ ⊆M such that a /∈M. Put

λ = ∨{µ(y) : y ∈ A−M}

Since µ has the sup-property, β � λ . Now define a fuzzy subset θM of A as follows:

θM(z) =


1 if z ∈M

λ otherwise

for all z ∈ A. Then θM is fuzzy semi-prime ideal of A such that µ ≤ θM. But θM(a) = λ � β ,

which is a contradiction. Therefore the equality holds.

Theorem 4.2.13. Let µ ∈ FI(A). If the commutator [ , ] of ideals in A is associative and finitary,

then for each x ∈ A:

√
µ(x) =

∨
{α ∈ L : ∃n ∈ Z+ such that (xα)

(n) ≤ µ}

where xα is a fuzzy point of A.

Proof. For each α > 0 and n ∈ Z+, we first show that (x)(n) ⊆ µα if and only if (xα)
(n) ≤ µ .

It is clear that (x)(n) ⊆ µα if and only if µ(z) ≥ α for all z ∈ (x)(n). On the other hand we can

verify that:

(xα)
(n)(z) =


1 if z = 0

α if z ∈ (x)(n)−{0}

0 otherwise

for all z ∈ A. Therefore (x)(n) ⊆ µα if and only if (xα)
(n) ≤ µ . Now consider the following:

√
µ(x) =

∨
{α ∈ L : x ∈

√
µα}

=
∨
{α ∈ L : ∃n ∈ Z+,(x)(n) ⊆ µα}

=
∨
{α ∈ L : ∃n ∈ Z+,(xα)

(n) ≤ µ}
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Theorem 4.2.14. If the commutator [ , ] of ideals in A is finitary, then

√
µ = ∪{η ∈ LA : ∃n ∈ Z+ such that η

(n) ≤ µ}

Proof. For each x ∈ A, let us define two sets Hx and Gx as follows:

Hx = {α ∈ L : x ∈
√

µα}

Gx = {η(x) : η ∈ LA such that η
(n) ≤ µ for some n ∈ Z+}

Clearly both Hx and Gx are subsets of L. Our aim is to show that Hx = Gx for all x ∈ A. Let

α ∈ Hx (without loss of generality we can assume that α > 0). Then x ∈ √µα . Since the

commutator [ , ] of ideals in A is finitary, there exists n ∈ Z+ such that (x)(n) ⊆ µα . Thus

(xα)
(n) ≤ µ . If we take η to be the fuzzy point xα , then η ∈ LA, with η(x) = α such that

η(n) ≤ µ for some n ∈ Z+. Therefor α ∈ Gx. So that Hx ⊆ Gx. Also let α ∈ Gx. Then there

exists η ∈ LA such that α = η(x) and η(n) ≤ µ for some n ∈ Z+. Consider the fuzzy point xα .

Since η(x) = α , xα ∈ η . So that (xα)
(n) ≤ η(n) ≤ µ . Then (xα)

(n) ≤ µ , which implies that

(x)(n) ⊆ µα . That is, x ∈√µα . So that α ∈ Hx. Therefore Hx = Gx.

Theorem 4.2.15. If the commutator [ , ] of ideals in A is finitary, then

√
µ = ∪{η ∈ FI(A) : ∃n ∈ Z+ such that η

(n) ≤ µ}

Proof. For each η ∈ LA and n∈ Z+, it yields that η(n)= 〈η〉(n). So that the proof of this theorem

follows from Theorem 4.2.14.

4.3 The Fuzzy Prime Spectrum

The space of prime ideals of universal algebras equipped with the hull-kernel topology was first

studied by Agliano in [7]. He was considering algebras in ideal determined varieties. More
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generally, in the paper [6], Agliano defined and studied the space of prime congruences so

called prime spectra in modular varieties.

The space of fuzzy prime ideals called fuzzy prime spectrum of rings were studied by Kumar

[100] and Kumbhojkar [103]. The spectrum of prime L−submodules was studied by R. Ameri

and R. Mahjoob in [31]. In this section, we study the space fuzzy prime ideals of universal

algebras equipped with the hull-kernel topology. For the standard topological concepts we refer

to [90].

We begin by giving the following notations.

1. Y = {P : P is a prime ideal of A}

2. X = {µ : µ is a fuzzy prime ideal of A}

3. For any subset S⊆ A:

V (S) = {P ∈ Y : S⊆ P} and D(S) = {P ∈ Y : S* P}

4. For any fuzzy subset θ of A:

V (θ) = {µ ∈ X : θ ≤ µ} and D(θ) = {µ ∈ X : θ � µ}

It is immediate from the definition that D(1A) = X =V (0A) and D(0A) = /0 =V (1A).

Lemma 4.3.1. For any fuzzy subset θ of A,

D(θ) = D(〈θ〉) and V (θ) =V (〈θ〉)

Proof. Let µ ∈ D(θ). Then µ is a fuzzy prime ideal of A such that θ � µ . Since θ ≤ 〈θ〉, it

follows that 〈θ〉 � µ and hence µ ∈ D(〈θ〉). Thus D(θ) ⊆ D(〈θ〉). Also, if µ ∈ D(〈θ〉), then

〈θ〉 � µ . If we are assuming that θ ≤ µ , then 〈θ〉 ≤ µ which is impossible. Thus µ ∈ D(θ)

and hence the equality holds. Similarly, we can verify that V (θ) =V (〈θ〉).
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Lemma 4.3.2. For any two fuzzy subsets θ and σ of A:

1. θ ≤ σ ⇒V (σ)⊆V (θ)

2. θ ≤ σ ⇒ D(θ)⊆ D(σ)

Lemma 4.3.3. If L is a chain and θ and σ are fuzzy ideals of A having the sup property, then

the following are equivalent::

1. D(θ) = D(σ)

2. V (θ) =V (σ)

3. V (θα) =V (σα) for all α ∈ L.

4.
√

θα =
√

σα for all α ∈ L.

5.
√

θ =
√

σ

Proof. (1)⇒ (2) is trivial. We proceed to show (2)⇒ (3). Suppose that V (θ) = V (σ). Let

α ∈ L. Let P be a prime ideal of A such that P∈V (θα). Then θα ⊆ P. Put β =∨{θ(x) : x /∈ P}.

Since θ has sup property, we get β < α . Let us define a fuzzy subset θP of A by:

θP(x) =


1 if x ∈ P

β otherwise

for all x ∈ A. Since L is a chain, β is a prime element in L and hence θP is a fuzzy prime ideal of

A. Moreover, θ ≤ θP. So that θP ∈V (θ) =V (σ). Thus σ ≤ θP. Now consider the following:

x ∈ σα ⇒ σ(x)≥ α

⇒ θP(x)≥ α > β

⇒ θP(x) = 1

⇒ x ∈ P
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Thus σα ⊆ P and hence P ∈V (σα). So that V (θα)⊆V (σα). By symmetry, we can also verify

that V (σα)⊆V (θα) and therefore the equality holds.

(3)⇒ (4). Suppose that V (θα) =V (σα) for all α ∈ L. For each α ∈ L, consider the following:

√
(θα) = ∩{P : P is a prime ideal of A such that θα ⊆ P}

= ∩{P : P ∈V (θα)}

= ∩{P : P ∈V (σα)}

= ∩{P : P is a prime ideal of such that σα ⊆ P}

=
√
(σα)

(4)⇒ (5). Suppose that
√

(θα) =
√

(σα) for all α ∈ L. For each x ∈ A, we have

√
θ(x) =

∨
{α ∈ L : x ∈

√
(θα)}

=
∨
{α ∈ L : x ∈

√
(σα)}

=
√

σ(x)

Therefore
√

θ =
√

σ . (5)⇒ (1) is clear and the proof ends.

Lemma 4.3.4. For any µ,ν ∈ FI(A):

1. D(θ ∨σ) = D(θ)∪D(σ)

2. D([θ ,σ ]) = D(θ ∧σ) = D(θ)∩V (σ)

3. V (µ ∨ν) =V (µ)∩V (ν)

4. V (µ ∧ν) =V (µ)∪V (ν)

Proof. The proof of (3) and (4) is dual to the proof of (1) and (2) respectively. So that we

prove only (1) and (2).
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1. Suppose that µ ∈ D(θ ∨σ). Then µ is a fuzzy prime ideal of A such that

θ ∨σ � µ

If θ ≤ µ and σ ≤ µ , then we get θ ∨σ ≤ µ , which is impossible. So that either θ � µ

or σ � µ; that is, either µ ∈ D(θ) or µ ∈ D(σ) and hence D(θ ∨σ)⊆ D(θ)∪D(σ). To

prove the other inclusion, let µ be a fuzzy prime ideal of A such that either µ ∈ D(θ)

or µ ∈ D(σ). Then either θ � µ or σ � µ , which implies that θ ∨ σ � µ . So that

µ ∈ D(θ ∨σ). Thus D(θ)∪D(σ)⊆ D(θ ∨σ) and hence the equality holds.

2. For any fuzzy prime ideal µ of A and each θ ,σ ∈ FI(A) it holds that

[θ ,σ ]≤ µ if and only if θ ∧σ ≤ µ

This provides that the equality D([θ ,σ ]) =D(θ ∧σ). So it is enough to show D([θ ,σ ]) =

D(θ)∩D(σ). Let µ ∈D([θ ,σ ]). Then µ is a fuzzy prime ideal of A such that [θ ,σ ]� µ .

Since [θ ,σ ] ≤ θ and [θ ,σ ] ≤ σ , we get θ � µ and σ � µ; that is, µ ∈ D(θ)∩D(σ),

and hence D([θ ,σ ])⊆ D(θ)∩D(σ). To prove the other inclusion let µ be a fuzzy prime

ideal of A such that µ ∈ D(θ) and µ ∈ D(σ). Then θ � µ and σ � µ . Being µ a fuzzy

prime ideal we get [θ ,σ ] � µ . So µ ∈ D([θ ,σ ]) and hence D(θ)∩D(σ) ⊆ D([θ ,σ ]).

Therefore the the equality holds.

Lemma 4.3.5. For any subset S of A and its characteristic mapping χS

D(χS) = {αP : where α is a prime element in L and P ∈ D(S)}

Proof. Let us put

S = {αP : where α is a prime element in L and P ∈ D(S)}
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Let α be a prime element in L and P ∈ D(S). Then P is a prime ideal of A such that S * P.

There exists a ∈ S and a /∈ P. So that

αP(a) = α < 1 = χS(a)

This implies that χS � αP. Since αP is a fuzzy prime ideal, it belongs to D(χS). So S ⊆D(χS).

To prove the other side inclusion, let µ ∈ D(χS). Then µ is a fuzzy prime ideal of A such that

χS � µ . By Theorem 3.2.3, there exists a prime element α ∈ L and a prime ideal P of A such

that µ = αP. Now from χS � µ = αP, there exists a∈ A such that χS(a)� αP(a), which implies

that αP(a)< 1 and hence a /∈ P. If a /∈ S, then

0 = χS(a)≤ αP(a)

which is impossible and hence a ∈ S. Thus S * P and so P ∈ D(S). This gives µ = αP ∈S .

Therefore D(χS)⊆S and hence the equality holds.

Theorem 4.3.6. The collection

T = {D(θ) : θ is a fuzzy ideal of A}

is a topology on X.

Proof. As D(10) = /0 and D(1A) = X , then T contains both /0 and X . Also for any fuzzy

ideals θ1 and θ2 of A, it is shown in Lemma 4.3.4 that D(θ1)∩D(θ2) = D(θ1 ∧ θ2). This

shows that T is closed under finite intersections. Further, let {θi : i ∈ I} be any family of

fuzzy ideals of A. We verify that ∪i∈ID(θi) = D(∨i∈Iθi). Suppose that µ ∈ D(∨i∈Iθi). Then

∨i∈Iθi � µ which implies that θi � µ for some i ∈ I. Otherwise if θi ≤ µ for each i ∈ I,

then it would be true that ∨i∈Iθi ≤ µ , which is impossible. Thus µ ∈ ∪i∈ID(θi) and hence

D(∨i∈Iθi) ⊆ ∪i∈ID(θi). To prove the other inclusion, let µ ∈ ∪i∈ID(θi). Then µ ∈ D(θi) for

some i ∈ I; that is, θi � µ for some i ∈ I. Since θi ≤ ∨i∈Iθi, we get ∨i∈Iθi � µ . So that
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µ ∈ D(∨i∈Iθi). Whence ∪i∈ID(θi) ⊆ D(∨i∈Iθi) and hence the equality holds. Therefore T is

closed under arbitrary union and hence it is a topology on X .

Definition 4.3.7. The topological space (X ,T ) is called the fuzzy prime spectrum of A and it

is denoted by F− spec(A).

Lemma 4.3.8. For any fuzzy points xα ,yβ of A.

D(xα)∩D(yβ ) = D([xα ,yβ ])

Lemma 4.3.9. Let L be a chain. For any α > 0 in L, D(xα) = /0 if and only if x ∈
√

0.

Proof. Let 0 < α ∈ L. Suppose that D(xα) = /0 and let P be a prime ideal in A. Since L is a

chain, 0 is a prime element in L. Consider the fuzzy subset 0P of A defined by:

0P(z) =


1 if z ∈ P

0 otherwise

for all z ∈ A. Then it is clear that 0P is a fuzzy prime ideal of A. By our assumption, 0P /∈D(xα)

and heence xα ≤ 0P. So that

0 < α = xα(x)≤ 0P(x)

This gives x ∈ P. Since P is arbitrary, we can conclude that

x ∈ ∩{P : P is a prime ideal of A}=
√

0

Conversely suppose that x ∈
√

0. Then x ∈ P for each prime ideal P of A. Let µ be a fuzzy

prime ideal of A. Our aim is to show that xα ∈ µ . Since the set

µ∗ = {a ∈ A : µ(a) = 1}
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is a prime ideal, we get x ∈ µ∗ and hence µ(x) = 1 ≥ α . So that xα ∈ µ . Thus µ /∈ D(xα),

which gives D(xα) = /0.

Lemma 4.3.10. Suppose that A has a unit element say u and L is a chain. For any α > 0 in L,

D(xα) = X if and only if x is a unit.

Proof. Suppose that D(xα) = X . Then xα /∈ µ for all µ ∈ X . So µ(x) < 1 for all µ ∈ X . This

implies that, for each prime ideal P of A, x /∈ P. If we are assuming that x is not a unit, then by

applying Zorn’s Lemma we can find a prime ideal P of A containing x which is a contradiction.

Thus x is a unit element in A. Conversely, suppose that x is a unit. Then x /∈ P for each prime

ideal P of A. Now let µ be any fuzzy prime ideal of A. Then the set

µ∗ = {a ∈ A : µ(a) = 1}

is a prime ideal in A. So x /∈ µ∗, that is, µ(x) 6= 1. If we take α = 1, then the fuzzy point xα /∈ µ

and hence µ ∈ D(xα). Thus D(xα) = X .

Theorem 4.3.11. Let A,B ∈K and let h : A→ B be a surjective homomorphism.

1. If µ ∈ F − Spec(B), then h−1(µ) ∈ F − Spec(A). Hence h induces a map h∗ from F −

Spec(B) to F−Spec(A), defined by h∗(µ) = h−1(µ).

2. The map h∗ is a homeomorphism from F − Spec(B) to the class of h−-invariant fuzzy

prime ideals of A.

Lemma 4.3.12. The subfamily B = {D(xα) : x ∈ A,α ∈ L−{0}} of T is a base for T .

Proof. Let θ be any fuzzy ideal of A and µ ∈ D(θ). Then µ is a fuzzy prime ideal of A such

that θ � µ . There exists x ∈ A such that θ(x)� µ(x). If we put β = θ(x), then β > 0, and the

fuzzy point xβ ∈ θ and xβ /∈ µ . So that µ ∈ D(xβ )⊆ D(θ). Thus B forms a base for T .

Lemma 4.3.13. If A has a unit element u, then for each prime element α ∈ L, the set

Aα = {µ ∈ X : Im(µ) = {1,α}}
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is a compact subspace of X.

Proof. Remember that Aα can be made a subspace of X by the relativized topology Tα where

Tα = {D(θ)∩Aα : θ ∈ FI(A)}

If we put Lα = {γ ∈ L : γ � α}, then Lα is a nonempty subset of L. Moreover, it is clear to show

that the family

Bα = {D(xγ)∩Aα : x ∈ A and γ ∈ Lα}

constitutes a base for Tα . Suppose that the family

C= {D((xi)t)∩Aα : i ∈ ∆ and γ ∈ K ⊆ Lα}

is a basic open cover for Aα . If we take r = ∨{t : t ∈ K}, then r � α and the family {D((xi)r)∩

Aα : i ∈ ∆} covers Aα . Now consider the following:

Aα =
⋃
i∈∆

[D((xi)r)∩Aα ]

= Aα ∩
⋃
i∈∆

[D((xi)r)]

= Aα ∩D(∪i∈∆(xi)r)

= Aα ∩ (X−V [∪i∈∆(xi)r])

which implies that Aα ∩V [∪i∈∆(xi)r] = /0. For any prime ideal P of A, consider the fuzzy

ideal αP of A as given in Definition1.2.12. It is shown in Corollary 3.2.4 that αP is fuzzy

prime and hence αP ∈ Aα . Since Aα ∩V [∪i∈∆(xi)r] = /0, it yields that αP /∈ V [∪i∈∆(xi)r]. So

that, ∪i∈∆(xi)r � αP. If (xi)r ∈ αP for all i ∈ ∆, then ∪i∈∆(xi)r ≤ αP which is impossible. So

there exists j ∈ ∆ such that (x j)r /∈ αP, implying that r � αP(x j). Then αP(x j) 6= 1 and hence

αP(x j) = α; that is, x j /∈ P. Mean that, for each prime ideal P of A, there exists j ∈ ∆ such that

x j /∈ P. Equivalently saying that, every prime ideal P does not contains the ideal 〈{xi : i ∈ ∆}〉.
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So 〈{xi : i ∈ ∆}〉= A, and hence u ∈ 〈{xi : i ∈ ∆}〉. Then

u = p(a1, ...,an,xi1, ...,xim)

for some a1, ...,an ∈ A, i1, i2, ..., im ∈ ∆. We show that

V [
m⋃

j=1

(xi j)r]∩Aα = /0

Suppose on contrary that there is some

µ ∈V [
m⋃

j=1

(xi j)r]∩Aα

which implies that µ(xi j)≥ r for all 1≤ j≤m. Since r�α , we get µ(xi j) = 1 for all 1≤ j≤m.

