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Abstract

In different literatures, we have found several generalizations of ideals and filters of a

lattice to an arbitrarily partially ordered set which has been studied by different scholars

. In this thesis we introduce several generalizations of L-fuzzy ideals and filters of a

lattice to an arbitrarily partially ordered set whose truth values are in a complete lattice

satisfying the infinite meet distributive law. These are: L-fuzzy closed ideal and filter of

a poset, L-fuzzy Frink ideal and filter of a poset, L-fuzzy ideal and filter of a poset in the

sense of Halaš, L-fuzzy semi ideals and filters of a poset, L-fuzzy V-ideals and V-filters of

a poset and m-L-fuzzy ideals and filters of a poset, where m is any cardinal number. All

the definitions of L-fuzzy ideals and filters of a poset that we introduce in this thesis are

generalizations of the notions of L-fuzzy ideals and filters of a lattice. We also study and

establish some characterizations of them and we prove that the set of all L-fuzzy ideals of

a poset forms a complete lattice with respect to point-wise ordering.

Next, by choosing the L-fuzzy ideals and filters of a poset in the sense of Halaš as

an L-fuzzy ideals of a poset, we introduce the notion of L-fuzzy prime ideals, prime L-

fuzzy ideals, maximal L-fuzzy ideals and L-fuzzy maximal ideals. We also study and give

sufficient conditions for the existence of L-fuzzy prime ideals and prime L-fuzzy ideals in

the lattice of all L-fuzzy ideals of a poset.

Lastly, we introduce the concept of L-fuzzy semi-prime ideals in a general poset.

Characterizations of L-fuzzy semi-prime ideals in posets as well as characterizations of

an L-fuzzy semi-prime ideal to be L-fuzzy prime ideal are obtained. Also, the relations

between the L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset and the

L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of the lattice of all ideals of a

poset are established. We also extend and prove an analogue of Stone’s Theorem for

finite posets, which has been studied by V. S. Kharat and K. A. Mokbel[35] using L-fuzzy

semi-prime ideals.
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1

Introduction

We have found several generalizations of ideals and filters of a lattice to an arbitrarily

partially ordered set in different literature. Closed or normal ideals of a poset was intro-

duced by Birkhoff [14]. Next, in 1954, the second type of ideals and filters of a poset

called Frink ideals and Frink filters was introduced by O. Frink [25]. Following this P.

V. Venkatanarasimhan developed the theory of semi-ideals and semi-filters in [51] and

ideals and filters for a poset in [52], in 1970. These ideals (respectively, filters) are called

ideals (respectively, filters) in the sense of Venkatanarasimhan or V-ideals (respectively,

V-filters) for short. Next, the concept of ideals of a poset were suggested by Erné [23]

in 1979. They are called m-ideals. These ideals generalize almost all ideals of a poset

suggested by different authors. Latter, Halaś [28], in 1994, introduced a new type of ideal

and filter of a poset which seems to be a suitable generalization of the usual concept of

ideal and filter in a lattice. We will simply call an ideal (respectively, a filter) in the sense

of Halaš.

On the other hand, in 1965, L.Zadeh, in his pioneering paper [54], introduced the

concept of a fuzzy subset of a non-empty set X as a function from X into the unit interval

[0,1] to describe, study and formulate mathematically those objects which are not well

defined. The theory of fuzzy sets, introduced by L.Zadeh, has evoked tremendous interest

among researchers working in different area of fields. It was a new episode towards the

development of science and engineering.

In 1971, A. Rosenfeld [43] applied the concept of fuzzy subset of a non-empty set to

study the concept of fuzzy subgroup of a given group. The introduction of the concept of a

fuzzy subgroup of a group by Rosenfeld initiated several algebraist to take up the study of
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fuzzy sub-algebras of several algebraic structures such as groups, rings, modules, vector-

spaces, lattices,etc. More recently, in posets, Universal Algebras, Ms-Algebras, Pseudo-

complemented semi-lattice, etc. His paper inspired the development of fuzzy abstract

algebra. See ([17], [20], [21, 40] ,[1], [11], [16],[18], [33], [55] [10, 41, 46, 12, 53],[7, 8,

9], [2, 3, 4], [5, 6],[12].)

In 1967, as suggested by Gougen [26], the unit interval [0,1] is not suffcient to take

the truth values of general fuzzy statements. K. L. N. Swamy and U. M. Swamy [47] ini-

tiated that complete lattices satisfying the infinite meet distributivity are the most suitable

candidates to have the truth values of general fuzzy statements.

Initiated by the above ideas and concepts, in this thesis, we introduce several gen-

eralizations of L-fuzzy ideals and filters of a lattice to an arbitrary partially ordered set

whose truth values are in a complete lattice satisfying the infinite meet distributive law. In

addition, by choosing one of the generalization of L-fuzzy ideals and filters of a lattice to

an arbitrary partially ordered set, we introduce the notion of L-fuzzy prime ideals, prime

L-fuzzy ideals, maximal L-fuzzy ideals and L-fuzzy maximal ideals. We also study and

give sufficient conditions for the existence of L-fuzzy prime ideals and prime L-fuzzy ide-

als in the lattice of all L-fuzzy ideals of a poset. The notions of L-fuzzy semi-prime ideals

in a general poset is introduced and characterized.

Throughout this work L means a non-trivial complete lattice satisfying the infinite

meet distributive law: x∧ supS = sup{x∧ s : s ∈ S} for all x ∈ L and for any subset S of L

and by an L-fuzzy subset of a non-empty set X we mean a mapping from X into L.

The thesis is broadly divided into five chapters 1, 2, 3, 4 and 5. Chapter 1 is devoted to

collect all the necessary preliminaries and results which will be useful in our discussions

of the main text of the thesis. This chapter consists of three sections. Section 1.1 contains

definitions and results related to partially ordered sets. In section 1.2, we collect defini-

tions and some preliminary results related to type of ideals and filters studied by different

scholars. Section 1.3 is devoted to study L-fuzzy subsets of an arbitrary non-empty set

and we also recall the definition of L-fuzzy ideals and filters of a lattice from literature.
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The main text of this thesis is in chapters 2, 3, 4 and 5. Chapter 2 is on L-fuzzy

ideals of a poset. In this chapter we introduce several generalizations of L-fuzzy ideals

of a lattice to an arbitrary poset whose truth values are in a complete lattice satisfying

the infinite meet distributive law and give several characterizations of them. We also

prove that the set of all L-fuzzy ideals of a poset forms a complete lattice with respect

to point-wise ordering. This chapter consists of four sections. Section 2.1 is on L-fuzzy

closed ideal of a poset which is the fuzzy version of the closed or normal ideal of a poset

introduced by Birkoff[14]. Section 2.2 is devoted on L-fuzzy Frink ideal of a poset which

is the fuzzy version of the Frink ideal of a poset introduced by O. Frink[25]. Section 2.3 is

on L-fuzzy ideal of a poset which is the fuzzy version ideals of a poset introduced by Halaš

[28] which seems to be a suitable generalization of the usual concept of L-fuzzy ideal of

a lattice. Section 2.4 is devoted on L-fuzzy semi ideals and V-ideals of a poset which is

the fuzzy version of semi-ideals and V-ideals of a poset introduced by Venkatanarasimhan

[51, 52]. Finally, we complete this chapter by introducing m-L-fuzzy ideal which is the

fuzzy version of ideals of a poset introduced by Erné [23]. This L-fuzzy ideal generalizes

almost all the L-fuzzy ideals of a poset introduced in this chapter.

Chapter 3 is focused on the concept of L-fuzzy filters of a poset. It consists of four

sections. In this chapter, we introduce the notion of different types of L- fuzzy filters of

a poset and discuss certain properties of them analogous to those of L- fuzzy ideals of a

poset introduced in Chapter 2.

Chapter 4 is on L-fuzzy prime and maximal L-fuzzy ideals of a poset Q and is subdi-

vided into five sections. In section 4.1, we recall some definitions and crisp concepts of

prime and maximal ideals of a poset from literature that will be extended to the notions

of prime and maximal L-fuzzy ideals of a poset in the further sections of this chapter. In

section 4.3, we introduce the notion of L-fuzzy prime ideals of a poset Q which can be

characterized as the L-fuzzy subsets of a poset Q for which each α-level subset is either

the whole Q or a prime ideal of Q. In section 4.3, we introduce the notion of a prime

L-fuzzy ideal of a poset Q as simply a prime element in the lattice of L-fuzzy ideals of a
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poset Q. Prime L-fuzzy ideal of a poset Q is more stronger than L-fuzzy prime ideal of a

poset Q. In section 4.4, we discuss maximal L-fuzzy ideals of a poset Q with zero which

are precisely a dual atom in the lattice of L-fuzzy ideals of a poset Q. In section 4.5, we

define the notion of L-fuzzy maximal ideals of a poset Q as a proper L-fuzzy ideal, for

which each level subset µα at α ∈ L is either the whole poset Q or a maximal ideal Q.

Chapter 5 is on L-fuzzy semi-prime ideal. It consists of four sections. In section 5.1,

we recall some definitions and crisp concepts of semi-prime ideals of a poset and a lattice

from literature that will be extended to the notions of L-fuzzy semi-prime ideals of a poset

in the further sections of this chapter. In section 5.2, we introduce the concept of an L-

fuzzy semi-prime ideal in a general poset. Characterizations of L-fuzzy semi-prime ideals

in posets as well as characterizations of a L-fuzzy semi-prime ideal to be L-fuzzy prime

ideal are obtained. Also, L-fuzzy prime ideals in a poset are characterized. In section

5.3, we prove the set of all L-fuzzy semi-prime ideals in a poset forms a compete lattice.

The relations between L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset

and L-fuzzy semi-prime (respectively,L-fuzzy prime) ideals of the lattice of all ideals of

a poset are established. In section 5.4, we extend and prove Rav’s Prime Separation

Theorem for a lattice, using L-fuzzy semi-prime ideals. Lastly, we also extend and prove

an analogue of Stone’s Theorem for finite posets, which has been studied by V. S. Kharat

and K. A. Mokbel[35] using L-fuzzy semi-prime ideals. Some counterexamples are also

given.



5

Chapter 1

Preliminaries

In this chapter we collect the necessary preliminaries which will be useful in our discus-

sions of the main text of the thesis. Even though these preliminaries are well known for

those working in lattice theory and fuzzy set theory, it will be convenient for others to

have all these elementary notions and results in the beginning of the thesis for the sake

of ready reference. The proofs of most of the results presented in this chapter are either

straight forward verifications or well known and hence we simply state the results without

proofs.

1.1 Partially Ordered Sets

In this section we recall certain necessary concepts, terminologies and notations of par-

tially ordered sets that will be useful in this thesis. For undefined notations and terminolo-

gies for this section, the reader is referred to Birkhoff [1961][14], Davey and Priestley

[1990][19] and Grätzer[1998][27].

We begin with the definition of a partial order.

Definition 1.1.1. Let Q be a non-empty set. A binary relation ” ≤ ” on Q is called a

partial order if for all x,y,z ∈ Q, the following conditions are satisfied.

1. x≤ x (reflexive);

2. x≤ y and y≤ x imply x = y (antisymmetric);
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3. x≤ y and y≤ x imply x≤ z (transitive).

Definition 1.1.2. A non-empty set Q together with the partial order ” ≤ ” on Q, denoted

by (Q,≤), is called a partially ordered set or a poset.

Let (Q,≤) be a poset and x,y ∈ Q. Then x and y are said to be comparable if x≤ y or

y≤ x. Otherwise they are called incomparable or parallel and we write x ‖ y. If x≤ y and

x 6= y, then we write x < y.

Definition 1.1.3. A poset (Q,≤) is said to be a chain or totally ordered set if any two

elements of Q are comparable. A partially ordered set (Q,≤) is called an antichain if

every two distinct elements of Q are incomparable.

Definition 1.1.4. Let (Q,≤) be a poset. Define a binary relation ”≥ ” on Q by:

x≥ y if and only if y≤ x for all x,y ∈ Q.

Then ” ≥ ” is a partial order on Q and it is called the dual order of "≤" and the poset

(Q,≥) is the dual of the poset (Q,≤).

If Φ is a statement about posets and if, in Φ, we replace all occurrences of ≤ by ≥,

we get the dual of Φ.

Now we state a principle that halves the labor of proving some results.

Duality Principle: " If a statement Φ is true in all posets, then its dual is also true in

all posets."

When confusion is unlikely, we use simply the symbol Q to denote a poset (Q,≤).

Definition 1.1.5. Let Q be a poset. Then an element m ∈ Q is called a maximal element

in Q if there is no x ∈ Q such that m < x. Dually, an element m ∈ Q is called a minimal

element, if there is no x ∈ Q such that x < m.

Definition 1.1.6. A poset Q is said to have a largest or a greatest element if there exists

x0 ∈Q such that x≤ x0 for all x ∈Q. Dually, a poset Q is said to have a smallest or least

element if there exists x0 ∈ Q such that x0 ≤ x for all x ∈ Q.
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If the greatest element exists in a poset Q, then it is unique and is denoted by 1. If the

smallest element exists in Q, then it is unique and is denoted by 0.

Definition 1.1.7. A poset Q is said to be bounded if it has 0 and 1.

Definition 1.1.8. A poset Q is said to satisfy the Ascending Chain Condition (ACC), if

every non-empty subset of Q has a maximal element. Dually, we have the concept of

Descending Chain Condition (DCC).

The following is an important axiom of set theory, though its popular name is Zorn’s

lemma. It is used to prove some other equivalent axioms of set theory.

Lemma 1.1.1. (Zorn’s lemma) Let (Q,≤) be a poset in which each chain has an upper

bound in Q. Then, (Q,≤) has a maximal element. Dually, if (Q,≤) is a poset in which

every chain has a lower bound in Q, then Q has a minimal element.

Definition 1.1.9. Let Q be a poset and A⊆ Q. Then an element x ∈ Q is called an upper

bound of A if a≤ x for all a ∈ A. The set

Au = {x ∈ Q : a≤ x ∀ a ∈ A}

of all upper bounds of A is called the upper cone of A.

Dually, an element x ∈ Q is called a lower bound of A if x≤ a for all a ∈ A. The set

Al = {x ∈ Q : x≤ a ∀ a ∈ A}

of all lower bounds of A is called the lower cone of A.

Definition 1.1.10. Let Q be a poset and A⊆Q. Then an element x0 ∈Q is called the least

upper bound of A, denoted by supA or
∨

A, if

x0 ∈ Au and x0 ≤ x for all x ∈ Au.

Dually, an element x0 ∈ Q is called the greatest lower bound of A, denoted by infA or∧
A, if
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x0 ∈ Al and x≤ x0 for all x ∈ Al.

For x,y ∈ Q, we write x∨ y (read as x join y) in place of sup{x,y} if it exists and x∧ y

(read as x meet y) in place of inf{x,y} if it exists.

Let Q be a poset and A,B be subsets of Q and a,b ∈ Q. Then by Aul shall mean {Au}l

and Alu shall mean {Al}u. The the upper cone {a}u is simply denoted by au and the upper

cone {a,b}u is denoted by (a,b)u. Further the set {A∪B}u is denoted by {A,B}u and the

set {A∪{a}}u is denoted by {A,a}u. Similar notations are used for lower cones.

Lemma 1.1.2. Let Q be a poset and A,B be subsets of Q and a ∈ Q. Then

1. A⊆ Aul and A⊆ Alu;

2. If A⊆ B, then Au ⊇ Bu and Al ⊇ Bl;

3. Aulu = Au and Alul = Al;

4. {au}l = al and {al}u = au.

Lemma 1.1.3. Let Q be a poset and A be a subset of Q. Then

1. if supA exists, then Aul = {supA}l and if infA exists, then Alu = {infA}u;

2. if A = /0, we have Aul = ( /0u)l = Ql which is either empty or consists of the least

element 0 of Q alone, if it exists;

3. if A = /0, we have Alu = ( /0l)u = Qu which is either empty or consists of the largest

element 1 of Q alone, if it exists.

4. for any family {Ai : i ∈ ∆} of subsets of Q,

⋃
i∈∆

Aul
i ⊆ (

⋃
i∈∆

Ai)
ul) and

⋃
i∈∆

Alu
i ⊆ (

⋃
i∈∆

Ai)
lu.

Definition 1.1.11. A poset Q is called a join-semi-lattice, if x∨ y exists for all x,y ∈ Q.

Dually a poset Q is called a meet-semi-lattice, if x∧ y exists for all x,y ∈ Q.
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A poset Q is called a lattice if it is both join-semi-lattice and meet-semi-lattice.

Definition 1.1.12. A poset Q is called a complete lattice if supS and infS exist for any

subset S of Q. That is, if Q is closed under arbitrary supremum and infimum.

Definition 1.1.13. [37] A poset Q is called distributive if for all a,b,c ∈ Q,

{(a,b)u,c}l = {(a,c)l,(b,c)l}ul .

Definition 1.1.14. An element p of a poset Q is called distributive if for all x,y ∈ Q,

{(x,y)l, p}ul = {(p,x)u,(p,y)u}l.

Dually, we have the concepts of dually distributive element of a poset Q.

Definition 1.1.15. [19] Let Q be a poset with 0. An element p in Q is called an atom if

there is no x ∈ Q such that 0 < x < p. That is, for any x ∈ Q, 0 ≤ x ≤ p implies either

x = 0 or x = p. Dually we have the concept of a dual atom.

Definition 1.1.16. [19] A poset Q with 0 is called atomic poset if every non-zero element

of Q contains or dominates an atom. That is, for every 0 6= x ∈ Q, there exists an atom

p ∈ Q such that p≤ x. Dually we have the concept of dually atomic poset.

1.2 Ideals and Filters

In this section, we recall definitions of ideals and filters of a poset which are introduced

by different scholars. The definitions of ideals and filters of a poset that we consider in

this section are generalizations of the notions of ideals and filters of a lattice.

Definition 1.2.1. (i) [14] A subset I of a poset Q is called a closed or a normal ideal of

Q, if Iul ⊆ I (or equivalently, Iul = I, as I ⊆ Iul).

Dually, a subset F of a poset Q is called a closed or normal filter of Q, if F lu ⊆ F (or

equivalently, F lu = F, as F ⊆ F lu).
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(ii)[25] A subset I of a poset Q is called a Frink ideal in Q if Aul ⊆ I, whenever A is a

finite subset of I.

Dually, a subset F of a poset Q is called a Frink filter in Q if Alu ⊆ F, whenever A is

a finite subset of F.

(iii) [52] A non-empty subset I of a poset Q is called a semi-ideal or an order ideal of

Q, if a≤ b and b ∈ I implies a ∈ I.

Dually, a non-empty subset F of a poset Q is called a semi-filter or an order filter of

Q, if a≤ b and a ∈ F implies b ∈ F.

(iv) [51] A subset I of a poset Q is called a V-ideal or an ideal in the sense of Venkatan-

narasimhan, if I is a semi-ideal and for any non-empty finite subset A of I , if supA exists,

then supA ∈ I.

Dually, a subset F of a poset Q is called a V-filter or a filter in the sense of Venkatan-

narasimhan, if F is a semi-filter and for any non-empty finite subset A of F , if infA exists,

then infA ∈ F.

(v) [28] A subset I of a poset Q is called an ideal in Q in the sense of Halaš, if

(a,b)ul ⊆ I whenever a,b ∈ I.

Dually, a subset F of a poset Q is called a filter in Q in the sense of Halaš, if (a,b)lu ⊆

F, whenever a,b ∈ F.

(vi) [27] If Q is a lattice, then a non-empty subset I of Q is an ideal in Q if I is an

order-ideal and x∨ y ∈ I whenever x,y ∈ I.

Dually If Q is a lattice, then a non-empty subset F of Q is a filter in Q if F is an

order-filter and x∧ y ∈ F whenever x,y ∈ F.

The following definitions of ideal and filter of a poset was sugested by M. Ernè in

1979 [23].

Definition 1.2.2. Let Q be a poset and m denote any cardinal number. Then a subset I of

a poset Q is called an m-ideal in Q, if for any subset A of I of cardinality strictly less than

m, written as A⊂m I, we have Aul ⊆ I.
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Dually a subset F of a poset Q is called an m-filter in Q, if for any subset A of F of

cardinality strictly less than m, written as A⊂m F, we have Alu ⊆ F.

All the ideals and filters of a poset, suggested by different authors, can be deduced

from m-ideals and filters of a poset as given in the following remark.

Remark 1.2.1 ([24]). The following special cases are included in this general definition:

1. 2-ideals are semi-ideals containing Ql . Dually 2-filters are semi-filters containing

Qu.

2. 3-ideals are ideals in the sense of Halaś containing Ql . Dually 3-filters are filters

in the sense of Halaś containing Qu.

3. ω-ideals are Frink ideals containing Ql where ω is the least infinite cardinal num-

ber. Dually ω-filters are Frink filters containing Qu.

Note that the symbol ω for which A⊂ω I means that A is a finite subset of I.

4. Ω-ideals are closed ideals containing Ql , where the symbol Ω for which A ⊂Ω I

shall mean that A is merely a subset of I. That is, if I has cardinality κ then Ω

may be interpreted as a cardinal strictly greater than κ . Dually Ω-filters are closed

filters containing Qu..

5. V-ideals are 2-ideals which are closed under non-empty finite supremum if it exists

and containing Ql . Dually V-filters are 2-filters which are closed under non-empty

finite infimum if it exists and containing Qu.

Definition 1.2.3. Let A be any subset of a poset Q. Then the smallest ideal containing

A is called an ideal generated by A and is denoted by (A]. Dually, the smallest filter

containing A is called a filter generated by A and is denoted by [A). The ideal generated

by a singleton set A = {a} is called principal ideal and is denoted by (a]. Dually, the filter

generated by a singleton set A = {a} is called principal filter and is denoted by [a).
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Note that for any subset A of Q if supA exists then Aul = (supA] and dually, if infA

exists then Alu = [infA).

The followings are some characterizations of ideals generated by a subset A of a poset

Q. We write F ⊂⊂ A to mean F is a finite subset of A.

1. (A]Cl =
⋃
{Bul : B⊆ A} is the closed ideal or normal ideal generated by A where the

union is taken overall subsets B of A. Dually, [A)Cl =
⋃
{Blu : B⊆ A} is a closed or

normal filter generated by A.

2. (A]Fr =
⋃
{Ful : F ⊂⊂ A} is the Frink ideal generated by A, where the union is

taken overall finite subsets F of A. Dually, [A)Fr =
⋃
{F lu : F ⊂⊂ A} is the Frink

filter generated by A. [22]

3. Define sets C1 =
⋃
{(a,b)ul : a,b ∈ A} and Cn =

⋃
{(a,b)ul : a,b ∈Cn−1} for each

positive integer n≥ 2, inductively. Then (A]Ha =
⋃
{Cn : n ∈ N} is the ideal gener-

ated by A in the sense of Halaś, whereN denotes the set of positive integers. Dually,

define sets B1 =
⋃
{(a,b)lu : a,b ∈ A} and Bn =

⋃
{(a,b)lu : a,b ∈ Bn−1} for each

positive integer n≥ 2, inductively. Then [A)Ha =
⋃
{Bn : n ∈ N} is the filter gener-

ated by A in the sense of Halaś, where N denotes the set of positive integers.[29]

4. (A]Se =
⋃
{al : a ∈ A} is the semi- ideal generated by A, where the union is taken

overall elements a of A. Dually, [A)Se =
⋃
{au : a ∈ A} is the semi- filter generated

by A.

5. Define sets C1 = {x ∈Q : x≤
∨

F, /0 6= F ⊂⊂ A and
∨

F exists } and Cn = {x ∈Q :

x ≤
∨

F, /0 6= F ⊂⊂ Cn−1 and
∨

F exists } for each positive integer n ≥ 2, induc-

tively. Then (A]V =
⋃
{Cn : n ∈ N} is the V-ideal generated by A, where N denotes

the set of positive integers. Dually, define sets B1 = {x ∈ Q :
∧

F ≤ x, /0 6= F ⊂⊂

A and
∧

F exists } and Bn = {x ∈Q :
∧

F ≤ x, /0 6= F ⊂⊂ Bn−1 and
∧

F exists } for
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each positive integer n≥ 2, inductively. Then [A)V =
⋃
{Bn : n ∈ N} is the V-filter

generated by A , where N denotes the set of positive integers. [44]

Note that if the formula defining a set involves joins (respectively, meets) , it is

understood that the formula holds for all existing joins (respectively, meets), so

that the running variables take all the values for which the corresponding joins

(respectively, meets) exist.

6. If a ∈ Q, then (a] = {x ∈ Q : x ≤ a} = al is the principal ideal generated by a.

Dually, [a) = {x ∈ Q : a≤ x}= au is the principal filter generated by a.

7. If Q is a lattice, then (A] = {x ∈ Q : x ≤ supF, F ⊂⊂ A} is the ideal generated by

A in the lattice Q. Dually, [A) = {x ∈ Q : infF ≤ x, F ⊂⊂ A} is the filter generated

by A in the lattice Q. [27]

Throughout this thesis, an ideal (respectively, a filter) will mean a 3-ideal, i.e., an ideal

in the sense of Halaš (respectively, a 3-filter, i.e., a filter in the sense of Halaš ) unless

otherwise stated.

Remark 1.2.2. The following remarks are due to Halaš and Rachunek [30].

1. if Q is a lattice then a non-empty subset I of Q is an ideal as a poset if and only if it

is an ideal as a lattice.

2. if a poset Q does not have the least element then the empty subset /0 is an ideal in Q

(since /0ul = ( /0u)l = Ql = /0⊆ /0).

Let I (Q) denote the set of all ideals of Q. It is known that (I (Q),⊆) forms a

complete lattice with respect to the inclusion order "⊆" with least element /0 if Q has no 0

or {0} if Q has 0 in which meets coincide with set intersection[30].

We call a poset Q an ideal-distributive if (I (Q),⊆) is a distributive lattice.

Lemma 1.2.1 ([29]). Let I (Q) be the set of all ideals of a poset Q. Then (I (Q),⊆)

is a lattice, where ⊆ is the usual set inclusion ordering. For any I,J in I (Q), the the

supremum I∨ J of I and J in I (Q) is:
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I∨ J = (I∪ J] =
⋃
{Cn : n ∈ N},

where C1 =
⋃
{(a,b)ul : a,b ∈ I∪J} and Cn =

⋃
{(a,b)ul : a,b ∈Cn−1}, for each positive

integer n≥ 2 and the infimum I∧ J of I and J in I (Q) is:

I∧ J = I∩ J.

Dually we have the following lemma.

Lemma 1.2.2. Let F (Q) be the set of all filters of a poset Q and F,G ∈F (Q). Then the

supremum F ∨G of F and G in F (Q) is:

F ∨G = [F ∪G) =
⋃
{Bn : n ∈ N},

where B1 =
⋃
{(a,b)lu : a,b∈ F∪G} and Bn =

⋃
{(a,b)lu : a,b∈ Bn−1}, for each positive

integer n≥ 2 and the infimum F ∧G of I and J in F (Q) is:

F ∧G = F ∩G.

Definition 1.2.4 ([28]). An ideal I of a poset Q is called a u-ideal, if:

(a,b)u∩ I 6= /0, for all a,b ∈ I.

Note that an easy induction shows I is a u-ideal, if Au∩ I 6= /0, for any finite subset A

of I.

Theorem 1.2.3 ([28]). Let I (Q) be the set of all ideals of Q and I and J be u-ideals of a

poset Q. Then the supremum I∨ J of I and J in I (Q) is:

I∨ J =
⋃
{(a,b)ul : a ∈ I,b ∈ J}.

It is known that every ideal in join-semi-lattice Q is a u- ideal. Therefore the following

corollary is an easy consequence of the above theorem.

Corollary 1.2.4. Let I and J be u- ideals of a join-semi-lattice Q. Then the supremum

I∨ J of I and J in I (Q) is given by:
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I∨ J = {x ∈ Q : x≤ a∨b for some a ∈ I and b ∈ J}

Dually we have the following

Definition 1.2.5. [28] A filter F of a poset Q is called an l-filter if:

(x,y)l ∩F 6= /0 for all x,y ∈ F.

Note that an easy induction shows that F is an l-filter if Bl∩F 6= /0 for every non-empty

finite subset B of F .

Theorem 1.2.5. [28] Let F (Q) be the set of filters of a poset Q and F and G be l-filters

of Q. Then the supremum F ∨G of F and G in F (Q) is:

F ∨G =
⋃
{(a,b)lu : a ∈ F,b ∈ G}.

It is known that every filter in a meet-semi-lattice Q is an l- filter. Therefore the

following corollary is an easy consequence of the above theorem.

Corollary 1.2.6. Let F and G be l- filters of a meet-semi-lattice Q. Then the supremum

F ∨G of F and G in F (Q) is given by:

F ∨G = {x ∈ Q : a∧b≤ x for some a ∈ F and b ∈ G}

1.3 L-Fuzzy Subsets

In this section we collect some basic concepts and properties of L-fuzzy subset from a

literature. The purpose of this section is to present basic results of L-fuzzy subsets of a

non-empty set that are needed in the remainder of the thesis.

L. A Zadeh, in his pioneering paper [54], introduced the notion of a fuzzy subset

of a non-empty set X as a function from X into the unit interval [0,1] to describe,study

and formulate mathematically those objects which are not well defined. Those objects

whose boundaries are not well defined are called " fuzzy objects" Fuzzy objects are often

encountered in real life. For example: " the class of cleaver students " in the set of
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students, " the class of beautiful girls " in the set of girls, " the class of real numbers

which are much greater than 1 " in the set of real numbers, and so on. All these do not

constitute sets in the usual mathematical sense. Instead we call them fuzzy sets.

Fuzzy statements usually take truth values in the interval [0,1] of real numbers, while

the ordinary (or conventional or crisp) statements take truth values in the two element set

{F,T} or {0,1}, where F or 0 stands for ‘false’ and T or 1 stands for ‘True’. However,

[0,1] is found to be insufficient to have the truth values of certain fuzzy statements.

It was Goguen[26] who first realized that the closed unit interval [0,1] of real numbers

is not sufficient to have the truth values of general fuzzy statements. For example, let us

consider the statement ‘Bahir Dar University is a good university in Ethiopia’. This is a

fuzzy statement, since ‘being good’ is fuzzy. The truth value of this statement may not

be a real number in [0,1]. Being good university may have several components; good in

teaching-learning process, good in research activity, good in community service, good in

educational facilities, good in laboratory facilities, etc. The truth value corresponding to

each component may be a real number in [0,1]. If n is the number of such components

under consideration, then the truth value of the statement ‘Bahir Dar University is a good

university’ is a n-tuple of real numbers in [0,1]; that is, it is an element in [0,1]n. If U is

the set of all universities in Ethiopia and G denotes the collection of good universities in

Ethiopia, then G is not a subset of U , but it is a fuzzy subset of U , since being good is

fuzzy. That is, G can be considered as a function of U into a prospective set like [0,1]n,

for some positive integer n.

It is well known that the interval [0,1] of real numbers is a chain under the usual

ordering of real numbers; while [0,1]n, when n > 1, is not a chain under the co-ordinate

wise ordering. However, [0,1]n satisfies certain rich lattice theoretic properties; it is a

complete lattice satisfying the infinite meet distributive law. For this reason, K. L. N.

Swamy and U. M. Swamy [47] initiated that complete lattices satisfying the infinite meet

distributivity are the most suitable candidates to take the truth values of general fuzzy

statements. In this section we introduce the notion of an L-fuzzy subset of a set X , where
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L is a given complete lattice satisfying the infinite meet distributive law.

Definition 1.3.1. A complete lattice (L,≤) is said to be satisfy the infinite meet distributive

law if for any a ∈ L and S⊆ L,

a∧ supS = sup{a∧ x : x ∈ S}.

Definition 1.3.2 ([26]). Let X be a non-empty set and let L be a complete lattice satisfying

the infinite meet distributive law. An L-fuzzy subset µ of X is a mapping from X into L.

The set of all L-fuzzy subsets of X is is denoted by LX .

Note that if L is a unit interval of real numbers, then µ is the usual fuzzy subset of X

originally introduced by L. Zadeh [54].

For any α in L, the constant L-fuzzy subset of Q which maps all elements of Q onto

α is denoted by α .

Definition 1.3.3. Let µ be an L-fuzzy subset of a non-empty set X. Then the set {µ(x) :

x ∈ X} is called the image of µ , and is denoted by Im(µ).

Definition 1.3.4. An L- fuzzy subset µ of a non-empty set X is said to have the sup-

property if for every non-empty subset A of X, the supremum of {µ(x) : x ∈ A} is attained

at a point of A. That is, there exists an xo ∈ A such that µ(xo) = sup{µ(x) : x ∈ A}.

Definition 1.3.5 ([39]). Let µ and σ be L-fuzzy subsets of a non-empty set X. The union

of L-fuzzy subsets µ and σ of X, denoted by µ ∪σ , is an L-fuzzy subset of X defined by:

for all x ∈ X :

(µ ∪σ)(x) = µ(x)∨σ(x)

and the intersection of L-fuzzy subsets µ and σ of X, denoted by µ ∩σ , is a fuzzy

subset of X defined by: for all x ∈ X ,

(µ ∩σ)(x) = µ(x)∧σ(x).

More generally, the union and intersection of any non-empty family {µi}i∈∆ of L-

fuzzy subsets of X , denoted by
⋃

i∈∆ µi and
⋂

i∈∆ µi respectively, are defined by:
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(
⋃

i∈∆ µi)(x) = supi∈∆ µi(x) and (
⋂

i∈∆ µi)(x) = infi∈∆ µi(x),

for all x ∈ X , respectively.

Definition 1.3.6 ([26]). For any L-fuzzy subsets µ and σ in Lx, define a binary relation

”⊆ ” on LX by:

µ ⊆ σ if and only if µ(x)≤ σ(x), for all x ∈ X

It can be easily verified that⊆ is a partial order on the set LX of L- fuzzy subsets of X .

The partial ordering ”⊆ ” is called the point wise ordering or inclusion ordering of fuzzy

subsets.

Theorem 1.3.1. [39] Let X be a non-empty set and L be a complete lattice satisfying

the infinite meet distributivity. Then (LX ,⊆) forms a complete lattice, in which, for any

{µi}i∈∆ ⊆ LX ,

supi∈∆ µi =
⋃

i∈∆ µi and infi∈∆ µi =
⋂

i∈∆ µi

where ”⊆ ” is the point wise ordering given in Definition 1.3.6 above.