Now consider:

µ(u) = µ (p(a1, ...,an,xi1, ...,xim))

≥
∧
{µ(xi j) : 1≤ j ≤ m}

= 1

Since µ(u)≤ µ(x) for all x∈ A, it follows that µ is constant which is a contradiction. Therefore

V

(
m⋃

j=1

(xi j)r

)
∩Aα = /0

Hence the subfamily {D((xi j)r) : 1≤ j≤m} finitely covers Aα and therefore Aα is compact.

Theorem 4.3.14. The space X is a T0 space.

Proof. Let µ and θ be fuzzy prime ideals of A such that µ 6= θ . Then either µ � θ or θ � µ .

Without loss of generality we can assume that µ � θ . Then there exists x ∈ A such that µ(x)�

θ(x). Let us put α = µ(x). Then xα is a fuzzy point of A such that xα ∈ µ and xα /∈ θ ; that is,
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µ /∈ D(xα) and θ ∈ D(xα). This means D(xα) is an open set in X containing θ but not contain

µ . Therefore X is a T0 space.

Theorem 4.3.15. For any µ 6= ν ∈ X, ν ∈ {µ} if and only if µ ≤ ν .

Proof. Let µ 6= ν ∈ X . Suppose that ν ∈ {µ}. Then µ ∈U for each neighborhood U of ν in X .

Since neighborhoods of ν in X are of the form D(θ) for some fuzzy ideal θ of A with θ � ν , it

is equivalent to say that µ ∈ D(θ), and hence θ � µ , for all fuzzy ideals θ of A with θ � ν . In

other words, for any fuzzy ideal θ of A the following holds:

θ ≤ µ ⇒ θ ≤ ν

which gives that µ ≤ ν . Conversely, suppose that µ ≤ ν and let U be a neighborhood of ν in X .

Then U = D(θ) for some fuzzy subset θ of A with θ � ν . Since µ ≤ ν , we get θ � µ , which

gives that µ ∈ D(θ) =U . So that, {µ}∩U 6= /0. Therefore ν ∈ {µ}.

Corollary 4.3.16. For each µ ∈ X,

V (µ) = {µ}
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Chapter 5

L−Fuzzy Congruence Relations

Introduction

Given an algebra A of a given type F, the set Con(A) of all its congruence relations forms an

algebraic lattice for which its compact elements are those finitely generated congruences. It

is called the congruence lattice (or the structural lattice) of A. This gives a lattice theoretic

interpretation for A. For some class of algebras, the congruence lattice may be modular or

distributive. One can understand the algebraic nature of the algebra A by studying the properties

of its congruence lattice.

To determine congruences on a given algebra we need to know what are the congruence

classes. Hence also properties of these classes (alias blocks) can be used to indicate the struc-

ture of the corresponding quotient algebra. Moreover, one can find out that in some special, but

often considered algebras it may happen that one (either arbitrary or fixed) congruence class

determines the whole congruence. Among these algebras there are e. g. groups, rings, Boolean

algebras, implication algebras, relatively complemented lattices etc. Having an algebra, one

may be interested in the question which subsets or subalgebras can be classes of suitable con-

gruences. The most general solution was proposed by A. I. Mal’cev in his pioneering paper

[118]. Further investigations can be found in [35, 36, 37, 54, 50].

In this chapter, we study fuzzy congruence relations and their classes; so called fuzzy con-

gruence classes in universal algebras. Fuzzy congruence relations generated by a fuzzy relation

are fully characterized in different ways. The main result in this chapter is that, we give several
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Mal’cev type characterization for a fuzzy subset of an algebra A in a given variety to be a class

of some fuzzy congruence on A. Some equivalent conditions are also given for a variety of

algebras to posses fuzzy congruence classes which are also fuzzy subuniverse. Special fuzzy

congruence classes; called fuzzy congruence kernels are characterized in a more general context

in universal algebras.

5.1 Fuzzy Congruences

In semigroups and vector-spaces, fuzzy congruence relations generated by a fuzzy relation were

studied in [138] and [142] respectively. The main purpose of this section is to characterize fuzzy

congruence relations generated by a fuzzy relation in general universal algebras. By a fuzzy

relation on A, we mean a fuzzy subset of A×A. The following definition is due to [144].

Definition 5.1.1. A fuzzy relation Θ on A is said to be:

1. reflexive if: Θ(x,x) = 1 for all x ∈ A

2. symmetric if: Θ(x,y) = Θ(y,x) for all x,y ∈ A

3. transitive if for each x,z ∈ A: Θ(x,z)≥Θ(x,y)∧Θ(y,z) for all y ∈ A.

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy equivalence relation

on A.

Definition 5.1.2. A fuzzy relation Θ on A is said to be compatible, if

Θ( f A(x1,x2, ...,xn), f A(y1,y2, ...,yn))≥Θ(x1,y1)∧ ...∧Θ(xn,yn)

for every n ∈ Z+, f ∈ Fn and all x1,x2, ...,xn,y1,y2, ...,yn ∈ A.

Note that, compatible fuzzy relations on A are those fuzzy subuniverses of A×A, where

A×A is equipped with the product algebra. This fact is often expressed in the way that Θ is said

to have the substitution property with respect to each fundamental operations f ∈ F. According

to Werner [154], compatible fuzzy relations may also be refereed as admissible fuzzy relations.



5.1. Fuzzy Congruences 97

Definition 5.1.3. A fuzzy congruence on A is a fuzzy equivalence relation on A which is com-

patible with all fundamental operations of A.

We denote by FCon(A) the class of all fuzzy congruence relations on A.

Lemma 5.1.4. If t(x1, ...,xm) is an m−ary term operation on A and Θ ∈ FCon(A), then it holds

that

Θ(t(a1, ...,am), t(b1, ...,bm))≥Θ(a1,b1)∧ ...∧Θ(am,bm)

for all a1, ...,am,b1, ...,bm ∈ A.

Proof. For the term t, let l(t) be the number of occurences of n-ary operation symbols in t for.

We use induction on l(t). If l(t) = 0, then either t = x j for some j, whence

Θ(tA(a1, ...,an), tA(b1, ...,bn)) = Θ(a j,b j)≥
n∧

i=1

Θ(ai,bi)

or t = f A for some f ∈F0, whence

Θ(tA(a1, ...,an), tA(b1, ...,bn)) = Θ( f A, f A) = 1≥
n∧

i=1

Θ(ai,bi)

Now let l(t) > 0 and assume the result to be true for every term q with l(q) < l(t). Then we

know t is of the form

f A(t1(x1, ...,xn), ..., tk(x1, ..,xn)),

as l(ti)< l(t) for each j = 1,2, ...,k, it follows from the induction hypothesis that for 1≤ j ≤ k,

Θ(t j(a1, ...,an), t j(b1, ...,bn))≥
n∧

i=1

Θ(ai,bi)
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By the compatibility of Θ, we get

Θ(t(a1, ...,an), t(b1, ...,bn)) = Θ( f A(t1(a1, ...,an), ..., tk(a1, ..,an)), f A(t1(b1, ...,bn), ..., tk(b1, ..,bn)))

≥
k∧

j=1

Θ(tA(a1, ...,an), tA(b1, ...,bn))

≥
n∧

i=1

Θ(ai,bi)

For a fuzzy relation Θ on A and each α ∈ L, remember that

Θα = {(x,y) ∈ A×A : Θ(x,y)≥ α}

is the α−level relation of Θ on A. The following lemma is simple but a useful characterization

of fuzzy congruences using their level relations.

Lemma 5.1.5. Let Θ be a fuzzy relation on A. Then the following hold:

1. Θ is a fuzzy equivalence relation on A if and only if Θα is an equivalence relation on A

for all α ∈ L.

2. Θ is a fuzzy congruence relation on A if and only if Θα is a congruence relation on A for

all α ∈ L.

From the above theorem, one can conclude that fuzzy congruence relations are fuzzy L−subsets

of A×A (in the sense of [144]), where L− is a the class of congruence relations on A.

Theorem 5.1.6. The intersection of any family of fuzzy congruence relations on A is a fuzzy

congruence on A.

Given a fuzzy relation ρ on A, it follows from the above theorem that, always there exists

a smallest fuzzy congruence relation on A containing ρ , which we call it the fuzzy congruence

on A generated by ρ . It is denoted by ΘL(ρ). Particularly, for a fuzzy subset λ of A, we write

ΘL(λ ) to denote the fuzzy congruence ΘL(λ ×λ ).
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Definition 5.1.7. [133, 134] For any two fuzzy relations Θ and Φ on A, their composition Θ◦Φ

is a fuzzy relation on A given by:

Θ◦Φ(x,y) =
∨
{Θ(x,z)∧Φ(y,z) : z ∈ A}

for all x,y ∈ A. For a positive integer n, by Θn, we mean Θ◦Θ◦ ...◦Θ (n copies).

V. Murali [133, 134] has characterized the supremum of two fuzzy congruence relations as

follows.

Theorem 5.1.8. For any Θ,Φ ∈ FCon(A), we have

Θ∨Φ =
∞⋃

n=1

(Θ◦Φ◦Θ)n

Theorem 5.1.9. The class FCon(A) of all fuzzy congruence relations on A forms an algebraic

closure fuzzy set system under the inclusion ordering of fuzzy sets.

We turn our attention to characterize the fuzzy congruence ΘL(ρ) generated a fuzzy relation

ρ . Note that we use the notation Θ(R) to denote the crisp congruence on A generated by the

crisp relation R. The following theorem gives a natural characterization for ΘL(ρ) using level

relations.

Theorem 5.1.10. Let ρ be a normalized fuzzy relation on A. Then ΘL(ρ) can be characterized

as:

ΘL(ρ)(x,y) =
∨
{α ∈ L : (x,y) ∈Θ(ρα)}

for all x,y ∈ A.

Proof. For x,y ∈ A let us define a fuzzy relation Γ of A by:

Γ(x,y) =
∨
{α ∈ L : (x,y) ∈Θ(ρα)}

Our aim is to show that Γ is the smallest fuzzy congruence on A containing ρ . We first show

that Γ is a fuzzy congruence on A. Clearly it is reflexive and symmetric. To prove transitivity,
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let x,y,z ∈ A.

Γ(x,y)∧Γ(y,z) =
∨
{α ∈ L : (x,y) ∈Θ(ρα)}∧

∨
{β ∈ L : (y,z) ∈Θ(ρβ )}

=
∨
{α ∧β : (x,y) ∈Θ(ρα) and (y,z) ∈Θ(ρβ )}

Let a,b ∈ L such that (x,y) ∈ Θ(ρα) and (y,z) ∈ Θ(ρβ ). If we put λ = α ∧ β , then λ ∈ L

such that ρα ⊆ ρλ and ρβ ⊆ ρλ , which gives Θ(ρα)⊆ Θ(ρλ ) and Θ(ρβ )⊆ Θ(ρλ ), i.e., Θ(ρλ )

contains both (x,y) and (y,z). By the transitive property of Θ(ρλ ), (x,z) ∈ Θ(ρλ ). Now we

have the following:

Γ(x,y)∧Γ(y,z) =
∨
{α ∧β : (x,y) ∈Θ(ρα) and (y,z) ∈Θ(ρβ )}

≤
∨
{λ ∈ L : (x,z) ∈Θ(ρλ )}

= Γ(x,z)

Therefore Γ is transitive and hence a fuzzy equivalence relation on A. No it remains to show

that Γ is compatible. Let n > 0, f ∈ Fn and a1, ...,an,b1, ...,bn ∈ A.

n∧
i=1

Γ(ai,bi) =
n∧

i=1

∨
{αi ∈ L : (ai,bi) ∈Θ(ραi)}

=
∨
{

n∧
i=1

αi : (ai,bi) ∈Θ(ραi)}

Let α1, ...,αn ∈ L be such that (ai,bi) ∈Θ(ραi). If we put

λ =
n∧

i=1

αi

then λ ∈ L and Θ(ραi) ⊆ Θ(ρλ ) for all i = 1,2, ...,n, which gives (ai,bi) ∈ Θ(ρλ ) for i =

1,2, ...,n. Using the compatible property of Θ(ρλ ) we get ( f A(a1, ...,an), f A(b1, ...,bn)) ∈



5.1. Fuzzy Congruences 101

Θ(ρλ ). Now consider the following:

n∧
i=1

Γ(ai,bi) =
∨
{

n∧
i=1

αi : (ai,bi) ∈Θ(ραi)}

≤
∨
{λ ∈ L : (ai,bi) ∈Θ(ρλ ) for i = 1, ...,n}

≤
∨
{λ ∈ L : ( f A(a1, ...,an), f A(b1, ...,bn)) ∈Θ(ρλ )}

= Γ( f A(a1, ...,an), f A(b1, ...,bn))

Thus Γ is compatible and hence it as a fuzzy congruence on A. Remember that, any fuzzy subset

µ of A can be expressed as follows: for each x ∈ A

µ(x) =
∨
{α ∈ L : x ∈ µα}

Similarly, for each x,y ∈ A we have:

ρ(x,y) =
∨
{α ∈ L : (x,y) ∈ ρα}

≤
∨
{α ∈ L : (x,y) ∈Θ(ρα)}

= Γ(x,y)

Mean that ρ ≤ Γ. Further, let Ψ be any fuzzy congruence on A such that ρ ≤ Ψ. Then, for

each α ∈ L, the level relation Ψα is a congruence on A such that ρα ⊆ Ψα , which gives that

Θ(ρα)⊆Θ(Ψα) = Ψα . Now for each x,y ∈ A:

Γ(x,y) =
∨
{α ∈ L : (x,y) ∈Θ(ρα)}

≤
∨
{α ∈ L : (x,y) ∈Ψα}

= Ψ(x,y)

Thus Γ is the smallest fuzzy congruence on A containing ρ . This completes the proof.



102 Chapter 5. L−Fuzzy Congruence Relations

Using the fact that FCon(A) together with the point-wise ordering of fuzzy sets is an alge-

braic closure fuzzy set system we have another characterization for ΘL(ρ) as follows.

Theorem 5.1.11. Let ρ be a normalized fuzzy relation on A. Then

ΘL(ρ)(x,y) =
∨
{
∧

(a,b)∈F

ρ(a,b) : F ⊂⊂ A×A,(x,y) ∈Θ(F)}

for all x,y ∈ A, where F ⊂⊂ A×A is to say that F is a finite subset of A×A.

Proof. For each x,y ∈ A, let us define two sets Gx,y and Hx,y as follows:

Gx,y = {
∧

(a,b)∈F

ρ(a,b) : F ⊂⊂ A×A,(x,y) ∈Θ(F)}

Hx,y = {α ∈ L : (x,y) ∈Θ(ρα)}

Clearly, both Gx,y and Hx,y are nonempty subsets of L. By Theorem 5.1.10, it is enough to show

that ∨Gx,y = ∨Hx,y. Let α ∈ Gx,y. Then there exists a finite subset F of A×A such that

α =
∧

(a,b)∈F

ρ(a,b) and (x,y) ∈Θ(F)

i.e., ρ(a,b)≥ α for all (a,b) ∈ F , which gives F ⊆ ρα . This implies Θ(F)⊆ Θ(ρα). Whence

(x,y) ∈ Θ(ρα). So that α ∈ Hx,y. Thus Gx,y ⊆ Hx,y and hence
∨

Gx,y ≤
∨

Hx,y. To prove the

other inequality, let α ∈ Hx,y. Then (x,y) ∈ Θ(ρα). By Corollary 1.0.3 of [50] we can find a

finite subset F of ρα such that (x,y) ∈Θ(F). F being contained in ρα , we get

∧
(a,b)∈F

ρ(a,b)≥ α

If we put β =
∧
(a,b)∈F ρ(a,b), then α ≤ β and β ∈ Gx,y, i.e., for each α ∈ Hx,y, we can find a

β ∈ Gx,y with α ≤ β . This confirms that ∨Hx,y ≤ ∨Gx,y and this completes the proof.
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Definition 5.1.12. [50] A mapping p : A→ A is called a translation of A if there exist an n∈ Z+,

an n−ary operation f ∈ F, an i ∈ {1,2, ...,n} and a1, ...,ai−1,ai+1, ...,an in A such that

f A(a1, , , .ai−1,x,ai+1, ...,an) = p(x)

for all x ∈ A.

The following theorem gives a necessary and sufficient condition for fuzzy equivalence

relations to be a fuzzy congruence by the use of translations.

Theorem 5.1.13. A fuzzy equivalence relation Θ on A is a fuzzy congruence on A if and only if

it is compatible with all translations of A, i.e.,

Θ(p(x), p(y))≥Θ(x,y)

for all x,y ∈ A and all translations p of A.

Proof. If Θ is a fuzzy congruence on A, then it is clear that it is compatible with all translations

of A. Conversely, suppose that Θ is compatible with all translations of A. Let n ∈ Z+, f ∈ Fn

and a1, ..,an,b1, ...,bn ∈ A. For each i ∈ {1, ...,n} define pi : A→ A by

pi(x) = f A(b1, ...,bi−1,x,ai+1, ...,an)

for all x ∈ A. It can be easily verified that each pi is a translation of A. Moreover, we have the

following:

p1(a1) = f A(a1,a2, ...,an)

pn(bn) = f A(b1,b2, ...,bn) and

pi(bi) = pi+1(ai+1) for i = 1, ...,n−1
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Now using the compatibility and transitive property of Θ we get the following:

n∧
i=1

Θ(ai,bi) ≤

(
n−1∧
i=1

Θ(pi(ai), pi+1(ai+1))

)
∧Θ(pn(an), pn(bn))

≤ Θ(p1(a1), pn(bn))

= Θ( f A(a1, ...,an), f A(b1, ...,bn))

That is, Θ is compatible with all fundamental operations of A and hence it is a fuzzy congruence

on A.

Unary polynomials over A can be identified as a translation of A. The following corollary

immediately follows from this fact.

Corollary 5.1.14. A fuzzy equivalence relation Θ on A is a fuzzy congruence on A if and only if

it is compatible with all unary polynomials on A.

Definition 5.1.15. [55] A transitive closure of a fuzzy relation ρ on A is the smallest transitive

fuzzy relation on A containing ρ .

Note that, if ρ is a reflexive (symmetric or compatible) relation on A, then its transitive

closure is so respectively.

Lemma 5.1.16. [55] The transitive closure of a reflexive fuzzy relation ρ on A is given by the

formula
∞⋃

n=1

ρ
n

where the power of ρ is formed with respect to the relational products.

In the following theorem, we give an algebraic characterization for ΘL(ρ).

Theorem 5.1.17. If ρ is a normalized fuzzy relation on A, then ΘL(ρ) is the transitive closure

of the fuzzy relation λ on A defined as follows: for each x,y ∈ A, λ (x,x) = 1 and for x 6= y,

λ (x,y) =
∨
{ρ(a,b) : {x,y}= {p(a), p(b)}, p ∈ P1(A)}
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Proof. Clearly, λ is reflexive and symmetric fuzzy relation on A with ρ ≤ λ . We first show that

λ is compatible with all unary polynomials over A. Let x,y ∈ A and q ∈ P1(A). If x = y, then

q(x) = q(y) and

λ (x,y) = 1 = λ (q(x),q(y))

Let x 6= y. Then

λ (x,y) =
∨
{ρ(a,b) : {x,y}= {p(a), p(b)}, p ∈ P1(A)}

and

λ (q(x),q(y)) =
∨
{ρ(c,d) : {q(x),q(y)}= {p(c), p(d)}, p ∈ P1(A)}

For any p ∈ P1(A) and every a,b ∈ A, if x = p(a) and y = p(b), then q(x) = q(p(a)) and

q(y) = q(p(b)). Since the composition of unary polynomials is a unary polynomial, we can

find a t ∈ P1(A) such that q(x) = t(a) and q(y) = t(b). This implies that

λ (x,y)≤ λ (q(x),q(y))

Mean that, λ is compatible with all unary polynomials over A. If we define Φ to be the transitive

closure of λ , then it can be verified that Φ is the smallest fuzzy equivalence relation on A which

is compatible with all unary polynomials over A with λ ≤ Φ. It follows from Corollary 5.1.14

that Φ = ΘL(λ ). Our aim is to show that Φ = ΘL(ρ). Clearly ρ ≤Φ. Now let Ψ be any fuzzy

congruence on A with ρ ≤Ψ. It suffices to show that λ ≤Ψ. For x 6= y consider the following:

λ (x,y) =
∨
{ρ(a,b) : {x,y}= {p(a), p(b)}, p ∈ P1(A)}

≤
∨
{Ψ(a,b) : {x,y}= {p(a), p(b)}, p ∈ P1(A)}

≤ Ψ(x,y)

That is, λ ≤Ψ and this completes the proof.
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Corollary 5.1.18. Let ρ be a normalized fuzzy relation on A. Then

ΘL(ρ)(x,y) =
∨
{

n∧
i=1

ρ(bi,ci) : ∃a0,a1, ...,an ∈ A, p1, ..., pn ∈ P1(A),n > 0

such that a0 = x,an = y and {ai−1,ai}= {pi(bi), pi(ci)}}

for all x,y ∈ A.

5.2 Fuzzy Congruence Classes

Remember that for a binary relation R on A and S⊆ A, the set R[S] is a subset of A given by:

R[S] = {y ∈ A : (x,y) ∈ R for some x ∈ S}

In particular, if S = {a}, then we write R[a] instead of R[S]. If θ is a congruence on A (in the

usual sense) and a ∈ A, then the set

θ [a] = {b ∈ A : (a,b) ∈ θ}

is called the congruence class of θ determined by a. Some authors denote this set as [a]θ (or

a/θ ). Analogous to this classical concept, we define the following.

Definition 5.2.1. For a fuzzy subset µ of A and a fuzzy relation Θ on A we define µ/Θ to be a

fuzzy subset of A as follows:

µ/Θ(x) =
∨
{µ(y)∧Θ(x,y) : y ∈ A}

for all x ∈ A. Also for each a ∈ A, we define a/Θ to be χ{a}/Θ.

It is observed that

a/Θ(x) = Θ(a,x) for all x ∈ A
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If Θ is a fuzzy congruence on A and a ∈ A, then we call a/Θ the fuzzy congruence class of A

determined by Θ and a. Sometimes we may write Θa to denote a/Θ.

It was proved by A. I. Mal’cev [118] that a nonempty subset H of A is a class of some

θ ∈Con(A) if and only if for each a,b ∈ H and any unary polynomial p on A it holds that:

p(a) ∈ H⇒ p(b) ∈ H

Analogous to this well known characterization, we give the following lemma in the fuzzy sense.

Lemma 5.2.2. A normalized fuzzy subset µ of A is a class of some fuzzy congruence on A if and

only if

µ(x)∧µ(y)∧µ(p(x)) = µ(p(y))∧µ(x)∧µ(y)

for each x,y ∈ A and each p ∈ P1(A).

Proof. Suppose that µ = a/Θ for some Θ ∈ FCon(A) and a ∈ A. Let x,y ∈ A and p ∈ P1(A). It

follows from Corollary 5.1.14 that

Θ(p(x), p(y))≥Θ(x,y)

Also, by the transitive property of Θ, we have

Θ(x,y)≥Θ(x,a)∧Θ(a,y) = µ(x)∧µ(y)
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Consider the following:

µ(p(y)) = Θ(a, p(y))

≥ Θ(a, p(x))∧Θ(p(x), p(y))

≥ Θ(a, p(x))∧Θ(x,y)

≥ Θ(a, p(x))∧µ(x)∧µ(y)

= µ(p(x))∧µ(x)∧µ(y)

which gives

µ(x)∧µ(y)∧µ(p(y))≥ µ(p(x))∧µ(x)∧µ(y)

By symmetry, the equality holds. Conversely, suppose that the condition of the theorem holds.

Let us define a fuzzy relation ρ on A as follows: for each x,y ∈ A, ρ(x,x) = 1 and for x 6= y

ρ(x,y) =
∨
{µ(b)∧µ(c) : x = p(b),y = p(c), p ∈ P1(A)}

It is clear that ρ is a reflexive and symmetric fuzzy relation on A such that µ×µ ≤ ρ . Moreover,

one can easily verify that ρ is compatible with all unary polynomials over A. Since µ is nor-

malized, we can choose x ∈ A with µ(x) = 1. Our aim is to show that x/ΘL(µ) = µ . Let y ∈ A.

If y = x, then it is clear that x/ΘL(µ)(y) ≤ µ(y). Let y 6= x. Then x/ΘL(µ)(y) = ΘL(µ)(x,y).

By Theorem 5.1.17 ΘL(µ) is the transitive closure of ρ . So it follows from Lemma 5.1.16 that

ΘL(µ)(x,y) =
∞∨

n=1

ρ
n(x,y)

We show that ρn(x,y)≤ µ(y) for all n ∈ Z+. Let n ∈ Z+. It is clear that

ρ
n(x,y) =

∨
{

n∧
i=1

ρ(xi−1,xi) : x0,x1, ...,xn ∈ A,x0 = x and xn = y}
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Let x0,x1, ...,xn ∈ A such that x0 = x and xn = y. We show that

n∧
i=1

ρ(xi−1,xi)≤ µ(y)

We use induction on n. If n = 1, then x0 = x and x1 = y. So that

n∧
i=1

ρ(xi−1,xi) = ρ(x,y) =
∨
{µ(b)∧µ(c) : x = p(b),y = p(c), p ∈ P1(A)}

For any a,b ∈ A, and p ∈ P1(A); if p(a) = x and p(b) = y, then it follows from our assumption

(the condition of the theorem) that

µ(a)∧µ(b)∧µ(x) = µ(y)∧µ(a)∧µ(b)

Since µ(x) = 1, it holds that

µ(a)∧µ(b) = µ(y)∧µ(a)∧µ(b)

which gives

µ(a)∧µ(b)≤ µ(y)

Since a,b and p are arbitrary, it follows that

ρ(x,y) =
∨
{µ(b)∧µ(c) : x = p(b),y = p(c), p ∈ P1(A)} ≤ µ(y)

Let n > 0 and assume the result to be true for n−1; i.e.,

n−1∧
i=1

ρ(xi−1,xi)≤ µ(xn−1)
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Now consider the following:

n∧
i=1

ρ(xi−1,xi) =

(
n−1∧
i=1

ρ(xi−1,xi)

)
∧ρ(xn−1,xn)

≤ µ(xn−1)∧ρ(xn−1,xn)

= µ(xn−1)∧ρ(xn−1,y)

= µ(xn−1)∧
∨
{µ(b)∧µ(c) : xn−1 = p(b),y = p(c), p ∈ P1(A)}

=
∨
{µ(xn−1)∧µ(b)∧µ(c) : xn−1 = p(b),y = p(c), p ∈ P1(A)}

If b,c ∈ A such that xn−1 = p(b),y = p(c) for some p ∈ P1(A), then by condition of the theorem

we get

µ(xn−1)∧µ(b)∧µ(c) = µ(y)∧µ(b)∧µ(c)≤ µ(y)

which implies that

∨
{µ(xn−1)∧µ(b)∧µ(c) : xn−1 = p(b),y = p(c), p ∈ P1(A)} ≤ µ(y)

which gives
n∧

i=1

ρ(xi−1,xi)≤ µ(y)

Since x0,x1, ...,xn are arbitrary in A with x0 = x and xn = y, it follows that

ρ
n(x,y)≤ µ(y)

This is true for all n ∈ Z+, which implies that

∞∨
n=1

ρ
n(x,y)≤ µ(y)

i.e.,

ΘL(µ)(x,y)≤ µ(y)
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Therefore x/ΘL(µ)≤ µ . The inequality µ ≤ x/ΘL(µ) is straightforward and hence the equality

holds. This completes the proof.

Notation. For each a ∈ A, let us define two sets La(A) and FLa(A) respectively as follows:

La(A) = {θ [a] : θ ∈Con(A)}

FLa(A) = {a/Θ : Θ ∈ FCon(A)}

Lemma 5.2.3. Let µ be a fuzzy subset of A and a ∈ A. Then µ ∈ FLa(A) if and only if the level

subset µα ∈ La(A) for all α ∈ L.

Proof. Suppose that µ ∈ FLa(A) and let α ∈ L. Then, by the above theorem, µ(a) = 1 and µ

satisfies the equality

µ(x)∧µ(y)∧µ(p(x)) = µ(p(y))∧µ(x)∧µ(y)

for each x,y ∈ A and all p ∈ P1(A). Let x,y ∈ µα . For any p ∈ P1(A), if p(x) ∈ µα , then

µ(x)∧µ(y)∧µ(p(x))≥ α

by the above equality we get µ(p(y)) ≥ α . So that p(y) ∈ µα , i.e., µα satisfies the Mal’cev

condition and hence it is the class of some θ ∈Con(A) and this completes the proof.

In the following we give an alternative proof independent of the Mal’cev theorem.

Proof. (An alternative proof for Lemma 5.2.3)

Suppose that µ ∈ FLa(A) and let α ∈ L. Then µ = a/Θ for some Θ ∈ FCon(A); i.e., for each

x ∈ A

µ(x) = Θ(a,x)

It is an easy task to observe that µα = Θα [a], and hence µα ∈ La(A) for all α ∈ L. Conversely,

suppose that µα ∈ La(A) for all α ∈ L. Then for each α ∈ L there exists a congruence θ on A
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such that µα = θ [a]. Let us put

φα = ∩{θ ∈Con(A) : µα = θ [a]}

Then φα is a congruence on A such that µα = φα [a] and φα ⊆ φβ whenever β ≤ α . Now define

a fuzzy relation Θµ on A by:

Θµ(x,y) =
∨
{α ∈ L : (x,y) ∈ φα}

for all x,y ∈ A. Since each φα is a congruence relation on A and the map α 7→ φα is an antitone,

one can easily verify that Θµ is a fuzzy congruence on A. Moreover, for each x ∈ A consider:

a/Θµ(x) = Θµ(a,x)

=
∨
{α ∈ L : (a,x) ∈ φα}

=
∨
{α ∈ L : x ∈ φα [a]}

=
∨
{α ∈ L : x ∈ µα}

= µ(x)

Therefore µ coincide with the fuzzy congruence class of Θµ determined by a. So that µ ∈

FLa(A).

5.3 Fuzzy Congruence Classes in Regular and Permutable

Varieties

In this section, a finite characterization is given for fuzzy congruence classes in regular and

permutable varieties.
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Definition 5.3.1. An algebra A is called regular if each of its congruences is determined by

every single class, i.e., if for every θ ,φ ∈Con(A) and every a ∈ A,

θ [a] = φ [a]⇒ θ = φ

A class of algebras is called regular if each of its members has this property.

Theorem 5.3.2. An algebra A is regular if and only if each of its fuzzy congruences is deter-

mined by every single fuzzy class, i.e., if for every Θ,Φ ∈ FCon(A) and every a ∈ A,

a/Θ = a/Φ⇒Θ = Φ

Definition 5.3.3. An algebra is called congruence permutable (or simply permutable) if any two

of its congruences permute, i.e., if θ ◦ φ = φ ◦ θ for all θ ,φ ∈Con(A). A class of algebras is

called permutable if each of its members has this property.

The following fundamental theorem gives a simple description for permutable varieties, and

it is due to A. I. Mal’cev (see [118]).

Theorem 5.3.4. A variety is permutable if and only if there exists a ternary term p with

p(x,x,z) = z and p(x,z,z) = x

Definition 5.3.5. The ternary term p described in Theorem 5.3.4 is called a Mal’cev term for

regular and permutable varieties.

A Mal’cev condition on admissible relations was applied by Werner in [154]. In the fol-

lowing theorem we adopt his theorem in a fuzzy setting so that it could be used in the latter

sections.

Theorem 5.3.6. Let A be an algebra in a permutable variety, K . Then the following conditions

hold:
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1. Each admissible reflexive fuzzy relation on A is symmetric.

2. Each admissible reflexive fuzzy relation on A is transitive.

3. Each admissible reflexive fuzzy relation on A is a fuzzy congruence on A.

Proof. Given that K is permutable. So, it has the Mal’cev term p(x,y,z).

1. Let Θ be an admissible reflexive fuzzy relation on A, and x,y ∈ A. Then we have

x = p(x,y,y) and y = p(x,x,y)

Now consider:

Θ(x,y) = Θ(p(x,y,y), p(x,x,y))

≥ Θ(x,x)∧Θ(y,x)∧Θ(y,y)

= Θ(y,x)

Similarly we can verify that Θ(y,x) ≥ Θ(x,y). Thus Θ(x,y) = Θ(y,x) and hence Θ is

symmetric.

2. Let Θ be an admissible reflexive fuzzy relation on A, and x,y,z ∈ A. Then we have

x = p(x,y,y) and y = p(z,z,y)

Then consider the following:

Θ(x,y) = Θ(p(x,y,y), p(z,z,y))

≥ Θ(x,z)∧Θ(y,z)∧Θ(y,y)

= Θ(x,z)∧Θ(y,z)

= Θ(x,z)∧Θ(z,y)
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Since z is arbitrary in A we get

Θ(x,y)≥
∨
{Θ(x,z)∧Θ(z,y) : z ∈ A}

Therefore Θ is transitive. Hence proved.

3. The proof follows from (1) and (2).

In fact, a simple logical arrangement shows that each of the above three conditions are

equivalent to each other. Moreover, one (and hence all) of these conditions is necessary and

sufficient for a variety K to be congruence permutable.

The following Mal’cev type characterization was derived independently in [51, 67].

Theorem 5.3.7. A variety K is regular and permutable if and only if there exist n≥ 1 ternary

terms t1, ..., tn and a (3+n)−ary term t such that

(*) ti(x,x,z) = z for all i = 1,2, ...,n.

(**) x = t(x,y,z, t1(x,y,z), ..., tn(x,y,z)).

(***) y = t(x,y,z,z,z, ...,z)

By applying these terms, in regular and permutable varities, a finite characterization was

given by Bělohlávek and Chagda for a subset C of A to be a congruence class.

Theorem 5.3.8. [36, 37] Let K be a regular and permutable variety, A ∈K and /0 6=C ⊆ A.

Then C is a class of some θ ∈Con(A) if and only if the following conditions hold:

1. if ti(a j,b j,c) ∈C for c ∈C, i = 1,2, ...,n, j = 1,2, ...,m and f is an m−ary fundamental

operation, then

ti( f A(a1, ...,am), f A(b1, ...,bm),c) ∈C

2. if c,d ∈C,a ∈ A and ti(a,d,c) ∈C for i = 1,2, ...,n, then a ∈C
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3. if c,d ∈C, then ti(d,c,c) ∈C for i = 1,2, ...,n,

Parallel to this theorem, we state and prove the following theorem in a fuzzy setting:

Theorem 5.3.9. Let K be a regular and permutable variety and A ∈K . A normalized fuzzy

subset µ of A is a fuzzy congruence class of some Θ ∈ FCon(A) if and only if the following

conditions hold:

1. For each m−ary fundamental operation f ,

µ

(
ti( f A(a1, ...,am), f A(b1, ...,bm),c

)
≥

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)
∧µ(c)

for all i = 1,2, ...,n

2. For any a,b,c ∈ A,

µ(a)≥ µ(b)∧µ(c)∧

(
n∧

i=1

µ(ti(a,b,c))

)

3. For any b,c ∈ A,

µ(ti(b,c,c))≥ µ(b)∧µ(c)

for all i = 1,2, ...,n.