Definition 1.3.7 ([46]). Let µ be an L-fuzzy subset of X. Then for each α ∈ L, the set

µα = {x : µ(x)≥ α} is called the level subset of µ at α or the α-level subset of µ .

Lemma 1.3.2. Let X be a non-empty set and L be a complete lattice satisfying the infinite

meet distributivity. Let µ.σ ∈ LX . Then

1. α,β ∈ L and α ≤ β imply µα ⊇ µβ ;

2. µ ⊆ σ ⇔ µα ⊆ σα for all α ∈ L;

3. µ = σ ⇔ µα = σα for all α ∈ L.

The following theorems show some basic properties of level subsets of L- fuzzy sub-

sets of a nonempty set X .

Theorem 1.3.3. Suppose that {µi}i∈∆ ⊆ LX . Then for any α ∈ L,
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1. (
⋃

i∈∆ µi)α ⊇
⋃

i∈∆(µi)α ;

2. (
⋂

i∈∆ µi)α =
⋂

i∈∆(µi)α

Moreover, when L is a finite chain, we have equality in (1).

Theorem 1.3.4. Let µ ∈ LX and {αi}i∈∆ be a non-empty subset of L such that β =
∧

i∈∆ αi

and α =
∨

i∈∆ αi. Then

1. µβ ⊇
⋃

i∈∆ µαi;

2. µα =
⋂

i∈∆ µαi .

Lemma 1.3.5 ([36]). Let µ be an L- fuzzy subset of a nonempty set X. Then µ(x) =

sup{α ∈ L : x ∈ µα}, for all x ∈ X.

Definition 1.3.8 ([50]). For each x in X and 0 6= α in L, we define xα ∈ LX as follow:

xα(y) =


α i f y = x

0 otherwise

for each y ∈ X and we call it an L-fuzzy point of X.

An L- fuzzy point xα of X is said to be belongs to an L- fuzzy subset µ of X , written

as xα ∈ µ , if α ≤ µ(x). Evidently, every L-fuzzy subset µ can be expressed as the union

of all the L-fuzzy points of a non-empty set X which belongs to µ

For any non-empty set X and for any element α ∈ L we write α to denote the constant

map of X into L which maps every element of X onto α . In particular 0 is called the zero

map of X into L and observe that 0⊆ µ for any µ ∈ LX .

Definition 1.3.9. [46] An L-fuzzy subset µ of a lattice X with 0 is said to be an L -fuzzy

ideal of X, if µ(0) = 1 and µ(a∨b) = µ(a)∧µ(b) for all a,b ∈ X.

Dually, an L-fuzzy subset µ of a lattice X with 1 is said to be an L -fuzzy filter of X, if

µ(1) = 1 and µ(a∧b) = µ(a)∧µ(b) for all a,b ∈ X.
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Chapter 2

L-Fuzzy Ideals

In this chapter we introduce several generalizations of L-fuzzy ideals of a lattice to an

arbitrary poset whose truth values are in a complete lattice satisfying the infinite meet

distributive law and give several characterizations of them. The different types of L-fuzzy

ideals of a poset that we introduce in this chapter are generalizations of the notions of

L-fuzzy ideals of a lattice. We also prove that the set of all each types of L-fuzzy ideals

of a poset forms a complete lattice with respect to point-wise ordering. Throughout this

work L stands for a non-trivial complete lattice satisfying the infinite meet distributive law

and throughout this chapter Q stands for a poset (Q,≤) with 0 unless otherwise stated.

2.1 L-Fuzzy Closed Ideals

In this section, we introduce the fuzzy version of the closed or normal ideal of a poset

introduced by Birkoff[14]. We also prove and characterize certain properties of L-fuzzy

closed ideals of a poset. In particular, we prove that the set of all L-fuzzy closed ideals of

a poset form a complete lattice. We shall begin with its definition.

Definition 2.1.1. An L- fuzzy subset µ of a poset Q is called an L- fuzzy closed ideal of

Q, if it satisfies the following conditions:

(i) µ(0) = 1,

(ii) for any subset A of Q, µ(x)≥ inf{µ(a) : a ∈ A} ∀x ∈ Aul .
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First of all, note that any L-fuzzy closed ideal µ of a poset Q is not the constant map

0. We prove the following lemma, which facilitates to identify any (crisp) closed ideal of

Q with an L- fuzzy closed ideal of Q.

Lemma 2.1.1. A subset I of Q is a closed ideal if and only if its characteristic map χI is

an L-fuzzy closed ideal of Q.

Proof. Suppose I is a closed ideal of Q. Recall that the characteristic map χI of I from Q

into L is an L-fuzzy subset of Q given by:

χI(x) =


1 i f x ∈ I

0 otherwise

for each x ∈ Q. Note that χI 6= 0 if and only if I 6= /0.

Since /0 ⊆ I, we have {0} = /0ul = Ql ⊆ I and so χI(0) = 1. Again let A ⊆ Q and

x ∈ Aul . Then if A⊆ I, we have inf{χI(a) : a ∈ A}= 1 and x ∈ Aul ⊆ Iul = I. Thus

χI(x) = 1 = inf{χI(a) : a ∈ A}.

Again if A* I, then it is clear that inf{χI(a) : a ∈ A}= 0 and so

χI(x)≥ 0 = inf{χI(a) : a ∈ A}.

Hence for any A⊆ Q, we have

χI(x)≥ inf{χI(a) : a ∈ A}, for all x ∈ Aul .

Therefore χI is an L-fuzzy closed ideal of Q.

Conversely, suppose that χI is an L- fuzzy closed ideal. Since χI(0) = 1, we have

0 ∈ I, i.e., Ql = {0} ⊆ I. Let x ∈ Iul . Then, by hypothesis, we have

χI(x)≥ inf{χI(a) : a ∈ I}= 1 and so χI(x) = 1

and this implies that x ∈ I. Therefore Iul ⊆ I and so I is a closed ideal of Q.
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Note that, for any I ⊆ Q and α ∈ L , the α–level subset of the characteristic map

χI : Q −→ L of I is Q if α = 0 and I if α 6= 0. Since Q is always a closed ideal of Q, it

follows from the above theorem that χI is an L- fuzzy closed ideal of Q if and only if the

α–level subset of χI a closed ideal of Q for each α ∈ L.

The following lemma is a generalization of the above Lemma 2.1.1, which character-

ize any L- fuzzy closed ideal of Q in terms of its level subsets.

Lemma 2.1.2. An L- fuzzy subset µ of a poset Q is an L- fuzzy closed ideal of Q if and

only if the α–level subset µα of µ is a closed ideal of Q, for all α ∈ L.

Proof. Let µ be an L- fuzzy closed ideal of a poset Q and α ∈ L. Then µ(0) = 1 ≥ α.

Thus 0 ∈ µα , i.e., Ql = {0} ⊆ µα . Again let x ∈ (µα)
ul . Then

µ(x)≥ inf{µ(a) : a ∈ µα} ≥ α.

This implies that x ∈ µα . Therefore (µα)
ul ⊆ µα . So µα is a closed ideal of Q.

Conversely, suppose that µα is a closed ideal of Q for all α ∈ L. In particular, µ1 is

a closed ideal. Since {0} = Ql ⊆ µ1, we have 0 ∈ µ1. and hence µ(0) = 1. Again let A

be any subset of Q and put α = inf{µ(a) : a ∈ A}. Then µ(a)≥ α, ∀a ∈ A. Thus A⊆ µα

and so we have Aul ⊆ µul
α = µα . Therefore

µ(x)≥ α = inf{µ(a) : a ∈ A} for all x ∈ Aul .

Hence µ is an L-fuzzy closed ideal of Q.

Corollary 2.1.3. Let µ be an L-fuzzy closed ideal of a poset Q. Then µ is anti-tone in the

sense that µ(x)≥ µ(y), whenever x≤ y.

Proof. Let µ be an L-fuzzy closed ideal of a poset Q. Let x,y ∈ Q such that x ≤ y.

Put µ(y) = α . Then y ∈ µα . Since µα is a closed ideal of Q and y ∈ µα , we have

yl = {y}ul ⊆ (µα)
ul = µα . Thus x≤ y⇒ x∈ yl⇒ x∈ µα . So µ(x)≥α = µ(y). Therefore

µ is anti-tone.
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Example 2.1.4. Consider the poset ([0,1],≤) of closed interval [0,1] in the real number

system with the usual order "≤". Let L = {0,α,1} where 1 > α > 0. Let µ ∈ L[0,1] defined

by:

µ(x) =


1 i f x ∈ [0, 1

3 ]

α i f x ∈ [0, 1
2 ]− [0, 1

3 ]

0 i f otherwise

for all x ∈ [0,1].

Then, since µ0 = [0,1], µα = [0, 1
2 ], and µ1 = [0, 1

3 ] are all closed ideals of the poset

([0,1],≤), by Lemma 2.1.2, we have µ is an L-fuzzy closed ideal of the poset ([0,1],≤).

Theorem 2.1.5. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by:

αx(y) =


1 i f y ∈ (x]

α i f y /∈ (x],

for all y ∈ Q. Then αx is an L-fuzzy closed ideal of Q.

Proof. Since 0 ∈ (x], we clearly have αx(0) = 1. Let A⊆ Q and y ∈ Aul . If A⊆ (x], then

y ∈ Aul ⊆ (x]ul = xlul = xl = (x]. So αx(y) = 1 and αx(a) = 1 for all a ∈ A. Therefore

αx(y) = 1 = inf{αx(a) : a ∈ A}. If A * (x], then there exists a0 ∈ A such that a0 /∈ (x].

This implies that inf{µ(a) : a∈ A}= α . Thus αx(y)≥α = inf{µ(a) : a∈ A}. So in either

cases, we have

αx(y)≥ inf{µ(a) : a ∈ A}, for all y ∈ Aul.

Hence αx is an L-fuzzy closed ideal of Q.

Definition 2.1.2. The L-fuzzy closed ideal αx of Q defined above is called the α-level

principal L-fuzzy closed ideal corresponding to x.

Lemma 2.1.6. The intersection of any family of L- fuzzy closed ideals of a poset Q is an

L-fuzzy closed ideal of Q.
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Proof. Let {µi : i ∈ ∆} be any L-fuzzy closed ideal of Q. Now we claim that
⋂

i∈∆ µi

is an L-fuzzy closed ideal of Q. If ∆ = /0, then it is clear that,
⋂

i∈∆ µi = 1, which is an

L-fuzzy closed ideal of Q. Assume that ∆ 6= /0. Since µi(0) = 1, for all i ∈ ∆, we have⋂
i∈∆ µi(0) = inf{µi(0) : i ∈ ∆}= 1. Again let A⊆ Q and x ∈ Aul . Then

(
⋂
i∈∆

µi)(x) = inf{µi(x) : i ∈ ∆}

≥ inf{inf{µi(a) : a ∈ A} : i ∈ ∆}

= inf{inf{µi(a) : i ∈ ∆} : a ∈ A}

= inf{(
⋂
i∈∆

µi)(a) : a ∈ A}

Therefore
⋂

i∈∆ µi is an L-fuzzy closed ideal of Q.

Definition 2.1.3. Let µ be an L- fuzzy subset of a poset Q. Then the smallest L- fuzzy

closed ideal of Q containing µ is called an L- fuzzy closed ideal generated by µ and is

denoted by (µ]Cl .

Theorem 2.1.7. Let FC I (Q) be the set of all L-fuzzy closed ideals of a poset Q and µ

be an L fuzzy subset of Q. Then (µ]Cl =
⋂
{θ ∈FC I (Q) : µ ⊆ θ}.

Proof. Put X = {θ ∈FC I (Q) : µ ⊆ θ}. Then, by Lemma 2.1.6,
⋂

θ∈X θ is an L-fuzzy

closed ideal of Q and it is clear that µ ⊆
⋂

θ∈X θ . Let σ be any L-fuzzy closed ideal of Q

such that µ ⊆ σ . This implies that σ ∈ X and hence
⋂

θ∈X θ ⊆ σ .

This shows that
⋂

θ∈X θ is the smallest L-fuzzy closed ideal of Q containing µ . There-

fore (µ]Cl =
⋂
{θ ∈FC I (Q) : µ ⊆ θ}.

Theorem 2.1.8. Let (A]Cl be a closed ideal generated by subset A of Q and χA be its

characteristics function. Then χ(A]Cl
= (χA]Cl , that is, the L- fuzzy closed ideal generated

by χA is the characteristic map of the closed ideal generated by A.

Proof. Now we prove χ(A]Cl
that it is the smallest L-fuzzy closed ideal of Q containing χA.

Since (A]Cl is a closed ideal of Q, by Lemma 2.1.1, we have χ(A]Cl
is an L-fuzzy closed
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ideal. Again since A⊆ (A]Cl , we have χA ⊆ χ(A]Cl
.

Let µ be any L-fuzzy closed ideal of Q such that χA ⊆ µ . Then µ(a) = 1, for all a ∈ A.

Now we claim that χ(A]Cl
⊆ µ . Let x ∈ Q. If x /∈ (A]Cl , then

χ(A]Cl
(x) = 0≤ µ(x).

If x ∈ (A]Cl , then x ∈ Bul, for some subset B of A. and hence

χ(A]Cl
(x) = 1 = inf{χA(b) : b ∈ B} ≤ inf{µ(b) : b ∈ B} ≤ µ(x).

So that χ(A]Cl
(x)≤ µ(x), for all x ∈ Q. Therefore χ(A]Cl

= (χA]Cl .

The following theorem is also another characterization of L-fuzzy closed ideal of a

poset Q .

Theorem 2.1.9. An L-fuzzy subset µ of a poset Q is an L-fuzzy closed ideal if and only if

for any subset A of Q,

µ(x)≥ inf{µ(a) : a ∈ A}, for all x ∈ (A]Cl .

Proof. Suppose that µ is an L-fuzzy closed ideal of Q. Let A ⊆ Q and x ∈ (A]Cl . Then

x ∈ Bul for some B⊆ A. Then, since µ is an L-fuzzy closed ideal of Q, we clearly have

µ(x)≥ inf{µ(b) : b ∈ B}

and since B⊆ A, we have

inf{µ(b) : b ∈ B} ≥ inf{µ(a) : a ∈ A}.

This implies that, for any subset A of Q, we have

µ(x)≥ inf{µ(a) : a ∈ A} for all x ∈ (A]Cl .

Conversely suppose that µ satisfies the given condition. Let A⊆Q and x ∈ Aul . Then,

since Aul ⊆ (A]Cl , by hypothesis, we have

µ(x)≥ inf{µ(a) : a ∈ A} for all x ∈ Aul .

In particular, if A = /0, then ,by hypothesis, we have
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µ(x)≥ inf{µ(a) : a ∈ /0}, for all x ∈ ( /0]Cl .

But since in f{µ(a) : a ∈ /0}= 1 and ( /0]Cl = {0}, we clearly have µ(0) = 1.

Therefore µ is an L-fuzzy closed ideal of Q.

The following theorem characterizes any L-fuzzy closed ideal of Q generated by an

L-fuzzy subset of Q in terms of closed ideals generated by its level subsets.

Theorem 2.1.10. Let µ be an L-fuzzy subset of Q. Then the L-fuzzy subset

µ̂ of Q defined by:

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Cl}, for all x ∈ Q

is an L- fuzzy closed ideal of Q generated by µ .

Proof. We show that µ̂ is the smallest L- fuzzy closed ideal containing µ .

Let x ∈ Q. Then since µα ⊆ (µα ]Cl , we have

µ(x) = sup{α ∈ L : x ∈ µα} ≤ sup{α ∈ L : x ∈ (µα ]Cl}= µ̂(x).

Therefore µ ⊆ µ̂ .

Again since 0 ∈ Ql ⊆ (µα ]Cl , for all α ∈ L and in particular 0 ∈ (µ1]Cl , we have

µ̂(0) = sup{α ∈ L : 0 ∈ (µα ]Cl} ≥ 1,

and so µ̂(0) = 1. Again let A be any subset of Q and x ∈ Aul . Now, if A = /0, then it is

clear that Aul = {0} and inf{µ̂(a) : a ∈ A}= 1. Thus we have

inf{µ̂(a) : a ∈ A}= 1 = µ̂(0) = µ̂(x).

Again let A 6= /0 Then we have

inf{µ̂(a) : a ∈ A} = inf{sup{αa : a ∈ (µαa]Cl} : a ∈ A}

= sup{inf{αa : a ∈ A} : a ∈ (µαa]Cl}

Put λ = inf{αa : a ∈ A}. Then λ ≤ αa for all a ∈ A. This implies that (µαa]Cl ⊆ (µλ ]Cl

for all a ∈ A. Therefore A⊆ (µλ ]Cl and so x ∈ Aul ⊆ ((µλ ]Cl)
ul = (µλa]Cl .
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Hence

inf{µ̂(a) : a ∈ A} = sup{inf{αa : a ∈ A} : a ∈ (µαa]Cl}

≤ sup{λ ∈ L : x ∈ (µλ ]Cl}

= µ̂(x).

Therefore µ̂ is an L-fuzzy closed ideal of Q.

Again let θ be any L-fuzzy closed ideal of Q such that µ ⊆ θ . Then µα ⊆ θα . for any

α ∈ L. This implies that

(µα ]Cl ⊆ (θα ]Cl = θα for any α ∈ L.

So for any x ∈ Q, we have

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Cl} ≤ sup{α ∈ L : x ∈ θα}= θ(x).

Hence µ̂ ⊆ θ . Therefore µ̂ = (µ]Cl .

In the following we give an algebraic characterization of L-fuzzy closed ideal gener-

ated by an L-fuzzy subset of Q.

Theorem 2.1.11. Let µ be an L- fuzzy subset of Q. Then the fuzzy subset µCl defined by

µCl(x) =


1 i f x = 0

sup{infa∈A µ(a) : A⊆ Q and x ∈ Aul} i f x 6= 0

is an L-fuzzy closed ideal of Q generated by µ .

Proof. It is enough to show that µCl = µ̂, where µ̂ is the L- fuzzy closed ideal given in

the Theorem 2.1.10 above. Let x ∈ Q. If x = 0, then µ̄(x) = 1 = µ̂(x).

Let x 6= 0. Put

Ax = {infa∈A µ(a) : A⊆ Q and x ∈ Aul} and Bx = {α : x ∈ (µα ]Cl}.
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Now we claim that supAx = supBx. Let α ∈ Ax. Then α = infa∈A µ(a), for some subset A

of Q such that x ∈ Aul . This implies that α ≤ µ(a), for all a ∈ A. Thus A⊆ µα ⊆ (µα ]Cl .

Since (µα ]Cl is a closed ideal, we have x ∈ Aul ⊆ ((µα ]Cl)
ul ⊆ (µα ]Cl. So x ∈ (µα ]Cl , i.e.,

α ∈ Bx. Hence Ax ⊆ Bx. Therefore supAx ≤ supBx.

Again let α ∈ Bx. Then x ∈ (µα ]C. Since (µα ]Cl =
⋃
{Aul : A⊆ µα}, we have x ∈ Aul,

for some subset A of µα . This implies that µ(a) ≥ α, for all a ∈ A. Thus inf{µ(a) : a ∈

A} ≥ α . Put β = inf{µ(a) : a ∈ A}. Then β ∈ Ax. Thus for each α ∈ Bx, we get β ∈ Ax

such that α ≤ β . So supAx ≥ supBx. Hence supAx = supBx.

Therefore µCl = µ̂ = (µ]Cl .

Theorem 2.1.11 yields the following.

Theorem 2.1.12. The set FC I (Q) of all L-fuzzy closed ideals of Q forms a complete

lattice, in which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family {µi : i ∈

∆} of L-fuzzy closed ideals of Q respectively are given by:

supi∈∆µi = (
⋃

i∈∆ µi)Cl where (
⋃

i∈∆ µi)Cl is given by:

(
⋃
i∈∆

µi)

Cl

(x) =


1 i f x = 0

sup{infa∈A(
⋃

i∈∆ µi)(a) : A⊆ Q and x ∈ Aul} i f x 6= 0

for all x ∈ Q and infi∈∆ µi =
⋂

i∈∆ µi, where
⋂

i∈∆ µi is given by:

(
⋂
i∈∆

µi)(x) = inf
i∈∆

µi(x) for all x ∈ Q.

.

Corollary 2.1.13. For any µ and θ in FC I (Q), the supremum µ ∨θ and the infimum

µ ∧θ of µ and θ ,respectively are: µ ∨θ = (µ ∪θ)Cl where (µ ∪θ)Cl is given by:

(µ ∪θ)Cl(x) =


1 i f x = 0

sup{infa∈A(µ ∪θ)(a) : A⊆ Q and x ∈ Aul} i f x 6= 0
,
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for all x ∈ Q. and µ ∧θ = µ ∩θ , where µ ∩θ is given by:

(µ ∩θ)(x) = µ(x)∧θ(x) for allx ∈ Q.

2.2 L-Fuzzy Frink Ideals

In this section we introduce the fuzzy version of the ideals of a poset introduced by O.

Frink [25].

Definition 2.2.1. An L- fuzzy subset µ of Q is called an L- fuzzy Firink ideal, if it satisfies

the following conditions:

(i) µ(0) = 1,

(ii) for any finite subset F of Q, µ(x)≥ inf{µ(a) : a ∈ F} ∀x ∈ Ful .

The following lemma characterizes any L- fuzzy Frink ideal of Q in terms of its level

subset whose proof is similar to the proof of Lemma 2.1.2.

Lemma 2.2.1. An L- fuzzy subset µ of Q is an L- fuzzy Frink ideal of Q if and only if µα

is a Frink ideal of Q, for all α ∈ L.

As the consequence of the above lemma we have the following corollary.

Corollary 2.2.2. A subset I of Q is a Frink ideal of Q if and only if its characteristic map

χI is an L-fuzzy Frink ideal of Q.

Theorem 2.2.3. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by

αx(y) =


1 i f y ∈ (x]

α i f y /∈ (x],

for all y ∈ Q. Then αx is an L-fuzzy frink ideal of Q.

Definition 2.2.2. The L-fuzzy Frink ideal αx defined in Theorem 2.2.3 above is called the

α-level principal L-fuzzy Frink ideal corresponding to x.
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The following theorem shows that an L- fuzzy Frink ideal of a poset is a natural

generalization of an L- fuzzy ideal of a lattice.

Theorem 2.2.4. Let (Q,≤) be a lattice. An L-fuzzy subset µ of Q is an L- fuzzy Frink

ideal in the poset Q if and only it an L-fuzzy ideal in the lattice Q.

Proof. Let µ be an L-fuzzy Frink ideal in the poset Q and a,b ∈ Q. Then, by definition,

µ(0) = 1 and since F = {a,b} ⊂⊂ Q and a∨b ∈ Ful , we have

µ(a∨b)≥ inf{µ(x) : x ∈ F}= µ(a)∧µ(b).

Again since µ is anti-tone, we have

µ(a∨b)≤ µ(a) and µ(a∨b)≤ µ(b).

So we have µ(a)∧µ(b)≤ µ(a∨b). Therefore µ(a∨b) = µ(a)∧µ(b) and hence µ is an

L-fuzzy ideal in the lattice Q.

Conversely suppose that µ is an L-fuzzy ideal in the lattice Q. Then clearly µ(0) = 1.

Again et F ⊂⊂Q and x ∈ Ful . Then x is a lower bound of Fu. Since supF ∈ Fu, we have

x≤ supF and hence we have

µ(x)≥ µ(supF) = inf{µ(a) : a ∈ F}.

Therefore µ is an L-fuzzy Frink ideal in the poset Q.

Lemma 2.2.5. The intersection of any family of L-fuzzy Frink-ideals of a poset Q is an L-

fuzzy Frink ideal.

Definition 2.2.3. Let µ be an L- fuzzy subset of a poset Q. Then the smallest L- fuzzy

Frink ideal of Q containing µ is called an L- fuzzy Frink ideal generated by µ and is

denoted by (µ]Fr.

Theorem 2.2.6. Let FFI (Q) be the set of all L-fuzzy Frink ideals of a poset Q and µ

be an L fuzzy subset of Q. Then (µ]Fr =
⋂
{θ ∈FFI (Q) : µ ⊆ θ}.
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Theorem 2.2.7. Let (A]Fr be a Frink-ideal generated subset A of Q and χA be its charac-

teristics functions. Then (χA]Fr = χ(A]Fr .

Theorem 2.2.8. An L-fuzzy subset µ of Q is an L-fuzzy Frink ideal if and only if for any

finite subset F of Q,

µ(x)≥ inf{µ(a) : a ∈ F} for all x ∈ (F ]Fr.

Proof. Suppose that µ is an L-fuzzy ideal of Q. Let F ⊂⊂Q and x ∈ (F ]Fr. Then x ∈ Bul

for some B⊆ F . Then, since B⊂⊂ Q and µ is an L-fuzzy Frink ideal of Q, we have

µ(x)≥ inf{µ(b) : b ∈ B} ≥ inf{µ(a) : a ∈ F}.

Thus , for any finite subset F of Q, we have

µ(x)≥ inf{µ(a) : a ∈ F} for all x ∈ (F ]Fr.

Conversely suppose that µ satisfies the given condition. Now we show that µ is an

L-fuzzy Frink ideal. Let F ⊂⊂ Q and x ∈ Ful . Since x ∈ Ful ⊆ (F ]Fr, by hypothesis, we

have

µ(x)≥ inf{µ(a) : a ∈ F}.

Again since /0 is finite subset of Q, by hypothesis, we have

µ(x)≥ inf{µ(a) : a ∈ /0}, for all x ∈ ( /0]Fr.

But since in f{µ(a) : a ∈ /0}= 1 and ( /0]Fr = {0}, we clearly have µ(0) = 1. Therefore µ

is an L-fuzzy Frink ideal of Q.

Now we give a characterization of any L-fuzzy Frink ideal generated by an L-fuzzy

subset of Q in terms of Frink ideals generated by its level subset.

Theorem 2.2.9. For any L-fuzzy subset µ of Q, define an L-fuzzy subset µ̂ of Q by:

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Fr}, for all x ∈ Q.

Then µ̂ is an L-fuzzy Frink ideal of Q generated by µ .
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Proof. We show that µ̂ is the smallest L- fuzzy Frink ideal containing µ . Let x ∈ Q.

Then as µα ⊆ (µα ]Fr, we have

µ(x) = sup{α ∈ L : x ∈ µα} ≤ sup{α ∈ L : x ∈ (µα ]Fr}= µ̂(x).

Hence µ ⊆ µ̂ .

Again since 0 ∈ Ql ⊆ (µα ]Fr, for all α ∈ L and in particular 0 ∈ (µ1]Fr, we have

µ̂(0) = sup{α ∈ L : 0 ∈ (µα ]Fr} ≥ 1,

and so µ̂(0) = 1. Again let F ⊂⊂ Q and x ∈ Ful . Then we have

inf{µ̂(a) : a ∈ F} = inf{sup{αa : a ∈ (µαa ]Fr} : a ∈ F}

= sup{inf{αa : a ∈ F} : a ∈ (µαa ]Fr}

Put λ = inf{αa : a∈F . This implies that λ ≤αa, for all a∈F . Therefore (µα ]Fr⊆ (µλ ]Fr

for all a ∈ F . Thus F ⊆ (µλa]Fr and so x ∈ Ful ⊆ (µλa]Fr. Therefore

inf{µ̂(a) : a ∈ F} = sup{inf{αa : a ∈ F} : a ∈ (µαa ]Fr}

≤ sup{λ ∈ L : x ∈ (µλ ]Fr}

= µ̂(x).

Therefore µ̂ is an L-fuzzy Frink ideal of Q.

Again let θ be any L-fuzzy Frink ideal of Q such that µ ⊆ θ . Then µα ⊆ θα . for any

α ∈ L. This implies that (µα ]Fr ⊆ (θα ]Fr = θα for any α ∈ L. So for any x ∈ Q,

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Fr} ≤ sup{α ∈ L : x ∈ θα}= θ(x).

Hence µ̂ ⊆ θ . Therefore µ̂ = (µ]Fr.

In the following we give an algebraic characterization of L-fuzzy Frink ideals gener-

ated by L-fuzzy subsets. We write F ⊂⊂ Q to mean that F a finite subset of Q.
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Theorem 2.2.10. Let µ be an L-fuzzy subset of Q. Then the L- fuzzy subset µFr defined

by:

µFr(x) =


1 i f x = 0

sup{infa∈F µ(a) : F ⊂⊂ Q and x ∈ Ful} i f x 6= 0

is an L- fuzzy Frink ideal of Q generated by µ .

Proof. It is enough to show that µFr = µ̂, where µ̂ is the L- fuzzy Frink ideal given in the

theorem 2.2.9 above. Let x ∈ Q. If x = 0, then µ̄(x) = 1 = µ̂(x).

Let x 6= 0. Put

Ax = {infa∈F µ(a) : F ⊂⊂ Q and x ∈ Ful} and Bx = {α : x ∈ (µα ]Fr}.

Now we show supAx = supBx. Let α ∈ Ax. Then α = infa∈F µ(a), for some finite subset

F of Q such that x∈Ful . This implies that α ≤ µ(a), for all a∈F. Thus F ⊆ µα ⊆ (µα ]Fr.

Since (µα ]Fr is a Frink ideal, we have x∈Ful ⊆ (µα ]Fr. So x∈ (µα ]Fr, i.e., α ∈Bx. Hence

Ax ⊆ Bx. Therefore supAx ≤ supBx.

Again let β ∈ Bx. Then x ∈ (µβ ]Fr. Since (µβ ]Fr =
⋃
{Ful : F ⊆ µβ}, we have

x ∈ Ful, for some finite subset F of µβ . This implies that inf{µ(a) : a ∈ A} ≥ β . Put

α = inf{µ(a) : a ∈ F}. Then since x ∈ Ful,F ⊂⊂ Q , we have α ∈ Ax. Thus for each

β ∈ Bx, we get α ∈ Ax such that α ≥ β . So supAx ≥ supBx. Hence supAx = supBx.

Therefore µFr = µ̂ = (µ]Fr.

Theorem 2.2.10 yields the following.

Theorem 2.2.11. The set FFI (Q) of all L-fuzzy Frink ideal of Q forms a complete

lattice, in which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family {µi : i ∈

∆} of L-fuzzy Frink ideals of Q are given by:

supi∈∆ µi = (
⋃

i∈∆ µi)Fr and infi∈∆ µi =
⋂

i∈∆ µi

.
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Corollary 2.2.12. For any µ and θ in FFI (Q), the supremum µ ∨θ and the infimum

µ ∧θ of µ and θ , respectively are:

µ ∨θ = (µ ∪θ)Fr and µ ∧θ = µ ∩θ .

2.3 L-Fuzzy Ideals in the Sense of Halaś

Now we introduce the fuzzy version ideals of a poset introduced by Halaš [28] which

seems to be a suitable generalization of the usual concept of L-fuzzy ideal of a lattice.

Definition 2.3.1. An L- fuzzy subset µ of Q is called an L- fuzzy ideal in the sense of

Halaś, if it satisfies the following conditions:

(i) µ(0) = 1,

(ii) for any a,b ∈ Q , µ(x)≥ µ(a)∧µ(b), for all x ∈ (a,b)ul .

The following lemma characterizes any L- fuzzy ideal of a poset in the sense of Halaś

in terms of its level-subsets.

Lemma 2.3.1. An L- fuzzy subset µ of Q is an L- fuzzy ideal of Q in the sense of Halaś if

and only if µα is an ideal of Q, for all α ∈ L.

Proof. Let µ be an L- fuzzy ideal of Q in the sense of Halaś and α ∈ L. Then since µ(0) =

1≥α, we have 0∈ µα , i.e., Ql = {0}⊆ µα . Let a,b∈ µα . Then clearly, µ(a)∧µ(b)≥α .

Let x ∈ (a,b)ul . Then µ(x) ≥ µ(a)∧ µ(b) ≥ α. This implies that x ∈ µα . Therefore

(a,b)ul ⊆ µα . So µα is an ideal of Q.

Conversely, suppose that µα is an ideal of Q, for all α ∈ L. In particular, µ1 is an ideal

of Q. Since {0}= Ql ⊆ µ1, we have 0 ∈ µ1 and hence µ(0) = 1. Again let a,b ∈ Q. Put

α = µ(a)∧ µ(b). This implies that a,b ∈ µα . Since, by hypothesis, µα is an ideal of

Q we have (a,b)ul ⊆ µα . This implies that µ(x) ≥ α = µ(a)∧ µ(b) for all x ∈ (a,b)ul .

Therefore µ is an L-fuzzy ideal of Q in the sense of Halaś.
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Corollary 2.3.2. A subset I of Q is an ideal of Q if and only if its characteristic map χI is

an L-fuzzy ideal of Q in the sense of Halaś.

Lemma 2.3.3. If µ is an L- fuzzy ideal of Q in the sense of Halaś, then the following

assertions hold:

1. for any x,y ∈ Q, µ(x)≥ µ(y), whenever x≤ y, i.e., µ is anti-tone.

2. for any x,y ∈ Q, µ(x∨ y)≥ µ(x)∧µ(y), whenever x∨ y exists.

The following theorem shows that an L- fuzzy ideal in the sense of Halaś of the poset

is a natural generalization of an L- fuzzy ideal of a lattice.

Theorem 2.3.4. Let (Q,≤) be a lattice. Then an L-fuzzy subset µ of Q is an L- fuzzy ideal

in the sense of Halaś in the poset Q if and only if it is an L-fuzzy ideal in the lattice Q.

Proof. Let µ be an L-fuzzy ideal in the sense of Halaś in the poset Q and a,b ∈ Q. Then

µ(0) = 1. Since a∨ b ∈ (a,b)ul , we have µ(a∨ b) ≥ µ(a)∧ µ(b). Since µ is anti-

tone, we have µ(a) ≥ µ(a∨ b) and µ(b) ≥ µ(a∨ b). Thus µ(a)∧ µ(b) ≥ µ(a∨ b). So

µ(a∨b) = µ(a)∧µ(b). Hence µ is an L-fuzzy ideal in the lattice Q.