Proof. Suppose that µ satisfies the conditions (1),(2) and (3). Since µ is given to be normal-

ized we can choose and fix an element c ∈ A with µ(c) = 1. Now define a fuzzy relation Θ on

A by:

Θ(a,b) = µ(t1(a,b,c))∧ ...∧µ(tn(a,b,c))

for all a,b ∈ A. Let us first prove that Θ is a fuzzy congruence on A. For any a ∈ A:

Θ(a,a) = µ(t1(a,a,c))∧ ...∧µ(tn(a,a,c))

= µ(c)∧ ...∧µ(c)

= 1
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So Θ is reflexive. Also let a1, ...,am,b1, ...,bm ∈ A and let f be an m−ary operation on A. Then

consider the following:

Θ( f A(a1, ...am), f A(b1, ...,bm)) =
n∧

i=i

µ(ti( f A(a1, ...am), f A(b1, ...,bm),c))

≥

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)
∧µ(c)

=
n,m∧

i, j=1

µ(ti(a j,b j,c))

=
m∧

j=1

Θ(a j,b j)

Therefore Θ is an admissible reflexive fuzzy relation on A. Since K is congruence permutable,

it follows from Theorem 5.3.6 that Θ is a fuzzy congruence on A. Our aim is to show that

µ = c/Θ. For any x ∈ A, consider:

c/Θ(x) = Θ(x,c)

= µ(t1(x,c,c))∧ ...∧µ(tn(x,c,c))

≥ µ(x)∧µ(c)( by condition (3))

= µ(x)

On the other hand, by condition (2) we have

µ(x) ≥ µ(c)∧

(
n∧

i=1

µ(ti(x,c,c))

)

=
n∧

i=1

µ(ti(x,c,c))

= Θ(x,c)

= c/Θ(x)

Therefore µ = c/Θ (the fuzzy congruence class of Θ determined by c). Conversely, suppose

that µ = x/Θ for some Θ ∈ FCon(A) and x ∈ A. Then µα = Θα [x] for all α ∈ L.
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1. Let a1, ...,am,b1, ...,bm ∈ A and f be an m−ary operation on A. Let us put

α =

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)
∧µ(c)

Then c ∈ µα and ti(a j,b j,c) ∈ µα for all i = 1, ...,n and j = 1, ...,m. This gives

Θ(ti(a j,b j,c),c)≥ α

for all i = 1, ...,n and j = 1, ...,m. By (∗∗) and (∗ ∗ ∗) of Theorem 5.3.7, for each j =

1,2, ...,m we obtain

a j = t(a j,b j,c, t1(a j,b j,c), ..., tn(a j,b j,c))

b j = t(a j,b j,c,c, ...,c)

Using the compatible property of Θ, we get the following for each j = 1,2, ...,m:

Θ(a j,b j) = Θ(q(a j,b j,c, t1(a j,b j,c), ..., tn(a j,b j,c)), t(a j,b j,c,c, ...,c))

≥ Θ(t1(a j,b j,c),c)∧ ...∧Θ(tn(a j,b j,c),c)

≥ α

So that
m∧

j=1

Θ(a j,b j)≥ α

Again using the compatible property of Θ, we get,

Θ( f A(a1, ...,am), f A(b1, ...,bm)) ≥ α
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By (∗) of Theorem 5.3.7, ti( f A(b1, ...,bm), f A(b1, ...,bm),c) = c for all i = 1,2, ...,n. Now

consider the following:

Θ(ti( f A(a1, ...,am), f A(b1, ...,bm),c),c) = Θ(ti( f A(a1, ...,am), f A(b1, ...,bm),c), ti( f A(b1, ...,bm),

f A(b1, ...,bm),c))

≥ Θ( f A(a1, ...,am), f A(b1, ...,bm))

≥ α

So that (ti( f A(a1, ...,am), f A(b1, ...,bm),c),c) ∈Θα , which gives

ti( f A(a1, ...,am), f A(b1, ...,bm),c) ∈Θα [c] = µα

Thus µ(ti( f A(a1, ...,am), f A(b1, ...,bm),c)≥ α and hence the result holds.

2. Let a,b,c ∈ A. Put

α = µ(b)∧µ(c)∧

(
n∧

i=1

µ(ti(a,b,c))

)
Then b,c ∈ µα and ti(a,b,c) ∈ µα for all i = 1,2, ...,n. Since µα is a congruence class of

Θα we get (ti(a,b,c),c) ∈Θα and (b,c) ∈Θα ; i.e., Θ(b,c)∧Θ((ti(a,b,c),c))≥ α for all

i = 1,2, ...,n. By (∗∗) and (∗∗∗) of Theorem 5.3.7 we obtain

a = t(a,b,c, t1(a,b,c), ..., tn(a,b,c))

b = t(a,b,c,c, ...,c)

So that

Θ(a,b)≥Θ((t1(a,b,c),c)∧ ...∧Θ((tn(a,b,c),c)≥ α

Then (a,b)∈Θα , which gives a∈Θα [b] = Θα [c] = µα . Thus a∈ µα and hence the result

holds.

3. Let b,c ∈ A. If we put α = µ(b)∧ µ(c), then b,c ∈ µα which gives that Θ(b,c) ≥ α .
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Again by (∗) of Theorem 5.3.7, we have c = ti(c,c,c) for all i = 1,2, ...,n. For each

i = 1,2, ...,n, consider the following:

Θ(ti(b,c,c),c) = Θ(ti(b,c,c), ti(c,c,c))≥Θ(b,c)≥ α

This completes the proof.

The following theorem gives another description for fuzzy congruence classes in regular

and permutable varieties.

Theorem 5.3.10. Let K be a regular and permutable variety and A ∈K . A normalized fuzzy

subset µ of A is a fuzzy congruence class of some Θ ∈ FCon(A) if and only if µ is −→y −closed

under the following terms:

1. for each m ∈ Z+, each f ∈ Fm and every i = 1,2, ...,n,

qi(x1, ...,xm,x′1, ...,x
′
m,y,y11, ...,y1n, ...,ym1, ...,ymn) = ti( f (t(x1,x′1,y,y11, ...,y1n), ...,

..., t(xm,x′m,y,ym1, ...,ymn)), f (x′1, ...,x
′
m),y)

2. q(x,y,y′,y1, ...,yn) = t(x,y,y′,y1, ...,yn)

3. d1(x,y1,y2) = t1(y1,y2,y2),...,dn(x,y1,y2) = tn(y1,y2,y2)

where t and ti’s are those terms obtained in Theorem 5.3.7.

Proof. If µ is a class of some Θ ∈ FCon(A), then the −→y −closedness under the terms listed in

(i)− (iii) follows immediately from the substitution property of Θ. Conversely, suppose that µ

is −→y −closed under the terms given in (i)− (iii). It suffices to show µ satisfies the conditions

(i)− (iii) of Theorem 5.3.9.
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(i) Let m ∈ Z+, f ∈ Fm and a1, ...,am,b1, ...,bm,c ∈ A. From Theorem 5.3.7 we have the

following:

a1 = t(a1,b1,c, t1(a1,b1,c), ..., tn(a1,b1,c))

a2 = t(a2,b2,c, t1(a2,b2,c), ..., tn(a2,b2,c))

...

am = t(am,bm,c, t1(am,bm,c), ..., tn(am,bm,c))

Then for each i = 1,2, ...,n

ti( f A(a1, ...,am), f A(b1, ...,bm),c) = ti( f (t(a1,b1,c, t1(a1,b1,c), ..., tn(a1,b1,c)), ...

..., t(am,bm,c, t1(am,bm,c), ..., tn(am,bm,c))), f (b1, ...,bm),c)

= qi(a1, ...,am,b1, ...,bm,y,y11, ...,y1n, ...,ym1, ...,ymn)

where y = c and each yi j = ti(a j,b j,c) for i = 1, ...,n and j = 1, ...,m.

µ being −→y −closed under each term qi, it follows that

µ(qi(a1, ...,am,b1, ...,bm,y,y11, ...,y1n, ...,ym1, ...,ymn))≥

(
n,m∧

i, j=1

µ(yi j)

)
∧µ(y)

This is equivalent to

µ

(
ti( f A(a1, ...,am), f A(b1, ...,bm),c

)
≥

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)
∧µ(c)

proving the condition (i) of Theorem 5.3.9.

(ii) Let a,b,c ∈ A. By Theorem 5.3.7

a = t(a,b,c, t1(a,b,c), ..., tn(a,b,c))

= q(a,y,y′,y1, ...,yn)
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where y = b,y′ = c and yi = ti(a,b,c) for each i = 1,2, ...,n. Since µ is −→y −closed under the

term q it holds that

µ(q(a,y,y′,y1, ...,yn))≥ µ(y)∧µ(y′)∧
n∧

i=1

µ(yi)

which gives

µ(a)≥ µ(b)∧µ(c)∧

(
n∧

i=1

µ(ti(a,b,c))

)
Hence proving (ii) of Theorem 5.3.9.

(iii) µ being −→y −closed under the terms d1, ...,dn directly implies, µ satisfies the condition (iii)

of Theorem 5.3.9. This completes the proof.

5.4 Fuzzy Congruence Classes in Regular Varieties

Now assumption of permutablility is omitted. Three Mal’cev type conditions characterizing

regular varieties were published in 1970 independently by B. Csákány [53], G. Gräatzer [76]

and R. Wille [155]. We modified that of B. Csákány as follows.

Theorem 5.4.1. A variety K is regular if and only if there exist an n ∈ Z+, t1, ..., tn ∈ T3 and

q1, ...,qn ∈ T5 satisfying the following identities:

t1(x,x,z) = ...= tn(x,x,z) = z,

q1(t1(x,y,z),z,x,y,z) = x

qi(z, ti(x,y,z),x,y,z) = qi+1(ti+1(x,y,z),z,x,y,z) for i = 1, ...,n−1

and qn(z, tn(x,y,z),x,y,z) = y

The following theorem is an independent characterization of fuzzy congruence classes in

regular variety using the terms obtained in Theorem 5.4.1. In fact, it is the fuzzy version of the

theorem of [37].
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Theorem 5.4.2. Let K be a regular variety and A ∈K . A normalized fuzzy subset µ of A is a

class of some Θ ∈ FCon(A) if and only if the following conditions hold:

1. If m ∈ Z+, f ∈ Fn and a1, ...,am,b1, ...,bm,c ∈ A, then

µ(ti( f A(a1, ...,am), f A(b1, ...,bm),c))≥ µ(c)∧

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)

2. For any a,b,c,d ∈ A,

µ(ti(a,d,c))≥ µ(c)∧

(
n∧

i=1

(µ(ti(a,b,c))∧µ(ti(b,d,c)))

)

3. For and c,d ∈ A, and each i = 1, ...,n,

µ(ti(c,d,d))≥ µ(c)∧µ(d)

4. For each a,c ∈ A,

µ(a)≥ µ(c)∧

(
n∧

i=1

µ(ti(a,c,c))

)

Proof. First assume µ to be a class of some fuzzy congruence on A, i.e., µ = x/Θ for some

x ∈ A and some Θ ∈ FCon(A), which gives µα = Θα [x] for all α ∈ L.

1. Let m ∈ Z+, f ∈ Fm and a1, ...,am,b1, ...,bm,c ∈ A. If we put

α = µ(c)∧

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)

then c ∈ µα and ti(a j,b j,c) ∈ µα for all i = 1, ...n and all j = 1, ...,m. µα being a class of

the congruence Θα we get

Θ(c, ti(a j,b j,c))≥ α for all i = 1, ...,n and j = 1, ...,m
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We show that Θ(ai,b j)≥ α for all j = 1, ...,m. By Theorem 5.4.1, we have

a j = q1(t1(a j,b j,c),c,a j,b j,c)

b j = qn(c, tn(a j,b j,c),a j,b j,c)

Now consider the following:

Θ(a j,b j) = Θ(q1(t1(a j,b j,c),c,a j,b j,c),b j)

≥ α ∧Θ(q1(c, t1(a j,b j,c),a j,b j,c),b j)

= α ∧Θ(q2(t2(a j,b j,c),c,a j,b j,c),b j)

≥ α ∧α ∧Θ(q3(c, t3(a j,b j,c),a j,b j,c),b j)

= α ∧Θ(q3(t3(a j,b j,c),c,a j,b j,c),b j)

...

= α ∧Θ(qn(tn(a j,b j,c),c,a j,b j,c),b j)

≥ α ∧Θ(qn(c, tn(a j,b j,c),a j,b j,c),b j)

= α ∧Θ(b j,b j)

= α

So that
m∧

j=1

Θ(a j,b j)≥ α

Again using the substitution property of Θ, we get,

Θ( f A(a1, ...,am), f A(b1, ...,bm)) ≥ α
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By Theorem 5.4.1, ti( f A(b1, ...,bm), f A(b1, ...,bm),c) = c for all i = 1,2, ...,n. Now con-

sider the following:

Θ(ti( f A(a1, ...,am), f A(b1, ...,bm),c),c) = Θ(ti( f A(a1, ...,am), f A(b1, ...,bm),c),

ti( f A(b1, ...,bm), f A(b1, ...,bm),c))

≥ Θ( f A(a1, ...,am), f A(b1, ...,bm))

≥ α

So that (ti( f A(a1, ...,am), f A(b1, ...,bm),c),c) ∈Θα , which gives

ti( f A(a1, ...,am), f A(b1, ...,bm),c) ∈Θα [c] = µα

Thus µ(ti( f A(a1, ...,am), f A(b1, ...,bm),c)≥ α and hence the result holds.

2. For any a,b,c,d ∈ A, let us put

α = µ(c)∧

(
n,m∧

i, j=1

µ(ti(a j,b j,c))

)

Then c ∈ µα and ti(a,b,c), ti(b,d,c) ∈ µα for all i = 1, ...,n. Since µα is a class of the

congruence Θα , we get

Θ(c, ti(a,b,c))≥ α and Θ(c, ti(b,d,c))≥ α

We show that Θ(a,b)≥ α and Θ(b,d)≥ α . From Theorem 5.4.1 we can write a and b as

follows:

a = q1(t1(a,b,c),c,a,b,c)

b = qn(c, tn(a,b,c),a,b,c)
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Now consider the following:

Θ(a,b) = Θ(q1(t1(a,b,c),c,a,b,c),b)

≥ α ∧Θ(q1(c, t1(a,b,c),a,b,c),b)

= α ∧Θ(q2(t2(a,b,c),c,a,b,c),b)

...

= α ∧Θ(qn(tn(a,b,c),c,a,b,c),b)

≥ α ∧Θ(qn(c, tn(a,b,c),a,b,c),b)

= α ∧Θ(b,b)

= α

Similarly we can show that Θ(b,d)≥ α . By the transitive property of Θ it follows that

Θ(a,d)≥Θ(a,b)∧Θ(b,d)≥ α

Again by Theorem 5.4.1, we can write c as c = ti(a,a,c). So for each i = 1, ...,n we got

the following:

Θ(c, ti(a,d,c)) = Θ(ti(a,a,c), ti(a,d,c))

≥ Θ(a,d)

≥ α

So that (c, ti(a,d,c)) ∈ Θα , which gives ti(a,d,c) ∈ Θα [c] = µα . Thus µ(ti(a,d,c))≥ α

and hence the result holds.

3. For any c,d ∈ A, let us put µ(c)∧µ(d) = α . Then c,d ∈ µα . This is equivalent to

Θ(c,d)≥ α
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By Theorem 5.4.1, we can be write c as c = ti(c,c,c). Now for each i = 1,2, ...,n consider

the following:

Θ(ti(c,d,d),c) = Θ(ti(c,d,d), ti(c,c,c))

≥ Θ(c,d)

≥ α

So that (ti(c,d,d),c) ∈Θα , which gives ti(c,d,d) ∈Θα [c] = µα . Thus µ(ti(c,d,d))≥ α .

Hence proved.

4. Let a,c ∈ A. If we put

α = µ(a)≥ µ(c)∧

(
n∧

i=1

µ(ti(a,c,c))

)

then c ∈ µα and ti(a,c,c) ∈ µα for all i = 1,2, ...,n. By following the same procedure as

we have done in (2), we can show that Θ(a,c) ≥ α . So that (a,b) ∈ Θα which implies

that a ∈Θα [c] = µα . Thus µ(a)≥ α and hence the proved.

Conversely, assume the conditions (1)− (4) hold. Since µ is given to be a normalized fuzzy

set, we can choose and fix an element c ∈ A with µ(c) = 1. Let us define a fuzzy relation Φ on

A by:

Φ(x,y) =
n∧

i=1

µ(ti(x,y,c))

for all x,y ∈ A. Clearly Φ is reflexive. Compatibility and transitivity of Φ follow from (1) and

(2), respectively. So, one can easily observe that each of the the level relations of Φ is reflexive,

transitive and compatible. It was proved in [53] that regular varieties are (n+1)−permutable.

Again for a variety K to be (n+ 1)−permutable, it is necessary and sufficient that for each

A ∈K , every reflexive and transitive compatible binary relation on A is a congruence on A (see

[49]). This implies that Φα is a congruence on A for all α ∈ L. It follows from Lemma 5.1.5

that Φ is a fuzzy congruence on A. Using (3) and (4) one can easily verify that µ = c/Φ. Hence

proved.
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Theorem 5.4.3. Let µ be a normalized fuzzy subset of an algebra A belonging to a regular

variety and assume that for any a,b,c,d ∈ A and each i = 1,2, ...,n

µ(ti(a,d,c))≥ µ(ti(a,b,c))∧µ(ti(b,d,c))

Then µ is a class of some Θ ∈ FCon(A) if and only if the following conditions hold:

1. For each m ∈ Z+, f ∈ Fm and each i, j,k = 1,2, ...,n, µ is −→y −closed under the term

di jk(x1, ...,xm,x′1, ...,x
′
m,y,y

′,y′′,y1, ...,ym,y′1, ...,y
′
m) = ti(t j( f A(qk(y1,y,x1,x′1,y), ...,

...,qk(ym,y,xm,x′m,y)), f A(x′1, ...,x
′
m),y), t j( f A(qk(y′1,y

′,x1,x′1,y
′), ...,qk(y′m,y

′,xm,x′m,y
′)),

f A(x′1, ...,x
′
m),y

′),y′′)

2. µ is −→y −closed under the terms

di(x1,y1,y2) = ti(y1,y2,y2)

For all i = 1,2, ..,n.

3. For each a,b,c,d ∈ A,

µ(q1(d,c,a,c,c))≥ µ(c)∧µ(d)∧µ(t1(a,c,c))∧ ...∧µ(tn(a,c,c))

Proof. If µ is a class of some Θ ∈ FCon(A), then the −→y −closedness under the terms listed in

(i) and (iii) follows immediately from the substitution property of Θ. We proceed to prove (iii).

By our hypothesis µ = x/Θ for some x ∈ A and Θ ∈ FCon(A), which gives µα = Θα [x]. Let us

put

α = µ(c)∧µ(d)∧µ(t1(a,c,c))∧ ...∧µ(tn(a,c,c))



5.4. Fuzzy Congruence Classes in Regular Varieties 129

Then c,d ∈ µα and ti(a,c,c) ∈ µα for all i = 1,2, ...,n. This is equivalent to

Θ(c,d)∧Θ(c, ti(a,c,c))∧Θ(d, ti(a,c,c))≥ α

Also observe that

Θ(c,q1(d,c,a,c,c)) = Θ(c,q1(c, t1(a,c,c),a,c,c))∧Θ(q1(c, t1(a,c,c),a,c,c),q1(d,c,a,c,c))

≥ Θ(c,q1(c, t1(a,c,c),a,c,c))∧α

= Θ(c,q2(t2(a,c,c),c,a,c,c))∧α

≥ Θ(c,q2(c, t2(a,c,c),a,c,c))∧α

= Θ(c,q3(t3(a,c,c),c,a,c,c))∧α

...

≥ Θ(c,qn(c, tn(a,c,c),a,c,c))∧α

= Θ(c,c)∧α

= α

Thus (c,q1(d,c,a,c,c))∈Θα , which implies q1(d,c,a,c,c)∈Θα [c] = µα . So that µ(q1(d,c,a,c,c))≥

α . Hence proved. Conversely, assume conditions (i)− (iii) are satisfied. Since µ is normalized

we can choose and fix an element c ∈ A with µ(c) = 1. Define a fuzzy relation Θ on A by: for

each x,y ∈ A,

Θ(x,y) =
n∧

i=1

µ(ti(x,y,c))

Clearly Θ is reflexive. Transitivity of Θ follows from the assumption of the theorem and com-

patibility follows from the conditions (i) and (ii), i.e., Θ is reflexive, transitive and compatible

fuzzy relation on A. By using the same argument as in the previous theorem we can show that

Θ is a fuzzy congruence on A such that µ = c/Θ. Hence proved.
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5.5 Fuzzy Congruence Classes Which are Fuzzy Subuniverses

Remember that a subset B of A is called a subuniverse of A if for all n > 0, ever n−ary operation

f and any b1, ...,bn ∈ B it holds that f A(b1, ...,bn)∈ B. Analogous to this, we have the following

definition.

Definition 5.5.1. A fuzzy subset µ of A is called a fuzzy subuniverse of A, if for all n > 0, every

n−ary operation f and any b1, ...,bn ∈ A it holds that

µ( f A(b1, ...,bn))≥ µ(b1)∧ ...∧µ(bn)

Theorem 5.5.2. For a variety K , the following conditions are equivalent:

1. At least one class of each congruence of every nonempty A ∈K is a subuniverse of A.

2. There exists a unary term t with p(t(x), t(x), ...t(x)) = t(x) for every term p.

3. At least one fuzzy class of each fuzzy congruence of every nonempty A ∈K is a fuzzy

subuniverse of A.

Proof. (1)⇔ (2) is proved by B. Csákány in [54]. So we proceed to prove (2)⇒ (3). Let

A ∈K and Θ ∈ FCon(A). For each a ∈ A we show that the fuzzy class t(a)/Θ of Θ is a fuzzy

subuniverse of A, where t is the unary term satisfying (2). Let f ∈ F be an n−ary operation,

n > 0 and x1, ...,xn ∈ A. Then consider the following:

t(a)/Θ(x1)∧ ...∧ t(a)/Θ(xn) = Θ(t(a),x1)∧ ...∧Θ(t(a),xn)

≤ Θ( f A(t(a), ..., t(a)), f A(x1, ...,xn))

= Θ(t(a), f A(x1, ...,xn))

= t(a)/Θ( f A(x1, ...,xn))

Thus t(a)/Θ is a fuzzy subuniverse of A.

The proof of (3)⇒ (1) follows from the fact that every congruence relation on A can be identi-

fied as a fuzzy congruence relation by its characteristic function.
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Theorem 5.5.3. For a variety K , the following conditions are equivalent:

1. At most one class of each congruence of A ∈K is a subuniverse of A.

2. There exists n ∈ Z+, p1, ..., pn ∈ T6 and u1, ...,un ∈ T1 satisfying the following identities:

p1(u1(x),u1(y),x,y,x,y) = x

pi(x,y,ui(x),ui(y),x,y) = pi+1(ui+1(x),ui+1(y),x,y,x,y) for i = 1,2, ...,n−1

pn(x,y,un(x),un(y),x,y) = y

3. At most one fuzzy class of each fuzzy congruence on A ∈K is a fuzzy subuniverse of A.

Proof. The proof of (1)⇔ (2) is given in [54]. So we proceed to prove (2)⇒ (3). Let A ∈

K and Θ ∈ FCon(A). Suppose that µ1 and µ2 are two fuzzy classes of Θ which are fuzzy

subuniverses of A. Let a,b ∈ A such that µ1 = a/Θ and µ2 = b/Θ. Then µ1(a) = 1 and

µ2(b) = 1. We first show that Θ(a,b) = 1. Since µ1 and µ2 are fuzzy subuniverses of A,

we get

µ1(ui(a))≥ µ1(a) = 1 and µ2(ui(b))≥ µ2(b) = 1

for each i. So that

Θ(a,ui(a)) = 1 = Θ(b,ui(b))
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for all i. Now consider the following:

Θ(a,b) = Θ(p1(u1(a),u1(b),a,b,a,b),b)

≥ Θ(p1(a,b,u1(a),u1(b),a,b),b)

= Θ(p2(u2(a),u2(b),a,b,a,b),b)

≥ Θ(p2(a,b,u2(a),u2(b),a,b),b)

...

≥ Θ(pn(a,b,un(a),un(b),a,b),b)

= Θ(b,b)

= 1

Now for any x ∈ A,

µ1(x) = a/Θ(x)

= Θ(a,x)

≥ Θ(a,b)∧Θ(b,x)

= Θ(b,x)

= b/Θ(x)

= µ2(x)

By symmetry, we can also show that µ2(x)≥ µ1(x), i.e., µ1(x) = µ2(x) for all x ∈ A and hence

µ1 = µ2.

The proof of (3)⇒ (1) follows from the fact that every congruence relation on A can ve identi-

fied as a fuzzy congruence relation by its characteristic function.

Definition 5.5.4. An algebra A is called idempotent if for each of its fundamental operations f

it holds f (x,x, ...,x) = x in A. A class of algebras is called idempotent if each of its members

has this property.
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Theorem 5.5.5. For an algebra A, the following conditions are equivalent:

1. Each congruence class of A is a subuniverse.

2. A is idempotent.

3. Each fuzzy congruence class of A is a fuzzy subuniverse.

Proof. The equivalence of (1) and (2) is proved in [54]. We prove (2)⇒ (3). Suppose that

A is idempotent. Let a ∈ A, Θ ∈ FCon(A), n > 0, f ∈ Fn and x1, ...,xn ∈ A. Then consider the

following:

a/Θ(x1)∧ ...∧a/Θ(xn) = Θ(a,x1)∧ ...∧Θ(a,xn)

≤ Θ( f A(a,a, ...,a), f A(x1, ...,xn))

= Θ(a, f A(x1, ...,xn))

= a/Θ( f A(x1, ...,xn))

Therefore a/Θ is a fuzzy subuniverse of A. The proof of (3)⇒ (1) follows from the fact

that every congruence relation on A can ve identified as a fuzzy congruence relation by its

characteristic function.
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Chapter 6

L−Fuzzy Cosets

Cosets in universal algebra were first introduced by P. Agliano in [8] and later studied by R.

Bělohlávek [35] under a name ’convex sets’. Agliano, in his paper [8], has defined cosets using

coset terms. He gives a natural structure to the set of congruence classes containing a given ele-

ment of the algebra, and relates the properties of this structure to general features of the variety

generated by the algebra. It comes out that such kind of results are better understood if we con-

sider the set of congruence classes containing a given element as a subset of a generally richer

family of subset of the algebra; called ’cosets’ of the algebra-which in fact is endowed with the

very natural structure of an algebraic lattice. It is observed that in many classical cases cosets

are very well-known structures: in the case of groups left-cosets (or right -cosets) determined

by normal subgroups, in rings cosets determined by ideals.

In this chapter, we define L−fuzzy cosets in universal algebras and investigate some of their

properties. We give necessary and sufficient conditions for a class of algebras to be congruence

permutable.

6.1 Fuzzy Cosets

Recall from [8] that, a term t(−→x ,−→y ) is said to be a cost term in −→y if t(a1, ...,an,b,b...,b) = b

for all a1, ...,an,b ∈ A, and cosets of A are those nonempty subsets of A which are −→y −closed

under each coset term t(−→x ,−→y ) in −→y . In the following, we define fuzzy cosets.
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Definition 6.1.1. An L−fuzzy subset µ of A is said to be an L−fuzzy coset of A (or shortly a

fuzzy coset of A) if and only if the following conditions are satisfied:

1. µ(a) = 1 for some a ∈ A.

2. If t(−→x ,−→y ) is a coset term in −→y and a1,a2, ...,an,b1,b2, ...,bm ∈ A, then

µ(t(a1,a2, ...,an,b1,b2, ...,bm))≥ µ(b1)∧µ(b2)∧ ...∧µ(bm)

In this case, we say that µ is a fuzzy coset of A determined by a. For each a ∈ A, we denote by

FCa(A) the set of all fuzzy cosets of A determined by a.

The following theorem gives an equivalent condition for fuzzy subsets to be a fuzzy coset

in terms of their level sets.

Theorem 6.1.2. Let a ∈ A. A fuzzy subset µ of A is a fuzzy coset of A determined by a if and

only if µα is a coset of A containing a for all α ∈ L.

Proof. Suppose that µ is a fuzzy coset of A determined by a. Then µ(a) = 1. So a ∈ µα for all

α ∈ L. Also, for any α ∈ L, let −→a ∈ An,
−→
b ∈ (µα)

m and t(−→x ,−→y ) be a coset term in −→y . Since

µ(t(−→a ,
−→
b ))≥ µm(

−→
b )≥ α , we get t(−→a ,

−→
b )∈ µα and hence each µα is a coset of A containing

a. Conversely suppose that the level subset µα is a coset of A containing a for all α ∈ L. In

particular µα is a coset of A containing a for α = 1. So that µ(a) = 1. Let t(−→x ,−→y ) be a coset

term in −→y and −→a ∈ An,
−→
b ∈ Am. Put µm(

−→
b ) = α . Then

−→
b ∈ (µm)α = (µα)

m. Since each µα

is a coset we get, t(−→a ,
−→
b ) ∈ µα . So that µ(t(−→a ,

−→
b )) ≥ α = µm(

−→
b ). Therefore µ is a fuzzy

coset of A determined by a.

This theorem confirms that a fuzzy coset of A determined by a is precisely a fuzzy L-subset

of A (in the sense of [144]), where L is the set of all cosets of A containing a.

Lemma 6.1.3. Let a ∈ A and H ⊆ A. For α ∈ L−{1}, let αH be as given in Definition 1.2.12.

Then, H is a coset of A containing a if and only if αH is a fuzzy coset of A determined by a for

some α ∈ L−{1}.
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Corollary 6.1.4. Let a ∈ A. A subset H of A is a coset of A containing a if and only if its

characteristic function χH is a fuzzy coset of A determined by a.

Lemma 6.1.5. Every fuzzy ideal is a fuzzy coset determined by 0.

Proof. It is enough to show that every coset term is an ideal term.

Lemma 6.1.6. Let a ∈ A and µ ∈ FCa(A). Then, for any a1, ...,am ∈ A, if x ∈ {a1, ...,am}
a
,

then µ(x)≥ µ(a1)∧ ...∧µ(am). More generally, for any nonempty subset S of A, if x ∈ Sa, then

there exist a1, ...,am ∈ S such that µ(x)≥ µ(a1)∧ ...∧µ(am).

Proof. Suppose that x ∈ {a1, ...,am}
a
. Then, x = p(b1, ...,bn,a1, ...,am) for some b1, ...,bn ∈ A

and some coset term p(−→x ,−→y ) in −→y . So we have the following:

µ(x) = µ(p(b1, ...,bn,a1, ...,am))≥ µ(a1)∧ ...∧µ(am)

Hence proved.

Theorem 6.1.7. Let a∈A. Then, µ ∈FCa(A) if and only if for each m≥ 0 and each b1,b2, ...,bm ∈

A, if x ∈ {a1, ...,am}
a
, then µ(x)≥ µ(b1)∧ ...∧µ(bm).

Proof. One part of this theorem is proved in the above Lemma. So we proceed to the converse

part. Assume the given condition is satisfied for µ . Let us put Sm = {b1, ...,bm}. If we take

m = 0, then Sm = /0 and it is known that /0a
= {a}. So by our assumption, we have

µ(a)≥
∧
b∈ /0

µ(b) = 1

Thus µ(a) = 1. Let a1, ...,an,b1, ...,bm ∈ A and p(−→x ,−→y ) be a coset term in −→y . If we consider

the set Sm = {b1, ...,bm}, then one can observe that

p(a1, ...,an,b1, ...,bm) ∈ {b1, ...,bm}
a

It follows from our assumption thatµ(p(a1, ...,an,b1, ...,bm))≥ µ(b1)∧ ...∧µ(bm). Therefore

µ ∈ FCa(A). Hence proved.
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In the following theorem, we give a more general setting to characterize fuzzy cosets.

Theorem 6.1.8. Let a ∈ A. Then, µ ∈ FCa(A) if and only if for any subset S of A

µ(b)≥
∧
x∈S

µ(x) for all b ∈ Sa

Proof. Suppose that µ ∈ FCa(A). If S = /0, then Sa
= {a} and the condition holds trivially.

Assume that S is nonempty and let b ∈ Sa. Then b = t(a1, ...,an,b1, ...,bm) for some b1, ...,bm ∈

S, a1, ...,an ∈ A and some coset term t(−→x ,−→y ) in −→y . Since µ is fuzzy a fuzzy coset, it follows

that

µ(b)≥ µ(b1)∧ ...∧µ(bm)≥
∧
x∈S

µ(x)

The converse part follows from the above theorem by assuming the condition for finite sets.

6.2 Fuzzy Cosets Generated by a Fuzzy Set

This section is devoted to characterize fuzzy cosets generated by a fuzzy set.

Theorem 6.2.1. Let a ∈ A. If {µi}i∈∆ is a family of fuzzy cosets of A determined by a, then

∩i∈∆µi is a fuzzy coset of A determined by a.

This theorem confirms that, for each a ∈ A and any fuzzy subset λ of A with λ (a) = 1,

always there exists a smallest fuzzy coset determined by a containing λ which we call it the

fuzzy coset of A determined by a generated by λ and is denoted by λ
a
. Note also that, for a

subset X of A and a ∈ X , we denote by Xa the coset of generated by X .

Lemma 6.2.2. Let a ∈ A, S⊆ A and a ∈ S. Then χS
a = χSa .

Proof. We show that χSa is the smallest fuzzy coset of A determined by a such that χS ≤ χSa .

Since Sa is a coset of A containing a, it follows from Corollary 6.1.4 that χSa is a fuzzy coset of

A determined by a. It is also clear that χS ≤ χSa . Let λ be any fuzzy coset of A determined by

a such that χS ≤ λ . Then λ (s) = 1 for all s ∈ S and hence λ (a) = 1. Let z be any element in



6.2. Fuzzy Cosets Generated by a Fuzzy Set 139

A. If z /∈ Sa, then χSa(z) = 0≤ λ (z). I z ∈ Sa, then z = t(−→a ,−→s ) for some −→a ∈ An, −→s ∈ Sm and

some coset term t(−→x ,−→y ) in −→y . Now consider:

λ (z) = λ (t(a1, ...,an,s1, ...,sm))≥ λ (s1)∧λ (s2)∧ ...∧λ (sm) = 1

So that χSa ≤ λ . Therefore χSa = χS
a.

For any fuzzy subset λ of A, recall from Theorem 1.2.11 that:

λ (x) =
∨
{α ∈ L : x ∈ λα}

for all x ∈ A. In the following theorem we characterize fuzzy cosets generated by a fuzzy set in

terms of their level sets.

Theorem 6.2.3. Let a ∈ A. For a fuzzy subset λ of A with λ (a) = 1, let Λa
1 be a fuzzy subset of

A defined by:

Λ
a
1(x) =

∨
{α ∈ L : x ∈ (λα)

a} for all x ∈ A

Then Λa
1 = λ

a
.

Proof. We show that Λa
1 is the smallest fuzzy coset of A determined by a containing λ . Let us

first show that Λa
1 is a fuzzy coset. Since λ (a) = 1, it is clear that Λa

1(a) = 1. Let −→a ∈ An,
−→
b ∈

Am and t(−→x ,−→y ) be an ideal term in −→y . Then consider:

(Λa
1)

m(
−→
b ) =

∧
{Λa

1(bi) : 1≤ i≤ m}

=
∧
{
∨
{αi ∈ L : bi ∈ (λα)

a} : 1≤ i≤ m}

=
∨
{
∧
{αi ∈ L : 1≤ i≤ m} : bi ∈ (λα)

a}



140 Chapter 6. L−Fuzzy Cosets

If we put β = ∧{αi ∈ L : 1≤ i≤ m}, then we get λαi ⊆ λβ for all 1≤ i≤ m. So that

(Λa
1)

m(
−→
b ) =

∨
{
∧
{αi ∈ L : 1≤ i≤ m} : bi ∈ (λα)

a}

≤
∨
{β ∈ L :

−→
b ∈ b1, ...,bm ∈ (λα)

a}

≤
∨
{β ∈ L : t(−→a ,

−→
b ) ∈ (λα)

a}

= Λ
a
1(t(
−→a ,
−→
b ))

Therefore Λa
1 is a fuzzy coset of A determined by a. It is also clear to see that λ ≤ Λa

1. Suppose

that µ is any other fuzzy coset of A determined by a such that λ ≤ µ . Then (λα)
a ⊆ µα for all

α ∈ L. Now for any x ∈ A consider:

Λ
a
1(x) =

∨
{α ∈ L : x ∈ (λα)

a}

≤
∨
{α ∈ L : x ∈ µα}

= µ(x)

Therefore Λa
1 is the smallest fuzzy coset of A determined by a containing λ . Thus Λa

1 = λ
a
.

Corollary 6.2.4. Let a ∈ A and µ a fuzzy subset of A such that µ(a) = 1. Then

(µα)
a ⊆ (µa)α for all α ∈ L

Moreover, if L is a chain and µ is finite valued or equivalently if µ has sup property, then the

equality holds.