Conversely, suppose that µ is an L-fuzzy ideal in the lattice Q. Let a,b ∈ Q and

x ∈ (a,b)ul . Then x≤ y, for all y ∈ (a,b)u. Since a∨b ∈ (a,b)u, we have x≤ a∨b. Thus

µ(x)≥ µ(a∨b) = µ(a)∧µ(b). So µ is an L-fuzzy ideal in the sense of Halaś in the poset

Q.

Definition 2.3.2. Let µ be an L-fuzzy subset of Q. The smallest L- fuzzy ideal in the sense

of Halaś of Q containing µ is called an L- fuzzy ideal in the sense of Halaś generated by

µ and is denoted by (µ]Ha.

Lemma 2.3.5. The intersection of any family of L-fuzzy ideals in the sense of Halaś of a

poset Q is an L- fuzzy deal in the sense of Halaś.

Theorem 2.3.6. Let FI (Q) be the set of all L-fuzzy ideals in the sense of Halaś of a

poset Q and µ be an L fuzzy subset of Q. Then (µ]Ha =
⋂
{θ ∈FI (Q) : µ ⊆ θ}.
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Theorem 2.3.7. Let (A]Ha be an ideal generated by a subset A of Q in the sense of Halaś

and χA be characteristics functions of A. Then (χA] = χ(A]Ha .

Proof. Since (A]Ha is an ideal of Q, by Corollary 2.3.2, we have χ(A]Ha is an L-fuzzy ideal

in the sense of Halaś. Again since A⊆ (A]Ha, we have χA ⊆ χ(A]Ha . Let µ be any L-fuzzy

ideal of Q in the sense of Halaś such that χA ⊆ µ . Now we claim χ(A]Ha ⊆ µ . Let x ∈ Q.

If x /∈ (A]Ha, then χ(A]Ha(x) = 0 ≤ µ(x). Let x ∈ (A]Ha. Since χA ⊆ µ , we have A ⊆ µ1.

This implies that (A]Ha ⊆ (µ1]Ha = µ1. Thus x ∈ µ1 and hence µ(x) = 1. Therefore

χ(A]Ha(x) = 1 = µ(x). So that χ(A]Ha(x)≤ µ(x), for all x ∈Q. Hence the claim holds.

The following result is another characterization of an L-fuzzy ideal in the sense of

Halaś.

Theorem 2.3.8. An L-fuzzy subset µ of Q is an L-fuzzy ideal in the sense of Halaś if and

only if for any F ⊂⊂ Q,

µ(x)≥
∧

a∈F µ(a) for all x ∈ (F ]Ha.

Proof. Suppose that µ is an L-fuzzy ideal in the sense of Halaś of Q. Let F ⊂⊂ Q and

put α = inf{µ(a) : a ∈ F}. Then µ(a)≥ α for all a ∈ F and hence F ⊆ µα . Clearly, by

Lemma 2.3.1, µα is an ideal. Therefore (F ]Ha ⊆ µα and hence µ(x) ≥ α =
∧

a∈F µ(a)

for all x ∈ (F ]Ha.

Conversely suppose that µ satisfies the given condition. Now since /0 is finite and

( /0]Ha = {0} we have

µ(0)≥ inf{µ(a) : a ∈ /0}= 1 and hence µ(0) = 1.

Let a,b ∈Q such that x ∈ (a,b)ul . Put F = {a,b}. Then it is clear that x ∈ (a,b)ul ⊆C1 ⊆

(F ]Ha. Thus, by hypothesis, we have

µ(x)≥ inf{µ(y) : y ∈ F}= µ(a)∧µ(b).

Therefore µ is an L-fuzzy ideal in the sense of Halaś of Q.
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In the rest of this dissertation, by an L- fuzzy ideal of a poset will mean an L-fuzzy

ideal in the sense of Halaś.

Now we give a characterization of any L-fuzzy ideal generated by an L-fuzzy subset

of Q in terms of ideals generated by its level subset.

Theorem 2.3.9. For any L-fuzzy subset µ of Q, define an L-fuzzy subset µ̂ of Q by:

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Ha}, for all x ∈ Q.

Then µ̂ is an L-fuzzy ideal of Q generated by µ .

Definition 2.3.3. Let µ be an L-fuzzy subset of Q and N be a set of positive integers.

Define L-fuzzy subsets Cµ

1 ,C
µ

2 , · · · ,C
µ
n · · · , of Q, inductively, as follow: for each x ∈ Q,

Cµ

1 (x) = sup{µ(a)∧µ(b) : x ∈ (a,b)ul}

and for each n ∈ N−{1},

Cµ
n (x) = sup{Cµ

n−1(a)∧Cµ

n−1(b) : x ∈ (a,b)ul}.

Lemma 2.3.10. The set {Cµ
n : n ∈ N} forms a chain and Cµ

n is antitone for each n ∈ N.

Proof. Let x ∈ Q and n ∈ N. Then

Cµ

n+1(x) = sup{Cµ
n (a)∧Cµ

n (b) : x ∈ (a,b)ul}

≥ Cµ
n (x)∧Cµ

n (x) (since x ∈ xl = (x,x)ul)

= Cµ
n (x), ∀ x ∈ Q.

Thus Cµ
n ⊆Cµ

n+1, for each n ∈ N. So {Cµ
n : n ∈ N} is a chain.

Let x,y ∈ Q such that x≤ y.. Then

Cµ
n (y) = sup{Cµ

n−1(a)∧Cµ

n−1(b) : y ∈ (a,b)ul}

≤ sup{Cµ

n−1(a)∧Cµ

n−1(b) : x ∈ (a,b)ul}=Cµ
n (x)

Thus Cµ
n is antitone for each n ∈ N.,
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Now we give a characterization of an L-fuzzy ideal generated by an L- fuzzy subset

of a poset Q.

Theorem 2.3.11. The L- fuzzy subset µHa defined by: for all x ∈ Q,

µHa(x) =


1 i f x = 0

sup{Cµ
n (x) : n ∈ N} i f x 6= 0

is an L-fuzzy ideal generated by µ .

Proof. Now we claim that µHa is the smallest L-fuzzy ideal containing µ . Now, for any

x ∈ Q, we have

µHa(x) ≥ Cµ

1 (x)

= sup{µ(a)∧µ(b) : x ∈ (a,b)ul}

≥ µ(x)∧µ(x) (since x ∈ (x,x)ul)

= µ(x)

Thus µ ⊆ µHa. By definition of µHa, µHa(0) = 1. Let a,b ∈ Q and x ∈ (a,b)ul . If a = 0

or b = 0. then it is clear that x ≤ a or x ≤ b and since Cµ
n is antitone for each n ∈ N., we

have µHa(a)∧µHa(b)≤ µHa(x). Let a 6= 0 and b 6= 0. Then

µHa(a)∧µHa(b) = sup{Cµ
n (a) : n ∈ N}∧ sup{Cµ

m(b) : m ∈ N}

= sup{Cµ
n (a)∧Cµ

m(b) : n,m ∈ N}

≤ sup{Cµ

k (a)∧Cµ

k (b) : k ∈ N} where k = max{m,n}

≤ Cµ

k+1(x) (Since x ∈ (a,b)ul)

≤ sup{Cµ
n (x) : n ∈ N}

= µHa(x)

So µHa is an L-fuzzy ideal of Q.
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Again let θ be any L-fuzzy ideal of Q such that µ ⊆ θ . Now we show that the state-

ment ” Cµ
n ⊆ θ for all n ∈ N ” is true. Now for any x ∈ Q, we have

Cµ

1 (x) = sup{µ(a)∧µ(b) : x ∈ (a,b)ul}

≤ sup{θ(a)∧θ(b) : x ∈ (a,b)ul} ≤ θ(x).

. This implies that Cµ

1 ⊆ θ . Hence the statement is true for n = 1. Assume Cµ
n ⊆ θ for

some n > 1. Now for any x ∈ Q, we have

Cµ

n+1(x) = sup{Cµ
n (a)∧Cµ

n (b) : x ∈ (a,b)ul}

≤ sup{θ(a)∧θ(b) : x ∈ (a,b)ul} ≤ θ(x).

Thus Cµ

n+1 ⊆ θ . Thus, by mathematical induction, we have Cµ
n ⊆ θ for all n ∈ N. Let

x ∈ Q. If x = 0, then we have µHa(x) = 1 = θ(x). Let x 6= 0. Then

µHa(x) = sup{Cµ
n (x) : n ∈ N} ≤ θ(x)

Hence µHa ⊆ θ . Therefore µHa = (µ]Ha.

Theorem 2.3.11 yields the following.

Theorem 2.3.12. The set FI (Q) of all L-fuzzy ideal of Q forms a complete lattice, in

which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family {µi : i ∈ ∆} in

FI (Q) respectively are:

supi∈∆µi = (
⋃

i∈∆ µi)Ha and infi∈∆ µi =
⋂

i∈∆ µi.

Corollary 2.3.13. For any µ and θ ∈ FI (Q) the supremum µ ∨ θ and the infimum

µ ∧θ of µ and θ respectively are:

µ ∨θ = (µ ∪θ)Ha and µ ∧θ = µ ∩θ .
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Theorem 2.3.14. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by

αx(y) =


1 i f y ∈ (x]

α i f y /∈ (x],

for all y ∈ Q. Then αx is an L-fuzzy ideal of Q.

Definition 2.3.4. The L-fuzzy ideal αx defined above is called the α-level principal L-

fuzzy ideal corresponding to x.

Definition 2.3.5. An L-fuzzy ideal µ of a poset Q is called a u-L-fuzzy ideal, if for any

a,b ∈ Q, there exists x ∈ (a,b)u such that µ(x) = µ(a)∧µ(b).

Note that this property is immediately extends from {a,b} to any finite subset of Q.

That is, if µ is a u-L-fuzzy ideal then there exists x ∈ Fu such that µ(x) = inf{µ(a) : a ∈

F}.

Lemma 2.3.15. An L- fuzzy ideal µ of Q is a u-L-fuzzy ideal of Q if and only if µα is a

u-ideal of Q, for all α ∈ L.

Proof. Suppose that µ is a u-L-fuzzy ideal and α ∈ L. Since µ is an L- fuzzy ideal, µα is

an ideal. Let a,b ∈ µα . Then µ(a)∧µ(b)≥ α . Since µ is a u- L- fuzzy ideal, there exists

x ∈ (a,b)u such that µ(x) = µ(a)∧ µ(b). So µ(x) ≥ α . Hence x ∈ µα ∩ (a,b)u and thus

µα ∩ (a,b)u 6= /0. Therefore µα is a u- ideal of Q.

Conversely, suppose that µα is a u- ideal of a poset Q, for all α ∈ L. Then µ is an

L-fuzzy ideal of Q. Let a,b ∈ Q and put α = µ(a)∧ µ(b). Then µα ∩ (a,b)u 6= /0. Let

x ∈ µα ∩ (a,b)u. Then x ∈ µα and x ∈ (a,b)u. This implies that

µ(x)≥ α = µ(a)∧µ(b) and a≤ x, b≤ x.

Since µ is anti-tone, we have µ(a) ≥ µ(x) and µ(b) ≥ µ(x). Thus µ(a)∧ µ(b) ≥ µ(x).

So there exists x ∈ (a,b)u such that µ(x) = µ(a)∧µ(b).

Hence µ is a u-L-fuzzy ideal of Q.
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Corollary 2.3.16. Let (Q,≤) be a poset with 1 and let x ∈Q and α ∈ L. Then the α-level

principal L-fuzzy ideal corresponding to x is a u-L-fuzzy ideal of Q.

Remark 2.3.1. Not every L-fuzzy ideal is a u-L-fuzzy ideal. For example consider the

poset (Q≤) depicted in the Fig. 2.1 below. Define a fuzzy subset µ : Q−→ [0,1] of Q by:

µ(0) = 1, µ(a) = µ(b) = 0.9, µ(c) = µ(d) = µ(1) = 0.7.

Then µ is an L-fuzzy ideal but not a u- L-fuzzy ideal. This is because a,b ∈Q and there is

no x in (a,b)u = {1, ,c,d} such that µ(x) = µ(a)∧µ(b).

Fig. 2.1

However, if Q is a join semi-lattice, then we have

Theorem 2.3.17. Let (Q,≤) be a join-semi-lattice. Then every L-fuzzy ideal of Q is a

u-L-fuzzy ideal of Q.

Proof. Let µ be an L-fuzzy ideal of a join-semi-lattice Q. Let a,b ∈ Q. Since Q is a join

semi-lattice, a∨ b exists and it is clear that a∨ b ∈ (a,b)u and µ(a∨ b) = µ(a)∧ µ(b).

Therefore µ is a u-L-fuzzy ideal of Q.

Theorem 2.3.18. Let µ and θ be u- L-fuzzy ideals of Q. Then the supremum µ ∨θ of µ

and θ in FI (Q) is given by: for all x ∈ Q.

(µ ∨θ)(x) = sup{µ(a)∧θ(b) : x ∈ (a,b)ul}.

Proof. Let σ be an L-fuzzy subset of Q defined by: for each x ∈ Q,
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σ(x) = sup{µ(a)∧θ(b) : x ∈ (a,b)ul}.

We claim that σ is the smallest L-fuzzy ideal of Q containing µ ∪θ .

Let x ∈ Q. Then

σ(x) = sup{µ(a)∧θ(b) : x ∈ (a,b)ul}

≥ µ(x)∧θ(0), (since x ∈ (x,0)ul)

= µ(x)∧1 = µ(x).

Thus σ ⊇ µ . Similarly, we can show σ ⊇ θ . So σ ⊇ µ ∪θ .

Let a,b ∈ Q and x ∈ (a,b)ul . Then

σ(a)∧σ(b) = sup{µ(c)∧θ(d) : a ∈ (c,d)ul}∧ sup{µ(e)∧θ( f ) : b ∈ (e, f )ul}

= sup{µ(c)∧θ(d)∧µ(e)∧θ( f ) : a ∈ (c,d)ul,b ∈ (e, f )ul}

≤ sup{µ(c)∧θ(d)∧µ(e)∧θ( f ) : a,b ∈ (c,d,e, f )ul}

= sup{µ(c)∧µ(e)∧θ(d)∧θ( f ) : a,b ∈ (c,d,e, f )ul}.

Since µ and θ are u-L-fuzzy ideals, for each c,e and d, f , there are r ∈ (c,e)u and s ∈

(d, f )u such that µ(r) = µ(c)∧ µ(e) and θ(s) = θ(d)∧ θ( f ). Since r ∈ (c,e)u and s ∈

(d, f )u, {c,d,e, f}ul ⊆ {s,r}ul . Thus a,b ∈ {s,r}ul . So (a,b)ul ⊆ {s,r}ul and thus x ∈

{s,r}ul . Hence for all x ∈ (a,b)ul, we have

σ(a)∧σ(b) ≤ sup{µ(c)∧µ(e)∧θ(d)∧θ( f ) : a,b ∈ (c,d,e, f )ul}

≤ sup{µ(r)∧θ(s) : x ∈ (r,s)ul}

≤ sup{σ(r)∧σ(s) : x ∈ (r,s)ul}

≤ σ(x)

Therefore σ is an L-fuzzy ideal of Q.
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Let φ be any L-fuzzy ideal of Q such that µ ∪θ ⊆ φ .

Then for any x ∈ Q, we have

σ(x) = sup{µ(a)∧θ(b) : x ∈ (a,b)ul}

≤ sup{φ(a)∧φ(b) : x ∈ (a,b)ul}

≤ φ(x).

Thus σ ⊆ φ . So σ = (µ ∪θ ]Ha = µ ∨θ .

It is known that every L-fuzzy ideal in join-semi-lattice Q is a u-L-fuzzy ideal. There-

fore the following corollary is an easy consequence of the above theorem.

Corollary 2.3.19. Let µ and θ be u- L-fuzzy ideals of a join-semi-lattice Q. Then the

supremum µ ∨θ of µ and θ in FI (Q) is given by:

(µ ∨θ)(x) = sup{µ(a)∧θ(b) : x≤ a∨b}, for all x ∈ Q.

2.4 L-Fuzzy Semi Ideals and V-Ideals

Now we introduce the fuzzy version of semi-ideals and V-ideals of a poset introduced by

Venkatanarasimhan in [51, 52].

Definition 2.4.1. An L- fuzzy subset µ of Q is called an L- fuzzy semi-ideal or L-fuzzy

order ideal, if it satisfies the following conditions:

1. µ(0) = 1;

2. for any a ∈ Q, µ(x)≥ µ(a), for all x ∈ al .

Definition 2.4.2. An L- fuzzy semi-ideal µ of Q is called an L- fuzzy V -ideal, if for any

non-empty finite subset F of Q, if supF exists, then

µ(supF)≥ inf{µ(a) : a ∈ F}.
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Lemma 2.4.1. An L- fuzzy subset µ of Q is an L- fuzzy semi ideal (respectively, V-ideal)

of Q if and only if µα is a semi ideal (respectively, V-ideal) of Q, for all α ∈ L.

Corollary 2.4.2. A subset I of Q is a semi ideal (respectively, V-ideal) of Q if and only if

its characteristic map χI is an L-fuzzy semi ideal (respectively, V-ideal) of Q.

Lemma 2.4.3. The intersection of any family of L-fuzzy semi-ideals ( respectively, V-

ideals) is an L- fuzzy semi-ideal (respectively,V-ideal).

Definition 2.4.3. Let µ be an L- fuzzy subset of a poset Q. The L- fuzzy semi-ideal gener-

ated by µ , denoted by (µ]Se, is the smallest L- fuzzy semi-ideal of Q containing µ .

Definition 2.4.4. Let µ be an L- fuzzy subset of a poset Q. The L- fuzzy V-ideal generated

by µ , denoted by (µ]V , is the smallest L- fuzzy V-ideal of Q containing µ .

Theorem 2.4.4. Let FS I (Q) be the set of all L-fuzzy semi-ideals of a poset Q and µ

be an L fuzzy subset of Q. Then (µ]Se =
⋂
{θ ∈FS I (Q) : µ ⊆ θ}.

Theorem 2.4.5. Let FV I (Q) be the set of all L-fuzzy V-ideals of a poset Q and µ be

an L fuzzy subset of Q. Then (µ]V =
⋂
{θ ∈FV I (Q) : µ ⊆ θ}.

Theorem 2.4.6. Let (A]Se be a semi-ideal generated by a subset A of Q and χA be the

characteristics functions of A. Then (χA]Se = χ(A]Se
.

Theorem 2.4.7. Let (A]V be a semi-ideal generated by a subset A of Q and χA be the

characteristics functions of A. Then (χA]V = χ(A]V .

In the following two theorems we give a characterization of any L-fuzzy semi-ideal

and L-fuzzy V-ideal generated by an L-fuzzy subset of Q in terms of its level subset.

Theorem 2.4.8. For any L-fuzzy subset µ of Q, define an L-fuzzy subset µ̂ of Q by:

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Se}, for all x ∈ Q.

Then µ̂ is an L-fuzzy semi-ideal of Q generated by µ .
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Proof. We show µ̂ is the smallest L-fuzzy semi-ideal containing µ . It is clear that µ ⊆ µ̂

and µ̂(0) = 1. Let a ∈ Q and x ∈ al . Now, let α ∈ L such that a ∈ (µα ]Se. Then since

x ∈ al , we have x ∈ (µα ]Se and hence {α : x ∈ al,a ∈ (µα ]Se} ⊆ {α : x ∈ (µα ]Se}.

Therefore

µ̂(a) = sup{α : a ∈ (µα ]Se} ≤ sup{α : x ∈ (µα ]Se = µ̂(x).

Therefore µ̂ is an L-fuzzy semi-ideal.

Again let θ be any L-fuzzy semi ideal of Q such that µ ⊆ θ . Then µα ⊆ θα , for any

α ∈ L and hence (µα ]Se ⊆ (θα ]Se = θα . So for any x ∈ Q,

µ̂(x) = sup{α ∈ L : x ∈ (µα ]Se} ≤ sup{α ∈ L : x ∈ θα}= θ(x).

Hence µ̂ ⊆ θ . This proves that µ̂ is the smallest L-fuzzy semi ideal containing µ.

Hence µ̂ = (µ]se.

Theorem 2.4.9. For any L-fuzzy subset µ of Q, define an L-fuzzy subset µ̂ of Q by µ̂(x) =

sup{α ∈ L : x ∈ (µα ]V}, for all x ∈ Q. Then µ̂ is an L-fuzzy V-ideal of Q generated by µ .

Proof. Clearly, by Theorem 2.4.8 given above, µ̂ is an L-fuzzy semi ideal containing µ..

Let /0 6= F ⊆ Q and supF exists in Q. Then we have

inf{µ̂(a) : a ∈ F} = inf{sup{αa : a ∈ (µαa ]V} : a ∈ F}

= sup{inf{αa : a ∈ F} : a ∈ (µαa ]V}

Put λ = inf{αa : a∈ F . This implies that λ ≤ αa, for all a∈ F . Therefore (µα ]V ⊆ (µλ ]V

for all a ∈ F . Thus F ⊆ (µλa]V and so supF ∈ (µλa]V . Therefore

inf{µ̂(a) : a ∈ F} = sup{inf{αa : a ∈ F} : a ∈ (µαa]V}

≤ sup{λ ∈ L : supF ∈ (µλ ]V}

= µ̂(supF).
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Therefore µ̂ is an L-fuzzy V-ideal of Q.

Again let θ be any L-fuzzy V-ideal of Q such that µ ⊆ θ . Then it is easy to show that

µ̂ ⊆ θ . Therefore µ̂ = (µ]V .

In the following we give an algebraic characterization of an L-fuzzy semi-ideal gen-

erated by an L-fuzzy subset.

Theorem 2.4.10. Let µ be an L-fuzzy subset of Q. Then the L-fuzzy subset µSe defined

by:

µSe(x) =


1 i f x = 0

sup{µ(a) : a ∈ Q,x ∈ al} i f x 6= 0

, for all x ∈ Q is an L- fuzzy semi-ideal of Q generated by µ .

Proof. Now we claim µSe is the smallest L- fuzzy semi-ideal of Q containing µ . Let

x ∈ Q. Then since x ∈ xl , we have

µ(x)≤ sup{µ(a) : x ∈ al} ≤ µSe(x).

Therefore µ ⊆ µSe. By definition, µSe(0) = 1. Let a ∈ Q and x ∈ al . If a = 0, then x = 0

and hence µSe(a) = 1 = µSe(x). Let a 6= 0. Then

µSe(a) = sup{µ(y) : a ∈ yl}

≤ sup{µ(y) : x ∈ yl} ≤ µSe(x).

Thus µSe is an L- fuzzy semi-ideal of Q. Let θ be any L- fuzzy semi-ideal of Q such that

µ ⊆ θ . Let x ∈ Q. If x = 0, then µSe(0) = 1 = θ(0). Let x 6= 0. Then

µSe(x) = sup{µ(a) : x ∈ al}

≤ sup{θ(a) : x ∈ al} ≤ θ(x)

Hence the claim is true. Therefore µSe = (µ]Se
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Theorem 2.4.10 yields the following.

Theorem 2.4.11. The set FS I (Q) of all L-fuzzy semi-ideal of Q forms a complete

lattice, in which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family {µi : i ∈

∆} of L-fuzzy semi-ideals of Q are given by:

supi∈∆ µi = (
⋃

i∈∆ µi)Se and infi∈∆ µi =
⋂

i∈∆ µi.

Corollary 2.4.12. For any µ and θ in FS I (Q), the supremum µ ∨θ and the infimum

µ ∧θ of µ and θ , respectively are:

µ ∨θ = (µ ∪θ)Se and µ ∧θ = µ ∩θ .

Definition 2.4.5. Let µ be a fuzzy subset of Q and N be a set of positive integers. Define

L-fuzzy subsets C1
µ ,C

2
µ , · · · ,Cn

µ · · · , of Q, inductively, as follow: for each x ∈ Q

C1
µ(x) = sup{

∧
a∈F µ(a) : x≤

∨
F, /0 6= F ⊂⊂ Q and

∨
F exists}

and for each n ∈ N−{1}

Cn
µ(x) = sup{

∧
a∈F Cn−1

µ (a) : x≤
∨

F, /0 6= F ⊂⊂ Q and
∨

F exists}.

Lemma 2.4.13. The set {Cn
µ : n ∈ N} forms a chain and for each n ∈ N, Cn

µ(x) ≥Cn
µ(y)

whenever x≤ y.

Proof. Let x ∈ Q and n ∈ N. Then

Cn+1
µ (x) = sup{

∧
a∈F

Cn
µ(a) : x≤

∨
F, /0 6= F ⊂⊂ Q and

∨
F exists}

≥ Cn
µ(x) (Since x≤ x =

∨
{x} and /0 6= {x} ⊂⊂ Q)

Thus Cn+1
µ (x) ≥ Cn

µ(x) for all x ∈ Q and hence Cn
µ ⊆ Cn+1

µ , for each n ∈ N. So the set

{Cn
µ : n ∈ N} is a chain.
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Let x≤ y. Then

Cn
µ(y) = sup{

∧
a∈F

Cn−1
µ (a) : y≤

∨
F, /0 6= F ⊂⊂ Q and

∨
F exists}

≤ sup{
∧

a∈F

Cn−1
µ (a) : x≤

∨
F, /0 6= F ⊂⊂ Q and

∨
F exists}

= Cn
µ(x)

Therefore Cn
µ(x)≥Cn

µ(y) whenever x≤ y. That is Cn
µ is anti-tone for all n ∈ N.

Now we give a characterization of an L-fuzzy V-ideal generated by an L- fuzzy subset

of a poset Q.

Theorem 2.4.14. The L- fuzzy subset µV defined by: for all x ∈ Q,

µV (x) =


1 i f x = 0

sup{Cn
µ(x) : n ∈ N} i f x 6= 0

is an L-fuzzy V-ideal generated by µ .

Proof. Now we claim that µV is the smallest L-fuzzy ideal containing µ . Let x ∈Q. Then

since x≤ x =
∨
{x} and /0 6= {x} ⊂⊂ Q, we have

µ(x) ≤ sup{
∧

a∈F

µ(a) : x≤
∨

F, /0 6= F ⊂⊂ Q and
∨

F exists}

= C1
µ(x)

≤ sup{Cn
µ(x) : n ∈ N}

≤ µV (x)

Therefore µ ⊆ µV . By definition of µV , we have µV (0) = 1. Let a ∈ Q and x ∈ al . Then

if a = 0 then x = 0 and hence µV (a) = 1 = µV (x). Let a 6= 0. Then

µV (a) = sup{Cn
µ(a) : n ∈ N} ≤ sup{Cn

µ(x) : n ∈ N}= µV (x)
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So µV is an L-fuzzy semi-ideal of Q.

Again let /0 6= F ⊂⊂ Q such that supF exists.

∧
a∈F

µV (a) =
∧

a∈F

sup{Cn
µ(a) :: n ∈ N}

= sup{
∧

a∈F

Cn
µ(a) :: n ∈ N}

≤ sup{Cn+1
µ (supF) : n ∈ N} (since supF ≤ supF)

= µV (supF)

So µV is an L-fuzzy V-ideal of Q.

Again let θ be any L-fuzzy V-ideal of Q such that µ ⊆ θ . Now we show that Cn
µ ⊆ θ

for all n ∈ N. Here we apply mathematical induction. Let x ∈ Q.

C1
µ(x) = sup{

∧
a∈F

µ(a) : x≤ supF, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ sup{
∧

a∈F

θ(a) : x≤ supF, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ sup{θ(supF) : x≤ supF, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ θ(x)

Hence C1
µ ⊆ θ . Therefore the statement is true for n = 1. Assume Cn

µ ⊆ θ for some n > 1.

Cn+1
µ (x) = sup{

∧
a∈F

Cn
µ(a) : x≤ supF, /0 6= F ⊂⊂ Q and

∨
F exists}

≤ sup{
∧

a∈F

θ(a) : x≤ supF, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ sup{θ(supF) : x≤ supF, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ θ(x)

Thus by mathematical induction, we have θ(x) ≥Cn
µ(x) ∀n ∈ N. . So for any x ∈ Q, we

have θ(x)≥ sup{Cn
µ(x) : n ∈ N}= µV (x). Therefore µV ⊆ θ .
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Theorem 2.4.14 yields the following.

Theorem 2.4.15. The set FV I (Q) of all L-fuzzy V-ideal of Q forms a complete lat-

tice under point-wise ordering ” ⊆ ”; in which the supremum supi∈∆µi and the inifimum

infi∈∆ µi of any family {µi : i ∈ ∆} in FV I (Q) respectively are:

supi∈∆µi = (
⋃

i∈∆ µi)V and infi∈∆ µi =
⋂

i∈∆ µi.

Corollary 2.4.16. For any µ and θ ∈FV I (Q) the supremum µ ∨ θ and the infimum

µ ∧θ of µ and θ respectively are:

µ ∨θ = (µ ∪θ)V and µ ∧θ = µ ∩θ .

Now we study the relationships among the types of L-fuzzy ideals introduced in this

chapter.

Theorem 2.4.17. The following implications hold.

1. L- fuzzy closed ideal =⇒ L-fuzzy Frink ideal =⇒ L-fuzzy V -ideal =⇒ L-fuzzy semi-

ideal,

2. L- fuzzy closed ideal =⇒ L-fuzzy Frink ideal =⇒ L-fuzzy ideal =⇒ L- fuzzy semi-

ideal.

Proof. (L- fuzzy closed ideal) =⇒ ( L-fuzzy Frink ideal): It is clear.

(L-fuzzy Frink ideal) =⇒ (L-fuzzy V -ideal ) : Let µ be an L-fuzzy Frink ideal. Then

µ(0) = 1. Let a ∈ Q and x ∈ al . This implies that x ≤ a, and since µ is anti-tone, we

have µ(x) ≥ µ(a). Then µ is an L-fuzzy semi-ideal. Let F be a non-empty subset of

Q such that supF exists. Since supF ∈ Ful and µ is an L-fuzzy Frink ideal, we have

µ(supF)≥ inf{µ(a) : a ∈ F}. This proves that µ is an L-fuzzy V -ideal of Q.

(L-fuzzy Frink ideal) =⇒ (L-fuzzy ideal): Let µ be an L-fuzzy Frink ideal. Then

µ(0) = 1. Let a,b ∈ Q and x ∈ (a,b)ul . Put F = {a,b}. Since F = {a,b} ⊂⊂ Q and µ is

an L Frink ideal, we have µ(x)≥ inf{µ(y) : y ∈ F}= µ(a)∧µ(b). This proves that µ is

an L-fuzzy ideal of Q.
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(L-fuzzy V -ideal) =⇒ (L-fuzzy semi-ideal) and (L-fuzzy ideal) =⇒ (L-fuzzy semi-

ideal are clear.

The following examples show that the converse of the above implications do not hold

in general.

Example 2.4.18. Consider the Poset ([0,1],≤) with the usual ordering. Define a fuzzy

subset µ : [0,1]−→ [0,1] by:

µ(x) =


1 i f x ∈ [0, 1

2)

0 i f x ∈ [1
2 ,1].

Then µ is L-fuzzy Frink ideal but not L- fuzzy closed ideal.

Example 2.4.19. Consider the poset (Q,≤) depicted in the Fig. 2.2 given below. Define

a fuzzy subset µ : Q−→ [0,1] by: µ(0) = 1, µ(a) = µ(b) = 0.8 and µ(c) = 0.6.

Fig. 2.2

Then µ is L-fuzzy V-ideal but not L-fuzzy Frink-ideal. Because, F = {0,a,b} ⊂⊂ Q and

c ∈ Ful = {0,a,b,c} but µ(c) = 0.6� 0.8 = inf{µ(x) : x ∈ F}.

Example 2.4.20. Consider the poset (Q,≤) depicted in the Fig. 2.3 given below. Define

a fuzzy subset µ : Q −→ [0,1] by: µ(0) = µ(a) = 1, µ(a′) = µ(b′) = µ(c′) = µ(d′) =

µ(1) = 0.2, µ(b) = 0.6, µ(c) = 0.5 and µ(d) = 0.7.
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Fig. 2.3

Then µ is L-fuzzy ideal but not L-fuzzy Frink-ideal. Because, F = {0,a,b,c} ⊆ Q and

d′ ∈ Ful = {0,a,b,c,d′} but µ(d′) = 0.2� 0.5 = inf{µ(x) : x ∈ F}.

Example 2.4.21. Consider the poset (Q,≤) depicted in the Fig. 2.4 given below. Define

a fuzzy subset µ : Q −→ [0,1] by: µ(0) = 1, µ(a) = 0.8, µ(b) = 0.9, µ(c) = 0.2 and

µ(1) = 0.

Fig. 2.4

Then µ is L-fuzzy semi-ideal but µ is neither L-fuzzy V -ideal nor L-fuzzy ideal. Since

/0 6= F = {0,a,b} ⊂⊂ Q and supF = c ∈ Q, µ(c) = 0.2 � 0.8 = inf{µ(x) : x ∈ F}, and

since a,b ∈ Q and c ∈ (a,b)ul , but µ(c) = 0.2� 0.8 = µ(a)∧µ(b).

Theorem 2.4.22. Every u- L-fuzzy ideal is an L- fuzzy Frink ideal.
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Proof. suppose µ is a u- L-fuzzy ideal. Then µ(0) = 1. Let F be a finite subset of Q.

If F = /0, then it is clear that Ful = {0} and µ(0) = 1 = inf{µ(x) : x ∈ F}. Let /0 6= F .

Since µ is a u- L-fuzzy ideal, then there is y∈ Fu such that µ(y) = in f{µ(a) : a∈ F}. Let

x∈Ful . Then x≤ s, ∀s∈Fu. Since y∈Fu, x≤ y. Thus µ(x)≥ µ(y) = in f{µ(a) : a∈F}.

So

µ(x)≥ in f{µ(a) : a ∈ F}, for all x ∈ Ful .

Hence µ is an L-fuzzy Frink ideal of Q.

Now we complete this chapter by introducing the following definition of L-fuzzy ideal

of a poset which generalizes all the L-fuzzy ideals of a poset introduced in this chapter.

Definition 2.4.6. Let m be any cardinal number. An L- fuzzy subset µ of Q is an m- L-

fuzzy ideal, if it satisfies the following conditions:

(i) µ(0) = 1,

(ii) for any subset A of Q of cardinality strictly less than m, written as, A⊂m Q,

µ(x)≥ inf{µ(a) : a ∈ A}, ∀x ∈ Aul .