Theorem 6.2.5. Let µ be a fuzzy subset of A and α ∈ L:

(µa)α =
⋃
{
⋂

γ∈M

(µγ)
a

: M ⊆ L and α ≤ supM}

Proof. The proof is similar to that of Theorem 2.3.7.
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In the following we give an algebraic characterization of fuzzy cosets generated by fuzzy

sets.

Definition 6.2.6. Let a ∈ A. For a fuzzy subset λ of A with λ (a) = 1, let us define a fuzzy

subset Λa
2 of A as follows:

Λa
2(a) = 1 and for a 6= x ∈ A

Λ
a
2(x) =

∨
{λ m(

−→
b ) :
−→
b ∈ Am, t(−→a ,

−→
b ) = x where

−→a ∈ An, t(−→x ,−→y ) is a coset term in −→y }

Theorem 6.2.7. Let a ∈ A. For a fuzzy subset λ of A with λ (a) = 1, we have Λa
2 = λ

a
.

Proof. By Theorem 6.2.3, it is enough to show that Λa
2 = Λa

1. For each x 6= a in A, let us define

two sets Hx and Gx as follows:

Hx = {λ m(
−→
b ) :
−→
b ∈ Am, t(−→a ,

−→
b ) = x

where −→a ∈ An, t(−→x ,−→y ) is coset term in −→y }

Gx = {α ∈ L : x ∈ λα

a}

Clearly both Hx and Gx are subsets of L. Our claim is to see that:

∨
{α : α ∈ Hx}=

∨
{α : α ∈ Gx}

We first show that Hx⊆Gx. If α ∈Hx, then α = λ m(
−→
b ), for some

−→
b ∈Am, such that t(−→a ,

−→
b )=

x for some−→a ∈An where t(−→x ,−→y ) is a coset term in−→y . That is,
−→
b ∈ (λα)

m and so that x∈ λα

a
.

Then α ∈ Gx and hence Hx ⊆ Gx. Thus

∨
{α : α ∈ Hx} ≤

∨
{α : α ∈ Gx}

To prove the inequality, we show that for each α ∈Gx, there exists β ∈Hx such that α ≤ β . Let

α ∈ Gx. Then x ∈ λα

a
; that is, x = t(−→a ,

−→
b ) for some

−→
b ∈ (λα)

m, and −→a ∈ An where t(−→x ,−→y )
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is an ideal term in −→y . If we put β = λ m(
−→
b ), then we get β ∈ Hx and α ≤ β . This completes

the proof.

In the following theorem, we give a finite characterization for fuzzy cosets.

Theorem 6.2.8. Let a ∈ A. For a fuzzy subset λ of A with λ (a) = 1, let us define a fuzzy subset

Λa
3 of A by:

Λa
3(a) = 1 and for each a 6= x ∈ A:

Λ
a
3(x) =

∨
{
∧
y∈F

λ (y) : x ∈ Fa
,F ⊂⊂ A}

Then Λa
3 = λ

a
.

Proof. It is enough if we show that Λa
3 = Λa

1. For each a 6= x ∈ A, let us take the set Gx as in

Theorem 6.2.7 and define a set Hx as follows:

Hx = {
∧

a∈F

λ (a) : x ∈ x ∈ Fa
,F ⊂⊂ A}

Our claim is to show that:

∨
{α : α ∈ Hx}=

∨
{α : α ∈ Gx}

We first show that Hx ⊆ Gx. α ∈ Hx, implies that α =
∧

a∈F λ (a) and x ∈ Fa, for some finite

subset F of A. That is, a ∈ λα for all a ∈ F and x ∈ Fa. So that x ∈ λα

a
. Then α ∈ Gx and

hence Hx ⊆ Gx. Next we show that, for each α ∈ Gx, there exists β ∈ Hx such that α ≤ β . Let

α ∈ Gx. Then x ∈ λα

a
; that is, x = t(−→a ,

−→
b ) for some

−→
b ∈ (λα)

m, and −→a ∈ An where t(−→x ,−→y )

is a coset term in −→y . Let
−→
b = 〈b1,b2, ...,bm〉 and β =

∧m
i=1 µ(bi). Then β ≥ α . Moreover, if

we put F = {b1,b2, ...,bm}, then F is a finite subset of A such that x ∈ Fa. Thus β ∈ Hx such

that α ≤ β . This completes the proof.
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Theorem 6.2.9. Let a ∈ A. Suppose that {Hα}α∈L is a subfamily of Ca(A) such that

⋂
α∈M

Hα = HsupM

for all M ⊆ L. Then, there is a unique fuzzy coset µ of A determined by µ for which µα = Hα

for all α ∈ L.

Proof. The proof is similar to that of Theorem 2.3.12

6.3 The Lattice of Fuzzy Cosets

As observed in Theorem 6.2.1, for each a ∈ A the class FCa(A) is closed under arbitrary in-

tersection of fuzzy sets. So that (FCa(A),≤) forms a closure fuzzy set system and hence by

Theorem 1.2.16 it is a complete lattice, where ≤ is a pointwise ordering of fuzzy sets. The

following theorem summarizes this.

Theorem 6.3.1. Let a ∈ A. Then the set FCa(A) of all fuzzy cosets of A determined by a forms

a complete lattice where the infimum and supremum of any sub-family {µi : i ∈ ∆} of FCa(A) is

given by: ∧
µi = ∩µi and

∨
µi = (∪µi)

a

The least and the largest elements in FCa(A) are χ{a} and 1A respectively.

Theorem 6.3.2. (FCa(A),≤) is an algebraic closure fuzzy set system.

Proof. By Definition 1.2.18, it is enough to show that FCa(A) is inductive in LA. Let {µi}i∈∆

be a chain in FCa(A). Let us put

η =
⋃
i∈∆

µi

We show that η is a fuzzy coset of A determined by a. Clearly η(a)= 1. Let a1, ...,an,b1, ...,bm ∈

A and p(−→x ,−→y ) be a coset term in −→y . First observe that, for each m−tuples i1, ..., im ∈ ∆, there
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exists k ∈ {1,2, ...,m} such that µi j ≤ µik for all j ∈ {1,2, ...,m}. Now consider the following:

η(b1)∧ ...∧η(bm) =

(∨
i1∈∆

µi1(b1)

)
∧ ...∧

( ∨
im∈∆

µim(bm)

)
=

∨
i1,...,im∈∆

(µi1(b1)∧ ...∧µim(bm))

≤
∨

ik∈∆

(µik(b1)∧ ...∧µik(bm))

≤
∨

ik∈∆

µik(p(a1, ...,an,b1, ...,bm))

= η(p(a1, ...,an,b1, ...,bm))

Therefore η is a fuzzy coset of A determined by a and this completes the proof.

6.4 Fuzzy Cosets and Fuzzy Congruences

Remember that, for each a ∈ A, FLa(A) denotes the set

FLa(A) = {a/Θ : Θ ∈ FCon(A)}

The following lemma shows that fuzzy congruence classes are fuzzy cosets.

Lemma 6.4.1. For each a ∈ A,

FLa(A)⊆ FCa(A)

Proof. Let Θ∈FCon(A). We show that a/Θ∈FCa(A). Clearly a/Θ(a)= 1. Let a1, ...,an,b1, ...,bm ∈

A and t(−→x ,−→y ) be a coset term in −→y . Consider:

Θa(b1)∧ ...∧Θa(bm) = Θ(a,b1)∧ ...∧Θ(a,bm)

≤ Θ(t(a1, ...,an,a,a, ...,a), t(a1, ...,an,b1, ...,bm))

= Θ(a, t(a1, ...,an,b1, ...,bm))

= a/Θ(t(a1, ...,an,b1, ...,bm))
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Therefore a/Θ ∈ FCa(A).

Theorem 6.4.2. Let a ∈ A. If Θ ∈ FCon(A) and µ ∈ FCa(A), then µ/Θ ∈ FCa(A).

Proof. Since µ/Θ ∈ FCa(A), we have µ(a) = 1. Now consider

µ/Θ(a) =
∨
{µ(b)∧Θ(a,b) : b ∈ A}

≥ µ(a)∧Θ(a,a)

= 1

Thus µ/Θ(a) = 1. Let t(−→x ,−→y ) be a coset term in −→y and a1, ...,an,b1, ...,bm ∈ A. Then, the

proof is similar to that of Theorem 7.2.1 to show that

µ/Θ(t(a1, ...,an,b1, ...,bm))≥ µ/Θ(b1)∧ ...∧µ/Θ(bm)

Lemma 6.4.3. Let a ∈ A. For each Θ,Φ ∈ FCon(A) we have:

(a/Θ)/Φ = a/(Θ◦Φ)

Proof. For any x ∈ A, consider the following:

(a/Θ)/Φ(x) =
∨
{(a/Θ)(y)∧Φ(x,y) : y ∈ A}

=
∨
{Θ(a,y)∧Φ(x,y) : y ∈ A}

= Θ◦Φ(a,x)

= a/(Θ◦Φ)(x)

Thus, (a/Θ)/Φ = a/(Θ◦Φ).
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Lemma 6.4.4. Let a ∈ A. For each Θ,Φ ∈ FCon(A) we have:

a/Θ
∨
a

a/Φ≤ (a/Θ)/Φ≤ a/(Θ∨Φ)

where
∨

a denotes the supremum of fuzzy cosets in FCa(A).

Proof. To prove the first inequality let us put λ = a/Θ∪ a/Φ. Then λ is a fuzzy subset of A

(not necessarily a fuzzy coset) such that

a/Θ
∨
a

a/Φ = λ
a

Let x ∈ A. Then by Theorem 6.2.7

λ
a
(x) =

∨
{λ m(

−→
b ) :
−→
b ∈ Am, t(−→a ,

−→
b ) = x where −→a ∈ An, t(−→x ,−→y ) is a coset term in −→y }

Again from Lemma 6.4.3, we have

(a/Θ)/Φ(x) =
∨
{Θ(a,y)∧Φ(x,y) : y ∈ A}

Let us define two sets Hx and Gx as follows:

Hx = {λ m(
−→
b ) :
−→
b ∈ Am, t(−→a ,

−→
b ) = x where −→a ∈ An, t(−→x ,−→y ) is a coset term in −→y }

Gx = {Θ(a,y)∧Φ(x,y) : y ∈ A}

Then both Hx and Gx are nonempty subsets of L. Our aim is to show that
∨

Hx ≤
∨

Gx for all

x ∈ A. Let α ∈ Hx. Then α = λ m(
−→
b ), for some

−→
b ∈ Am, such that t(−→a ,

−→
b ) = x for some

−→a ∈ An where t(−→x ,−→y ) is a coset term in −→y . That is, b1, ...,bm ∈ λα = (a/Θ)α ∪ (a/Φ)α .

Without loss of generality, we can assume that b1, ...,bk ∈ (a/Θ)α and bk+1, ...,bm ∈ (a/Φ)α .

So that

Θ(a,b1)∧ ...∧Θ(a,bk)≥ α and Φ(a,bk+1)∧ ...∧Φ(a,bm)≥ α
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We have x = t(−→a ,b1, ...,bk,bk+1, ...,bm) and since t(−→x ,−→y ) is a coset term in −→y , we get a =

t(−→a ,a, ...,a,a, ...,a). Put y = t(−→a ,b1, ...,bk,a,a, ...,a) and consider the following:

Θ(a,y) = Θ(t(−→a ,a, ...,a,a, ...,a), t(−→a ,b1, ...,bk,a,a, ...,a))

≥ Θ(a,b1)∧ ...∧Θ(a,bk)

≥ α

and

Φ(x,y) = Φ(t(−→a ,b1, ...,bk,bk+1, ...,bm), t(−→a ,b1, ...,bk,a,a, ...,a))

≥ Φ(bk+1,a)∧ ...∧Φ(bm,a)

≥ α

If we put β = Θ(a,y)∧Φ(x,y), then β ∈ Gx such that α ≤ β , which gives that
∨

Hx ≤
∨

Gx.

Therefore

a/Θ
∨
a

a/Φ≤ (a/Θ)/Φ

The last inequality follows from the fact that Θ◦Φ≤Θ∨Φ and this completes the proof.

6.5 Characterizing Congruence Permutable Varieties

Definition 6.5.1. A class K of algebras is called congruence permutable if the following holds

for each A ∈K and each θ ,φ ∈Con(A):

θ ◦φ = φ ◦θ

In the following theorem we give an equivalent condition for a variety K of algebras to be

congruence permutable.
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Theorem 6.5.2. A class K of algebras is congruence permutable if and only if

Θ◦Φ = Φ◦Θ

for each A ∈K and all Θ,Φ ∈ FCon(A).

Proof. Suppose that K is congruence permutable. Let Θ,Φ ∈ FCon(A). For any x,y ∈ A, let

us define two sets Hx,y and Gx,y as follows:

Hx,y = {Θ(x,z)∧Φ(y,z) : z ∈ A}

Gx,y = {Θ(y,z)∧Φ(x,z) : z ∈ A}

Then both Hx,y and Gx,y are nonempty subsets of L. Our claim is to show that

∨
Hx,y =

∨
Gx,y for all x,y ∈ A

Let α ∈ Hx,y. Then α = Θ(x,z)∧Φ(y,z) for some z ∈ A. So that Θ(x,z)≥ α and Φ(y,z)≥ α;

i.e., (x,z) ∈ Θα , (y,z) ∈ Φα and both Θα and Φα are congruence relations on A, which gives

that (x,y) ∈ Φα ◦Θα . Since K is congruence permutable, we get (x,y) ∈ Θα ◦ φα . So there

exists some u ∈ A such that (x,u) ∈ φα and (y,u) ∈Θα ; that is,

Θ(y,u)∧Φ(x,u)≥ α

Thus
∨

Gx,y ≥ α . Since α is arbitrary in Hx,y, we get
∨

Gx,y ≥ α for all α ∈ Hx,y and hence

∨
Gx,y ≥

∨
Hx,y

Similarly, by interchanging Θ and Φ we can show that

∨
Gx,y ≤

∨
Hx,y
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Therefore the equality holds. The converse part of this theorem follows from the fact that every

congruence relation on A can be identified by as a fuzzy congruence on A by its characteristic

mapping.

Corollary 6.5.3. A class K of algebras is congruence permutable if and only if

Θ◦Φ = Θ∨Φ

for each A ∈K and all Θ,Φ ∈ FCon(A).

Theorem 6.5.4. A class K of algebras is congruence permutable if and only if for each A∈K

and each a ∈ A, the map fa : FCon(A)→ FCa(A) defined by:

fa(Θ) = a/Θ

is a lattice homomorphism.

Proof. Suppose that K is congruence permutable. For any Θ,Φ ∈ FCon(A), it is clear that

a/(Θ∧Φ) = a/Θ∧a/Φ

So it is enough to show that a/(Θ∨Φ) = (a/Θ)
∨

a(a/Φ). One inequality is given in Lemma

6.4.4. To prove the other inequality, let x ∈ A. Since K is congruence permutable, it follows

from Corollary 6.5.3 that Θ◦Φ = Θ∨Φ. Then we have

a/(Θ∨Φ)(x) = Θ∨Φ(a,x)

= Θ◦Φ(a,x)

=
∨
{Θ(a,y)∧Φ(x,y) : y ∈ A}

For an arbitrary y in A, let us put

α = Θ(a,y)∧Φ(x,y)
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So we have a/Θ(y) ≥ α and Φ(x,y) ≥ α . Since, by our assumption, K is congruence per-

mutable, it has a Mal’cev term p(u,v,w) such that the following equations are valid in K

p(u,u,w)≈ w≈ p(w,u,u)

Let us put b1 = a,b2 = y and b3 = p(a,y,x). Since we can write a as a = p(a,x,x) we have the

following:

Φ(a,b3) = Φ(p(a,x,x), p(a,y,x))

≥ Φ(x,y)

≥ α

That is a/Φ(b3)≥ α . If we put, for simplicity, µ = (a/Θ)
∨

a(a/Φ), then µ is a fuzzy coset of

A determined by a such that

µ(b1)∧µ(b2)∧µ(b3)≥ α

Let us define a (2+3)−ary term t(−→x ,−→y ) by:

t(x1,x2,y1,y2,y3) = p(p(x1,y1,x2), p(x1,y2,x2),y3)

Then t(x1,x2,y1,y2,y3) is a coset term in y1,y2,y3. To verify this consider

t(x1,x2,y,y,y) = p(p(x1,y,x2), p(x1,y,x2),y) = y

Moreover, consider the following

t(a,x,b1,b2,b3) = t(a,x,a,y, p(a,y,x))

= p(p(a,a,x), p(a,y,x), p(a,y,x))

= p(a,a,x)

= x
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Since µ is a fuzzy coset, we get

µ(x)≥ µ(b1)∧µ(b2)∧µ(b3)≥ α

Since α = Θ(a,y)∧Φ(x,y) and y is arbitrary in A, we can conclude that

µ(x)≥
∨
{Θ(a,y)∧Φ(x,y) : y ∈ A}

Therefore a/(Θ∨Φ)≤ (a/Θ)
∨

a(a/Φ) and hence the equality holds. Conversely suppose that

the map fa : FCon(A)→ FCa(A) defined by:

fa(Θ) = a/Θ

is a lattice homomorphism. Then it follows from Lemma 6.4.3 and 6.4.4 that

a/(Θ∨Φ) = a/(Θ◦Φ) = a/Θ
∨
a

a/Φ

for all a ∈ A, Θ,Φ ∈ FCon(A). For any a,b ∈ A, consider

Θ∨Φ(a,b) = a/(Θ∨Φ)(b)

= a/(Θ◦Φ)(b)

= Θ◦Φ(a,b)

Therefore by Corollary 6.5.3, K is congruence permutable.

Theorem 6.5.5. The following are equivalent:

1. FLa(A) = FCa(A) for all a ∈ A.

2. FLa(A) is a dual ideal of FCa(A).

Proof. It is known that every lattice is a dual ideal of it self. This makes trivial the proof of

(1)⇒ (2). To prove (2)⇒ (1), assume that FLa(A) is a dual ideal of FCa(A). The inclusion
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FLa(A) ⊆ FCa(A) is proved in Lemma 6.4.1. To prove the other inclusion let µ ∈ FCa(A).

Consider the the zero fuzzy congruence 0A on A defined by:

0A(x,y) =


1 if x = y

0 otherwise

for all x,y ∈ A. Since µ(a) = 1, we have a/0A ≤ µ; that is, a/0A ∈ FLa(A) and µ ∈ FCa(A)

such that a/0A ≤ µ . Since FLa(A) is a dual ideal of FCa(A), we get µ ∈ FLa(A). So FCa(A)⊆

FLa(A) and hence the equality holds.

Theorem 6.5.6. If K is congruence permutable, then

FLa(A) = FCa(A)

Proof. It is enough to show that FCa(A)⊆ FLa(A). Let µ ∈ FCa(A).

Claim. For each unary algebraic polynomial f (x) on A, we show that

µ(x)∧µ(y)∧µ( f (x)) = µ(x)∧µ(y)∧µ( f (y))

for all x,y ∈ A. Put

α = µ(x)∧µ(y)∧µ( f (x))

Then α ≤ µ(x)∧µ(y) and α ≤ µ( f (x)). Let a1,a2, ...,an ∈ A and t(x1,x2, ..,xn,y) be a term on

A such that f (z) = t(a1,a2, ..,an,z) for all z ∈ A. Since K is congruence permutable, it has a

Mal’cev term p as given in Theorem 6.5.4. Now let us define a term r(x1,x2, ..,xn,y1,y2,y3) by:

r(x1,x2, ..,xn,y1,y2,y3) = p(y1, t(x1,x2, ..,xn,y2), t(x1,x2, ..,xn,y3))
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Then it can be verified that r(−→x ,y1,y2,y3) is a coset term in y1,y2,y3. Moreover,

r(a1,a2, ...,an, f (x),x,y) = p( f (x), p(t(a1,a2, ...,an,x)), p(t(a1,a2, ...,an,y)))

= p( f (x), f (x), f (y))

= f (y)

Being µ a fuzzy coset and r(−→x ,y1,y2,y3) a coset term in y1,y2,y3, we have the following:

µ( f (y)) = µ(r(a1,a2, ...,an, f (x),x,y))

≥ µ( f (x))∧µ(x)∧µ(y)

= α

So that µ( f (y))≥ α . Since µ(x)∧µ(y)≥ α , we get µ( f (y))∧µ(x)∧µ(y)≥ α; that is,

µ( f (y))∧µ(x)∧µ(y)≥ µ( f (x))∧µ(x)∧µ(y)

The other inequality can be proved by interchanging x and y, and hence the equality holds. By

Lemma 5.2.2, µ ∈ FLa(A) and this completes the proof.

Theorem 6.5.7. If for each Θ,Φ ∈ FCon(A) there exists Ψ ∈ FCon(A) such that

a/Θ
∨
a

a/Φ = a/Ψ

for all a ∈ A, then K is congruence permutable.

Proof. Let Θ,Φ ∈ FCon(A). Then there exists Ψ ∈ FCon(A) such that

a/Θ
∨
a

a/Φ = a/Ψ
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for all a ∈ A. Our aim is to show that Ψ = Θ◦Φ. For any a,b ∈ A consider:

Θ◦Φ(x,y) =
∨
{Θ(x,a)∧Φ(y,a) : a ∈ A}

=
∨
{a/Θ(x)∧a/Φ(y) : a ∈ A}

≤
∨
{a/Ψ(x)∧a/Ψ(y) : a ∈ A}

=
∨
{Ψ(x,a)∧Ψ(y,a) : a ∈ A}

≤ Ψ(x,y)

Moreover,

Ψ(x,y) = y/Ψ(x)

= (y/Θ
∨
y

y/Φ)(x)

≤ y/(Θ◦Φ)(x) (By Lemma 6.4.3 and 6.4.4)

= Θ◦Φ(x,y)

Therefore Ψ = Θ ◦Φ. Since a/Θ
∨

a a/Φ = a/Φ
∨

a a/Θ, we get Θ ◦Φ = Φ ◦Θ. Thus, by

Theorem 6.5.2, K is congruence permutable.
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Chapter 7

L−Fuzzy Ideals and L−Fuzzy

Congruences

Introduction

Congruences turn out to be useful in order to construct a new, so-called quotient algebra, from

a given one. This construction is an algebraic counterpart to a situation from real life known

in science by the term "abstraction". In this process we neglect those properties of a given

object which cannot be distinguished by a congruence and we form a new and rough structure

having only those properties which have their origin in the structure of congruence classes.

Fuzzy congruence relations and specifically fuzzy ideals are also important to construct quotient

algebras analogous to crisp congruences. The main purpose of this chapter is to study quotient

algebras induced by fuzzy ideals in ideal determined varieties.

In the first section, we deal with fuzzy congruence kernels which are fuzzy congruence

classes determined by 0. It is observed that fuzzy congruence kernels are fuzzy ideals. But the

converse does not holds in general. Section 2 is devoted to the study of those class of algebras

in which every fuzzy ideal is a class of a unique fuzzy congruence relation. Finally, in section 3,

we study the structure of quotient algebras induced by fuzzy ideals in ideal determined varieties.
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7.1 Fuzzy Congruence Kernels

In some special cases it is not possible to characterize every class of every fuzzy congruence on

A but sometimes it is possible to characterize the kernel (the so-called fuzzy congruence kernel).

Definition 7.1.1. An algebra with 0 is an algebra with a constant unary term 0. A variety with

0 is a variety with a constant unary term (equationally definable constant) 0.

This constant is usually denoted by 0. Sometimes it may also be denoted by 1 or another

symbol.

Definition 7.1.2. Let A be an algebra with 0 and Θ a fuzzy equivelence relation on A. Then

0/Θ is called the kernel of Θ. A fuzzy subset µ of A is called a fuzzy congruence kernel if it is

the kernel of some fuzzy congruence Θ on A.

Lemma 7.1.3. Every fuzzy congruence kernel is fuzzy ideal.

Proof. Let Θ ∈ FCon(A). Clearly 0/Θ(0) = 1. Let −→a ∈ An,
−→
b ∈ Am and p(−→x ,−→y ) be an ideal

term in −→y . Then consider:

0/Θ(p(−→a ,
−→
b )) = Θ(0, p(−→a ,

−→
b ))

= Θ(p(−→a ,
−→
0 ), p(−→a ,

−→
b ))

= Θ(p(a1,a2, ...,an,0,0, ...,0), p(a1,a2, ...,an,b1,b2, ...,bm)

≥ Θ(a1,a1)∧ ...∧Θ(an,an)∧Θ(0,b1)∧ ...∧Θ(0,bm)

= Θ(0,b1)∧ ...∧Θ(0,bm)

= 0/Θ(b1)∧ ...∧0/Θ(bm)

Therefore 0/Θ is a fuzzy ideal of A.

Remark. But every fuzzy ideal is not in general the kernel of some fuzzy congruence

relation. This is verified in the following example.

Example 7.1.4. Let A = {0,a,b,c,1} be the lattice given in the following diagram:
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Let L be the real interval [0,1] and µ be an L−fuzzy subset of A defined by:

µ(0) = 1,µ(a) = 0.7 and µ(b) = µ(c) = µ(1) = 0.4

Then µ is a fuzzy ideal of A. Suppose if possible that µ is a kernel of some fuzzy congruence

Θ on A, i.e., µ = 0/Θ. Now consider the following:

µ(c) = Θ(0,c)

≥ Θ(1,b)

≥ Θ(0,a)

= µ(a)

This is a contradiction. Thus µ is not a kernel of any fuzzy congruence on A.

Definition 7.1.5. An algebra with 0 is called permutable at 0 if (θ ◦φ)[0] = (φ ◦θ)[0] for each

of its congruences θ ,φ . A class of algebras with 0 is called permutable at 0 if each of its

members has this property.

It can be easily verified that A is permutable at 0 if and only if 0/(Θ ◦Φ) = 0/(Φ ◦Θ) for

each of its fuzzy congruences Θ,Φ.

The following characterization was developed by H.-P. Gumm and A. Ursini [79] :
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Theorem 7.1.6. A variety with 0 is permutable at 0 if and only if there exists a binary term t

with

t(x,x) = 0 and t(x,0) = x

Definition 7.1.7. The term t occurring in Theorem 7.1.6 is called subtractive term (or the dif-

ference term).

For any nonnegative integer n and every s∈ Tn+1 let ws denote the (n+3)−ary term defined

by

ws(x1, ...,xn+3) = t(s(xn+1,x1, ...,xn), t(s(xn+2,x1, ...,xn),xn+3))

Theorem 7.1.8. Let K be a permutable at 0 variety, A ∈K . A fuzzy subset µ of A is a fuzzy

congruence kernel if and only if the following conditions hold:

1. µ(0) = 1 and

2. for every s ∈ Tn+1, µ is −→y −closed under the term ws(x1, ...,xn,y1,y2,y3), i.e.,

µ(ws(x1, ...,xn,y1,y2,y3))≥ µ(y1)∧µ(y2)∧µ(y3)

Proof. Suppose that µ = 0/Θ for some Θ ∈ FCon(A). Clearly, µ(0) = 1 (proving (1)). First

observe that

ws(x1, ...,xn,0,0,0) = t(s(0,x1, ...,xn), t(s(0,x1, ...,xn),0))

= t(s(0,x1, ...,xn),s(0,x1, ...,xn))

= 0
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Now consider the following:

µ((ws(x1, ...,xn,y1,y2,y3))) = Θ(0,ws(x1, ...,xn,y1,y2,y3)))

= Θ(ws(x1, ...,xn,0,0,0),ws(x1, ...,xn,y1,y2,y3))

≥ Θ(x1,x1)∧ ...∧Θ(xn,xn)∧Θ(0,y1)∧Θ(0,y2)∧Θ(0,y3)

= µ(y1)∧µ(y2)∧µ(y3)

proving (2). Conversely, suppose that µ satisfies the conditions (1) and (2). We show that

µ satisfies the condition of Lemma 5.2.2. Let a,b ∈ A and p ∈ P1(A). Then there exist an

n ∈ Z+,s ∈ Tn+1 and a1, ...,an ∈ A such that

p(x) = s(x,a1, ...,an) for all x ∈ A

By the property of the difference term t, we have the following:

p(b) = t(p(b),0)

= t(p(b), t(p(a), p(a)))

= t(s(b,a1, ...,an), t(s(a,a1, ...,an), p(a)))

= ws(a1, ...,an,b,a, p(a))

By (2), it follows that

µ(p(b))≥ µ(a)∧µ(b)∧µ(p(a))

which implies that

µ(a)∧µ(b)∧µ(p(b))≥ µ(a)∧µ(b)∧µ(p(a))
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Similarly, by interchanging a and b, we get

µ(a)∧µ(b)∧µ(p(a))≥ µ(a)∧µ(b)∧µ(p(b))

Hence the equality holds. By Lemma 5.2.2 ,µ is a class of some fuzzy congruence Θ on A and

since µ(0) = 1 it holds that

µ = 0/Θ

Hence proved.

Lemma 7.1.9. In a permutable at 0 variety, every fuzzy ideal is a kernel of some fuzzy congru-

ence relation.

Theorem 7.1.10. Let K be a permutable variety with 0 and µ a fuzzy subset of A with µ(0)= 1.

Define a fuzzy relation Θµ of A by:

Θµ(x,y) = µ(p(x,y,0))

for all x,y ∈ A, where p is the Mal’cev term.

1. Θµ ∈ FCon(A) if and only if for every m ∈ Z+, f ∈ Fm and all a1, ...,am,b1, ...,bm ∈ A, it

holds that:

µ( f A(a1, ...,am), f A(b1, ...,bm))≥ µ(p(a1,b1,0))∧ ...∧µ(p(am,bm,0))

2. If Θµ ∈ FCon(A), then it is the largest fuzzy congruence on A with kernel µ .

Proof. 1. If Θµ ∈ FCon(A) , then by the substitution property of Θµ the condition holds.

If, conversely, µ sitisfies the condition of the theorem, the Θµ compatible. It is also clear

that Θµ is reflexive, i.e., Θµ is a reflexive and compatible fuzzy relation on A. Since K

is permutable, it follows from Theorem 5.3.6 that Θµ ∈ FCon(A).
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2. Suppose that Θµ ∈ FCon(A). First for each x ∈ A observe that,

µ(x) = µ(p(x,0,0))

= Θµ(x,0)

= 0/Θµ(x)

So that µ is the kernel of Θµ . Now let Φ be any other fuzzy congruence on A with kernel

µ , i.e., µ = 0/Φ. For any a,b ∈ A

Θµ(a,b) = µ(p(a,b,0))

= 0/Φ(p(a,b,0))

= Φ(0, p(a,b,0))

= Φ(p(a,a,0), p(a,b,0))

≥ Φ(a,b)

Thus Θµ is the largest fuzzy congruence on A with kernel µ .

Example 7.1.11. In the variety of pseudo-complemented semi lattices, fuzzy congruence kernels

are characterized in [28].

7.2 Ideal Determined Varieties

In groups (resp. rings) it is well known that congruence relations are in one-to-one correspon-

dence with normal subgroups (resp. ideals). Where as, this correspondence does not holds in

lattices. it is proved by M. Samhan in [137] that there is a one-to-one correspondence between

fuzzy normal subgroups (resp. fuzzy ideals) and fuzzy congruences of a group (resp. a ring).

In this section, we study those class of algebras for which fuzzy ideals and fuzzy congruence

relations are in one-to-one correspondence. Such a class of algebras is called ideal determined
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variety.

Theorem 7.2.1. If µ is a fuzzy ideal of A and Θ a fuzzy congruence on A, then µ/Θ is a fuzzy

ideal of A, where µ/Θ is as given in Definition 5.2.1.

Proof. Let −→a ∈ An,
−→
b ∈ Am and p(−→x ,−→y ) be an ideal term in −→y . Consider

(µ/Θ)m(
−→
b ) =

m∧
i=1

µ/Θ(bi)

=
m∧

i=1

∨
{µ(xi)∧Θ(xi,bi) : xi ∈ A}

=
∨
{

(
m∧

i=1

µ(xi)

)
∧

(
m∧

i=1

Θ(xi,bi)

)
: x1, ...,xm ∈ A}

=
∨
{(µm(−→x ))∧

(
m∧

i=1

Θ(xi,bi)

)
: x1, ...,xm ∈ A}

≤
∨
{µ(p(−→a ,−→x ))∧Θ(p(−→a ,−→x ), p(−→a ,

−→
b )) :−→x ∈ Am}

≤
∨
{µ(y)∧Θ(y, p(−→a ,

−→
b )) : y ∈ A}

= µ/Θ(p(−→a ,
−→
b ))

Therefore µ/Θ is a fuzzy ideal of A.

Definition 7.2.2. [79] A class K of algebras is called an ideal determined if every ideal I is

the zero congruence class of a unique congruence relation denoted by Iδ . In this case the map

I 7→ Iδ defines an isomorphism between the lattice of ideals and congruences on A.

Theorem 7.2.3. A class K of algebras is an ideal determined if and only if every fuzzy ideal µ

is the zero fuzzy congruence class of a unique fuzzy congruence relation denoted by Θµ .

Proof. Suppose that K is an ideal determined variety. Let µ be any fuzzy ideal of A. Then µα

is an ideal of A for all α ∈ L; that is, for each α ∈ L, there is a unique congruence relation on

A denoted by (µα)
δ for which µα is its zero congruence class. Now define a fuzzy relation Θµ

on A as follows:

Θ
µ(x,y) =

∨
{α ∈ L : (x,y) ∈ (µα)

δ}



7.2. Ideal Determined Varieties 163

for all x,y ∈ A. We first show that Θµ is a fuzzy congruence relation on A. Clearly it is reflexive

and symmetric. To show that Θµ is transitive consider:

Θ
µ(x,y)∧Θ

µ(y,z) =
∨
{α ∈ L : (x,y) ∈ (µα)

δ}∧
∨
{β ∈ L : (y,z) ∈ (µβ )

δ}

=
∨
{α ∧β : (x,y) ∈ (µα)

δ ,(y,z) ∈ (µβ )
δ}

If we put γ = α∧β , then we get µα ⊆ µγ and µβ ⊆ µγ . It follows from the fact I ⊆ J⇒ Iδ ⊆ Jδ

that (µα)
δ ⊆ (µα)

δ . Thus,

Θ
µ(x,y)∧Θ

µ(y,z) =
∨
{α ∧β : (x,y) ∈ (µα)

δ ,(y,z) ∈ (µβ )
δ}

≤
∨
{γ : (x,y),(y,z) ∈ (µγ)

δ}

≤
∨
{γ : (x,z) ∈ (µγ)

δ}

= Θ
µ(x,z)

Therefore it is transitive and hence it is a fuzzy equivalence relation. Let x1, ...,xn,y1, ...,yn ∈ A

and f be an n−ary operation. Then

∧
{Θµ(xi,yi) : 1≤ i≤ n} =

∧
{
∨
{αi ∈ L : (xi,yi) ∈ (µαi)

δ} : 1≤ i≤ n}

=
∨
{
∧
{αi ∈ L : 1≤ i≤ n} : (xi,yi) ∈ (µαi)

δ}

If we put γ = In f{αi ∈ L : 1≤ i≤ n}, then we get µαi ⊆ µγ for all i = 1,2, ...,n which implies

that (µαi)
δ ⊆ (µα)

δ for all i = 1,2, ...,n. Thus,

∧
{Θµ(xi,yi) : 1≤ i≤ n} =

∨
{
∧
{αi ∈ L : 1≤ i≤ n} : (xi,yi) ∈ (µαi)

δ}

≤
∨
{γ ∈ L : (xi,yi) ∈ (µγ)

δ ,∀ i = 1,2, ...,n}

≤
∨
{γ ∈ L : ( f (x1, ...,xn), f (y1, ...,yn)) ∈ (µγ)

δ}

= Θ
µ( f (x1, ...,xn), f (y1, ...,yn))
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Therefore Θµ is a fuzzy congruence relation on A. Now, we show that the kernel of Θµ is

precisely µ; for,

0/Θ
µ(x) = Θ

µ(x,0)

=
∨
{α ∈ L : (x,0) ∈ (µα)

δ}

=
∨
{α ∈ L : (µα)

δ [x] = (µα)
δ [0]}

=
∨
{α ∈ L : (µα)

δ [x] = µα}

=
∨
{α ∈ L : x ∈ µα}

= µ(x)

To prove the uniqueness of such a fuzzy congruence, let us take any fuzzy congruence Φ on A

for which 0/Φ = µ . Then Φα [0] = µα for all α ∈ L; that is, µα is kernel of the congruence

relation Φα . By the uniqueness of the congruence (µα)
δ we get Φα = (µα)

δ for all α ∈ L and

hence Φ = Θµ . Therefore Θµ is the unique fuzzy congruence on A for which 0/Θµ = µ . In

this case, the map µ 7→ Θµ defines an order isomorphism between the lattice of fuzzy ideals

and the lattice of fuzzy congruence relations on A. We see from Corollary 2.3.4 that every ideal

of A can be identified as a fuzzy ideal by its characteristic mapping. This proofs the converse

part.