Remark 2.4.1. The following special cases are included in this general definition:

1. Ω-L-fuzzy ideals are L-fuzzy closed ideals, where Ω is a cardinal number greater

than the cardinal number of Q.

2. ω- L-fuzzy ideals-ideals are L-fuzzy Frink ideals, where ω is the smallest infinite

cardinal number.

3. 3- L-fuzzy ideals are L-fuzzy ideals in the sense of Halaś.

4. 2-L-fuzzy ideals are L-fuzzy semi-ideals.

5. L-fuzzy V-ideals are 2-L-fuzzy ideals and if for any non-empty finite subset F of Q,

if supF exists, then µ(supF)≥ inf{µ(a) : a ∈ F}.
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Chapter 3

L-Fuzzy Filters

In this chapter, we introduce the notions of different types of L- fuzzy filters of a poset and

discuss certain properties of them analogous to those of L- fuzzy ideals of a poset. The

different types of L-fuzzy filters of a poset that we introduce in this chapter are general-

izations of the notion of L-fuzzy filters of a lattice. We also prove that the set of each type

of L-fuzzy filters of a poset forms a complete lattice with respect to point-wise ordering.

Throughout this chapter, Q stands for a poset (Q,≤) with 1 unless otherwise stated.

3.1 L-Fuzzy Closed Filters

In this section, we introduce the notion of L-fuzzy closed filters of a poset which is the

fuzzy version of the dual closed or normal ideal of a poset introduced by Birkoff[14].

We also prove and characterize certain elementary properties of L-fuzzy closed filters. In

particular, we prove that the set of all L-fuzzy closed filters of a poset forms a complete

lattice.

Wee start our discussion with the definition of L-fuzzy closed filters of a poset.

Definition 3.1.1. An L-fuzzy subset η of Q is called an L- fuzzy closed filter if it fulfills

the following conditions:

1. η(1) = 1 and

2. for any subset S of Q, η(x)≥ inf{η(a) : a ∈ S} ∀x ∈ Slu.
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In the following we prove that any crisp closed filter of Q can be identified with an L-

fuzzy closed filter of Q.

Lemma 3.1.1. A subset F of Q is a closed filter if and only if its characteristic map χF is

an L-fuzzy closed filter of Q.

Proof. Suppose that F is a closed filter of Q. Since {1} = Qu ⊆ F , we have χF(1) = 1.

Again let S be any subset of Q and x ∈ Slu. Then if S⊆ F , we have x ∈ Slu ⊆ F lu = F and

χF(a) = 1 for all a ∈ S. Therefore

χF(x) = 1 = inf{χF(a) : a ∈ S}.

Again if S* F , then there is c∈ S such that c /∈ F and hence inf{χF(a) : a∈ S}= 0. Thus

χF(x)≥ 0 = inf{χF(a) : a ∈ S}.

Thus in either cases, we have,

χF(x)≥ inf{χF(a) : a ∈ S} for all x ∈ Slu.

Therefore χF is an L-fuzzy closed filter of Q.

Conversely suppose that χF is an L-fuzzy closed filter. Since χF(1) = 1 we have

1 ∈ F , that is Qu = {1} ⊆ F . Let x ∈ F lu. Then, by hypothesis, we have

χF(x)≥ inf{χF(a) : a ∈ F}= 1.

This implies that χF(x) = 1 and hence x ∈ F . Therefore F lu ⊆ F and hence F is a closed

filter of Q.

The following result characterizes any L-fuzzy closed filter of Q in terms of its level

subsets.

Lemma 3.1.2. Let η be in LQ. Then η is an L- fuzzy closed filter of Q if and only if ηα is

a closed filter of Q, for all α ∈ L.

Proof. Let η be an L- fuzzy closed filter of Q and α ∈ L. Then η(1) = 1≥ α and hence

1 ∈ ηα , i.e., Qu = {1} ⊆ ηα . Again let x ∈ (ηα)
lu. Then



3.1. L-Fuzzy Closed Filters 57

η(x)≥ inf{η(a) : a ∈ ηα} ≥ α

so that x ∈ ηα . Therefore (ηα)
lu ⊆ ηα and hence ηα is a closed filter of Q.

Conversely suppose that ηα is a closed filter of Q for all α ∈ L. In particular η1 is a

closed filter of Q. Since {1}= Qu ⊆ η1, we have η(1) = 1. Again let S be any subset of

Q and x ∈ Slu. Put α = inf{η(a) : a ∈ S}. Then η(a)≥ α for all a ∈ S. This implies that

S⊆ ηα and hence x ∈ Slu ⊆ η lu
α = ηα . Therefore

η(x)≥ α = inf{η(a) : a ∈ S}.

Thus η is an L-fuzzy closed filter of Q.

Note that any L- fuzzy closed filter of a poset Q must be necessarily an iso-tone as

shown in the following Lemma.

Lemma 3.1.3. Let η be an L-fuzzy closed filter of a poset Q. Then η is iso-tone, in the

sense that η(x)≤ η(y) whenever x≤ y.

Proof. Let x,y ∈ Q such that x ≤ y. Put η(x) = α . Since η an L- fuzzy closed filter we

have ηα is a closed filter of Q and hence (ηα)
lu = ηα .

Now η(x) = α ⇒ x ∈ ηα ⇒ xu = {x}lu ⊆ (ηα)
lu = ηα .

Thus x≤ y⇒ y ∈ xu⇒ y ∈ ηα and hence η(x) = α ≤ η(y).

Theorem 3.1.4. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by

α
x(y) =


1 i f y ∈ [x)

α i f y /∈ [x),

for all y ∈ Q. Then αx is an L-fuzzy closed filter of Q.

Proof. Since 1 ∈ [x), αx(1) = 1. Let S⊆ Q and y ∈ Slu. If S⊆ [x), then

y ∈ Slu ⊆ [x)lu = xulu = xu = [x) and αx(s) = 1 for all s ∈ S.

This implies that αx(y) = 1 = inf{µ(s) : s ∈ S}.
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If S* [x), then there exists s0 ∈ S such that s0 /∈ [x). This implies that inf{µ(s) : s ∈ S}=

α . Thus αx(y)≥ α = inf{µ(s) : s ∈ S}. So in either cases, we have

αx(y)≥ inf{µ(s) : s ∈ S}, for all y ∈ Slu.

Hence αx is an L-fuzzy closed filter of Q.

Definition 3.1.2. The L-fuzzy closed filter αx defined above is called α-level principal

L-fuzzy closed filter corresponding to x.

Lemma 3.1.5. The intersection of any family of L-fuzzy closed filters of a poset Q is an

L-fuzzy closed filter of Q.

Definition 3.1.3. Let η be an L- fuzzy subset of a poset Q. Then the smallest L- fuzzy

closed filter of Q containing η , denoted by [η)Cl , is called the L- fuzzy closed filter gen-

erated by η .

Theorem 3.1.6. Let FC F (Q) be the set of all L-fuzzy closed filters of a poset Q and η

be an L fuzzy subset of Q. Then [η)Cl =
⋂
{θ ∈FC F (Q) : η ⊆ θ}.

Theorem 3.1.7. Let [S)Cl be a closed filter generated by a subset S of Q and χS be its

characteristics function. Then χ[S)Cl
= [χS)Cl .

Proof. Now we claim that χ[S)Cl
is the smallest L- fuzzy closed filter containing χS. Since

[S)Cl is a closed filter of Q, by lemma 3.1.1, we have χ[S)Cl
is an L- fuzzy closed filter.

Again since S ⊆ [S)Cl , we clearly have χS ⊆ χ[S)Cl
. Let η be any L-fuzzy closed filter

such that χS ⊆ η . Then η(a) = 1 for all a ∈ S. Now we claim that χ[S)Cl
⊆ η . Let x ∈ Q.

If x /∈ [S)Cl , then χ[S)(x) = 0 ≤ η(x). If x ∈ [S)Cl , then x ∈ T lu for some subset T of S.

Therefore

η(x)≥ inf{η(b) : b ∈ T}= 1 = χ[S)Cl
(x).

Hence in either cases, χ[S)Cl
(x) ≤ η(x) for all x ∈ Q and hence χ[S)Cl

⊆ η . Therefore

χ[S)Cl
= [χS)Cl .
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Theorem 3.1.8. An L-fuzzy subset η of Q is an L-fuzzy closed filter if and only if for any

subset S of Q,

η(x)≥ inf{η(s) : s ∈ S} for all x ∈ [S)Cl .

Proof. Suppose that η is an L-fuzzy closed filter of Q. Let S ⊆ Q and x ∈ [S)Cl . . Then

x ∈ Blu for some B⊆ S. Then, since η is an L-fuzzy closed filter of Q, we clearly have

η(x)≥ inf{η(b) : b ∈ B} ≥ inf{η(s) : s ∈ S}.

Thus, for any subset S of Q, we have

η(x)≥ inf{η(s) : s ∈ S} for all x ∈ [S)Cl .

Conversely suppose that η is an L-fuzzy subset of Q satisfying the given condition.

Let S⊆ Q and x ∈ Slu. Then, since Slu ⊆ [S)Cl , by hypothesis, we have

η(x)≥ inf{η(s) : s ∈ S}

In particular, if S = /0, by hypothesis, we have

η(x)≥ inf{η(s) : s ∈ /0}, for all x ∈ [ /0)Cl .

But since in f{η(s) : s ∈ /0}= 1 and [ /0)Cl = {1}, we clearly have η(1) = 1.

Therefore η is an L-fuzzy closed filter of Q.

In the following theorem we characterize an L- fuzzy closed filter generated by an

L-fuzzy subset of Q in terms of its level closed filters.

Theorem 3.1.9. Let η ∈ LQ. Then the L-fuzzy subset η̂ of Q defined by:

η̂(x) = sup{α ∈ L : x ∈ [ηα)Cl}, for all x ∈ Q.

is an L-fuzzy closed filter of Q generated by η , where [ηα)Cl is a closed filter generated

by the set ηα .

Proof. Now we show that η̂ is the smallest L-fuzzy closed filter containing η .

Now for any x ∈ Q, we have
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η(x) = sup{α : x ∈ ηα} ≤ sup{α : x ∈ [ηα)Cl}= η̂(x).

Thus η ⊆ η̂ . It is clear that η̂(1) = 1 Let S be any subset of Q and x ∈ Slu. Then we have

inf{η̂(s) : s ∈ S} = inf{sup{αs : s ∈ [ηαs)Cl} : s ∈ S}

= sup{inf{αs : s ∈ S} : s ∈ [ηαs)Cl}

Put λ = inf{αs : s ∈ S}. Then λ ≤ αs for all s ∈ S. This implies that [ηαs)Cl ⊆ [ηλ )Cl for

all s ∈ S. Therefore S⊆ [ηλ )Cl and so x ∈ Slu ⊆ ([ηλ )Cl)
lu = [µλa)Cl . Hence

inf{η̂(s) : s ∈ S} = sup{inf{αs : s ∈ S} : s ∈ [ηαs)Cl}

≤ sup{λ ∈ L : x ∈ [ηλ )Cl}

= η̂(x).

Therefore η̂ is an L-fuzzy closed filter of Q. Again let θ be any L-fuzzy closed filter of Q

such that η ⊆ θ . Then ηα ⊆ θα for any α ∈ L and hence [ηα)Cl ⊆ [θα)Cl = θα .

Thus for any x ∈ Q, we have

η̂(x) = sup{α ∈ L : x ∈ [ηα)} ≤ sup{α ∈ L : x ∈ θα}= θ(x).

Therefore η̂ ⊆ θ . This proves that η̂ = [η)Cl .

In the following we give an algebraic characterization of an L-fuzzy Closed filter of Q

generated by an L-fuzzy subset of Q.

Theorem 3.1.10. Let η ∈ LQ. Then the L-fuzzy subset ηCl defined by:

ηCl(x) =


1 i f x = 1

sup{infs∈S η(s) : x ∈ Slu,S⊆ Q} i f x 6= 1

is an L-fuzzy closed filter of Q generated by η .
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Proof. It is enough to show that ηCl = η̂ where η̂ is an L-fuzzy subset defined in the

Theorem 3.1.9. Let x ∈ Q. If x = 1 , then η(x) = 1 = η̂(x). Let x 6= 0. Put

Ax = {infs∈S η(s) : S⊆ Q and x ∈ Slu} and Bx = {α : x ∈ [ηα)Cl}.

Now we claim that supAx = supBx. Let α ∈ Ax. Then α = infs∈S η(s) for some subset S

of Q such that x∈ Slu. This implies that α ≤ η(s) for all s∈ S and hence S⊆ ηα ⊆ [ηα)Cl .

Thus x ∈ Slu ⊆ ([ηα)Cl)
lu = [ηα)Cl . This implies that α ∈ Bx and hence Ax ⊆ Bx.

Therefore supAx ≤ supBx.

Again let α ∈ Bx.Then x ∈ [ηα)Cl . Since [ηα)Cl =
⋃
{Slu : S ⊆ ηα}, we have x ∈ Slu

for some subset S of ηα . This implies that η(s)≥ α for all s ∈ S and hence

inf{η(s) : s ∈ S} ≥ α

Thus β = inf{η(s) : s ∈ S} ∈ Ax. Thus for each α ∈ Bx we get β ∈ Ax such that α ≤ β

and hence supAx ≥ supBx. Therefore supAx = supBx and hence ηCl = η̂ .

The above theorem yields the following.

Theorem 3.1.11. Let FC F (Q) be the set of all L-fuzzy closed filters of a poset Q. Then

the pair (FC F (Q),⊆) forms a complete lattice with respect to the point wise ordering

”⊆ ”, in which the supremum supi∈∆µi and the inifimum infi∈∆ ηi of any family {ηi : i∈∆}

in FC F (Q) are given by:

supi∈∆ηi = (
⋃

i∈∆{ηi})Cl and infi∈∆ ηi =
⋂

i∈∆ ηi.

Corollary 3.1.12. For any L-fuzzy closed filters η and ν of Q, the supremum η ∨ν and

the infimum η ∧ν of η and ν in FC F (Q) respectively are:

η ∨ν = (η ∪ν)Cl and η ∧ν = η ∩ν .

3.2 L-Fuzzy Frink Filters

Now we introduce the fuzzy version of a filter (dual ideal) of a poset introduced by O.

Frink [25].
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Definition 3.2.1. An L- fuzzy subset η of Q is an L- fuzzy Firink filter if it satisfies the

following conditions:

1. η(1) = 1 and

2. for any finite subset F of Q, η(x)≥ inf{η(a) : a ∈ F} ∀x ∈ F lu

Lemma 3.2.1. Let η ∈ LQ. Then η is an L− fuzzy Frink filter of Q if and only if ηα is a

Frink filter of Q for all α ∈ L.

Lemma 3.2.2. Let η be fuzzy Frink filter of a poset Q. Then η is iso-tone, in the sense

that η(x)≤ η(y) whenever x≤ y.

Corollary 3.2.3. A subset S of Q is a Frink filter of Q if and only if its characteristic map

χS is an L-fuzzy Frink filter of Q.

The following theorem shows that an L-fuzzy Frink filter of a poset is a natural gen-

eralizations of an L-fuzzy filter of a lattice.

Theorem 3.2.4. Let (Q,≤) be a lattice and η ∈ LQ. Then η is an L- fuzzy Frink filter in

the poset Q if and only if it is an L-fuzzy filter in the lattice Q.

Proof. Let η be an L-fuzzy Frink filter in the poset Q and a,b ∈ Q. Then η(1) = 1 and

since F = {a,b} ⊂⊂ Q and a∧b ∈ F lu, we have

η(a∧b)≥ inf{η(x) : x ∈ F}= η(a)∧η(b).

Again since η is iso-tone, we have

η(a∧b)≤ η(a) and η(a∧b)≤ η(b).

This implies that η(a∧b)≤ η(a)∧η(b) and hence η(a∧b) = η(a)∧η(b).

Therefore η is an L-fuzzy filter in the lattice Q.

Conversely suppose that η ba an L-fuzzy filter in the lattice Q. Then η(1) = 1. Let

F ⊂⊂Q and x ∈ F lu. Then x is an upper bound of F l . Since infF ∈ F l , we have x≥ infF

and hence



3.2. L-Fuzzy Frink Filters 63

η(x)≥ η(infF) = inf{η(a) : a ∈ F}.

Therefore η is an L-fuzzy Frink filter in the poset Q.

Theorem 3.2.5. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by

α
x(y) =


1 i f y ∈ [x)

α i f y /∈ [x),

for all y ∈ Q. Then αx is an L-fuzzy Frink filter of Q.

Lemma 3.2.6. The intersection of any family of L-fuzzy Frink-filters of a poset Q is an

L-fuzzy Frink filter of Q.

Definition 3.2.2. Let η ∈ LQ. The smallest L- fuzzy Frink filter of Q containing η is called

an L- fuzzy Frink filter generated by η and is denoted by [η)Fr.

Theorem 3.2.7. Let FFF (Q) be the set of all L-fuzzy Frink filters of a poset Q and η

be an L fuzzy subset of Q. Then [η)Fr =
⋂
{θ ∈FFF (Q) : η ⊆ θ}.

Theorem 3.2.8. Let [S)Fr be a Frink-filter generated by a subset S of Q and χS be its

characteristic function. Then [χS)Fr = χ[S)Fr .

Theorem 3.2.9. An L-fuzzy subset η of Q is an L-fuzzy Frink filter if and only if for any

finite subset F of Q,

η(x)≥ inf{η(a) : a ∈ F} for all x ∈ [F)Fr.

Proof. Suppose that η is an L-fuzzy Frink filter of Q. Let F ⊂⊂ Q and x ∈ [F)Fr. Then

x ∈ Blu for some B⊆ F . Then, since η is an L-fuzzy Frink filter of Q, we have

η(x)≥ inf{η(a) : a ∈ B} ≥ inf{η(a) : a ∈ F}.

Conversely suppose that η be an L-fuzzy subset satisfying the given condition. Since

/0⊂⊂ Q and 1 ∈ [ /0)Fr, by hypothesis, we have
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η(1)≥ inf{η(a) : a ∈ /0}= 1.

Therefore η(1) = 1. Let F ⊂⊂Q and x ∈ F lu. Then since F lu ⊆ [F)Fr, by hypothesis, we

have η(x)≥ inf{η(a) : a ∈ F}. Therefore η is an L-fuzzy Frink filter of Q.

The following theorem gives a characterization of L-Fuzzy Frink filter generated by

an L- fuzzy subset of Q in terms of its level subset.

Theorem 3.2.10. Let η ∈ LQ. Define an L- fuzzy subset η̂ of Q by:

η̂(x) = sup{α ∈ L : x ∈ [ηα)Fr} for all x ∈ Q,

where [ηα)Fr is a Frink filter generated by ηα . Then η̂ is an L-fuzzy Frink filter of Q

generated by η .

In the following we give an algebraic characterization of L-fuzzy Frink filterss gener-

ated by L-fuzzy subsets.

Theorem 3.2.11. Let η be an L-fuzzy subset of Q. Then the L-fuzzy subset ηFr defined by

ηFr(x) =


1 i f x = 1

sup{infa∈F η(a) : F ⊂⊂ Q, x ∈ F lu} i f x 6= 1

is an L- fuzzy Frink filter of Q generated by η .

Theorem 3.2.12. Let FFF (Q) be the set of all L-fuzzy Frink filters of Q. Then the

pair (FFF (Q),⊆) forms a complete lattice with respect to point wise ordering ” ⊆

”, in which the supremum and the inifimum of any family {ηi : i ∈ ∆} in FFF (Q),

respectively are:

supi∈∆ηi = (
⋃

i∈∆{ηi}Fr and infi∈∆ ηi =
⋂

i∈∆ ηi.

Corollary 3.2.13. For any L-fuzzy Frink filters η and ν of Q, the supremum η ∨ ν and

the infimum η ∧ν of η and ν in FFF (Q), respectively are:

η ∨ν = (η ∪ν)Fr and η ∧ν = η ∩ν .
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3.3 L-Fuzzy Filters in the Sense of Halaś

In this section we introduce the fuzzy version filters of a poset introduced by Halaš [28]

which seems to be a suitable generalization of the usual concept of L-fuzzy filter of a

lattice.

Definition 3.3.1. η ∈ LQ is called an L- fuzzy filter of Q in the sense of Halaś if it fulfills

the following:

1. η(1) = 1 and

2. for any a,b ∈ Q , η(x)≥ η(a)∧η(b) for all x ∈ (a,b)lu

Lemma 3.3.1. η ∈ LQ is an L- fuzzy filter in the sense of Halaś if and only if ηα is a filter

of Q in the sense of Halaś for all α ∈ L.

Corollary 3.3.2. A subset S of Q is a filter of Q in the sense of Halaś if and only if its

characteristic map χS is an L- fuzzy filter of Q in the sense of Halaś.

Lemma 3.3.3. If η is an L- fuzzy filter of Q in the sense of Halaś, then the following

assertions hold:

1. for any x,y ∈ Q, η(x)≤ η(y) whenever x≤ y; i.e., η is iso-tone;

2. for any x,y ∈ Q, η(x∧ y)≥ η(x)∧η(y) whenever x∧ y exists.

The following theorem shows that an L-fuzzy filter of a poset is a natural generaliza-

tions of an L-fuzzy filter of a lattice.

Theorem 3.3.4. Let (Q,≤) be a lattice. Then an L-fuzzy subset η of Q is an L- fuzzy filter

in the sense of Halaś in the poset Q if and only if it is an L-fuzzy filter in the lattice Q.

Proof. Let (Q,≤) be a lattice. Let η be an L-fuzzy filter in the sense of Halaś in the poset

Q and a,b ∈ Q. Then η(1) = 1. Since a∧b ∈ [a∧b) = (a,b)lu, we have

η(a∧b)≥ η(a)∧η(b).
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Also since η is iso-tone, we have

η(a)≥ η(a∧b) and η(b)≥ η(a∧b).

This implies that

η(a)∧η(b)≥ η(a∧b) and so η(a∧b) = η(a)∧η(b).

Hence η is an L-fuzzy filter in the lattice Q.

Conversely, suppose that η is an L-fuzzy filter in the lattice Q. Then η(1) = 1 and

η(a∧ b) = η(a)∧η(b) for any a,b ∈ Q. Now let a,b ∈ Q and x ∈ (a,b)lu. Then x ≥ y,

for all y ∈ (a,b)l . Since a∧b ∈ (a,b)l , we have x≥ a∧b. Thus

η(x)≥ η(a∧b) = η(a)∧η(b).

So η is an L-fuzzy filter in the sense of Halaś in the poset Q. This completes the proof.

Definition 3.3.2. Let η be an L-fuzzy subset of Q. Then the L- fuzzy filter generated by

η in the sense of Halaś, denoted by [η)Ha, is the smallest L- fuzzy filter in the sense of

Halaś containing η .

Lemma 3.3.5. The intersection of any family of L-fuzzy filters of Q in the sense of Halaś

is an L- fuzzy filter of Q in the sense of Halaś.

Theorem 3.3.6. Let FF (Q) be the set of all L-fuzzy filters in the sense of Halaś of a

poset Q and µ be an L fuzzy subset of Q. Then [η)Ha =
⋂
{θ ∈FF (Q) : µ ⊆ θ}.

Theorem 3.3.7. Let [S)Ha be a filter generated by subset S of Q in the sense of Halaś and

χS be its characteristic functions. Then [χS)Ha = χ[S)Ha .

Theorem 3.3.8. An L-fuzzy subset η of Q is an L-fuzzy filter in the sense of Halaś if and

only if for any F ⊂⊂ Q,

η(x)≥
∧

a∈F µ(a) for all x ∈ [F)Ha.
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In the rest of this dissertation by an L- fuzzy filter of a poset will mean an L- fuzzy

filter in the sense of Halaś.

Now we give a characterization of an L- fuzzy filter generated by an L-fuzzy subset of

a poset Q.

Theorem 3.3.9. For any L-fuzzy subset η of Q, define an L-fuzzy subset η̂ of Q by:

η̂(x) = sup{α ∈ L : x ∈ [ηα)Ha}, for all x ∈ Q.

Then η̂ is an L-fuzzy filter of Q generated by η .

Definition 3.3.3. Let η be an L- fuzzy subset of Q and N be a set of positive integers.

Define L-fuzzy subsets of Q inductively as follow:

Bη

1 (x) = sup{η(a)∧η(b) : x ∈ (a,b)lu}

and for each n≥ 2 and a,b ∈ Q

Bη
n (x) = sup{Bη

n−1(a)∧Bη

n−1(b) : x ∈ (a,b)lu}

Lemma 3.3.10. The set {Bη
n : n ∈ N} forms a chain and each Bη

n is isotone.

Proof. Let x ∈ Q and n ∈ N. Then

Bη

n+1(x) = sup{Bη
n (a)∧Bη

n (b) : x ∈ (a,b)lu}

≥ Bη
n (x)∧Bη

n (x) (since x ∈ xu = (x,x)lu)

= Bη
n (x), ∀ x ∈ Q.

Thus Bη
n ⊆ Bη

n+1, for each n ∈ N. So {Bη
n : n ∈ N} is a chain. Again let x,y ∈ Q such that

x≤ y. Now

Bη
n (x) = sup{Bη

n−1(a)∧Bη

n−1(b) : x ∈ (a,b)lu}

≤ sup{Bη

n−1(a)∧Bη

n−1(b) : y ∈ (a,b)lu}= Bη
n (y)

Hence Bη
n is isotone for each n ∈ N.
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Now we give a characterization of an L-fuzzy filterl generated by an L- fuzzy subset

of a poset Q.

Theorem 3.3.11. The L- fuzzy subset ηHa defined by: for all x ∈ Q,

ηHa(x) =


1 i f x = 1

sup{Bη
n (x) : n ∈ N} i f x 6= 1

is an L- fuzzy filter generated by η .

Proof. Now we show that η̂ is the smallest L-fuzzy filter containing η . Let x ∈ Q. Then

ηHa(x) = sup{Bη
n (x) : n ∈ N}

≥ Bη

1 (x)

= sup{η(a)∧η(b) : x ∈ (a,b)lu}

≥ η(x)∧η(x) (since x ∈ (x,x)lu)

= η(x) ∀ x ∈ Q.

Therefore η ⊆ ηHa.

Let a,b∈Q and x∈ (a,b)lu. If a = 1 or b = 1. then b≤ x or a≤ x. Since Bη
n is isotone

for each n ∈ N, we clearly have ηHa(a)∧ηHa(b)≤ ηHa(x). Let a 6= 1 and b 6= 1. Then

ηHa(a)∧ηHa(b) = sup{Bη
n (a) : n ∈ N}∧ sup{Bη

m(b) : m ∈ N}

= sup{Bη
n (a)∧Bη

m(b) : n,m ∈ N}

≤ sup{Bη

k (a)∧Bη

k (b) : k ∈ N} where k = max{m,n}

≤ Bη

k+1(x) (Since x ∈ (a,b)ul)

≤ sup{Bη

k (x) : k ∈ N}

= ηHa(x)

So ηHa is an L-fuzzy filter of Q.
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Again let θ be any L-fuzzy filter of Q such that η ⊆ θ . Now we show that the statement

”Bη
n ⊆ θ for all n ∈ N” is true. Now for any x ∈ Q, we have

Bη

1 (x) = sup{η(a)∧η(b) : x ∈ (a,b)lu}

≤ sup{θ(a)∧θ(b) : x ∈ (a,b)lu} ≤ θ(x)

This implies that Bη

1 ⊆ θ . Hence the statement is true for n = 1. Assume Bη
n ⊆ θ for some

n > 1. Now for any x ∈ Q, we have

Bη

n+1(x) = sup{Bη
n (a)∧Bη

n (b) : x ∈ (a,b)lu}

≤ sup{θ(a)∧θ(b) : x ∈ (a,b)lu}

≤ θ(x).

Thus Bη

n+1 ⊆ θ . Thus, by mathematical induction, we have Bµ
n ⊆ θ for all n ∈ N. Let

x ∈ Q. If x = 1, then we have ηHa(x) = 1 = θ(x). Let x 6= 1. Then

ηHa(x) = sup{Bη
n (x) : n ∈ N} ≤ θ(x)

Hence ηHa ⊆ θ . Therefore ηHa = [η)Ha.

The above theorem yields the following.

Theorem 3.3.12. Let FF (Q) be the set of all L-fuzzy filter of Q. Then

(FF (Q),⊆) forms a complete lattice with respect to the point wise ordering ” ⊆ ”, in

which the supremum and the inifimum of any family {ηi : i ∈ ∆} in FF (Q) respectively

are :

supi∈∆ηi = (
⋃

i∈∆ ηi)Ha and infi∈∆ ηi =
⋂

i∈∆ ηi.

Corollary 3.3.13. For any L-fuzzy filter η and ν of Q, the supremum η ∨ ν and the

inifimum η ∧ν of η and ν in FF (Q) respectively are: for any x ∈ Q,

η ∨ν = (η ∪ν)Ha and η ∧ν = η ∩ν .
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Theorem 3.3.14. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by:

α
x(y) =


1 i f y ∈ [x)

α i f y /∈ [x)

for all y ∈ Q. Then αx is an L-fuzzy filter of Q.

Definition 3.3.4. The L-fuzzy filter αx defined above is called α-level principal fuzzy filter

corresponding to x.

Definition 3.3.5. An L-fuzzy filter µ of a poset Q is called an l-L-fuzzy filter if for any

a,b ∈ Q, there exists x ∈ (a,b)l such that µ(x) = µ(a)∧µ(b).

Lemma 3.3.15. An L− fuzzy filter µ of Q is an l-L- fuzzy filter of Q if and only if µα is

an l-filter of Q for all α ∈ L.

Proof. Suppose that µ is an l-L-fuzzy filter of Q and α ∈ L. Since µ is an L-fuzzy filter,

µα is a filter of Q in the sense of Halaś. Let a,b ∈ µα . Then

µ(a)≥ α and µ(b)≥ α and hence µ(a)∧µ(b)≥ α .

Also since µ is an l- L- fuzzy filter there exists x ∈ (a,b)l such that

µ(x) = µ(a)∧µ(b) and hence µ(x)≥ α .

Therefore x∈ µα ∩(a,b)l and hence µα ∩(a,b)l 6= /0. Therefore µα is an l-filter of a poset

Q.

Conversely suppose µα is an l- filter of a poset Q for all α ∈ L. Then µ is an L- fuzzy

filter. Let a,b ∈ Q and put α = µ(a)∧µ(b). Then µα ∩ (a,b)l 6= /0. Let x ∈ µα ∩ (a,b)l .

Then x ∈ µα and x ∈ (a,b)l . This implies that

µ(x)≥ α = µ(a)∧µ(b) and x≤ a, x≤ b.

Since µ is iso-tone we have µ(x)≤ µ(a) and µ(x)≤ µ(b) and hence µ(x)≤ µ(a)∧µ(b).

Therefore there exists x ∈ (a,b)l such that µ(x) = µ(a)∧ µ(b). Therefore µ is an l-L-

fuzzy filter.
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Corollary 3.3.16. Let (Q,≤) be a poset with 0 and let x ∈Q and α ∈ L. Then the α-level

principal fuzzy filter corresponding to x is an l-L-fuzzy filter.

Remark 3.3.1. Not every L-fuzzy filter is an l-L-fuzzy filter. For example consider the

poset (Q≤) depicted in the Fig. 3.1 below and define a fuzzy subset η : Q−→ [0,1] by:

η(1) = 1, η(c) = η(d) = 0.9, η(a) = η(b) = η(0) = 0.2.

Then η is an L-fuzzy filter which is not an l- L-fuzzy filter. This is because c,d ∈ Q and

there is no x in (c,d)l = {0, ,a,b} such that η(x) = η(c)∧η(d).

Fig. 3.1

However, if Q is a meet semi-lattice, then we have

Theorem 3.3.17. Let (Q,≤) be a meet-semi-lattice. Then every L-fuzzy filter of Q is an

l-L-fuzzy filter of Q.

Proof. Let η be an L-fuzzy filter of a meet-semi-lattice Q. Let a,b∈Q. Since Q is a meet-

semi-lattice, a∧ b exists and it is clear that a∧ b ∈ (a,b)l and η(a∧ b) = η(a)∧η(b).

Therefore η is an l-L-fuzzy filter of Q.

Theorem 3.3.18. Let η and ν be l- L-fuzzy filters of Q. Then the supremum η ∨ν of η

and ν in FF (Q) is given by:

(η ∨ν)(x) = sup{η(a)∧ν(b) : x ∈ (a,b)lu} for all x ∈ Q.
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Proof. Let σ be an L-fuzzy subset of Q defined by σ(x)= sup{η(a)∧ν(b) : x∈ (a,b)lu} ∀x∈

Q. Now we claim σ is the smallest L-fuzzy filter of Q containing η ∪ν . Let x ∈ Q. Then

σ(x) = sup{η(a)∧ν(b) : x ∈ (a,b)lu}

≥ η(x)∧ν(1), (since x ∈ (x,1)lu)

= η(x)∧1 = η(x)

and hence σ ⊇ η . Similarly we can show that σ ⊇ ν . Therefore σ ⊇ η ∪ν .

Let a,b ∈ Q and x ∈ (a,b)lu. Then

σ(a)∧σ(b) = sup{η(c)∧ν(d) : a ∈ (c,d)lu}∧ sup{η(e)∧ν( f ) : b ∈ (e, f )lu}

= sup{η(c)∧ν(d)∧η(e)∧ν( f ) : a ∈ (c,d)lu,b ∈ (e, f )lu}

≤ sup{η(c)∧η(e)∧ν(d)∧ν( f ) : a,b ∈ (c,d,e, f )lu}

Again since η and ν are l-L-fuzzy filters, for each c,e and d, f there are r ∈ (c,e)l and

s ∈ (d, f )l such that η(r) = η(c)∧η(e) and ν(s) = ν(d)∧ν( f ). Now

r ∈ (c,e)land s ∈ (d, f )l ⇒ {c,d,e, f}lu ⊆ {s,r}lu

⇒ a,b ∈ {s,r}lu

⇒ (a,b)lu ⊆ {s,r}lu

⇒ x ∈ {s,r}lu

Thus σ(a)∧σ(b) ≤ sup{η(c)∧η(e)∧ν(d)∧ν( f ) : a,b ∈ (c,d,e, f )lu}

≤ sup{η(r)∧ν(s) : x ∈ (r,s)lu}

≤ sup{σ(r)∧σ(s) : x ∈ (r,s)lu}

≤ σ(x)

Therefore σ is an L-fuzzy filter of Q.
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Let φ be any L-fuzzy filter of Q such that η ∪ν ⊆ φ . Now for any x ∈ Q, we have

σ(x) = sup{η(a)∧ν(b) : x ∈ (a,b)lu}

≤ sup{φ(a)∧φ(b) : x ∈ (a,b)lu}

≤ φ(x)

and hence σ ⊆ φ . Therefore σ = [η ∪ν)Ha = η ∨ν , that is σ is the supremum of η and

ν in FF (Q).

It is known that every L-fuzzy filter in meet-semi-lattice Q is an l-L-fuzzy filter.

Therefore the following corollary is an easy consequence of the above theorem.

Corollary 3.3.19. Let η and ν be l- L-fuzzy ideals of a meet-semi-lattice Q. Then the

supremum η ∨ν of η and ν in FF (Q) is given by:

(η ∨ν)(x) = sup{η(a)∧ν(b) : a∧b≤ x}, for all x ∈ Q.

3.4 L-Fuzzy Semi Filterss and V-Filters

In this section we introduce the fuzzy version of semi-filters and V-filters of a poset intro-

duced by P.V. Venkatanarasimhan in [51] and in [52].

Definition 3.4.1. η in LQ is said to be an L-fuzzy semi-filter or L-fuzzy order filter if it

satisfies the following conditions:

1. η(1) = 1;

2. for any a ∈ Q, η(x)≥ η(a), for all x ∈ au.

Definition 3.4.2. An L- fuzzy semi-filter η of Q is called an L- fuzzy V -filter, if for any

non-empty finite subset F of Q, if infF exists, then

η(infF)≥ inf{η(a) : a ∈ F}.
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Lemma 3.4.1. An L- fuzzy subset η of Q is an L- fuzzy semi filter (respectively, L-fuzzy

V -filter) of Q if and only if ηα is a semi-filter (respectively, V -filter) of Q, for all α ∈ L.

Corollary 3.4.2. A subset S of Q is a semi filter (V-filter) of Q if and only if its character-

istic map χS is an L-fuzzy semi filter (respectively, L- fuzzy V-filter) of Q.

Lemma 3.4.3. The intersection of any family of L-fuzzy semi-filters (respectively, L-fuzzy

V -filters) of Q is an L- fuzzy semi-filter (respectively, L-fuzzy V -filter).

Definition 3.4.3. Let η be an L- fuzzy subset of a poset Q. The smallest L- fuzzy semi-

filter of Q containing η is called an L- fuzzy semi-filter generated by η and is denoted by

[µ)Se.

Definition 3.4.4. Let η be an L- fuzzy subset of a poset Q. The smallest L- fuzzy V-filter

of Q containing η is called an L- fuzzy V-filter generated by η and is denoted by [µ)V .

Theorem 3.4.4. Let FS F (Q) be the set of all L-fuzzy semi-filters of a poset Q and η

be an L fuzzy subset of Q. Then [µ)Se =
⋂
{θ ∈FS F (Q) : η ⊆ θ}.

Theorem 3.4.5. Let FV F (Q) be the set of all L-fuzzy V-filters of a poset Q and η be an

L fuzzy subset of Q. Then [η)V =
⋂
{θ ∈FV F (Q) : η ⊆ θ}.

Theorem 3.4.6. Let [A)Se be a semi-filter generated by a subset A of Q and χA be the

characteristics functions of A. Then χ[A)Se
= [χA)Se.

Theorem 3.4.7. Let [A)V be a semi-filter generated by a subset A of Q and χA be the

characteristics functions of A. Then [χA)V = χ[A)V .

In the following two theorems we give a characterization of any L-fuzzy semi-filter

and L-fuzzy V-filter generated by an L-fuzzy subset of Q in terms of their level subsets.

Theorem 3.4.8. For any L-fuzzy subset η of Q, define an L-fuzzy subset η̂ of Q by:

η̂(x) = sup{α ∈ L : x ∈ [µα)Se}, for all x ∈ Q.
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Then η̂ is an L-fuzzy semi-filter of Q generated by η .

Proof. We show that η̂ is the smallest L-fuzzy semi-filter containing µ . It is clear that

η ⊆ η̂ and η̂(1) = 1.

Now let a ∈ Q, x ∈ au. Again let α ∈ L such that a ∈ [ηα)Se. Then since x ∈ au and

a ∈ [ηα)Se imply that x ∈ [ηα)Se. So {α : a ∈ [ηα)Se} ⊆ {α : x ∈ [ηα)Se and hence

η̂(a) = sup{α : a ∈ [ηα)Se} ≤ sup{α : x ∈ [ηα)Se = η̂(x).

Therefore η̂ is an L-fuzzy semi-filter.

Again let θ be any L-fuzzy semi filter of Q such that η ⊆ θ . Then ηα ⊆ θα , for any

α ∈ L and hence [ηα)Se ⊆ [θα)Se = θα . So for any x ∈ Q,

η̂(x) = sup{α ∈ L : x ∈ [ηα)Se} ≤ sup{α ∈ L : x ∈ θα}= θ(x).

Hence η̂ ⊆ θ . Therefore η̂ = [η)se.

Theorem 3.4.9. For any L-fuzzy subset η of Q, define an L-fuzzy subset η̂ of Q by η̂(x) =

sup{α ∈ L : x ∈ [ηα)V}, for all x ∈ Q. Then η̂ is an L-fuzzy V-ideal of Q generated by η .

In the following we give an algebraic characterization of an L-fuzzy semi-filter gener-

ated by an L-fuzzy subsets.

Theorem 3.4.10. Let η be an L-fuzzy subset of Q. Then the L-fuzzy subset ηSe defined

by:

ηSe(x) =


1 i f x = 1

sup{η(a) : a ∈ Q,x ∈ au} i f x 6= 1

, for all x ∈ Q is an L- fuzzy semi-filter of Q generated by η .

Proof. Now we claim ηSe is the smallest L- fuzzy semi-filter of Q containing η . Let

x ∈ Q. If x = 1, then η(x) ≤ 1 = ηSe(x). Let x 6= 1. Then since x ∈ xu, we have η(x) ≤

sup{η(a) : a ∈ Q,x ∈ au}= ηSe(x). Therefore η ⊆ ηSe.
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Again let a ∈ Q such that x ∈ au. Now if x = 1, then, by definition of ηSe, we have

ηSe(a)≤ 1 = ηSe(x). Let x 6= 1. Since a≤ x, it is clear that a 6= 1 and hence

ηSe(a) = sup{η(b) : b ∈ Q,a ∈ bu}

≤ sup{η(b) : b ∈ Q,x ∈ bu} (...since x ∈ au)

= ηSe(x).

Thus ηSe is an L- fuzzy semi-filter of Q. Let θ be any L- fuzzy semi-filter of Q such that

η ⊆ θ . Let x ∈ Q. If x = 1, then ηSe(1) = 1 = θ(1). Let x 6= 1. Then

ηSe(x) = sup{η(a) : a ∈ Q,x ∈ au}

≤ sup{θ(a) : a ∈ Q,x ∈ au}

≤ θ(x), as θ is an L- fuzzy semi-filter of Q.

Hence the claim is true. Therefore ηSe = (η ]Se.

The above theorem yields the following.

Theorem 3.4.11. The set FS F (Q) of all L-fuzzy semi-filters of Q forms a complete

lattice, in which the supremum supi∈∆ηi and the inifimum infi∈∆ ηi of any family {ηi : i ∈

∆} of L-fuzzy semi-filters of Q are given by:

supi∈∆ ηi = (
⋃

i∈∆ ηi)Se and infi∈∆ ηi =
⋂

i∈∆ ηi.

Corollary 3.4.12. For any η and ν in FS F (Q), the supremum η ∨ν and the infimum

η ∧ν of η and ν , respectively are:

η ∨ν = (η ∪ν)Se and η ∧ν = η ∩ν .

Definition 3.4.5. Let η be an L- fuzzy subset of Q and N be a set of positive integers.

Define L-fuzzy subsets B1
η ,B

2
η , · · · ,Bn

η · · · , of Q, inductively, as follow: for each x ∈ Q

B1
η(x) = sup{

∧
a∈F η(a) :

∧
F ≤ x, /0 6= F ⊂⊂ Q and

∧
F exists}



3.4. L-Fuzzy Semi Filterss and V-Filters 77

and for each n ∈ N−{1},

Bn
η(x) = sup{

∧
a∈F Bn−1

η (a) :
∧

F ≤ x, /0 6= F ⊂⊂ Q and
∧

F exists}

Lemma 3.4.13. The set {Bn
η : n ∈ N} forms a chain and for each n ∈ N, Bn

η(x) ≤ Bn
η(y)

whenever x≤ y.

Proof. Let x ∈ Q and n ∈ N. Then

Bn+1
η (x) = sup{

∧
a∈F

Bn
η(a) :

∧
F ≤ x, /0 6= F ⊂⊂ Q and

∧
F exists}

≥ Bn
η(x) (Since

∧
{x}= x≤ x and {x} ⊂⊂ Q

= Bn
η(x), ∀ x ∈ Q.

Therefore Bn
η ⊆ Bn+1

η , for each n ∈ N. So {Bn
η : n ∈ N} is a chain.

Let x≤ y. Then

Bn
η(x) = sup{

∧
a∈F

Bn−1
η (a) :

∧
F ≤ x, /0 6= F ⊂⊂ Q and

∧
F exists}

≤ sup{
∧

a∈F

Bn−1
η (a) :

∧
F ≤ y, /0 6= F ⊂⊂ Q and

∧
F exists}

= Bn
η(y)

Therefore Bn
η(x)≤ Bn

η(y) whenever x≤ y. That is Cn
µ is isotone for all n ∈ N.

Now we give a characterization of an L-fuzzy V-filter generated by an L- fuzzy subset

of a poset Q.

Theorem 3.4.14. The L- fuzzy subset ηV defined by: for all x ∈ Q,

ηV (x) =


1 i f x = 1

sup{Bn
η(x) : n ∈ N} i f x 6= 1

is an L-fuzzy V-filter generated by η .
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Proof. Now we claim that ηV is the smallest L-fuzzy ideal containing η . Let x ∈Q. Then

since
∧
{x}= x≤ x and /0 6= {x} ⊂⊂ Q, we have

η(x) ≤ sup{
∧

a∈F

µ(a) :
∧

F ≤ x, /0 6= F ⊂⊂ Q and
∧

F exists}

= B1
η(x)

≤ sup{Bn
η(x) : n ∈ N}

≤ ηV (x)

Therefore η ⊆ ηV . By definition of ηV , we have ηV (1) = 1. Let a ∈ Q and x ∈ au. Then

if a = 1 then x = 1 and hence ηV (a) = 1 = ηV (x). Let a 6= 1. Then

ηV (a) = sup{Bn
η(a) : n ∈ N} ≤ sup{Bn

η(x) : n ∈ N}= ηV (x)

. So ηV is an L-fuzzy semi-filter of Q.

Again let /0 6= F ⊂⊂ Q such that infF exists.

∧
a∈F

ηV (a) =
∧

a∈F

sup{Bn
η(a) :: n ∈ N}

= sup{
∧

a∈F

Bn
η(a) :: n ∈ N}

≤ Bn+1
η (infF) (since infF ≤ infF)

≤ sup{Bn
η(infF) : n ∈ N}

= ηV (infF)

So ηV is an L-fuzzy V-filter of Q.

Again let θ be any L-fuzzy V-filter of Q such that η ⊆ θ . Now we show that Bn
η ⊆ θ

for all n ∈ N. Let x ∈ Q. Then

B1
η(x) = sup{

∧
a∈F

η(a) : infF ≤ x, /0 6= F ⊂⊂ Q and
∧

F exists}
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≤ sup{
∧

a∈F

θ(a) : infF ≤ x, /0 6= F ⊂⊂ Q and
∧

F exists}

≤ sup{
∧

a∈F

θ(infF) : infF ≤ x, /0 6= F ⊂⊂ Q and
∧

F exists}

≤ θ(x)

Therefore B1
η ⊆ θ Hence the statement is true for n = 1.

Assume Bn
η ⊆ θ for some n > 1.

Bn+1
η (x) = sup{

∧
a∈F

Cn
η(a) : x≤ supF, /0 6= F ⊂⊂ Q and

∨
F exists}

≤ sup{
∧

a∈F

θ(a) : infF ≤ x, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ sup{θ(supF) : x≤ supF, /0 6= F ⊂⊂ Q and
∨

F exists}

≤ θ(x)

Thus, by mathematical induction, we have θ(x)≥ Bn
η(x) ∀n ∈ N. . So for any x ∈ Q, we

have

θ(x)≥ sup{Bn
η(x) : n ∈ N}= ηV (x). Therefore ηV ⊆ θ .

Theorem 3.4.14 yields the following.

Theorem 3.4.15. The set FV F (Q) of all L-fuzzy V-filter of Q forms a complete lat-

tice under point-wise ordering ” ⊆ ”; in which the supremum supi∈∆ηi and the inifimum

infi∈∆ ηi of any family {ηi : i ∈ ∆} in FV F (Q) respectively are:

supi∈∆ηi = (
⋃

i∈∆ ηi)V and infi∈∆ ηi =
⋂

i∈∆ ηi.

Corollary 3.4.16. For any η and ν ∈FV F (Q) the supremum η ∨ ν and the infimum

η ∧ν of η and ν respectively are:

η ∨ν = (η ∪ν)V and η ∧ν = η ∩ν .

Now we study the relationships among types of L-fuzzy filters introduced in this chap-

ter.



80 Chapter 3. L-Fuzzy Filters

Theorem 3.4.17. The following implications hold.

1. L-fuzzy closed filter =⇒L- fuzzy Frink filter =⇒ L-fuzzy V -filter =⇒ L-fuzzy semi-

filter.

2. L- fuzzy closed filter =⇒ L-fuzzy Frink filter =⇒ L-fuzzy filter =⇒ L- fuzzy semi-

filter.

The following examples show that the converse of the above implications do not hold

in general.

Example 3.4.18. Consider the poset ([0,1],≤) with the usual ordering. Define a fuzzy

subset η : [0,1]−→ [0,1] by

η(x) =


1 i f x ∈ (1

2 ,1]

0 i f x ∈ [0, 1
2 ]

Then η is an L- fuzzy Frink filter but not an L- fuzzy closed filter.

Example 3.4.19. Consider the poset (Q,≤) depicted in the Fig. 3.2 below. Define a fuzzy

subset ν : Q−→ [0,1] by:

ν(1) = ν(a′) = 1, ν(a) = ν(b) = ν(c) = ν(d) = ν(0) = 0.2, ν(b′) = 0.6, ν(c′) = 0.5

and ν(d′) = 0.7.

Fig. 3.2
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Then ν is an L- fuzzy filter but not an L- fuzzy Frink-filter.

This is because F = {1,a′,b′,c′} ⊂⊂ Q and d ∈ F lu = {1,a′,b′,c′,d} but ν(d) = 0.2 �

0.5 = inf{ν(x) : x ∈ F}

Example 3.4.20. Consider the poset (Q,≤) depicted in the Fig. 3.3 below. Define a fuzzy

subset θ : Q−→ [0,1] by θ(U) = 1, θ(L) = θ(M) = 0.8 and θ(N) = 0.6.

Figure 3.3

Then θ is an L- fuzzy V-filter but not an L- fuzzy Frink-filter.

This is because F = {U,L,M}⊂⊂Q and N ∈ F lu = {U,L,M,N} but θ(N) = 0.6� 0.8=

inf{θ(x) : x ∈ F}.

Example 3.4.21. Consider the poset (Q,≤) depicted in the Fig. 3.4 below. Define a fuzzy

subset σ : Q−→ [0,1] by σ(1) = 1, σ(a) = 0.8, σ(b) = 0.9 and σ(0) = 0.2.

Fig. 3.4

Then σ is an L-fuzzy semi-filter but not an L-fuzzy filter. This is because a,b ∈ Q and

0 ∈ (a,b)lu but σ(0) = 0.2� 0.8 = σ(a)∧σ(b).

Theorem 3.4.22. Every l-L-fuzzy filter of a poset Q is an L- fuzzy Frink filter of Q.
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Proof. suppose that η is an l-L-fuzzy filter. Let F be a finite subset of Q.

Then there exists y ∈ F l such that η(y) = in f{η(a) : a ∈ F}.

Again x ∈ F lu ⇒ s≤ x ∀s ∈ F l

⇒ y≤ x (since y ∈ F l)

⇒ η(x)≥ η(y) = in f{η(a) : a ∈ F}

Therefore η is an L-fuzzy Frink filter of Q.

Now we complete this chapter by introducing the following definition which general-

ize all the L-fuzzy filters of a poset introduced in this chapter.

Definition 3.4.6. An L- fuzzy subset η of Q is an m- L- fuzzy filter, if it satisfies the

following conditions:

(i) η(0) = 1,

(ii) for any subset A of Q of cardinality strictly less than m, written as, A⊂m Q,

η(x)≥ inf{η(a) : a ∈ A}, ∀x ∈ Alu, where m is any cardinal.

Remark 3.4.1. The following special cases are included in this general definition:

1. Ω-L-fuzzy filters are L-fuzzy closed filters, where Ω is a cardinal number greater

than the cardinal number of Q.

2. ω- L-fuzzy filters-ideals are L-fuzzy Frink filters, where ω the smallest infinite car-

dinal number.

3. 3- L-fuzzy filters are L-fuzzy filters in the sense of Halaś.

4. 2-L-fuzzy filters are L-fuzzy semi-filters.

5. L-fuzzy V-filters are 2-L-fuzzy filters and if for any non-empty finite subset F of Q,

if infF exists, then η(infF)≥ inf{η(a) : a ∈ F}.
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Chapter 4

L-Fuzzy Prime and Maximal L-Fuzzy

Ideals

A prime ideal in a poset was introduced by Halaś and Rachůnek [30] in 1995. Next

in 2006, Erné [22] did a systematic investigation and comparison of various prime and

maximal ideal theorems in partially ordered sets. He proved that the following conditions

are equivalent on poset Q.

1. For each ideal I and each down-directed subset D of Q disjoint from I, there is a

prime ideal containing I and disjoint from D.

2. Each ideal of Q is an intersection of prime ideals.

3. For a,b ∈ Q with a� b, there is a prime ideal P with a /∈ P but b ∈ P.

4. Q is ideal distributive.

Also, the theory of prime ideals in a poset has been further developed by V. S. Kharat and

K. A. Mokbel [34] in 2009, Joshi and Mundlik [32] in 2013 and Erné and Joshi [24] in

2015.

On the other hand, U. M. Swamy and K. L. N. Swamy [47] introduced the concept of

L-fuzzy prime ideals in rings and U. M. Swamy and D. V. Raju [46] in lattices with truth

values in a complete lattice satisfying the infinite meet distributive law and latter Koguep
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et al. [36] discussed certain properties of prime fuzzy ideals of lattices when the truth

values are taken from the interval [0,1] of real numbers.

We have already introduced several generalizations of L-fuzzy ideals and filters of a

lattice to an arbitrary poset in chapter 2 and 3, respectively. In this chapter, by choosing,

the L-fuzzy ideals and filters of a poset in the sense of Halaš as L-fuzzy ideals and filters

of a poset, we introduce and present certain comprehensive results on the notion of L-

fuzzy prime ideals, prime L-fuzzy ideals, maximal L-fuzzy ideals and L-fuzzy maximal

ideals by applying the general theory of algebraic fuzzy systems introduced in [48] and

[49]. We also study the existence of L-fuzzy prime ideals and prime L-fuzzy ideals in the

lattice (FI (Q),⊆) of L-fuzzy ideals of a poset.

4.1 Prime and Maximal Ideals

In this section, we recall some definitions and crisp concepts of prime and maximal ideals

of a poset from a literature that will be extended to the notions of L-fuzzy prime ideals,

prime and maximal L-fuzzy ideals of a poset in the further sections of this chapter.

An ideal I (respectively, a filter F) of a poset Q is called proper if I 6= Q (respectively,

F 6= Q). Now, we consider the concept of a prime ideal introduced by Halaš[28] and

Halaš and Rachůnek [30] as given in the following

Definition 4.1.1 ([30]). A proper ideal P of a poset Q is called prime, if for all a,b ∈ Q,

(a,b)l ⊆ P implies a ∈ P or b ∈ P.

The set of all prime ideals of a poset Q is denoted by P(Q). A proper ideal I of a

poset Q is prime if it is a prime element in the lattice I (Q) of ideals of a poset Q, as we

show in the next result.

Theorem 4.1.1. A proper ideal P of a poset Q is prime if and only if for any two ideals

I,J of Q with I∩ J ⊆ P, we have I ⊆ P or J ⊆ P.
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Proof. Suppose that P is a prime ideal and I and J be ideals of Q such that I∩J ⊆ P. Now

we claim either I⊆P or J⊆P. Suppose on the contrary that I∩J⊆P and I*P and J*P.

Then three exist elements a ∈ I and b ∈ J such that a,b /∈ P. Then, by the hypothesis,

(a,b)l * P. Since (a,b)l ⊆ al ⊆ I and (a,b)l ⊆ bl ⊆ J, we have (a,b)l ⊆ I∩J ⊆ P, which

is a contradiction. Hence the claim is true.

Conversely, suppose that let a,b∈Q such that (a,b)l ⊆P. Then (a]∩(b] = (a,b)l ⊆P.

Then, by the hypothesis, we have either (a] ⊆ P or (b] ⊆ P and so, a ∈ P or b ∈ P.

Therefore P is a prime ideal of Q.

Definition 4.1.2. [30] A proper filter P of a poset Q is called prime if for all a,b ∈ Q,

(a,b)u ⊆ I implies a ∈ P or b ∈ P.

Dually, a proper filter F of a poset Q is prime if it is a prime element in the lattice

F (Q) of filters of a poset Q, as we show in the next result.

Theorem 4.1.2. A proper filter P of a poset Q is prime if and only if for any two filters

F,G of Q with F ∩G⊆ P, we have F ⊆ P or G⊆ P.

Definition 4.1.3. For an ideal I of a poset Q and a ∈ Q, we define the set

I : a = {x ∈ Q : (a,x)l ⊆ I}

Lemma 4.1.3. Let I be an ideal of a poset Q. Then I : a is a semi-ideal of Q for any a∈Q.

Proof. Let I be an ideal of a poset Q. Since (a,0)l = {0} ⊆ I, 0 ∈ I : a. Again let x,y ∈Q

such that y ≤ x with x ∈ I : a. Then (a,x)l ⊆ I which implies (a,y)l ⊆ (a,x)l ⊆ I. Hence

y ∈ I : a.

Remark 4.1.1. For an ideal I of Q, I : a need not be an ideal of Q for all a ∈ Q. For

example consider the poset depicted in the Fig. 4.1 given below.
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Fig. 4.1

Consider the ideal I = {0,a} of Q, but I : d = {0,a,b,c} is not an ideal as

(a,b)ul = el = Q* I : d

Lemma 4.1.4. [34] Let I be an ideal of a poset Q and a,b,x ∈ Q. Then (a,b)l ⊆ I : x if

and only if (x,a,b)l ⊆ I.

Proof. Suppose that (a,b)l ⊆ I : x. Let z ∈ (x,a,b)l . Then, as (x,a,b)l ⊆ (a,b)l , we have

z ∈ I : x. This implies that z ∈ (x,z)l ⊆ I. Therefore (x,a,b)l ⊆ I.

Conversely suppose that (x,a,b)l ⊆ I. Let z ∈ (a,b)l . Then it is clear that (z,x)l ⊆

(x,a,b)l ⊆ I. This implies that z ∈ I : x. Therefore (a,b)l ⊆ I : x.

Lemma 4.1.5. [32] Let I be an ideal of an atomic poset Q and let p be a dually distributive

atom of Q such that p /∈ I. Then I : p is a u-ideal.

The following theorem is on the existence of prime ideals in atomic posets whose

proof is given from V. Joshi, N. Mundlik work in[32].

Theorem 4.1.6. [The existence of prime ideals in atomic posets]

Let Q be an atomic poset and let p be an atom of Q. If p is a dually distributive element

of Q such that p /∈ I for an ideal I, then there exists a prime u-ideal P such that I ⊆ P and

p /∈ P. Conversely, for any ideal I such that p /∈ I, if there exists a prime ideal P such that

I ⊆ P and p /∈ P then p is a dually distributive element.
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Definition 4.1.4. A proper ideal M of a poset Q is called a maximal ideal if the only ideal

properly containing M is Q. That is, a proper ideal M of Q is called maximal ideal of if,

for any ideal I of Q, M ⊆ I implies that either M = I or I = Q.

The set of all maximal ideals of a poset Q is denoted by M ax(Q).

Note that the existence of maximal ideals in a poset Q is not guaranteed. Consider the

following example.

Example 4.1.7. Let Q be a chain without largest element. If M is a proper ideal of Q,

then we can choose a∈Q−M and another element b∈Q such that a < b. Then, it can be

easily checked that (a] is a proper ideal of Q containing M properly; that is, M $ (a]$Q

and hence M is not a maximal ideal of Q. Therefore Q has no maximal ideals.

However, if a poset Q possesses 1 then, by Zorn’s Lemma, there exists a maximal

ideal in Q.

A maximal ideal of a poset need not be a prime ideal. For, consider the following.

Example 4.1.8. Consider the poset depicted in the Fig. 3.2 given in chapter 3. M =

{0,a,b,c,d} is a maximal ideal because for each x ∈ Q−M there exists y ∈M such that

(x,y)ul = Q. But M is not a prime ideal, since (a′,b′)l = {0,c,d} ⊆ M and a′ /∈ M and

b′ /∈M.

How ever, if the posrt Q is an ideal distributive poset, then every maximal ideal of X

is a prime ideal.

Theorem 4.1.9. Let Q be an ideal distributive poset and M be a maximal ideal of Q. Then

M is a prime ideal.

Proof. Let M be a maximal ideal of Q. Then, by definition, M 6= Q. Let a,b ∈ Q such

that (a,b)l ⊆M. Now we claim that either a ∈M or b ∈M . Suppose on the contrary that

a /∈ M and b /∈ M. Then, by maximality of M, we have M ∨ (a] = Q and M ∨ (b] = Q.

Now (a,b)l ⊆M⇒ (a]∩ (b]⊆M. Since Q is an ideal distributive poset, (I (Q),⊆) is a

distributive lattice and hence
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M = M∨ ((a]∩ (b]) = (M∨ (a])∩ (M∨ (b]) = Q

which is a contradiction. Hence the claim is true. Therefore M is a prime ideal of Q.

4.2 L-Fuzzy Prime Ideals

In this section we introduce the notion of L-fuzzy prime ideals of a poset which is the

fuzzy version of prime ideals which was introduced by Halaś and Rachůnek [30].

Let us recall from [8] that an L-fuzzy subset µ of a poset Q with 0 is called an L-fuzzy

ideal of Q if µ(0) = 1 and for any a,b ∈ Q , µ(x)≥ µ(a)∧µ(b), for all x ∈ (a,b)ul .

Note that for any α in L, the constant L-fuzzy subset of Q which maps all elements of

Q onto α is denoted by α .

Definition 4.2.1. An L-fuzzy ideal µ of a poset Q is called proper, if µ is not the constant

map 1. That is, if there exists an element a ∈ Q such that µ(a) 6= 1.

Recall that a proper L-fuzzy ideal µ of a lattice X is called an L-fuzzy prime ideal, if

µ(a∧b) = µ(a) or µ(b) for any a,b ∈ X (See [36]).

Now we introduce the notion of L-fuzzy prime ideal of a poset Q.

Definition 4.2.2. A proper L-fuzzy ideal µ of a poset Q is called an L-fuzzy prime, if for

any a,b ∈ Q,

in f{µ(x) : x ∈ (a,b)l}= µ(a) or µ(b).

The following result characterizes any L-fuzzy prime ideal of a poset in terms of its

level-subset.

Theorem 4.2.1. An L-fuzzy ideal µ of a poset Q is an L-fuzzy prime if and only if for any

α ∈ L, either µα = Q or µα a prime ideal of Q.
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Proof. Suppose that µ is an L-fuzzy prime ideal of Q and α ∈ L. Since µ is an L-fuzzy

ideal, clearly µα is an ideal of Q. Suppose that µα 6= Q. Now for any a,b ∈ Q,

(a,b)l ⊆ µα ⇒ µ(x)≥ α ∀x ∈ (a,b)l

⇒ inf{µ(x) : x ∈ (a,b)l} ≥ α

⇒ µ(a)≥ α or µ(b)≥ α

⇒ a ∈ µα or b ∈ µα .

Conversely, suppose that µα = Q or µα is a prime ideal of Q, for each α ∈ L. Let

a,b ∈ Q and put α = in f{µ(x) : x ∈ (a,b)l}. Then clearly, x ∈ µα ∀x ∈ (a,b)l , that is,

(a,b)l ⊆ µα . Thus, by hypothesis, we have either a ∈ µα or b ∈ µα . This implies that

µ(a)≥ α = in f{µ(x) : x ∈ (a,b)l}) or µ(b)≥ α = in f{µ(x) : x ∈ (a,b)l}.

Also since µ is anti-tone, we clearly have

µ(a) = in f{µ(x) : x ∈ (a,b)l} or µ(b) = in f{µ(x) : x ∈ (a,b)l}.

So µ is an L-fuzzy prime ideal of Q.

The following result also characterizes an L-fuzzy prime ideals of a poset Q.

Corollary 4.2.2. Let µ be a proper L-fuzzy ideal of a poset Q. Then µ is an L-fuzzy prime

ideal of Q if and only if Im(µ) is a chain in L and for any a,b ∈ Q

inf{µ(x) : x ∈ (a,b)l}= µ(a)∨µ(b).

Proof. Let µ be an L-fuzzy prime ideal of Q and a,b ∈ Q. Then µ(a),µ(b) ∈ Im(µ).

Put α = µ(a)∨µ(b). Now we show that (a,b)l ⊆ µα . Now

x ∈ (a,b)l ⇒ x≤ a and x≤ b⇒ µ(x)≥ µ(a) and µ(x)≥ µ(b)⇒

µ(x)≥ µ(a)∨µ(b) = α ⇒ x ∈ µα .

Thus (a,b)l ⊆ µα . Again since µα = Q or a prime ideal of Q, we have either a ∈ µα

or b ∈ µα . This implies that
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µ(a)≥ α = µ(a)∨µ(b)≥ µ(b) or µ(b)≥ α = µ(a)∨µ(b)≥ µ(a).

So Im(µ) is a chain in L and we clearly have

inf{µ(x) : x ∈ (a,b)l}= µ(a)∨µ(b).

The converse is straight forward.

Lemma 4.2.3. Let µ be an L- fuzzy ideal of Q. Then for any a,b ∈ Q,

in f{µ(x) : x ∈ (a,b)l}= µ(a∧b),

whenever a∧b exists in Q.

Proof. Put X = {µ(x) : x ∈ (a,b)l}.

Now x ∈ (a,b)l ⇒ x≤ a and x≤ b

⇒ x≤ a∧b

⇒ µ(x)≥ µ(a∧b)

Then µ(x) ≥ µ(a∧b) for all x ∈ (a,b)l . Thus µ(a∧b) is a lower bound of X . Let α be

any lower bound of X . Then α ≤ µ(x), for all x ∈ (a,b)l . Since a∧b ∈ (a,b)l , we have

α ≤ µ(a∧b). Thus in f{µ(x) : x ∈ (a,b)l}= µ(a∧b).

Corollary 4.2.4. Let (Q,≤) be a lattice. Then an L-fuzzy ideal µ of Q is an L- fuzzy prime

ideal in the poset Q if and only if it is an L-fuzzy prime ideal in the lattice Q.

Now, given an L-fuzzy ideal of a poset Q and any element in Q, we define the follow-

ing L-fuzzy subset of Q as follow:.

Definition 4.2.3. Let µ be an L-fuzzy ideal of Q and x ∈Q. Define an L-fuzzy subset µ : x

of Q by:

(µ : x)(y) = inf{µ(z) : z ∈ (x,y)l} for all y ∈ Q.
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By the Definition 4.2.3, observe that an L-fuzzy ideal µ of Q is an L-fuzzy prime ideal

if for any a,b ∈ Q,

(µ : a)(b) = µ(a) or µ(b).

Now we have the following lemma.

Lemma 4.2.5. Let µ be an L-fuzzy ideal of Q and x ∈ Q. Then µ : x is an L-fuzzy semi

ideal containing µ .

Proof. Now (µ : x)(0) = inf{µ(z) : z ∈ (x,0)l}= inf{µ(z) : z = 0}= µ(0) = 1 Therefore

(µ : x)(0) = 1.

Again let a ∈ Q and y ∈ al . Now

(µ : x)(y) = inf{µ(w) : w ∈ (x,y)l}

≥ inf{µ(w) : w ∈ (x,a)l} ( Since (x,y)l ⊆ (x,a)l)

= (µ : x)(a)

Therefore µ : x is an L-fuzzy semi ideal. Again let y ∈ Q. Since µ(z)≥ µ(y) ∀z ∈ (x,y)l ,

we have

(µ : x)(y) = inf{µ(z) : z ∈ (x,y)l} ≥ µ(y)

Hence µ ⊆ µ : x. This proves the lemma.

Note that for any x,y ∈ Q, observe that

(µ : x)(y) = (µ : y)(x)

Remark 4.2.1. For an L-fuzzy ideal µ of a poset Q µ : x need not be an L-fuzzy ideal of Q

for all x ∈Q. For example consider the poset (Q,≤) depicted in the Fig. 4.2 given below.

Define a fuzzy subset µ : Q−→ [0.1] by:

µ(0) = 1,µ(a) = 0.8,µ(b) = µ(c) = µ(d) = µ(e) = 0.2.
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Then µ is an L-fuzzy ideal of Q andµ : d is a fuzzy subset of Q given by:

(µ : d)(0) = (µ : d)(b) = (µ : d)(c) = 1, (µ : d)(a) = 0.8 and

(µ : d)(d) = (µ : d)(e) = 0.2.

Observe that e∈ (a,b)ul but (µ : d)(e) = 0.2� 0.8 = (µ : d)(a)∧(µ : d)(b). This implies

that µ : d is not an L-fuzzy ideal of Q.