Lemma 7.2.4. If K is ideal determined and A ∈K , then

µ/Θ = µ ∨0/Θ

Proof. Let us first see that µ/Θ contains both µ and 0/Θ. For each x ∈ A, consider

µ/Θ(x) =
∨
{µ(y)∧Θ(y,x) : y ∈ A}

≥ µ(y)∧Θ(y,x) for all y ∈ A

In particular for y = x; that is, µ/Θ(x)≥ µ(x). So that µ ≤ µ/Θ. Also, if we take y = 0 we get
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µ/Θ(x)≥Θ(0,x) = 0/Θ(x) and hence 0/Θ≤ µ/Θ. Thus µ ∨0/Θ≤ µ/Θ. To prove the other

inequality, let us put λ = µ ∪0/Θ. Then λ is a fuzzy subset of A such that 〈λ 〉= µ ∨0/Θ. For

each x ∈ A, it follows from Theorem 2.3.8 that

〈λ 〉(x) =
∨
{λ m(

−→
b ) :
−→
b ∈ Am, t(−→a ,

−→
b ) = x where

−→a ∈ An, t(−→x ,−→y ) is an ideal term in −→y }

Since µ,µ/Θ and Θ0 are all fuzzy ideals we have

µ/Θ(0) = 1 = (µ ∨0/Θ)(0)

For each 0 6= x ∈ A, let us define two sets Hx and Gx as follows:

Hx = {λ m(
−→
b ) :
−→
b ∈ Am,P(−→a ,

−→
b ) = x

where −→a ∈ An,P(−→x ,−→y ) is an ideal term in −→y }

Gx = {µ(y)∧Θ(y,x) : y ∈ A}

Clearly both Hx and Gx are subsets of L. Our claim is to see that: ∨Hx ≤ ∨Gx. Let α ∈ Hx.

Then α = λ m(
−→
b ), for some

−→
b ∈ Am, such that t(−→a ,

−→
b ) = x for some −→a ∈ An where t(−→x ,−→y )

is an ideal term in −→y . That is, b1, ...bm ∈ λα = µα ∪ (Θ0)α . Without loss of generality we can

assume that b1, ...bk ∈ µα and bk+1, ...bm ∈ (0/Θ)α . So we have

µ(b1)∧ ...∧µ(bk)≥ α and Θ(bk+1,0)∧ ...∧Θ(bm,0)≥ α

Let us put y = t(−→a ,b1, ...bk,0,0, ...,0). Then

µ(y)≥ µ(b1)∧ ...∧µ(bk)≥ α and Θ(x,y)≥Θ(bk+1,0)∧ ...∧Θ(bm,0)≥ α



166 Chapter 7. L−Fuzzy Ideals and L−Fuzzy Congruences

If we put β = µ(y)∧Θ(x,y), then β ∈ Gx such that α ≤ β . This confirms that ∨Hx ≤ ∨Gx for

all x ∈ A. Therefore µ/Θ = µ ∨Θ0.

If K is an ideal determined class of algebras, then the supremum of two fuzzy ideals is easy

to describe. This could be done in the following way. If µ and ν are fuzzy ideals of A ∈K and

Θν is the unique fuzzy congruence on A for which ν = (Θν)0, then Lemma 7.2.4 confirms that

Θν [µ] is the supremum of µ and ν .

It is proved by the use of Mal’cev condition in [79] that a class K of algebras is an ideal

determined if and only if for some positive integer m, there are binary terms d1,d2, ...,dm,dm+1

such that:

d1(y,z) = d2(y,z) =, ...,= dm(y,z) = 0⇒ y = z and

dm+1(y,y) = 0, dm+1(0,y) = y

In this case for an ideal I the congruence Iδ is characterized as follows:

Iδ = {(a,b) ∈ A×A : di(a,b) ∈ I, for all 1≤ i≤ m}

Similarly for a fuzzy ideal µ of A we characterize the unique fuzzy congruence Θµ of A as

follows:

Θ
µ(a,b) =

m∧
i=1

µ(di(a,b))

7.3 Quotient Algebra Induced by Fuzzy Ideals

The various constructions of quotient groups and quotient rings by fuzzy subgroups and fuzzy

ideals respectively was done by different scholars (see [2, 105, 101, 114, 115, 127, 163]).

More generally, quotient algebras of a given type induced by fuzzy congruences were studied

in [139] and [134]. In this section, we study quotient algebras induced by fuzzy ideals in ideal

determined varieties. We begin by defining quotient algebras induced by fuzzy congruence
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relations. Given a fuzzy congruence relation Θ on A and x ∈ A, consider the fuzzy congruence

class Θx of A determined by Θ and x.

Lemma 7.3.1. Let Θ be a fuzzy congruence on A. For any x,y ∈ A, the following hold:

1. x/Θ = y/Θ if and only if Θ(x,y) = 1.

2. either x/Θ = y/Θ or there exists α ∈ L−{1} such that

x/Θ∩ y/Θ≤ α

Definition 7.3.2. Let us define a set A/Θ by:

A/Θ = {x/Θ : x ∈ A}

Then A/Θ can be made into an algebra of the same type as A in the following way: If f ∈ F

is nullary, then

f A/Θ = f A/Θ

If f ∈ F is n−ary, n > 0 and a1, ...,an ∈ A, then

f A/Θ(a1/Θ, ...,an/Θ) = f A(a1, ...,an)/Θ

Theorem 7.3.3. Let Θ be a fuzzy congruence on A. If Θ∗ denotes the level relation:

Θ∗ = {(x,y) ∈ A×A : Θ(x,y) = 1}

Then it is clear that Θ∗ is a congruence relation (crisp) on A. Moreover,

A/Θ∼= A/Θ∗
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Proof. Define h : A/Θ→ A/Θ∗ by

h(x/Θ) = Θ∗[x]

for all x ∈ A. We first show that h is well defined. Let x,y ∈ A such that x/Θ = y/Θ. Then by

(1) of Lemma 7.3.1, Θ(x,y) = 1, which gives (x,y) ∈Θ∗; i.e., Θ∗[x] = Θ∗[y] and hence h is well

defined. To show that h is a homomorphism, let f ∈ F be n−ary, n > 0 and a1, ...,an ∈ A. Then

consider:

h( f A/Θ(a1/Θ, ...,an/Θ)) = h( f A(a1, ...,an)/Θ)

= Θ∗[ f A(a1, ...,an)]

= f A/Θ∗(Θ∗[a1], ...,Θ∗[an])

= f A/Θ∗(h(a1/Θ), ...,h(an/Θ))

Thus h is a homomorphism. It is also clear that h is surjective. It remains to show that h is

injective. Let x,y ∈ A such that Θ∗[x] = Θ∗[y]. Then (x,y) ∈ Θ∗ which means Θ(x,y) = 1. By

Lemma 7.3.1, we get that x/Θ = y/Θ, i.e., h is injective and hence it is an isomorphism.

Lemma 7.3.4. Let Θ be a fuzzy congruence on A and A/Θ its quotient. For any x,y ∈ A, the

following hold in A/Θ:

1. 〈x/Θ〉= {z/Θ : z ∈ 〈x〉}

2. [x/Θ,y/Θ] = {z/Θ : z ∈ [x,y]}

Proof. 1. Let us define two sets G and H as follows

G = 〈x/Θ〉

H = {z/Θ : z ∈ 〈x〉}
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Our aim is to show that G = H. Let a/Θ ∈ G. Then there exist a1, ...,an ∈ A and an

(n+1)−ary ideal term t(−→x ,y) in y such that

a/Θ = tA/Θ(a1/Θ, ...,an/Θ,x/Θ)

= tA(a1, ...,a1,x)/Θ

If we put b = tA(a1, ...,an,x), then b ∈ 〈x〉 such that a/Θ = b/Θ. Thus Θa ∈ H and

hence G⊆ H. Conversely, let a/Θ ∈ H. Then a/Θ = b/Θ for some b ∈ 〈x〉. There exist

b1, ...,bn ∈ A and an (n+ 1)−ary ideal term t(−→x ,y) in y such that b = tA(b1, ...,bn,x).

Now consider the following:

a/Θ = b/Θ

= tA(b1, ...,bn,x)/Θ

= tA/Θ(b1/Θ, ...,bn/Θ,x/Θ)

Mean that a/Θ ∈ 〈x/Θ〉; i.e., H ⊆ G and hence the equality holds.

2. Let us define two sets G and H as follows

G = [x/Θ,y/Θ]

H = {z/Θ : z ∈ [x,y]}

Our aim is to show that G = H. Let a/Θ ∈ G. Then there exist a1, ...,an ∈ A and an

(n+1+1)−ary commutator term t(−→x ,y,z) in y,z such that

a/Θ = tA/Θ(a1/Θ, ...,an/Θ,x/Θ,y/Θ)

= ΘtA(a1,...,an,x,y)

If we put b = tA(a1, ...,an,x,y), then b ∈ [x,y] such that a/Θ = b/Θ. Thus a/Θ ∈ H and
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hence G ⊆ H. Conversely, let a/Θ ∈ H. Then a/Θ = b/Θ for some b ∈ [x,y]. There

exist b1, ...,bn ∈ A and an (n+ 1+ 1)−ary commutator term t(−→x ,y,z) in y,z such that

b = tA(b1, ...,bn,x,y). Now consider the following:

a/Θ = b/Θ

= tA(b1, ...,bn,x,y)/Θ

= tA/Θ(b1/Θ, ...,bn/Θ,x/Θ,y/Θ)

Mean that a/Θ ∈ [x/Θ,y/Θ]; i.e., H ⊆ G and hence the equality holds.

Let K be an ideal determined variety and A∈K . As observed in the previous section, each

fuzzy ideal µ of A is the zero fuzzy congruence class of the unique fuzzy congruence relation

on A denoted by Θµ .

Definition 7.3.5. Let K be an ideal determined variety and A ∈K . For a fuzzy ideal µ of

A, A/µ denotes the quotient algebra of A induced by the fuzzy congruence Θµ and call it the

quotient algebra of A induced by µ .

For a fuzzy ideal µ of A and each x ∈ A, we define µx to be the fuzzy congruence class of

Θµ determined by x. So that we have the following.

Lemma 7.3.6. Let µ be a fuzzy ideal of A ∈K and x,y ∈ A. If K is an ideal determined, then

the following hold:

1. µx = µy if and only if Θµ(x,y) = 1 if and only if µ(di(x,y)) = 1 for all i = 1,2, ...,m+1,

where di’s are those binary terms given in the previous section.

2. either µx = µy or there exists α ∈ L−{1} such that

µx∩µy ≤ α

Analogous to Theorem 7.3.3 we have the following theorem.
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Theorem 7.3.7. Let µ be a fuzzy ideal of A ∈K . If µ∗ denotes the level set:

µ∗ = {x ∈ A : µx = µ0}

Then it is clear that µ∗ is an ideal of A. Moreover,

A/µ ∼= A/µ∗

Proof. The proof follows from Theorem 7.3.3.

Our attention now turns to characterize fuzzy prime ideals using their quotient structure. Let

us first define an important concept.

Definition 7.3.8. [149] For any B ∈K , define

D(B) =
⋃

06=y∈A

((y) : (0))

where for each y ∈ A and I ∈ I(A),

(〈y〉 : I) = {x ∈ L : [x,y]⊆ I}

Theorem 7.3.9. If µ is a fuzzy prime ideal of A, then

D(A/µ) = (0)

Proof. Let µx ∈ D(A/µ). Then µx ∈ (〈µy〉 : 〈µ0〉) for some y ∈ A with µy 6= µ0, i.e., [µx,µy] =

〈µ0〉. By (2) of Lemma 7.3.4

{µz : z ∈ [x,y]}= {µ0}

which gives that µz = µ0 for all z ∈ [x,y], i.e.,

Θ
µ(z,0) = 1 for all z ∈ [x,y]



172 Chapter 7. L−Fuzzy Ideals and L−Fuzzy Congruences

which is equivalent to
m∧

i=1

µ(di(z,0)) = 1 for all z ∈ [x,y]

Since dm(z,0) = z, we get µ(z) = 1 for all z ∈ [x,y], i.e. [x,y] ⊆ µ∗. Since µ∗ is prime either

x ∈ µ∗ or y ∈ µ∗. So that either µ(x) = 1 or µ(y) = 1, which gives either µx = µ0 or µy =

µ0. Since µy = µ0 is impossible, we get µx = µ0 (the zero element in D(A/µ)). Therefore

D(A/µ) = (0).

Theorem 7.3.10. Suppose that µ is a fuzzy ideal of A such that Img(µ) = {1,α} where α is a

prime element in L. If D(A/µ) = (0), then µ is fuzzy prime.

Proof. By Theorem 3.2.3, it is enough to show that µ∗ = {x ∈ A : µ(x) = 1} is a prime ideal

of A. Clearly it is is a proper ideal. Let a,b ∈ A such that [a,b] ⊆ µ∗. Then µ(x) = 1 for all

x ∈ [a,b]. Then µ(x) = 1 for all x ∈ [a,b], i.e., µx = µ0 for all x ∈ [a,b]. By (2) of Lemma 7.3.4

[µa,µb] = {µx : x ∈ [a,b]} ⊆ 〈µ0〉

Then by our assumption either µa = µ0 or µb = µ0, which is equivalent to that either a ∈ µ∗ or

b ∈ µ∗. Thus µ∗ is prime and hence proved.
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Conclusion and further recomendations

The notion of fuzzy ideals of universal algebras is introduced as a common abstraction to most

of the existing theories of fuzzy ideals in different algebraic structures by applying the general

theory of algebraic fuzzy systems. In this setting, basic concepts that are connected to ideals

like the generator, the commutator, primeness, semi-primeness, the prime spectrum, maximal-

ity and the radical are extended to the class of fuzzy ideals in universal algebras. On the other

hand, fuzzy congruence relations and their classes in universal algebras are studied in the dis-

sertation. Several Mal’cev type characterizations are given for fuzzy congruence classes in

general algebraic structures. Special fuzzy congruence classes called fuzzy congruence kernels

are also studied in different algebraic structures. Furthermore, the structure of quotient algebras

induced by fuzzy ideals is studied in ideal determined varieties. In addition, the notion fuzzy

cosets in universal algebras is introduced as a generalization of fuzzy ideals ang fuzzy congru-

ence classes. This notion is applied to characterize those congruence permutable varieties.

It is under investigation by the author to extend the notion of relative annihilators, annihilator

ideals, α−ideals and deductive systems in universal algebras to the fuzzy setting.
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[69] W.A. Dudek, Y.B. Jun and Z. Stojaković, On fuzzy ideals in BCC-algebras, Fuzzy Sets

and Systems, 123 (2001) 251–258.

[70] T. K. Dutta and B. K. Biswas, On fuzzy congruence of a near-ring module, Fuzzy Sets and

Systems, 112 (2000) 343-348.

[71] T. K. Dutta and T. Chanda, Fuzzy Prime Ideals in Γ-rings, Bull. Malays. Math. Sci. Soc.,

30(1) (2007), 65-73.

[72] K. Fichtner, Varieties of universal algebras with ideals (Russian), Math. Sb., 75 (1968),

445-453.

[73] L. Filep and G. I. Maurer, Fuzzy congruences and compatible fuzzy partitions, Fuzzy Sets

and Fuzzy Systems 29 (1989) 357-361.



BIBLIOGRAPHY 181

[74] R. Freese and R. McKenzie, Commutator Theory for Congruence Modular Varieties, Lon-

don Mathematical Society Lecture Note Series 125, Cambridge Univ. Press, 1987.

[75] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145-174.

[76] G. Grätzer, Two Mal’cev-type theorems in universal algebra, J. Comb. Th. 8 (1970), 334-

342.

[77] G. Grätzer, General Lattice Theory, Birkhäuser, Basel 1978.
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[150] A. Ursini, Sulle varietà di algebre con una buona teoria degli ideali, Boll. Un. Mat. Ital.,

6 (1972), 90-95.

[151] A. Ursini, On subtractive varieties I, Algebra Universalis, 31 (1994), 204-222.

[152] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets and Systems

17 (1985) 313–328.

[153] L. -X. Wang, A first course in fuzzy systems and control, Prentice-Hall International, Inc.,

1997

[154] H. Werner, A Mal’cev condition on admissible relations, Algebra Univ. 3(1973), 263.

[155] R. Wille, Kongruenzklassengeometrien, Springer Lect. Notes Math. 113, Berlin 1970.

[156] C. K. Wong, Fuzzy point and local properties of fuzzy topology, J. Math. Anal. Appl., 46

(l974) 316-328.

[157] X.Y. Xie, Fuzzy Rees congruences on semigroups, Fuzzy Sets and Systems 102 (1999)

353-359.

[158] L. A. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965), 338-353.

[159] L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. and Control 3 (1971) 177-

200, 338-353.

[160] M. M. Zahedi, A note on L-fuzzy primary and semiprime ideals, Fuzzy Sets and Systems

51 (1991) 243-247.

[161] M. M. Zahedi, Some results on L-fuzzy modules, Fuzzy Sets and Systems, 55 (1993),

355-361.



188 BIBLIOGRAPHY

[162] M. M. Zahedi, On L-fuzzy primary submodules, Fuzzy Sets and Systems 49 (1992), 231-

236.

[163] X. Zhou, D. Xiang, J. Zhan Quotient rings via fuzzy congruence relations, Italian Journal

of Pure and Applied Mathematics 33(2014), 411-424.

[164] H.-J. Zimmermann, Fuzzy Set Theory-and Its Applications, Fourth Edition, Springer

Seience+Business Media, New York, 2001.