Fig. 4.2

Lemma 4.2.6. Let µ be an L-fuzzy ideal of a poset Q and x ∈Q. Then the following hold:

1. (µ : x)α = µα : x, for any α ∈ L.

2. inf{(µ : x)(y) : y ∈ (a,b)l}= inf{µ(y) : y ∈ (x,a,b)l}

3. µ : x = 1 if and only if µ(x) = 1.

Proof. (1) Now we have

y ∈ (µ : x)α ⇔ (µ : x)(y)≥ α

⇔ inf{µ(w) : w ∈ (x,y)l} ≥ α

⇔ µ(w)≥ α f or all w ∈ (x,y)l

⇔ w ∈ µα f or all w ∈ (x,y)l

⇔ (x,y)l ⊆ µα

⇔ y ∈ µα : x.

Therefore (µ : x)α = µα : x
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(2) Let A = {µ(y) : y ∈ (x,a,b)l} and B = {(µ : x)(y) : y ∈ (a,b)l}. Now we claim that

infA = infB. Put α = infA. Then

α ≤ µ(z) ∀z ∈ (x,a,b)l ⇒ (x,a,b)l ⊆ µα

⇒ (a,b)l ⊆ µα : x = (µ : x)α

⇒ (µ : x)(y)≥ α ∀y ∈ (a,b)l

⇒ inf{(µ : x)(y) : y ∈ (a,b)l} ≥ α.

⇒ infB≥ infA.

To prove the other side of the inequality, let β = infB. Then

β ≤ (µ : x)(y) ∀y ∈ (a,b)l ⇒ (a,b)l ⊆ (µ : x)β = µβ : x

⇒ (x,a,b)l ⊆ µβ

⇒ µ(y)≥ β ∀y ∈ (x,a,b)l

⇒ inf{µ(y) : y ∈ (x,a,b)l} ≥ β .

⇒ infA≥ infB.

Hence the claim is true.

(3) Let µ : x = 1. Then (µ : x)(y) = 1, for ally ∈Q. Thus, in particular, (µ : x)(x) = 1.

(µ : x)(x) = 1 ⇒ inf{µ(y) : y ∈ (x,x)l}= 1

⇒ µ(y) = 1 ∀y ∈ (x,x)l

⇒ µ(x) = 1. (sincex ∈ (x,x)l)

Conversely suppose that µ(x) = 1. Now since, for any y ∈ Q, (µ : x)(y) = inf{µ(z) : z ∈

(x,y)l} ≥ µ(x) = 1, we have (µ : x)(y) = 1 for all y ∈ Q. Therefore µ : x = 1.
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The next result is also a characterization of an L-fuzzy ideal to be an L-fuzzy prime ideal

in a poset Q.

Theorem 4.2.7. Let µ be a proper L-fuzzy ideal of a poset Q. Then µ is an L-fuzzy prime

ideal of Q if and only if µ : a = µ for all a ∈ Q such that µ(a) 6= 1.

Proof. Suppose that µ is an L-fuzzy prime ideal of Q and let a ∈ Q such that µ(a) 6= 1.

Now we claim that µ : a = µ . Now for any x ∈ Q, we have (µ : a)(x) = µ(x) or µ(a).

Suppose that (µ : a)(x) = µ(a). This implies that µ : a is a constant map µ(a) Then

(µ : a)(x) = µ(a) 6= 1. which is a contradiction to the fact that (µ : a)(0) = 1.

Therefore (µ : a)(x) = µ(x) for all x ∈ Q and hence µ : a = µ .

Conversely suppose that the given condition holds. Let a, ,b ∈ Q. Now we claim that

(µ : a)(b) = µ(a) or µ(b).

Suppose that (µ : a)(b) 6= µ(a). Then inf{µ(x) : x ∈ (a,b)l} � µ(a). This implies that

µ(a) 6= 1. Thus, by hypothesis we have µ : a = µ and hence

(µ : a)(b) = µ(b).

Therefore µ is an L-fuzzy prime ideal of Q.

Lemma 4.2.8. Let µ be an L-fuzzy ideal of an atomic poset Q and let p be a dually

distributive atom of Q such that µ(p) 6= 1. Then µ : p is a u-L-fuzzy ideal of Q.

Proof. Since p is an atom in Q, for any x ∈ Q, we have (p,x)l = {0, p} if p≤ x and {0}

otherwise. Thus, for any x ∈ Q,

(µ : p)(x) =


1 i f p� x

µ(p) i f p≤ x

First let us show that µ : p is an L-fuzzy ideal of Q. It is clear that (µ : p)(0) = 1. Let

a,b ∈ Q and x ∈ (a,b)ul . If (µ : p)(a) = µ(p) or (µ : p)(b) = µ(p), we have
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(µ : p)(a)∧ (µ : p)(b) = µ(p)≤ (µ : x)(p) = (µ : p)(x).

Let (µ : p)(a) = 1 = (µ : p)(b). Then p� a and p� b. This implies that (p,a)l = {0}=

(p,b)l . Now we claim that p � x. Suppose that p ≤ x. Then p ∈ (a,b)ul and since p is

dually distributive, we have

{0, p}= pl = {p,(a,b)u}l = {(p,a)l,(p,b)l}ul = {0},

which is a contradiction. Thus p� x and hence (µ : p)(x) = 1. This implies that

(µ : p)(a)∧ (µ : p)(b) = 1 = (µ : p)(x).

Thus, for any a,b ∈ Q and x ∈ (a,b)ul , we have,

(µ : p)(a)∧ (µ : p)(b)≤ (µ : p)(x)

and hence µ : p is an L-fuzzy ideal of Q.

Next we show that µ : p is a u-L-fuzzy ideal of Q. Let a,b ∈ Q. Now we claim that

there exists x ∈ (a,b)u such that

(µ : p)(x) = (µ : p)(a)∧ (µ : p)(b).

Let (µ : p)(a) = µ(p) or(µ : p)(b) = µ(p). Then

(µ : p)(a)∧ (µ : p)(b) = µ(p) and p≤ a or p≤ b.

Now we claim that p≤ x for some x ∈ (a,b)u. Suppose on the contrary that p� x for all

x ∈ (a,b)u, i.e., p /∈ {p,(a,b)u}l . As (p,a)l ∪ (p,b)l = {0, p} and p is dually distributive

we have

p /∈ {p,(a,b)u}l = {(p,a)l,(p,b)l}ul = {0, p},

which is a contradiction. Hence the calim is true Therefore, in this case, there exists

x ∈ (a,b)u such that (µ : p)(x) = µ(p) and hence

(µ : p)(x) = (µ : p)(a)∧ (µ : p)(b).

Let (µ : p)(a) = 1 = (µ : p)(b). Then
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(µ : p)(a)∧ (µ : p)(b) = 1 and p� a, p� b.

Now we claim that p� x for some x ∈ (a,b)u. Suppose on the contrary that p≤ x for all

x∈ (a,b)u. This implies that p∈ (a,b)ul and (µ : p)(x) = µ(p). Thus in this case we have

µ(p) = (µ : p)(p)≥ (µ : p)(a)∧ (µ : p)(b) = 1

which contradicts to the fact that µ(p) 6= 1. Hence there exists x ∈ (a,b)u such that p� x.

Thus, in this case, we have (µ : p)(x) = 1 = (µ : p)(a)∧ (µ : p)(b). Hence in either cases

there exists x ∈ (a,b)u such that

(µ : p)(x) = (µ : p)(a)∧ (µ : p)(b)

Therefore µ : p is a u-L-fuzzy ideal of Q.

Now, we prove the existence of L-fuzzy prime ideals in atomic posets.

Theorem 4.2.9. Let Q be an atomic poset p is an atom in Q. Then, if p is a dually

distributive such that µ(p) 6= 1 for an L-fuzzy ideal of µ of Q, then there exists a u-L-

fuzzy prime ideal θ of Q such that µ ⊆ θ and θ(p) 6= 1. Conversely, for any L-fuzzy ideal

µ of Q such that µ(p) 6= 1, if there exists an L-fuzzy prime ideal θ of Q such that µ ⊆ θ

and θ(p) 6= 1, then p is a dually distributive element.

Proof. Let S = {σ ∈FI (Q) : µ ⊆ σ and σ(p) 6= 1}. Since µ ∈S , S is non empty

set and hence it forms a poset under the point wise ordering ” ⊆ ”. By applying Zorn’s

Lemma we can choose a maximal element say θ in S . Thus, since θ(p) 6= 1, by Lemma

4.2.8, θ : p is a u-L-fuzzy ideal of Q. It is easy to observe that µ ⊆ θ : p and (θ : p)(p) 6= 1.

Thus, by maximality of θ , we have θ : p = θ . Now we show that θ is an L-fuzzy prime

ideal of Q. Let a ∈ Q such that θ(a) 6= 1. Now for any x ∈ Q, we have

(θ : a)(x) = inf{θ(z) : z ∈ (a,x)l}

= inf{(θ : p)(z) : z ∈ (a,x)l} (...since θ = θ : p)
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= inf{θ(z) : z ∈ (p,a,x)l}

= inf{(θ : x)(z) : z ∈ (p,a)l}

= (θ : x)(p) or 1 (according as p≤ a or p� a)

= (θ : p)(x) or 1

= θ(x) or 1 (...since θ = θ : p)

This implies that either θ : a = θ or θ : a = 1. Suppose that θ : a = 1. This implies that

θ(a) = 1, which is a contradiction to the fact that θ(a) 6= 1. Hence θ : a = θ for all a ∈Q

such that θ(a) 6= 1. Hence, by Theorem 4.2.7, θ is an L-fuzzy prime ideal of Q.

Conversely suppose that for any L-fuzzy ideal µ of Q with µ(p) 6= 1, there exists an L-

fuzzy prime ideal θ of Q such that µ ⊆ θ and θ(p) 6= 1. To show p is dually distributive,

it is enough to show that

{p,(a,b)u}l ⊆ {(p,a)l,(p,b)l}ul for any a,b ∈ Q.

If p /∈ (a,b)ul then {p,(a,b)u}l = {0} and hence the inclusion follows immediately.

Assume that p∈ (a,b)ul . Then {p,(a,b)u}l = {p,0}. Now we claim that p∈{(p,a)l,(p,b)l}ul .

On the contrary, suppose that p /∈{(p,a)l,(p,b)l}ul . Then there exists x∈{(p,a)l,(p,b)l}u

such that p � x. This implies that χ(x](p) 6= 1. By the hypothesis, there exists a fuzzy

prime ideal θ such that χ(x]⊆ θ and θ(p) 6= 1. Since (p,a)l,(p,b)l ⊆{(p,a)l,(p,b)l}ul ⊆

xl = (x] and p /∈ (x], (p,a)l = {0}= (p,b)l and hence

inf{θ(y) : y ∈ (p,a)l}= 1 and inf{θ(y) : y ∈ (p,b)l}= 1.

Now, since θ is an L-fuzzy prime ideal with θ(p) 6= 1, we have θ : p = θ and hence

θ(a) = (θ : p)(a) = 1 and θ(b) = (θ : p)(b) = 1.

Again as p∈ (a,b)ul , we have θ(p)≥ θ(a)∧θ(b) = 1 which is a contradiction to the fact

that θ(p) 6= 1. Hence the claim is true.
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4.3 Prime L-Fuzzy Ideals

In this section, we introduce a prime L- fuzzy ideal of a poset Q which is a prime element

in the lattice FI (Q) of L-fuzzy ideals of Q.

Recall that an element α 6= 1 in a lattice L is said to be prime if for any t,s ∈ L,

t ∧ s≤ α implies either s≤ α or t ≤ α .

Definition 4.3.1. Let µ and θ be L-fuzzy subsets of a poset Q. The product of µ and θ ,

denoted by µ ∗l θ , is defined as:

(µ ∗l θ)(x) = sup{µ(a)∧θ(b) : x ∈ (a,b)l} for any x ∈ Q.

For any L-fuzzy points xα and yβ of a poset Q, it is clear that, for any z ∈ Q:

(xα ∗l yβ )(z) =


α ∧β i f z ∈ (x,y)l

0 otherwise

.

Lemma 4.3.1. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset (α,0)(x] of Q by

(α,0)(x](y) =


1 i f y = 0

α i f y ∈ (x]−{0}

0 i f y /∈ (x],

for all y ∈ Q. Then (α,0)(x] = (xα ].

Proof. We show that (α,0)(x] is the smallest L-fuzzy ideal containing the fuzzy point xα .

Since for any β ∈ L, (α,0)(x])β = Q or (x] or {0}, which is an ideal of Q, we have

(α,0)(x] is an L-fuzzy ideal of Q.

Again since x ∈ (x], we have α ≤ (α,0)(x])(x) and hence xα ∈ (α,0)(x]. Again let

µ be any L-fuzzy ideal of Q such that xα ∈ µ . Then α ≤ µ(x). Now we show that
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(α,0)(x]) ⊆ µ . Let y ∈ Q. Now if y /∈ (x], (α,0)(x])(y) = 0 ≤ µ(y). Let y ∈ (x]. Then

y ≤ x. If y = 0, then (α,0)(x])(y) = 1 = µ(y). Again if y 6= 0, then x 6= 0 and hence

(α,0)(x])(y) = α ≤ µ(x)≤ µ(y). Thus in all cases, we have

(α,0)(x])(y)≤ µ(y), for all y ∈ Q.

So (α,0)(x])⊆ µ . Therefore (α,0)(x] = (xα ].

Now we have the following lemma.

Lemma 4.3.2. Let xα and yβ be any L-fuzzy points of a poset Q. Then

(xα ∗l yβ ] = (α ∧β ,0)(x,y)l = (xα ]∩ (yβ ]

Now we give the definition a prime L-fuzzy ideal of a poset.

Definition 4.3.2. A proper L-fuzzy ideal µ of a poset Q is called a prime L-fuzzy ideal, if

for any L-fuzzy ideals σ and θ of Q,

σ ∩θ ⊆ µ implies σ ⊆ µ or θ ⊆ µ .

In the following theorem we characterize prime L-fuzzy ideals using L-fuzzy points

of a poset Q.

Theorem 4.3.3. A proper L-fuzzy ideal µ of a poset Q is prime L- fuzzy ideal if and only

if for any L-fuzzy points xα and yβ of Q:

xα ∗l yβ ⊆ µ ⇒ either xα ∈ µ or yβ ∈ µ .

Proof. Suppose that µ is a prime L- fuzzy ideal of Q. Let xα and yβ be L-fuzzy points in

Q such that xα ∗l yβ ⊆ µ . Then

xα ∗l yβ ⊆ µ ⇒ (xα ∗l yβ ]⊆ µ

⇒ (xα ]∩ (yβ ]⊆ µ

⇒ (xα ]⊆ µ or (yβ ]⊆ µ

⇒ α ≤ µ(x) or β ≤ µ(y)

⇒ xα ∈ µ or yβ ∈ µ.
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Conversely, suppose that the given condition holds. Suppose that µ is not a prime

L-fuzzy ideal of Q.. Then there exist L-fuzzy ideals σ and θ of Q such that σ ∩ θ ⊆ µ

and σ * µ and θ * µ .

Then there exist x,y ∈ Q such that σ(x)� µ(x) and θ(y)� µ(y). If we put α = σ(x)

and β = θ(y), then we clearly have xα ∈ σ and yβ ∈ θ and xα /∈ µ and yβ /∈ µ . Then by

hypothesis, we have xα ∗l yβ * µ .

But, it is clear that xα ∗l yβ ⊆ σ ∩θ ⊆ µ. But this contradicts the fact that xα ∗l yβ * µ .

So µ is a prime L- fuzzy ideal of Q.

In the following we characterize prime L-fuzzy ideal of a poset Q in terms of prime

ideals of Q and prime elements of L.

Lemma 4.3.4. Let I be an ideal of a poset Q and 1 6= α ∈ L. Then the L-fuzzy subset αI

of a poset Q defined by:

αI(x) =


1 i f x ∈ I

α i f x /∈ I
,

for all x ∈ Q is an L-fuzzy ideal of Q.

The L-fuzzy ideal αI defined in Lemma 4.3.4 above is called the α-level L-fuzzy ideal

of Q corresponding to the ideal I.

Corollary 4.3.5. Let I and J are ideals in Q and 1 6= α ∈ L and 1 6= β ∈ L. Then αI ⊆ βJ

if and only if I ⊆ J and α ≤ β .

Theorem 4.3.6. Let P be an ideal of a poset Q and 1 6= α ∈ L. Then αP is a prime L-fuzzy

ideal of Q if and only if P is a prime ideal of Q and α is a prime element in L.

Proof. Suppose that αP is a prime L-fuzzy ideal of Q. Now we show that P is a prime

ideal of Q and α is a prime element in L. Since αP is proper, we have P 6= Q and α 6= 1.

Let a,b ∈ Q such that (a,b)l ⊆ P. Now
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(a,b)l ⊆ P ⇒ (a]∩ (b]⊆ P

⇒ α(a]∩(b] ⊆ αP

⇒ α(a]∩α(b] ⊆ αP

⇒ α(a] ⊆ αP or α(b] ⊆ αP

⇒ (a]⊆ P or (b]⊆ P

⇒ a ∈ P or b ∈ P.

Thus P is a prime ideal of Q. Again let β ,γ ∈ L such that β ∧ γ ≤ α .

Now β ∧ γ ≤ α ⇒ (β ∧ γ)P ⊆ αP

⇒ βP∩ γP ⊆ αP

⇒ βP ⊆ αP or γP ⊆ αP

⇒ β ≤ α or γ ≤ α.

Thus α is a prime element in L.

Conversely, suppose that P is a prime ideal of Q and α is a prime element in L. Clearly,

αP is a proper L-fuzzy ideal of Q. Suppose that αP is not a prime L-fuzzy prime ideal of

Q. Then there exist L-fuzzy ideals µ and σ of Q such that

µ ∩σ ⊆ αP and µ * αP and σ * αP.

Then there exist a,b ∈ Q such that

µ(a)� αP(a) and σ(b)� αP(b).

This implies that µ(a)� α and σ(b)� α and a /∈ P and b /∈ P. Since α is prime element

in L and P is a prime ideal of Q, we have µ(a)∧σ(b) � α and (a,b)l * P. Thus there

exists y ∈ (a,b)l such that y /∈ P. Then it is clear that
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(µ ∩σ)(y)� α = αP(y).

So µ ∩σ * αP which is a contradiction. Thus αP is a prime L-fuzzy ideal of Q.

Theorem 4.3.7. Let µ be an L-fuzzy ideal of Q. Then µ is a prime L-fuzzy ideal of Q if

and only if there exist prime ideal of P of Q and prime element α in L such that µ = αP.

Proof. Suppose that µ is a prime L-fuzzy ideal of Q. Since µ is proper it assumes at least

two values. Since µ(0) = 1, 1 is necessarily in Im(µ). Suppose that α,β ∈ Im(µ) other

than 1. Then there exist a,b ∈ Q such that µ(a) = α and µ(b) = β . Now we claim that

α = β . Now put P = µ1 = {x ∈ Q : µ(x) = 1}. Consider the L-fuzzy ideals χ(a] and αP

Now we show χ(a]∩αP ⊆ µ . Let x ∈ Q. if x /∈ (a], then we have

(χ(a]∩αP)(x) = χ(a](x)∧αP(x) = 0∧αP(x) = 0≤ µ(x).

Let x ∈ (a]. Now in this case, if x ∈ P, we have

(χ(a]∩αP)(x) = χ(a](x)∧αP(x) = 1∧1 = 1 = µ(x).

Again if x /∈ P, then we have

(χ(a]∩αP)(x) = χ(a](x)∧αP(x) = 1∧α = α = µ(a)≤ µ(x).

Therefore in either cases, we have (χ(a]∩αP)(x)≤ µ(x), for all x ∈ Q and so

χ(a]∩αP ⊆ µ .

But as µ is a prime L-fuzzy ideal of Q, we have

χ(a] ⊆ µ or αP ⊆ µ

But as χ(a](a) = 1� α = µ(a), we have χ(a] * µ . Therefore αP ⊆ µ . In particular, since

b /∈ P, we get that α = αP(b)≤ µ(b) = β .

In similar fashion, we can show that β ≤ α and hence α = β . So µ assumes exactly

one value say α other than 1 and hence µ = αP.

Now we remain show that α is a prime element in L and P a prime ideal of Q.

Let β ,γ ∈ L such that β ∧ γ ≤ α . This implies that
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βP∩ γP = (β ∧ γ)P ⊆ αP = µ .

Since µ is prime, we have either βP ⊆ µ = αP or γP ⊆ µ = αP. This implies that β ≤ α

or γ ≤ α . Thus α a is a prime element in in L.

Again to show P is a prime ideal, let a,b ∈ Q such that (a,b)l ⊆ P.

(a,b)l ⊆ P ⇒ (a]∩ (b]⊆ P

⇒ α(a]∩(b] ⊆ αP = µ

⇒ α(a]∩α(b] ⊆ αP = µ

Since µ is a prime L-fuzzy ideal, we have either

α(a] ⊆ µ = αP or α(b] ⊆ µ = αP

This implies that (a] ⊆ P or (b] ⊆ P. and hence either a ∈ P or b ∈ P. Therefore P is a

prime ideal of Q.

The converse part of this theorem follows from Theorem 4.3.6.

Corollary 4.3.8. Let L = [0,1]. Then a proper ideal P of Q is prime if and only if its

characteristic map χP is a prime L-fuzzy ideal of Q.

Note that we write αP for the prime L-fuzzy ideal of Q corresponding to the pair

(P,α) and PFI (Q) for the set of all prime L-fuzzy ideal of Q. Now the following

result follows from the above theorem.

Corollary 4.3.9. There is a one-to-one correspondence between the class PFI (Q) of

all prime L-fuzzy ideals of Q and the collection of all pairs (P,α), where P is a prime

ideal of Q and α is a prime element in L.

Example 4.3.10. Consider the poset (Q,≤) depicted in the Fig. 4.3 below. Define a fuzzy

subset µ : Q−→ [0,1] by:

µ(0) = µ(e) = µ(a) = 1 and µ(b) = µ(c) = µ(d) = 0.5.
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Then µ is a prime L-fuzzy ideal of Q.

Fig. 4.3

Definition 4.3.3. An L-fuzzy subset η of Q is said to be an L fuzzy down directed, if for

any a,b ∈ Q, there exists x ∈ (a,b)l such that η(x)≥ η(a)∧η(b).

Now we prove the following theorem which is analogous to Stone’s Prime ideal The-

orem in distributive lattices[45].

Theorem 4.3.11. Let the lattice (FI (Q),⊆) of all L-fuzzy ideals of Q is distributive,

µ ∈FI (Q) and α is a prime element in L. If η is an L-fuzzy down directed subset of

Q such that such that µ ∩η ⊆ α , then there exists a prime L-fuzzy ideal θ of Q such that

µ ⊆ θ and θ ∩η ⊆ α .

Proof. Let S = {σ ∈FI (Q) : µ ⊆ σ and σ ∩η ⊆ α}. Since µ ∈S , S is non empty

and hence it forms a poset under the point wise ordering ” ⊆ ”. By applying Zorn’s

Lemma, we can choose a maximal element say θ in S . Now we show that θ is a prime

L-fuzzy ideal of Q. Suppose not. Then there exist L-fuzzy ideals ν1 and ν2 of Q such that

ν1∩ν2 ⊆ θ but ν1 * θ and ν2 * θ . Put

θ1 = θ ∨ν1 and θ2 = θ ∨ν2.

Then clearly, θ1 and θ2 are L-fuzzy ideals containing θ properly. Thus by maximality of

θ , both θ1 and θ2 do not belong to S . So there exist a,b ∈ Q such that
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(θ1∩η)(a)� α and (θ2∩η)(b)� α .

Let z ∈ (a,b)l . Then it is clear that

((θ1∩η)(z)� α and (θ2∩η)(z)� α .

Since α a prime element in L, we have (θ1∩θ2)∩η)(z)� α . Now

((θ1∩θ2)∩η)(z)� α ⇒ ((θ ∨ν1)∩ (θ ∨ν2)∩η)(z)� α

⇒ ((θ ∨ (ν1∩ν2))∩η)(z)� α

⇒ (θ ∩η)(z)� α ( since ν1∩ν2 ⊆ θ)

which is a contradiction to the fact that θ ∩η ⊆ α . So ν1 ∩ ν2 ⊆ θ implies ν1 ⊆ θ or

ν2 ⊆ θ . Hence, θ is a prime L-fuzzy ideal of Q.

Corollary 4.3.12. Let µ be in the distributive lattice (FI (Q),⊆) of all L-fuzzy ideals

of Q and a ∈ Q. If µ(a) ≤ α , where α is a prime element in L, then there exists a prime

L-fuzzy ideal θ of Q such that µ ⊆ θ and θ(a)≤ α .

Proof. Apply Theorem 4.3.11 to µ and η = χ[a)

Theorem 4.3.13. Every prime L-fuzzy ideal of a poset Q is an L-fuzzy prime ideal of Q.

Proof. Let µ be a prime L-fuzzy ideal of a poset Q. Then there exists a prime ideal

P of Q and a prime element α of L such that µ = αP. Thus clearly µ is proper and

Im(µ) = {α,1} is a chain.

Let a,b ∈ Q. Now if (a,b)l ⊆ P, then µ(x) = 1, for all x ∈ (a,b)l and hence

inf{µ(x) : x ∈ (a,b)l}= 1. Again since P is a prime ideal, (a,b)l ⊆ P implies either a ∈ P

or b ∈ P and hence, either µ(a) = 1 or µ(b) = 1. Therefore

µ(a)∨µ(b) = 1 = inf{µ(x) : x ∈ (a,b)l}.

Again if (a,b)l * P, then there exists y ∈ (a,b)l such that y /∈ P and thus

µ(y) = α = inf{µ(x) : x ∈ (a,b)l}.
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Again (a,b)l * P implies a /∈ P and b /∈ P. Thus µ(a) = µ(b) = α . So

µ(a)∨µ(b) = α = inf{µ(x) : x ∈ (a,b)l}.

. Therefore in either cases, we have µ(a)∨µ(b) = inf{µ(x) : x ∈ (a,b)l}.

Thus, by Corollary 4.2.2 , µ is an L-fuzzy prime ideal of Q.

Remark 4.3.1. The converse of the above theorem is not true. For example consider the

poset (Q≤ ) depicted in the Fig.4.4 below and define a fuzzy subset µ : Q−→ [0,1] by:

µ(0) = 1, µ(a) = µ(b) = 0.8, µ(c) = µ(d) = µ(e) = µ(1) = 0.

Then µ is an L-fuzzy prime ideal of Q but not a prime L-fuzzy ideal of Q as µ assumes

two values other than 1.

Fig. 4.4

4.4 Maximal L-Fuzzy Ideal

In this section, we introduce the notion of maximal L-fuzzy ideal of a poset which is a

dual atom in the lattice of L-fuzzy ideals of a poset Q, that is, a maximal element in the

set of all proper L-fuzzy ideals of a poset Q.

Recall that an element α in a bounded lattice L is said to be a dual atom if there is no

β ∈ L such that α < β < 1.
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Definition 4.4.1. A proper L-fuzzy ideal µ of a poset Q is said to be a maximal L-fuzzy

ideal of Q, if µ is a dual atom in the lattice FI (Q) of all L-fuzzy ideals of Q under point

wise ordering "⊆". That is, if there is no proper L-fuzzy ideal θ of Q such that µ $ θ .

Lemma 4.4.1. Let µ be an L-fuzzy ideal of a poset Q and α ∈ L. Then µ∪α is an L-fuzzy

ideal of Q containing µ .

Proof. Clearly µ ⊆ µ ∪α and (µ ∪α)(0) = 1. Again let a,b ∈ Q and x ∈ (a,b)ul . Then

(µ ∪α)(x) = µ(x)∨α

≥ (µ(a)∧µ(b))∨α

= (µ(a)∨α)∧ (µ(b))∨α)

= (µ ∪α)(a)∧ (µ ∪α)(b).

Thus µ ∪α is an L-fuzzy ideal of Q containing µ .

Lemma 4.4.2. Let µ be a maximal L-fuzzy ideal of a poset Q. Then Im(µ) is a chain.

Proof. Let α,β ∈ Im(µ). Then there exist a,b ∈ Q such that µ(a) = α and µ(b) = β .

Then, by Lemma 4.4.1, µ ∪α is an L-fuzzy ideal of Q. Since µ ⊆ µ ∪α and µ is a

maximal L-fuzzy ideal of Q, we have either, µ = µ ∪α or µ ∪α = 1.

If µ = µ ∪α , then we have

β = µ(b) = (µ ∪α)(b) = µ(b)∨α = β ∨α.

Thus α ≤ β . If µ ∨α = 1, then we have

(µ ∪α)(a) = 1 = (µ ∪α)(b).

This implies that µ(a)∨α = µ(b)∨α , that is, α = β ∨α and hence β ≤ α .

So Im(µ) is a chain.

Lemma 4.4.3. Let µ be a maximal L-fuzzy ideal of Q. Then µ attains exactly one value

other than 1.
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Proof. Since µ is an L-fuzzy ideal of Q, we have µ(0)= 1. Thus 1∈ Imµ . Let α,β ∈ Imµ

other than 1. Then there exist a,b ∈Q such that α = µ(a) and β = µ(b). Then µ ∪α and

µ ∪β are L-fuzzy ideals of Q containing µ . Again since

(µ ∪α)(a) = α 6= 1 = 1(a) and (µ ∪β )(b) = β 6= 1 = 1(b)

we have µ∪α 6= 1 and µ∪β 6= 1. Thus, by maximality of µ , we have µ = µ∪α = µ∪β .

Thus, in particular, we have

β = µ(b) = (µ ∪α)(b) = µ(b)∨α = β ∨α .

and

α = µ(a) = (µ ∪β )(a) = µ(a)∨β = α ∨β

Therefore α = α ∨β = β . So µ assumes exactly one value other than 1.

The following theorem gives a characterization of a maximal L-fuzzy ideal of a poset.

Theorem 4.4.4. An L-fuzzy subset µ of Q is a maximal L-fuzzy ideal of Q if and only if

there exist a maximal ideal M of Q and a dual atom α in L such that µ = αM.

Proof. Suppose that µ is a maximal L-fuzzy ideal of Q. Put M = {x ∈ Q : µ(x) = 1}.

Then, by the Lemma 4.4.3, µ assumes exactly one value, say α other than 1.

Therefore µ = αM.

Now we show that M is a maximal ideal of Q and α is a dual element in L. Since µ is

proper, it is clear that M is proper. Let I be a proper ideal of Q such that M ⊆ I. Then

µ = αM ⊆ αI ⊂ 1.

By maximality of µ , we have that αM = αI . Thus M = I. So M is a maximal ideal of Q.

Again let β ∈ L such that α ≤ β < 1. Then

µ = αM ⊆ βM ⊂ 1.
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Thus, by the maximality of µ , we have αM = βM. So α = β .

Hence α is a dual atom in L.

Conversely suppose that µ = αM, where M is a maximal ideal in Q and α is a dual

atom in L. Since M is proper, there exists a ∈ Q such that a /∈ M and hence µ(a) =

αM(a) = α 6= 1. Therefore µ is proper. Let θ be any proper L-fuzzy ideal of Q such that

µ ⊆ θ ⊂ 1. This implies that

M = µ1 ⊆ θ1 ⊂ Q.

Thus, by the maximality of M, we have M = θ1 = {x ∈ Q : θ(x) = 1}.

Let x ∈ Q. If x ∈M, then µ(x) = 1 = θ(x). If x /∈M, then we have

µ(x) = α ≤ θ(x)< 1.

Since α is a dual atom in L, we have µ(x) = α = θ(x). Thus µ = αM = θ .

So µ is a maximal L-fuzzy ideal of Q.

Now we have the following corollary; which is an immediate consequence of Theorem

4.4.4.

Corollary 4.4.5. There is a one-to-one correspondence between the class of all maximal

L-fuzzy ideals of Q and the collection of all pairs (M,α), where M is a maximal ideal of

Q and α is a dual atom in L.

Remark 4.4.1. Since the interval [0,1] of real numbers has no dual atom, so is [0,1]n for

any positive integer n, there is no maximal L-fuzzy ideal of Q if L = [0,1]n.

Example 4.4.6. Consider the poset (Q,≤) depicted in the Fig. 4.4 above and the dis-

tributive lattice L in the Fig. 4.5 below. Define an L- fuzzy subset µ : Q −→ L by:

µ(0) = µ(a) = µ(b) = µ(c) = µ(d) = µ(e) = 1 and µ(1) = a. Then µ is a maximal

L-fuzzy ideal as µ = αM, where α = a is a dual atom in L and M = {0,a,b,c,d,e} is a

maximal ideal of Q.
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Fig. 4.5

Since L is a distributive lattice, every dual atom in L is prime and hence we have the

following.

Corollary 4.4.7. If Q is a poset in which every maximal ideal is a prime ideal then every

maximal L-fuzzy ideal of Q is a prime L-fuzzy ideal of Q.

Remark 4.4.2. The converse of the above corollary is not true. Example 4.3.10 is a prime

L-fuzzy ideal which is not a maximal L-fuzzy ideal of the given poset as there is no dual

atom in L = [0,1].

4.5 L-Fuzzy Maximal Ideals

In this section, we define the notion of L-fuzzy maximal ideals of a poset Q as a proper

L-fuzzy ideal, for which each level subset µα at α ∈ L is either the whole poset Q or a

maximal ideal Q.

First, we prove the following result which gives a motivation in defining the concept

of L-fuzzy maximal ideals of a poset Q.

Lemma 4.5.1. Let M be a maximal ideal of a poset Q and χM be its characteristic map.

Let µ be a proper L-fuzzy ideal of Q such that χM ⊆ µ . Then µ assumes exactly two

values.

Proof. Since µ(0) = 1,1 ∈ Imµ . Since µ is proper, there exists a ∈Q such that µ(a) 6= 1.

Thus µ1 = {x ∈ Q : µ(x) = 1} is a proper ideal of Q. Again χM ⊆ µ implies that M ⊆

µ1 ⊂ Q. The, by maximality of M, we have M = µ1.
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Let α,β ∈ Imµ other than 1. Then there exists a,b ∈ Q such that α = µ(a) and

β = µ(b). Now we claim that α = β . Now it is clear to see that M = µ1 ⊂ µα ⊆ Q and

M = µ1 ⊂ µβ ⊆ Q. Thus, by maximality of M, we have µα = Q = µβ . Thus a ∈ µβ and

b ∈ µα . This implies that

α = µ(a)≥ β and β = µ(b)≥ α and so α = β .

Therefore µ assumes exactly one value other than 1.

Definition 4.5.1. A proper L-fuzzy ideal µ of Q is called an L-fuzzy maximal ideal of Q

if, for each α ∈ L , either µα = Q or a maximal ideal of Q.

Lemma 4.5.2. Let µ be an L-fuzzy maximal ideal of Q. Then µ1 = {x ∈ Q : µ(x) = 1} is

a maximal ideal of Q.

Proof. Since µ is proper, µ(a) 6= 1 for some a ∈Q and hence µ1 = {x ∈Q : µ(x) = 1} is

a proper ideal of Q. Thus, by definition, µ1 is a maximal ideal of Q.

Theorem 4.5.3. Every L-fuzzy maximal ideal of Q assumes exactly two values.

Proof. Let µ be an L-fuzzy maximal ideal of Q. Then, by Lemma 4.5.2, µ1 = {x ∈ Q :

µ(x) = 1} is a maximal ideal of Q. Put M = µ1. Then χM ⊆ µ and hence by Lemma

4.5.1, µ = αM for some 1 6= α ∈ L. Thus µ assumes exactly two values.

Theorem 4.5.4. A proper L-fuzzy ideal µ of a poset Q is an L-fuzzy maximal ideal of Q if

and only if µ = αM for some maximal ideal M of Q and 1 6= α ∈ L.

Proof. Suppose that µ is an L-fuzzy maximal ideal of Q. Put M = µ1 = {x ∈ Q : µ(x) =

1}. Then, by Lemma 4.5.2, M is a maximal ideal of Q. Also, by Theorem 4.5.3, µ

assumes exactly two values. Clearly 1 is the value of µ . Let α be the only values of µ

other than 1. Then for any x ∈ Q,

µ(x) =


1 i f x ∈M

α i f x /∈M
,
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and hence µ = αM.

Conversely suppose that µ = αM for some maximal ideal M of Q and 1 6= α ∈ L.

Now, for any β ∈ L, clearly we have µβ = Q or M. Thus, by definition, µ is an L-fuzzy

maximal ideal of Q.

Corollary 4.5.5. A proper ideal M of Q is a maximal ideal of Q if and only if the charac-

teristic map χM of M is an L-fuzzy maximal ideal of Q.

Since any dual atom α 6= 1 , we have the following corollary.

Corollary 4.5.6. Every maximal L-fuzzy ideal of Q is an L-fuzzy maximal ideal of Q.

Remark 4.5.1. The converse of Corollary 4.5.6 is not true. For example consider L =

[0,1] and M be any maximal ideal of any poset Q with 0. Then for any 1 6= α ∈ L, αM is

an L-fuzzy maximal ideal of Q, but it is not a maximal L-fuzzy ideal of Q.

Corollary 4.5.7. If Q is an ideal distributive poset then every L-fuzzy maximal ideal of Q

is an L-fuzzy prime ideal of Q.

Proof. Let µ be an L-fuzzy maximal ideal of Q. Then µ = αM for some maximal ideal

M of Q and 1 6= α ∈ L. Since Q is an ideal distributive poset, by Theorem 4.1.9, M is a

prime ideal and hence for any β ∈ L, µβ is either Q or M. Then, by Theorem 4.2.1, µ is

an L-fuzzy prime ideal of Q.

Note that the converse of Corollary 4.5.7, is note true. For example consider the ideal

distributive posets (Q ≤) depicted in the Fig. 4.4. Observe that P = (b] is a prime ideal

of Q1 but not a maximal ideal of Q1. Define a fuzzy subset µ of Q by:

µ(x) =


1 i f x ∈ P

0.5 i f x /∈ P
,

for all x ∈ Q. Then µ is a fuzzy prime ideal of Q which is not a fuzzy maximal.
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Chapter 5

L-Fuzzy Semi-prime Ideals

In 1989, Y. Rav [42] introduced and studied semiprime ideals in lattices. Also, he studied

the lattice of semi-prime ideals and he proved the analogue of the prime separation theo-

rem for semi-prime ideals. Also he proved the connections between primness and semi-

primeness in lattices. In 2009, V. S. Khart and K. A. Mokbel, [34] introduced the concept

of a semi-prime ideal in general poset and they obtained characterizations of semi-prime

ideals in posets as well as condition of semi-prime to be prime. They also prove an ana-

logue of Stone’s Theorem for finite posets using semi-prime ideals in [35]. In 2013, K.

A. Mokbel and V. S. Khart [38] obtained several characterization of 0- distributive posets

by using the prime ideals as well as semi-prime ideals of a poset.

In this chapter we introduce the concept of L-fuzzy semi-prime ideal in a general

poset. Characterizations of L-fuzzy semi-prime ideals in posets as well as characteriza-

tions of an L-fuzzy semi-prime ideal to be L-fuzzy prime ideal are obtained. Also, the

relations between the L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset

and the L-fuzzy semi-prime (respectively, L-fuzzy prime) of the lattice of all ideals of a

poset are established. We extend and prove Rav’s Prime Separation Theorem for a lattice,

using L-fuzzy semi-prime ideals. Lastly, we also extend and prove an analogue of Stone’s

Theorem for finite posets using L-fuzzy semi-prime ideals.
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5.1 Semi-prime Ideals

In this section, we recall some definitions and crisp concepts of semi-prime ideals of a

poset and a lattice that will be extended to the notions of L-fuzzy semi-prime ideals of a

poset in the further sections of this chapter.

Throughout this chapter, an ideal will mean a 3-ideal (i.e., an ideal in the sense of

Halaš) unless otherwise stated.

Now, we consider the concept of a semi-prime ideal introduced by V. S. Khart and K.

A. Mokbel, [34] in a poset and by Y. Rav [42] in a lattice, as given in the following.

Definition 5.1.1. [34] An ideal I of a poset Q is called a semi-prime ideal of Q if for all

x,y,z ∈ Q,

(x,y)l ⊆ I and (x,z)l ⊆ I imply {x,(y,z)u}l ⊆ I.

Dually we have the concept semi-prime filter of a poset Q.

Definition 5.1.2. [42] An ideal I of a lattice X is called a semi-prime ideal of X if for all

x,y,z ∈ X ,

x∧ y ∈ I and x∧ z ∈ I together imply x∧ (y∨ z) ∈ I.

Dually we have the concept semi-prime filter of a lattice X.

For an ideal I and an element a in a poset Q, define a set I : a by:

I : a = {x ∈ Q : (a,x)l ⊆ I}.

The following are some properties of ideals in a poset using the set defined above.

Lemma 5.1.1. [34] Let I be an ideal of a poset Q. Then the following statements hold:

1. {x,(a,b)u}l ⊆ I if and only if (a,b)ul ⊆ I : x.

2. I : x = Q if and only if x ∈ I.
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Definition 5.1.3. [35] Let I be an ideal of a poset Q. An element i∈Q is called an I-atom

if the following conditions hold:

1. i /∈ I

2. for x ∈ Q with x < i implies x ∈ I.

Dually, we have the concept of F-dual atom for a given filter F of Q.

We state the following concepts that are essentially introduced for lattices by Rav [42].

Let Q be a given poset and (I (Q),⊆) be the lattice of all ideals of a poset. Define an

extension of an ideal I of Q, denoted by Ie, as

Ie = {J ∈I (Q) : J ⊆ I}

and for an ideal λ of the lattice (I (Q),⊆) of all ideals of a poset Q, define the contraction

of λ , denoted by λ c, as

λ c =
⋃
{J : J ∈ λ}.

M. H. Stone [45], in his famous paper, proved the Separation Theorem for prime ideals in

the case of distributive lattices as follows.

Theorem 5.1.2. [45] Let X be a distributive lattice. Let I be an ideal of X and D be a

dual ideal of X such that I∩D = /0. Then there exists a prime ideal P of X such that I ⊆ P

and P∩D = /0.

The following is Y. Rav’s Separation Theorem for semi-prime ideals in Lattice as

stated below.

Theorem 5.1.3. [42] Let X be a lattice containing an ideal I and a filter F such that

I∩F = /0. If I is semi-prime, then there exists a semi-prime filter G such that F ⊆ G and

I∩G = /0. A dual result holds if F is semiprime.

V. S. Kharat and K. A. Mokbel[35] proved an analogue of the Stone Theorem for a

finite poset stated as follow:
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Theorem 5.1.4. Let Q be a finite poset, I be a semi-prime ideal of Q such that I∩K = /0

for an l-filter K in Q. Then there exists a semi-prime filter F such that K⊆F and I∩F = /0.

5.2 L-Fuzzy Semi-prime Ideals

In this section we introduce the concept of an L-fuzzy semi-prime ideal in a general poset.

Characterizations of L-fuzzy semi-prime ideals in posets as well as characterizations of

an L-fuzzy semi-prime ideal to be L-fuzzy prime ideal are obtained.

Definition 5.2.1. An L-fuzzy ideal µ of a poset Q is called an L-fuzzy semi-prime ideal if

for all a,b,c ∈ Q,

µ(z)≥ inf{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} ∀z ∈ {a,(b,c)u}l.

Dually we have the concept of L-fuzzy semi-prime filter of Q.

Definition 5.2.2. An L-fuzzy ideal µ of a lattice Q is called an L-fuzzy semi-prime ideal

of Q, if for all a,b,c ∈ Q,

µ(a∧ (b∨ c)) = µ(a∧b)∧µ(a∧ c).

Dually we have the concept of L-fuzzy semi-prime filter of a lattice Q.

Lemma 5.2.1. An L- fuzzy ideal µ of Q is an L- fuzzy semi-prime ideal of Q if and only if

µα is a semi-prime ideal of Q for all α ∈ L.

Proof. Suppose that µ is an L-fuzzy semi-prime ideal and α ∈ L. Then clearly µα is an

ideal of Q. Let a,b,c ∈ Q such that (a,b)l ⊆ µα and (a,c)l ⊆ µα and z ∈ {a,(b,c)u}l .

Then µ(x)≥ α ∀x ∈ (a,b)l and µ(y)≥ α ∀y ∈ (a,b)l . This implies that

inf{µ(x) : x ∈ (a,b)l} ≥ α and inf{µ(y) : y ∈ (a,c)l} ≥ α.

Therefore inf{µ(x)∧µ(y) : x∈ (a,b)l,y∈ (a,c)l}≥α. Since µ is an L- fuzzy semi-prime

ideal and z ∈ {a,(b,c)u}l we have
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µ(z)≥ inf{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} ≥ α.

This implies that z ∈ µα for all z ∈ {a,(b,c)u}l and hence {a,(b,c)u}l ⊆ µα .

Therefore µα is a semi-prime ideal of a poset Q.

Conversely suppose that µα is a semi-prime ideal of Q for all α ∈ L. Then, clearly,

µ is an L- fuzzy ideal of Q. Let a,b,c ∈ Q and put

α = in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}.

Then

in f{µ(x) : x ∈ (a,b)l} ≥ α and in f{µ(y) : y ∈ (a,c)l} ≥ α .

That is, µ(x)≥ α ∀x ∈ (a,b)l and µ(y)≥ α ∀y ∈ (a,c)l . This implies that (a,b)l ⊆ µα

and (a,c)l ⊆ µα . Thus, since µα is a semi-prime ideal of Q, we have {a,(b,)u}l ⊆ µα .

Therefore

µ(z)≥ α = in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} for all z ∈ {a,(b,c)u}l

and hence µ is an L-fuzzy semi-prime ideal of Q.

Corollary 5.2.2. A subset I of a poset Q is a semi-prime ideal of Q if and only if its

characteristic map χI is an L-fuzzy semi-prime ideal of Q.

Recall that if µ is an L- fuzzy ideal of Q and a∧b exists for a,b ∈ Q, then

in f{µ(x) : x ∈ (a,b)l}= µ(a∧b),

Theorem 5.2.3. Let (Q,≤) be a lattice. Then an L-fuzzy ideal of Q is an L- fuzzy semi-

prime ideal in the poset Q if and only if it is an L-fuzzy semi-prime ideal in the lattice

Q.

Proof. Let µ be an L-fuzzy semi-prime ideal in the poset Q and a,b,c ∈ Q. Then, since

a∧ (b∨ c) ∈ {a,(b,c)u}l , we have
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µ(a∧ (b∨ c)) ≥ inf{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}

= in f{µ(x) : x ∈ (a,b)l}∧ in f{µ(y) : y ∈ (a,c)l}

= µ(a∧b)∧µ(a∧ c).

Again since a∧b≤ a∧ (b∨ c), a∧ c≤ a∧ (b∨ c) and µ is anti-tone we clearly have

µ(a∧ (b∨ c))≤ µ(a∧b)∧µ(a∧ c)

Therefore µ is an L-fuzzy semi-prime ideal in the lattice Q.

Conversely, suppose that µ is an L-fuzzy semi-prime ideal in the lattice Q. Let a,b,c∈

Q and z ∈ {a,(b,c)u}l . Then z≤ a and z≤ t, for all t ∈ (a,b)u. Since a∨b ∈ (a,b)u, we

have z≤ a∨b. This implies that z≤ a∧ (b∨ c) and hence

µ(z) ≥ µ(a∧ (b∨ c))

= µ(a∧b)∧µ(a∧ c)

= in f{µ(x) : x ∈ (a,b)l}∧ in f{µ(y) : y ∈ (a,c)l}

= in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}

So µ is an L-fuzzy semi-prime ideal in the poset Q.

Recall that for any L-fuzzy ideal µ of a poset Q and x ∈ Q, the L-fuzzy subset µ : x

of Q is given by:

(µ : x)(y) = inf{µ(z) : z ∈ (x,y)l} for all y ∈ Q.

and µ : x is an L-fuzzy semi-ideal of Q.

Lemma 5.2.4. Let µ be an L-fuzzy ideal of a poset Q and x ∈ Q. Then

inf{(µ : x)(y) : y ∈ (a,b)ul}= inf{µ(y) : y ∈ {x,(a,b)u}l}
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Proof. . Let A = {µ(y) : y ∈ {x,(a,b)u}l} and B = {(µ : x)(y) : y ∈ (a,b)ul}. Now we

claim that infA = infB. Put α = infA. Then

α ≤ µ(y) ∀y ∈ {x,(a,b)u}l ⇒ {x,(a,b)u}l ⊆ µα

⇒ (a,b)ul ⊆ µα : x = (µ : x)α

⇒ (µ : x)(y)≥ α ∀y ∈ (a,b)ul

⇒ inf{(µ : x)(y) : y ∈ (a,b)ul} ≥ α.

⇒ infB≥ infA.

To prove the other side of the inequality, let β = infB. Then

β ≤ (µ : x)(y) ∀y ∈ (a,b)ul ⇒ (a,b)ul ⊆ (µ : x)β = µβ : x

⇒ {x,(a,b)u}l ⊆ µβ

⇒ µ(y)≥ β ∀y ∈ {x,(a,b)u}l

⇒ inf{µ(y) : y ∈ {x,(a,b)u}l} ≥ β .

⇒ infA≥ infB.

Hence the claim is true.

Now we present a characterization of an L-fuzzy semi-prime ideal of a poset Q in

terms of µ : x where µ is an L-fuzzy ideal of Q and x ∈ Q.

Theorem 5.2.5. An L-fuzzy ideal µ of a poset Q is an L-fuzzy semi-prime ideal if and only

if µ : x is an L-fuzzy ideal for all x ∈ Q, in fact, an L-fuzzy semi-prime ideal for all x ∈ Q.

Proof. Let µ be an L-fuzzy semi-prime ideal of Q and x ∈ Q. First let us show that µ : x

is an L-fuzzy ideal of Q. Now (µ : x)(0) = inf{µ(y) : y ∈ (x,0)l} = µ(0) = 1. Again let
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a,b ∈ Q and z ∈ (a,b)ul . Then

(µ : x)(a)∧ (µ : x)(b) = inf{µ(w) : w ∈ (x,a)l}∧ inf{µ(u) : u ∈ (x,b)l}

= inf{µ(w)∧µ(u) : w ∈ (x,a)l,u ∈ (x,b)l}

≤ µ(v) for all v ∈ {x,(a,b)u}l

This implies that

(µ : x)(a)∧ (µ : x)(b) ≤ inf{µ(v) : v ∈ {x,(a,b)u}l}

= inf{(µ : x)(v) : v ∈ (a,b)ul}

≤ (µ : x)(z). (Since z ∈ (a,b)ul)

Therefore µ : x is an L-fuzzy ideal of Q for all x ∈ Q.

Now we show that µ : x is an L-fuzzy semi-prime ideal of Q. Let a,b,c ∈ Q and

z ∈ {a,(b,c)u}l .

Now inf{(µ : x)(u)∧ (µ : x)(w) : u ∈ (a,b)l,w ∈ (a,c)l}

= inf{(µ : x)(u) : u ∈ (a,b)l}∧ inf{(µ : x)(w) : w ∈ (a,c)l}

= inf{µ(u) : u ∈ (x,a,b)l}∧ inf{µ(w) : w ∈ (x,a,c)l}

= inf{(µ : b)(u) : u ∈ (x,a)l}∧ inf{(µ : c)(w) : w ∈ (x,a)l}

= inf{(µ : b)(s)∧ (µ : c)(s) : s ∈ (x,a)l}

≤ inf{(µ : b)(s)∧ (µ : c)(s) : s ∈ {x,a,(b,c)u}l}

= inf{(µ : s)(b)∧ (µ : s)(c) : s ∈ {x,a,(b,c)u}l = (x,a)l ∩ (b,c)ul}

≤ inf{(µ : s)(s) : s ∈ {x,a,(b,c)u}l}

= inf{µ(s) : s ∈ {x,a,(b,c)u}l}
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Now, since z ∈ {a,(b,c)u}l , we have (x,z)l ⊆ {x,a,(b,c)u}l and hence

inf{(µ : x)(u)∧ (µ : x)(w) : u ∈ (a,b)l,w ∈ (a,c)l} ≤ inf{µ(s) : s ∈ {x,a,(b,c)u}l}

≤ inf{µ(s) : s ∈ (x,z)l}

= (µ : x)(z)

Therefore µ : x is an L-fuzzy semi-prime ideal of Q.

Conversely suppose that µ : x is an L-fuzzy ideal of Q for all x ∈ Q. Now we show

that µ is an L-fuzzy semi-prime ideal of Q. Let a,b,c ∈ Q and z ∈ {a,(b,c)u}l . Then

in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}

= in f{µ(x) : x ∈ (a,b)l}∧ inf{µ(y) : y ∈ (a,c)l}

= (µ : a)(b)∧ (µ : a)(c)

≤ (µ : a)(t) f or all t ∈ (b,c)ul

This implies that

in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} ≤ inf{(µ : a)(t) : t ∈ (b,c)ul}

= inf{µ(t) : t ∈ {a,(b,c)u}l}

≤ µ(z).

Thus

in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} ≤ µ(z) for all z ∈ {a,(b,c)u}l

and hence µ is an L-fuzzy semi-prime ideal of Q.

Recall that a proper L-fuzzy ideal µ of a poset Q is called an L-fuzzy prime, if for any

a,b ∈ Q,

in f{µ(x) : x ∈ (a,b)l}= µ(a) or µ(b).
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The following result establishes a connection between L-fuzzy prime ideals and L-fuzzy

semi-prime ideals of a poset Q.

Lemma 5.2.6. Every L-fuzzy prime ideal of a poset Q is an L-fuzzy semi-prime ideal.

Proof. Let µ be an L-fuzzy prime ideal of Q. Let a,b,c ∈ Q. Then since µ is an L-fuzzy

prime ideal of Q, we clearly have

inf{µ(x) : x ∈ (a,b)l}= µ(a) or µ(b) and inf{µ(y) : y ∈ (a,c)l}= µ(a) or µ(c).

Let z ∈ {a,(b,c)u}l = al ∩ (b,c)ul . Then z≤ a and z ∈ (b,c)ul . Now if

inf{µ(x) : x ∈ (a,b)l}= µ(a) or inf{µ(y) : y ∈ (a,c)l}= µ(a), then we have

µ(z)≥ µ(a) ≥ in f{µ(x) : x ∈ (a,b)l}∧ inf{µ(y) : y ∈ (a,c)l}

= in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}

Again if inf{µ(x) : x ∈ (a,b)l} 6= µ(a) and inf{µ(y) : y ∈ (a,c)l} 6= µ(a) then we have

inf{µ(x) : x ∈ (a,b)l}= µ(b) and inf{µ(y) : y ∈ (a,c)l}= µ(c).

Now since z ∈ (b,c)ul and µ is an L-fuzzy ideal, we have

µ(z)≥ µ(b)∧µ(c) = in f{µ(x) : x ∈ (a,b)l}∧{µ(y) : y ∈ (a,c)l}

= in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}.

Hence, in either cases, we have

µ(z)≥ in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} for all z ∈ {a,(b,c)u}l .

Hence µ is an L-fuzzy semi-prime ideal of Q.

Remark 5.2.1. The converse of the above lemma is not is not true. For example consider

the poset (Q≤ ) depicted in the Fig. 5.1 below. Define a fuzzy subset µ : Q−→ [0,1] by:

µ(0) = 1 and µ(a) = µ(b) = µ(1) = 0.5.
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Then µ is a fuzzy semi-prime ideal but not a fuzzy prime ideal of Q. This is because

a,b ∈ Q and inf{µ(x) : x ∈ (a,b)l}= µ(0) = 1 6= 0.5 = µ(a) = µ(b).

Fig. 5.1

Now before we prove some other characterizations of L-fuzzy semi-primeness and

L-fuzzy primeness in the case of a poset satisfying DCC, we introduce the notion of a

µ-atom of an L-fuzzy ideal µ of a poset.

Definition 5.2.3. Let µ be an L-fuzzy ideal of a poset Q and α ∈ L. An element i in Q is

called a µ-atom with respect to α , if it satisfies the following conditions:

1. α � µ(i) and

2. α ≤ µ(x) whenever x < i.

Example 5.2.7. Consider the poset depicted in the Fig 5.3 given below on page 131.

Define a fuzzy subset µ : Q−→ [0,1] by:

µ(0) = µ(a) = 1, µ(b) = 0.7, µ(c) = 0.6 and µ(d) = 0.8,

µ(a′) = µ(b′) = µ(c′) = µ(d′) = µ(1) = 0.2.

. Then it is easy to see that µ is an L-fuzzy ideal of Q and a′ is a µ-atom with respect to

α = 0.6 in [0,1].

Lemma 5.2.8. There always exists a µ-atom for every proper L-fuzzy ideal µ in a poset

Q satisfying DCC with respect to some α in L.
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Proof. Let Q be a poset satisfying DCC and µ be a proper L-fuzzy ideal of Q. Then there

exists a ∈ Q such that µ(a) 6= 1. This implies that there exists α ∈ L such that α � µ(a).

Put I = {x ∈Q : µ(x)≥ α}. Then Q− I is a non-empty subset of Q and as Q is satisfying

DCC, Q− I has a minimal element, say i, such that i≤ a. Now we claim that i is a µ-atom

with respect to α . Since i ∈ Q− I we have α � µ(i). Let x < i. Then, by the minimality

of i, x /∈ Q− I and hence µ(x)≥ α . Hence the claim is true.

Remark 5.2.2. Lemma 5.2.8 gives a guarantee that if µ be an L-fuzzy ideal of a poset Q

satisfying DCC and α � µ(a) for some a ∈ Q and α ∈ L, then there exists a µ-atom i in

Q with respect to α such that i≤ a.

Lemma 5.2.9. Any two distinct µ-atoms of an L-fuzzy ideal µ of a poset Q with respect

to any α ∈ L are incomparable.

Proof. Let µ be an L-fuzzy ideal of Q and i and j be any two distinct µ-atoms with

respect to α ∈ L. Then, by definition, we have α � µ(i) and µ(x) ≥ α whenever x < i

and α � µ( j) and µ(y)≥ α whenever y < j. Now we show that i and j are incomparable.

Suppose not. Then i < j or j < i, i.e., µ(i) ≥ α or µ( j) ≥ α which is a contradiction to

the fact that α � µ( j) and α � µ( j). Hence i and j are incomparable.

Remark 5.2.3. From Lemma 5.2.9 above, we can deduce that if i and j are µ-atoms in a

poset Q with respect to some α in L such that i≤ j then i = j.

Lemma 5.2.10. Let µ be an L-fuzzy semi-prime ideal of a poset Q satisfying DCC. Then

µ : i is a u- L-fuzzy ideal for every µ-atom i in Q with respect to 1 in L.

Proof. Let i be a µ-atom in Q with respect to 1 in L. Since µ is an L-fuzzy semi-prime

ideal, by Theorem 5.2.5, µ : i is an L-fuzzy ideal of Q. Now we show that µ : i is a u-

L-fuzzy ideal. Suppose on the contrary that µ : i is not a u-L-fuzzy ideal. Then there exist

a,b ∈ Q such that

(µ : i)(a)∧ (µ : i)(b)� (µ : i)(x) for all x ∈ (a,b)u.
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This implies that there exists y ∈ (i,x)l such that

(µ : i)(a)∧ (µ : i)(b)� µ(y) for all x ∈ (a,b)u.

Thus, by Remark 5.2.2, there exists a µ-atom, say j, with respect to

α = (µ : i)(a)∧ (µ : i)(b) such that j ≤ y. Since j ≤ y and y ∈ (i,x)l , we have j ≤ i and

hence µ( j) ≥ µ(i). This implies that α � µ(i). Again let z < i. Then µ(z) = 1 ≥ α .

Therefore i is also a µ-atom with respect to α . Also since j ≤ y ≤ i, by Remark 5.2.3,

we have j = y = i. This implies that i ∈ (i,x)l and hence i ≤ x for all x ∈ (a,b)u and so

i ∈ (a,b)ul . Since µ : i is an ideal we have

α = (µ : i)(a)∧ (µ : i)(b)≤ (µ : i)(i) = µ(i),

which is a contradiction to the fact that α � µ(i). Therefore µ : i a u-L-fuzzy ideal.

Theorem 5.2.11. Let µ be an L-fuzzy semi-prime ideal of a poset Q satisfying DCC. Then

µ : i is an L-fuzzy prime ideal of Q for every µ-atom i ∈ Q with respect to 1 in L.

Proof. Let µ be an L-fuzzy semi-prime ideal of a poset Q satisfying DCC and i is a µ-

atom in Q with respect to 1 in L. Then, by Lemma 5.2.10, µ : i is a u-L-fuzzy ideal. Now

we remain to show that µ : i is an L-fuzzy prime ideal. Since µ(i) 6= 1, by Lemma 5.2.4,

µ : i 6= 1. Hence µ : i is proper. Let a,b ∈ Q and suppose that

inf{(µ : i)(x) : x ∈ (a,b)l} 6= (µ : i)(a).

Put α = inf{(µ : i)(x) : x ∈ (a,b)l}. Since (µ : i)(a) = inf{µ(y) : y ∈ (a, i)l} there exists

y1 in (i,a)l such that α � µ(y1). Then, by Remark 5.2.2, there exists a µ-atom, say j in

Q with respect to α such that j ≤ y1. It is also clear that i is also a µ-atom with respect to

α . Since j ≤ y1 ≤ i, by Remark 5.2.3, we must have j = y1 = i, and therefore i≤ a, i.e.,

(i,a)l = il . Thus we have

inf{(µ : i)(x) : x ∈ (a,b)l} = inf{µ(y) : y ∈ (i,a,b)l}

= inf{µ(y) : y ∈ (i, ,b)l}

= (µ : i)(b).
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This proves that µ : i is an L-fuzzy prime ideal for every µ-atom i ∈ Q with respect to

1.

Theorem 5.2.12. Let µ be an L-fuzzy ideal of a poset Q satisfying DCC and let µ : i is an

L-fuzzy ideal for every µ-atom i ∈ Q. Then µ is an L-fuzzy semi-prime ideal Q.

Proof. Let µ : i is an L-fuzzy ideal for any µ-atom i in Q. Let a,b,c ∈ Q. Now we claim

inf{µ(x)∧µ(y) : x∈ (a,b)l,y∈ (a,c)l}≤ µ(z) for all z∈ {a,(b,c)u}l . Suppose not. Then

there exists z1 ∈ {a,(b,c)u}l = al ∩ (b,c)ul such that

inf{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}� µ(z1).

Hence, by Remark 5.2.2, there exists a µ-atom j in Q with respect to α = inf{µ(x)∧µ(y) :

x∈ (a,b)l,y∈ (a,c)l} in L such that j≤ z1. Then, by hypothesis, µ : j is an L-fuzzy ideal.

Again, since ( j,b)l ⊆ (a,b)l and ( j,c)l ⊆ (a,c)l , we have

α = inf{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}

= inf{µ(x) : x ∈ (a,b)l}∧ inf{µ(y) : y ∈ (a,c)l}

≤ inf{µ(x) : x ∈ ( j,b)l}∧ inf{µ(y) : y ∈ ( j,c)l}

= (µ : j)(b)∧ (µ : j)(c)

≤ (µ : j)( j) (since j ∈ (b,c)ul)

= µ( j)

which is a contradiction to the fact that j is a µ-atom wit respect to α . Therefore µ is an

L-fuzzy semi-prime ideal of Q.

Definition 5.2.4. [9] A proper L-fuzzy ideal µ of a poset Q is said to be maximal L-fuzzy

ideal if µ is a maximal element in the set of all proper L-fuzzy ideals of Q. That is, if there

is no proper L-fuzzy ideal θ of Q such that µ $ θ .

The following result gives another characterization for L-fuzzy semiprime ideals to be

L-fuzzy prime.



5.2. L-Fuzzy Semi-prime Ideals 127

Theorem 5.2.13. Every maximal L-fuzzy semi-prime ideal of a poset Q is an L-fuzzy

prime ideal.

Proof. Let µ be a maximal L-fuzzy semi-prime ideal of a poset Q, that is, maximal among

all proper L-fuzzy semi-prime ideals of a poset Q . Let a,b ∈Q. Then, by Theorem 5.2.5,

µ : b is an L-fuzzy semi-prime ideal. Since µ ⊆ µ : b, by maximality of µ , we have either

µ = µ : b or µ : b = 1. If µ : b = 1 then, by Lemma 5.2.4, µ(b) = 1. Thus

inf{µ(x) : x ∈ (a,b)l}= (µ : b)(a) = 1(a) = 1 = µ(b).

Again if µ = µ : b, then we have

inf{µ(x) : x ∈ (a,b)l}= (µ : b)(a) = µ(a).

Thus in either cases we have

inf{µ(x) : x ∈ (a,b)l}= µ(a) or µ(b) for all a,b ∈ Q.

Hence µ is an L-fuzzy prime ideal of Q.

As a consequence we have the following corollary.

Corollary 5.2.14. Let µ be a maximal L-fuzzy ideal of Q. Then µ is an L-fuzzy semi-prime

ideal Q if and only if µ is an L-fuzzy prime ideal.

The following is a characterization of an L-fuzzy ideal to be L-fuzzy prime ideal in

terms of a µ-atom in a poset Q satisfying DCC.

Theorem 5.2.15. Let µ be an L-fuzzy ideal of a poset Q satisfying DCC. Then µ is an

L-fuzzy prime ideal Q if and only if Q has exactly one µ-atom with respect to each α in L.

Proof. Let µ be an L-fuzzy prime ideal of a poset Q satisfying DCC. Since µ is proper,

by Lemma 5.2.8, there exists a µ-atom in Q with respect to some α in L. Now we

claim that Q has exactly one µ-atom with respect to α in L. Suppose not. Let i, j ∈ Q

be any distinct µ-atoms in Q with respect to α in L. Then, by Lemma 5.2.9, i, j are

incomparable and µ(x) ≥ α for all x < i and µ(y) ≥ α for all y < j. This implies that
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inf{µ(x) : x ∈ (i, j)l} ≥ α . Since inf{µ(x) : x ∈ (i, j)l}= µ(i) or µ( j), we have µ(i)≥ α

or µ( j)≥ α , which is a contradiction. Therefore Q has exactly one µ-atom with respect

to α in L.

Conversely suppose that Q has exactly one µ-atom, say i, with respect to some α in

L. Now we show that µ is an L-fuzzy prime ideal. Since α � µ(i), we have µ(i) 6= 1 and

hence µ is proper. Now we show that for any a,b ∈ Q

inf{µ(x) : x ∈ (a,b)l}= µ(a) or µ(b).

Suppose not. Thus there exist a,b ∈ Q such that

inf{µ(x) : x ∈ (a,b)l}� µ(a) and inf{µ(x) : x ∈ (a,b)l}� µ(b).

Then there exist µ-atoms i, j ∈ Q with respect to α = inf{µ(x) : x ∈ (a,b)l} such that

i ≤ a and j ≤ b. Then, by hypothesis, we have i = j and hence i ∈ (a,b)l . Therefore

α = inf{µ(x) : x ∈ (a,b)l} ≤ µ(i) , which is a contradiction to the fact that i is a µ-atom

with respect to α = inf{µ(x) : x ∈ (a,b)l}. Therefore µ is an L-fuzzy prime ideal.

Lemma 5.2.16. Let µ be a proper L-fuzzy ideal of a poset Q satisfying DCC and

A = {i ∈ Q : i is a µ−atom}. Then µ =
⋂

i∈A µ : i.

Proof. We show that
⋂

i∈A µ : i⊆ µ as the converse inclusion always holds. Suppose that⋂
i∈A µ : i* µ . This implies that there exists a ∈Q such that (

⋂
i∈A µ : i)(a)� µ(a). Thus

there exists a µ-atom j ∈ Q with respect to α = (
⋂

i∈A µ : i)(a) such that j ≤ a. Then we

have j ∈ A and hence

(
⋂
i∈A

µ : i)(a) ≤ (µ : j)(a)

= inf{µ(x) : x ∈ ( j,a)l}

= inf{µ(x) : x ∈ jl}

= µ( j),
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which is a contradiction to the fact that j is a µ-atom with respect to α = (
⋂

i∈A µ : i)(a).

Hence
⋂

i∈A µ : i⊆ µ . Therefore
⋂

i∈A µ : i = µ .

Lemma 5.2.17. The intersection of any non empty family of L-fuzzy prime ideals of Q is

an L-fuzzy semi-prime ideal Q.

Proof. Let {µi : i ∈ ∆} be a non empty family of L-fuzzy prime ideals of Q. Put µ =⋂
i∈∆ µi. Then clearly µ is an L-fuzzy ideal of Q. Let a,b,c ∈Q and z ∈ {a,(b,c)u}l. Now

in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l}

= in f{µ(x) : x ∈ (a,b)l}∧ inf{µ(y) : y ∈ (a,c)l}

≤ in f{µi(x) : x ∈ (a,b)l}∧ inf{µi(y) : y ∈ (a,c)l}for each i ∈ ∆.

= µi(a) or µi(b)∧µi(c) for each i ∈ ∆.

≤ µi(z) for each i ∈ ∆.

This implies that

in f{µ(x)∧µ(y) : x ∈ (a,b)l,y ∈ (a,c)l} ≤ (
⋂

i∈∆ µi)(z) = µ(z) for all z ∈ {a,(b,c)u}l .

Therefore µ =
⋂

i∈∆ µi is an L-fuzzy semi-prime ideal Q.

As an immediate consequence of Theorem 5.2.12, Lemma 5.2.16 and Lemma 5.2.17

in the case of posets satisfying DCC we obtain the following result.

Theorem 5.2.18. Let µ be a proper L-fuzzy ideal of a poset Q satisfying DCC. Then µ is

an L-fuzzy semi-prime ideal of Q if and only if µ is expressed as an intersection of L-fuzzy

prime ideals of Q.

In the following we characterize the distributive posets in terms of L-fuzzy semi-prime

ideals in the following results.

Theorem 5.2.19. A poset Q is distributive if and only if χ(x] of Q is an L-fuzzy semi-prime

ideal of Q, for each x ∈ Q.
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Proof. Suppose that Q is a distributive poset and x ∈ Q. Now to show χ(x] is an L-fuzzy

semi-prime ideal of Q, by Corollary 5.2.2, it is enough to show that (x] is a semi-prime

ideal of Q. Let a,b,c ∈ Q such that (a,b)l ⊆ (x] and (a,c)l ⊆ (x]. Let z ∈ {a,(b,c)u}l .

Then z≤ a and z ∈ (b,c)ul . This implies that

zl = {z,(b,c)u}l = {(z,b)l,(z,c)l}ul

Since z≤ a, we have (z,b)l ⊆ (a,b)l ⊆ (x] and (z,c)l ⊆ (a,c)l ⊆ (x].

This implies that (z,a)l ∪ (z,b)l ⊆ (x]. Thus z ∈ zl = {(z,b)l,(z,c)l}ul ⊆ (x]ul = (x] and

hence {a,(b,c)u}l ⊆ (x]. Therefore χ(x] of Q is an L-fuzzy semi-prime ideal of Q.

Conversely suppose that χ(x] is an L-fuzzy semi- prime ideal of Q for each x ∈ Q.

Then, by Corollary 5.2.2, it is clear that (x] is semi- prime ideal of Q for each x ∈ Q. Let

a,b,c ∈ Q. It is enough to prove that {a,(b,c)u}l ⊆ {(a,b)l,(a,c)l}ul, as the converse

inclusion is always true. Now let x ∈ {a,(b,c)u}l and y ∈ {(a,b)l,(a,c)l}u. We claim that

x≤ y. Indeed, since {(a,b)l,(a,c)l}ul ⊆ yl we have

(a,b)l ⊆ yl = (y] and (a,c)l ⊆ yl = (y].

Then. by semi-primeness of (y], we conclude that x ∈ {a,(b,c)u}l ⊆ (y]. Hence x≤ y for

all y ∈ {(a,b)l,(a,c)l}u. Therefore x ∈ {(a,b)l,(a,c)l}ul and hence

{a,(b,c)u}l ⊆ {(a,b)l,(b,c)l}ul .

This proves that Q is a distributive poset.

Note that in a distributive poset every L-fuzzy ideal need not be an L-fuzzy semi-prime

ideal. Consider the distributive poset Q depicted in the Fig 5.2 below

Fig. 5.2
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Define a fuzzy subset µ : Q−→ [0,1] by:

µ(0) = µ(a) = 1, µ(a′) = µ(b′) = µ(c′) = µ(d′) = µ(1) = 0.2, µ(b) = 0.6, µ(c) = 0.5

and µ(d) = 0.7.

Then µ is an L-fuzzy ideal but not an L-fuzzy semi-prime ideal as d′,c′,b′ ∈ Q and d′ ∈

{d′,(b′,c′)u}l but

in f{µ(x)∧µ(y) : x ∈ (d′,c′)l,y ∈ (d′,b′)l}= 0.5� 0.2 = µ(d′).

An immediate consequence of Theorem 5.2.18 and Theorem 5.2.19, we have the fol-

lowing corollary.

Corollary 5.2.20. Let Q is a poset satisfying DCC. Then Q is distributive if and only if

for every x ∈ Q, χ(x] is representable as an intersection of L-fuzzy prime ideals of Q.

5.3 The Lattice of L-Fuzzy Semi-prime Ideals

In this section we prove that the set of all L-fuzzy semi-prime ideals in a poset forms

a complete lattice. The relations between the L-fuzzy semi-prime (respectively,L-fuzzy

prime) ideals of a poset and the L-fuzzy semi-prime (respectively,L-fuzzy prime) ideals

of the lattice of all ideals of a poset are established.

We begin by proving that the set FS P(Q) of all L-fuzzy semi-prime ideals of a

poset Q forms a complete lattice.

Lemma 5.3.1. Let FS P(Q) be the set of all L-fuzzy semi-prime ideals of a poset Q

and µ be an L fuzzy subset of Q. Then the L-fuzzy semi-prime ideal generated by µ is

(µ] = ∩{θ ∈FS P(Q) : µ ⊆ θ}.

Theorem 5.3.2. The set FS P(Q) of all L- fuzzy semi- prime ideals of Q forms a com-

plete lattice, in which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family
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{µi : i ∈ ∆} of L-fuzzy semi-prime ideals of Q respectively are given by:

sup
i∈∆

µi = ∩{θ ∈FS I (Q) : ∪i∈∆µi ⊆ θ} and inf
i∈∆

µi = ∩i∈∆µi.

Definition 5.3.1. Let Q be a given poset and I (Q) be a lattice of all ideals of Q. Then an

extension of an L-fuzzy ideal µ of Q, denoted by µe, is an L -fuzzy subset I (Q) defined

by:

µe(I) = inf{µ(x) : x ∈ I}, for all I ∈I (Q).

Lemma 5.3.3. Let µ be an L-fuzzy ideal of a poset Q and α ∈ L. Then (µe)α = (µα)
e.

Proof. Since µ is an L-fuzzy ideal of a poset Q and α ∈ L µα is an ideal of Q. Recall that

(µα)
e = {I ∈I (Q) : I ⊆ µα}. Now since

I ∈ (µα)
e ⇔ I ⊆ µα

⇔ µ(a)≥ α, for all a ∈ I

⇔ µ
e(I) = inf{µ(a) : a ∈ I} ≥ α

⇔ I ∈ (µe)α

we have (µα)
e = (µe)α .

Lemma 5.3.4. Let µ be an L-fuzzy ideal of a poset Q. Then µe is an L-fuzzy ideal of the

lattice I (Q).

Proof. Now µe((0]) = inf{µ(x) : x ∈ (0]}= µ(0) = 1. Let I,J ∈I (Q). Then

µ
e(I) = inf{µ(x) : x ∈ I}

≥ inf{µ(x) : x ∈ I∨ J} (..since I ⊆ I∨ J)

= µ
e(I∨ J)
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and similarly we have µe(J)≥ µe(I∨J). Thus µe(I)∧µe(J)≥ µe(I∨J). Again to show

the other inequality put α = µe(I)∧µe(J). Now

α = µ
e(I)∧µ

e(J) ⇒ α ≤ µ
e(I) = inf{µ(x) : x ∈ I} and

α ≤ µ
e(J) = inf{µ(y) : y ∈ I}

⇒ α ≤ µ(x) for all x ∈ I and α ≤ µ(y) for all y ∈ J

⇒ I ⊆ µα and ‘J ⊆ µα

⇒ I∪ J ⊆ µα

⇒ I∨ J ⊆ µα

⇒ I∨ J ∈ (µα)
e = (µe)α

⇒ µ
e(I∨ J)≥ α = µ

e(I)∧µ
e(J)

Therefore µe(I∨ J) = µe(I)∧µe(J). Hence µe is an L-fuzzy ideal I (Q).

In order to study the relations between the L-fuzzy semi-prime ideals of a poset Q and

the L-fuzzy semi-prime ideals of the lattice I (Q), we consider the following sets that are

studied in [29]. For any ideals I and J of a poset Q, define subsets of Q by:

C1(I,J) =
⋃
{(a,b)ul : a,b ∈ I∪ J} and Cn+1(I,J) =

⋃
{(a,b)ul : a,b ∈Cn(I,J)}

for each n ∈ N, inductively.

It is easy to observe that the set {Cn(I,J) : n ∈N} forms a chain and each Cn(I,J) is a

semi-ideal or a down set of Q.

We use the following Lemma in the result followed by it which is a relation between

the L-fuzzy semi-prime ideals of a poset Q and the L-fuzzy semi-prime ideals of the lattice

I (Q).

Lemma 5.3.5. [29] Let Q be a poset and I,J ∈I (Q). Then

I∨ J =
⋃
{{Cn(I,J) : n ∈ N}
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Theorem 5.3.6. Let µ be an L-fuzzy semi-prime ideal of a poset Q. Then µe is an L-fuzzy

semi-prime ideal of the lattice I (Q).

Proof. Let I,J,K ∈I (Q). Now we prove that

µe(I∩ J)∧µe(I∩K) = µe(I∩ (J∨K).

Since µe is an L-fuzzy ideal of I (Q) and I∩ J ⊆ I∩ (J∨K) and I∩K ⊆ I∩ (J∨K) we

clearly have

µe(I∩ J)∧µe(I∩K)≥ µe(I∩ (J∨K)).

Again to show the other inequality it is enough to show that for each n ∈ N

µe(I∩ J)∧µe(I∩K)≤ µ(x) for all x ∈ I∩Cn(J,K),

in view of Lemma 5.3.5

1. Let n = 1 and x ∈ I ∩C1(J,K). Then x ∈ I and x ∈ (a,b)ul for some a,b ∈ J ∪K.

If a,b ∈ J or K, then obviously µe(I ∩ J)∧ µe(I ∩K) ≤ µ(x). So, let us suppose,

without loss of generality, that a ∈ J and b ∈ K. Then (x,a)l ⊆ I ∩ J and (x,b)l ⊆

I∩K. By L-fuzzy semi-primness of µ , we have

µ
e(I∩ J)∧µ

e(I∩K) = inf{µ(y) : y ∈ I∩ J}∧ inf{µ(y) : y ∈ I∩K}

≤ inf{µ(y) : y ∈ (x,a)l}∧ inf{µ(z) : z ∈ (x,b)l}

= inf{µ(y)∧µ(z) : y ∈ (x,a)l,z ∈ (x,b)l}

≤ µ(x) .... (since x ∈ {x,(a,b)u}l).

Thus the statement is true for n = 1.

2. Suppose that µe(I ∩ J)∧ µe(I ∩K) ≤ µ(x) for all x ∈ I ∩Cn(I,J) holds for some

n ∈ N. We will prove that it also holds for n+1. Now x ∈ I∩Cn+1(I,J) implies that

x ∈ I and x ∈ (a,b)ul for some a,b∈Cn(I,J). This implies that (x,a)l,⊆ I∩Cn(I,J)

and (x,b)l ⊆ I∩Cn(I,J). Thus, by induction hypothesis, we have
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µe(I∩ J)∧µe(I∩K)≤ µ(y) for all y ∈ (x,a)l

and

µe(I)∧µe(J)≤ µ(z) for all z ∈ (x,b)l

and since µ is L-fuzzy semi-prime and x ∈ {x,(a,b)u}l we have

µ
e(I∩ J)∧µ

e(I∩K) ≤ inf{µ(y)∧µ(z) : y ∈ (x,a)l,z ∈ (x,b)l

≤ µ(x).

Therefore µe(I∩ J)∧µe(I∩K)≤ µ(x) for all x ∈ I∩Cn(I,J) for each n ∈ N.

Thus we have

µe(I∩ J)∧µe(I∩K)≤ inf{µ(x) : x ∈ I∩ (J∨K)}= µe(I∩ (J∨K)).

Therefore µe(I∩J)∧µe(I∩K) = µe(I∩ (J∨K)) and hence µe is an L-fuzzy semi-prime

ideal of the lattice I (Q).

Definition 5.3.2. Let Q be a given poset and I (Q) be the lattice of all ideals of Q. Then

a contraction of an L-fuzzy ideal Φ of I (Q), denoted by Φc, is an L-fuzzy subset of Q

given by:

Φc(x) = sup{Φ(I) : x ∈ I}, for all x ∈ Q.

Lemma 5.3.7. Let Φ be an L-fuzzy ideal of the lattice I (Q) of all ideals of Q. Then Φc

is an L-fuzzy ideal of the poset Q.

Proof. Now since

Φ
c(0) = sup{Φ(I) : 0 ∈ I}

≥ Φ((0]) ...(since 0 ∈ (0])

= 1
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we have Φc(0) = 1. Again let a,b ∈ Q and x ∈ (a,b)ul . Now

Φ
c(a)∧Φ

c(b) = sup{Φ(I) : a ∈ I}∧ sup{Φ(J) : b ∈ J}

= sup{Φ(I)∧Φ(J) : a ∈ I,b ∈ J}

= sup{Φ(I∨ J) : a ∈ I,b ∈ J}

≤ sup{Φ(I∨ J) : x ∈ (a,b)ul ⊆ I∨ J}

≤ Φ
c(x)

Therefore Φc is an L-fuzzy ideal of the poset Q.

Lemma 5.3.8. Let Φ be an L-fuzzy ideal of I (Q) with sup property and α ∈ L. Then

(Φc)α = (Φα)
c

Proof. Let Φ be an L-fuzzy ideal of I (Q) with sup property and α ∈ L. Now

x ∈ (Φα)
c ⇒ x ∈ I0 for some I0 ∈Φα

⇒ Φ(I0)≥ α and x ∈ I0

⇒ Φ
c(x) = sup{Φ(I) : x ∈ I} ≥Φ(I0)≥ α

⇒ x ∈ (Φc)α

Thus we have (Φα)
c ⊆ (Φc)α .

To show the other inclusion, let x ∈ (Φc)α . Then Φc(x) = sup{Φ(I) : x ∈ I} ≥ α . Since

Φ is an L-fuzzy subset of I (Q) with sup property, there exists I0 ∈ I (Q) with x ∈ I0

such that Φ(I0) = sup{Φ(I) : x ∈ I} ≥ α . This implies that I0 ∈ Φα and x ∈ I0 and so

x ∈ (Φα)
c. Therefore (Φc)α ⊆ (Φα)

c and hence (Φc)α = (Φα)
c.

Theorem 5.3.9. Let Q be a finite poset and let Φ be an L-fuzzy semi-prime ideal of I (Q)

with sup property. Then Φc is an L-fuzzy semi-prime ideal of a poset Q.
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Proof. Clearly Φc is an L-fuzzy ideal of Q ,by Lemma 5.3.7. Now we show that Φc is an

L-fuzzy semi-prime ideal Q. Let a,b,c ∈ Q and z ∈ {a,(b,c)u}l . Now put

α = inf{Φc(x)∧Φc(y) : x ∈ (a,b)l,y ∈ (a,c)l}.

Then it is clear that

Φc(x)≥ α for all x ∈ (a,b)l and Φc(y)≥ α for all y ∈ (a,c)l.

This implies that (a,b)l ⊆ (Φc)α = (Φα)
c and (a,c)l ⊆ (Φc)α = (Φα)

c. Since Q is finite

and (Φα)
c =

⋃
{I : I ∈Φα}, there exist I1, I2, · · · , In and J1,J2, · · · ,Jm in Φα such that

(a]∩ (b] = (a,b)l ⊆
n⋃

i=1

Ii ⊆
n∨

i=1

Ii ∈Φα

and

(a]∩ (c] = (a,c)l ⊆
m⋃

j=1

J j ⊆
m∨

j=1

J j ∈Φα .

Since Φα a semi-prime ideal of I (Q), we have (a]∩ ((b]∨ (c]) ∈Φα . Now

z ∈ {a,(b,c)u}l ⇒ z ∈ (a]∩ ((b]∨ (c]) ∈Φα

= z ∈ (Φα)
c = (Φc)α

= Φ
c(z)≥ α

= Φ
c(z)≥ inf{Φc(x)∧Φ

c(y) : x ∈ (a,b)l,y ∈ (a,c)l}

Hence Φc is an L-fuzzy semi-prime ideal of a poset Q.

Remark 5.3.1. The finiteness conditions in the statement of the Theorem 5.3.9 is neces-

sary. For example consider the infinite poset depicted in the Fig. 5.3 and its ideal lattice

I (Q) in Fig. 5.4 below.
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Fig. 5.3

Fig. 5.4
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Let L = [0,1]. Then consider the L- fuzzy subset Φ of I (Q) given by:

Φ(I) =


1 i f I = (y1]

1−
1
2 i

1+ i
i f I = (yi] i = 2,3, · · ·

0 i f otherwise

,

for all I ∈ I (Q). which is an L-fuzzy semi-prime ideal of I (Q). Then its contraction,

Φc, is given by:

Φ
c(x) =


1 i f x = y1

1−
1
2 i

1+ i
i f x = yi i = 2,3, · · ·

0 i f otherwise

for all x ∈Q. But Φc is not an L-fuzzy semi-prime ideal of a poset Q as a ∈ al ∩ (a,b)ul =

{a,(b,c)u}l but Φc(a) = 0� 1
2 = inf{Φc(x)∧Φc(y) : x ∈ (a,b)l,y ∈ (a,c)l}.

However, if Q is a meet semi-lattice, then we have

Theorem 5.3.10. Let Q be a meet semi-lattice and Φ be an L-fuzzy semi-prime ideal of

I (Q) with sup property. Then Φc is an L-fuzzy semi-prime ideal of Q.

Proof. Let Φ be an L-fuzzy semi-prime ideal of I (Q). Let a,b,c∈Q and z∈{a,(b,c)u}l .

Since Q is a meet semi-lattice it is clear that

inf{Φc(x)∧Φc(y) : x ∈ (a,b)l,y ∈ (a,c)l}= Φc(a∧b)∧Φc(a∧ c).

Now put α = Φc(a∧b)∧Φc(a∧ c). Then we have

Φc(a∧b)≥ α and Φc(a∧ c)≥ α .

This implies that

a∧b ∈ (Φc)α = (Φα)
c and a∧ c ∈ (Φc)α = (Φα)

c

Thus there exist I,J ∈Φα such that a∧b ∈ I and a∧ c ∈ J. This implies that
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(a]∩ (b] = (a∧b]⊆ I ∈Φα and (a]∩ (c] = (a∧ c]⊆ J ∈Φα .

Since Φα a semi-prime ideal of I (Q), (a]∩ ((b]∨ (c]) ∈Φα . Now

z ∈ {a,(b,c)u}l ⇒ z ∈ (a]∩ ((b]∨ (c]) ∈Φα

= z ∈ (Φα)
c = (Φc)α

= Φ
c(z)≥ α = Φ

c(a∧b)∧Φ
c(a∧ c)

Therefore Φc is an L-fuzzy semi-prime ideal of a meet semi-lattice Q.

In the next two theorems, we investigate the relationships between L-fuzzy prime ideal

of a poset Q and L-fuzzy prime ideal of the lattice I (Q).

Theorem 5.3.11. Let µ be an L-fuzzy prime ideal of a poset Q. Then µe is an L-fuzzy

prime ideal of the lattice I (Q).

Proof. Let µ be an L-fuzzy prime ideal of a poset Q. Now we show that µe is an L-fuzzy

prime ideal of the lattice I (Q). Since µ is proper, there exists a ∈ Q such that µ(a) 6= 1.

As (a] ∈ I (Q) and µe((a]) = inf{µ(x) : x ∈ (a]} = µ(a) 6= 1, µe is proper. Again let

I,J ∈I (Q). We need to show that

µe(I∩ J) = µe(I) or µe(J).

Indeed, on the contrary if both µe(I∩ J) 6= µe(I) and µe(I∩ J) 6= µe(J), then there exist

a ∈ I and b ∈ J such that µe(I∩J)� µ(a) and µe(I∩J)� µ(b). Since (a,b)l ⊆ I∩J and

hence µe(I∩ J)≤ inf{µ(x) : x ∈ (a,b)l}, we have

inf{µ(x) : x ∈ (a,b)l}� µ(a) and inf{µ(x) : x ∈ (a,b)l}� µ(b),

which contradicts the fact that µ is an L-fuzzy prime ideal of a poset Q. Therefore µe is

an L-fuzzy prime ideal of the lattice I (Q).

Theorem 5.3.12. Let Q be a finite poset and Φ be an L-fuzzy prime ideal of I (Q) with

sup property. Then Φc is an L-fuzzy prime ideal of Q.
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Proof. Suppose that Φ is an L-fuzzy prime ideal of I (Q) with sup property, where Q

is a finite poset. Then, since Φ is proper, there exists I0 ∈ I (Q) such that Φ(I0) 6= 1.

Since Q is finite and hence satisfying ACC, there exists a ∈ Q such that I0 = (a]. Let

X = {I ∈ I (Q) : a ∈ I}. Then it is clear that X is a finite set and (a] ∈ X and hence

Φc(a) = sup{Φ(I) : I ∈ X}= Φ((a]) 6= 1 Thus Φc is a proper L-fuzzy ideal of Q.

Let a,b ∈ Q and put α = inf{Φc(x) : x ∈ (a,b)l}. This implies that

Φc(x)≥ α for all x ∈ (a,b)l.

Thus we have (a,b)l ⊆ (Φc)α = (Φα)
c. Since Q is finite and (Φα)

c =
⋃
{I : I ∈ Φα},

there exist I1, I2, · · · , In such that

(a]∩ (b] = (a,b)l ⊆
⋃n

i=1 Ii ⊆
∨n

i=1 Ii ∈Φα

Since Φα a prime ideal of I (Q), we have either (a] ∈ Φα or (b] ∈ Φα . Consequently

a ∈ (Φα)
c = (Φc)α or b ∈ (Φα)

c = (Φc)α and therefore

Φc(a)≥ α = inf{Φc(x) : x ∈ (a,b)l} ≥Φc(a)

or

Φc(b)≥ α = inf{Φc(x) : x ∈ (a,b)l} ≥Φc(b),

that is, inf{Φc(x) : x ∈ (a,b)l}= Φc(a) or Φc(b). Hence Φc is an L-fuzzy prime ideal of

a poset Q.

Remark 5.3.2. The statement of Theorem 5.3.12 is not necessarily true if the poset Q is

not finite. Consider the infinite poset Q depicted in Fig.5.3 and its ideal lattice Id(Q) in

Fig. 5.4 on page 149. Observe that the L- fuzzy subset Φ of I (Q) into L = [0,1] defined

by:

Φ(I) =


1 i f I = (y1]

1−
1
3 i

1+ i
i f I = (yi], i = 2,3, · · ·

0 i f otherwise

for all I ∈I (Q). is an L-fuzzy prime ideal of I (Q).
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Also see that Φc is given by:

Φ
c(x) =


1 i f x = y1

1−
1
3 i

1+ i
i f x = yi, i = 2,3, · · ·

0 i f otherwise

for all x ∈ Q. is an L-fuzzy ideal of Q but not L-fuzzy prime ideal , as inf{Φc(x) : x ∈

(a,b)l}= 2
3 and neither equal to Φc(a) nor Φc(b).

However, if the poset is a meet semilattice, then we have

Theorem 5.3.13. Let Q be a meet semi-lattice and Φ be an L-fuzzy prime ideal of I (Q)

with sup property. Then Φc is an L-fuzzy prime ideal of Q.

Proof. Suppose that Φ is an L-fuzzy prime ideal of I (Q) with sup property where Q is a

meet semi-lattice. Now we claim that Φc is an L-fuzzy prime ideal of Q. Leta,b ∈ q and

put α = inf{Φc(x) : x ∈ (a,b)l}. This implies that

a∧b ∈ (a,b)l ⊆ (Φc)α = (Φα)
c.

Then there exists I ∈ (Φα)
c such that a∧b ∈ I. This implies that

(a]∩ (b] = (a∧b]⊆ I ∈Φα

and hence (a]∩ (b] ∈Φα . Now, by primeness of Φα , we must have (a] ∈Φα or (b] ∈Φα

and so a ∈ (Φα)
c = (Φc)α or b ∈ (Φα)

c = (Φc)α . Therefore

Φc(a)≥ α = Φc(a∧b)≥Φc(a) or Φc(b)≥ α = Φc(a∧b)≥Φc(b),

i.e. Φc(a∧b) = Φc(a) or Φc(b). Hence Φc is an L-fuzzy prime ideal of Q.

Lemma 5.3.14. Let µ be an L-fuzzy ideal of a poset Q. Then µec = µ .

Proof. Let µ be an L-fuzzy ideal of a poset Q. Now we claim that µec = µ . Let x ∈ Q.

put Sx = {I ∈I (Q) : x ∈ I}. As (x] ∈Sx, Sx is non empty and it is clear that (x]⊆ I for
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all I ∈Sxand hence

(µec)(x) = (µe)c(x)

= sup{µe(I) : x ∈ I, I ∈I (Q)}

= µ
e((x])

= inf{µ(y) : y ∈ (x]}= µ(x).

Therefore µec = µ .

5.4 Separation Theorems

In this section, extend and prove an analogue of Stone’s Theorem for finite posets which

has been studied by V. S. Kharat and K. A. Mokbel[35] using L-fuzzy semi-prime ideals.

Some counter examples are also given. Now we obtain an L-fuzzy filter µF in a poset Q

with the help of an L-fuzzy filter ΦF in the lattice I (Q) of all L-fuzzy ideals of Q and

study the L-fuzzy semi-primeness connection between them.

Definition 5.4.1. Let Q be a poset with 1 and ΦF be an L-fuzzy filter of I (Q). Define an

L-fuzzy subset µF of Q by:

µF(x) = ΦF((x]) for all x ∈ Q.

We have the following Lemma.

Lemma 5.4.1. Let Q be a poset with 1. Let µF is the L-fuzzy subset of Q given as in the

Definition 5.4.1 above. Then µF is an L-fuzzy filter of Q .

Proof. Clearly µF(1) = 1. Let a,b ∈ Q and x ∈ (a,b)lu. This implies that

(a]∩ (b] = (a,b)l ⊆ xl = (x]. Now
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µF(a)∧µF(b) = ΦF((a])∧ΦF((b])

= ΦF((a]∩ (b])

≤ ΦF((x])

= µF(x)

Therefore µF is an L-fuzzy filter of Q.

In the case of finite posets we have the following.

Lemma 5.4.2. Let Q be a finite poset and ΦF be an L-fuzzy filter of I (Q) and µF be an

L-fuzzy filter given as in Definition 5.4.1 above. Then the following statements hold.

1. ΦF((a]∨ (b]) = inf{µF(x) : x ∈ (a,b)u} for any a,b ∈ Q.

2. if ΦF is an L-fuzzy semi-prime filter, then µF is an L-fuzzy semi-prime filter.

Proof. 1. Let a,b ∈ Q. Letx ∈ (a,b)u. Then a ≤ x and b ≤ x and so (a] ⊆ (x] and

(b] ⊆ (x]. This implies that (a]∨ (b] ⊆ (x] for all x ∈ (a,b)u and hence (a]∨ (b] ⊆⋂
x∈(a,b)u(x]. Again let t ∈

⋂
x∈(a,b)u(x]. Then t ≤ x for all x ∈ (a,b)u. This implies

that t ∈ (a,b)ul ⊆ (a]∨ (b]. Therefore (a]∨ (b] =
⋂

x∈(a,b)u(x]. Since (a,b)u is finite

and ΦF is an L-fuzzy filter of I (Q) we have

ΦF((a]∨ (b]) = ΦF(
⋂

x∈(a,b)u

(x])

= inf{ΦF((x]) : x ∈ (a,b)u}

= inf{µF(x) : x ∈ (a,b)u}

Hence (1) holds.
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2. Let a,b,c ∈Q and z ∈ {a,(b,c)l}u. Then it is clear that (a]⊆ (z] and (b]∩ (c]⊆ (z].

Thus we have (a]∨ ((b]∩ (c])⊆ (z].

inf{µF(x)∧µF(y) : x ∈ (a,b)u,y ∈ (a,c)u}

= inf{µF(x) : x ∈ (a,b)u}∧ inf{µF(y) : y ∈ (a,c)u}

= ΦF((a]∨ (b])∧ΦF((a]∨ (c]) · · · (by 1 )

= ΦF((a]∨ ((b]∩ (c]))

≤ ΦF((z]) = µF(z)

Hence (2) holds.

Remark 5.4.1. We give an example to show that the assertion of Lemma 5.4.2 is not

necessarily true if we drop the finiteness condition. Consider the dual of the infinite poset

Q that is depicted in Fig 5.3, say Qd and its ideal lattice I (Qd) which is the dual of the

ideal lattice I (Q) depicted in Fig 5.4. Consider the L- fuzzy filter ΦF of I (Qd) into

L = [0,1] which is given by:

ΦF(I) =


1 i f I = (y1]

1−
1
3 i

1+ i
i f I = (yi] f or i = 2,3, · · ·

0 i f otherwise

for all I ∈I (Qd). Observe that the L-fuzzy subset µF of Qd into L = [0,1] which is given

by:

µF(x) =


1 i f x = y1

1−
1
3 i

1+ i
i f x = yi f or i = 2,3, · · ·

0 i f otherwise

for all x ∈ Q is an L-fuzzy filter of Qd . But
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ΦF((a]∨ (b]) = ΦF(({y1,y2, · · ·}]) = 0 6= 2
3 = inf{µF(z) : z ∈ (a,b)u}.

Moreover, ΦF is an L-fuzzy semi-prime filter of I (Qd). But µF is not an L-fuzzy semi-

prime filter, as a ∈ au = {a,(b,c)l}u and

µF(a) = 0� 2
3 = inf{µF(x)∧µF(y) : x ∈ (a,b)u,y ∈ (a,c)u}.

However, in the case of join semi-lattices we have

Corollary 5.4.3. Let Q be a join semi-lattice with 1, ΦF be an L-fuzzy filter of I (Q) and

µF be an L-fuzzy filter defined as in in Definition 5.4.1. Then the following statements

hold.

1. ΦF((a]∨ (b]) = inf{µF(x) : x ∈ (a,b)u}= µF(a∨b) for any a,b ∈ Q.

2. if ΦF is an L-fuzzy semi-prime filter, then µF is an L-fuzzy semi-prime filter.

Proof. 1. Let a,b ∈ Q. Then it is clear that (a]∨ (b] = (a∨b] and hence

ΦF((a]∨ (b]) = ΦF((a∨b]) = µF(a∨b) = inf{µF(x) : x ∈ (a,b)u}

2. Let a,b,c ∈Q and z ∈ {a,(b,c)l}u. Then it is clear that (a]⊆ (z] and (b]∩ (c]⊆ (z].

Thus we have (a]∨ ((b]∩ (c])⊆ (z]. Now

inf{µF(x)∧µF(y) : x ∈ (a,b)u,y ∈ (a,c)u}

= inf{µF(x) : x ∈ (a,b)u}∧ inf{µF(y) : y ∈ (a,c)u}

= µF((a∨ (b])∧µF((a∨ c])

= ΦF((a∨ (b])∧ΦF((a∨ c])

= ΦF((a]∨ (b])∧ΦF((a]∨ (c])

= ΦF((a]∨ ((b]∩ (c]))

≤ ΦF((z]) = µF(z)

Hence (2) holds.
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Definition 5.4.2. Let σ be an l-L-fuzzy filter of a poset Q with 1, Define an L-fuzzy subset

Ω of I (Q) as follows:

Ω(I) = sup{σ(x) : x ∈ I} for all‘I ∈I (Q).

We establish the following result.

Lemma 5.4.4. Let σ be an l-L-fuzzy filter of a poset Q with 1 and Ω be an L-fuzzy subset

of I (Q) as given in Definition 5.4.2 above. Then Ω is an L-fuzzy filter of I (Q).

Proof. Let σ be an l-L-fuzzy filter of a poset Q. Then clearly Ω((1]) = 1.

Let I,J ∈I (Q). Then

Ω(I)∧Ω(J) = sup{σ(x) : x ∈ I}∧ sup{σ(y) : y ∈ J}

= sup{σ(x)∧σ(y) : x ∈ I,y ∈ J}

≤ sup{σ(x)∧σ(y) : (x,y)l ⊆ I∩ J}

Since σ is an l-L-fuzzy filter of Q and x,y ∈ Q, there there exists z ∈ (x,y)l such that

σ(z) = σ(x)∧σ(y). Therefore

Ω(I)∧Ω(J)≤ sup{σ(z) : z ∈ I∩ J}= Ω(I∩ J)

Again

Ω(I∩ J) = sup{σ(x) : x ∈ I∩ J}

≤ sup{σ(x) : x ∈ I}

= Ω(I)

Therefore Ω(I∩ J)⊆Ω(I). Similarly we can show that Ω(I∩ J)⊆Ω(J) and hence

Ω(I∩ J)⊆Ω(I)∧Ω(J). Therefore

Ω(I∩ J) = Ω(I)∧Ω(J)
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and hence Ω is an L-fuzzy filter of I (Q).

We prove the following Lemma, which is analogous to Rav’s Separation Theorem for

semi-prime ideals in Lattice Theory.[42]

Lemma 5.4.5. Let α be a prime element in L, µ be an L-fuzzy semi-prime ideal and

σ be an L-fuzzy filter of a lattice X such that µ ∩σ ⊆ α . Then there exists an L-fuzzy

semi-prime filter σF such that σ ⊆ σF and µ ∩σF ⊆ α .

Proof. Let µ be an L-fuzzy semi-prime ideal and σ be an L-fuzzy filter of the lattice X

such that µ ∩σ ⊆ α . Now put

I = {x ∈ X : µ(x)� α} and K = {x ∈ X : σ(x)� α}.

Then, clearly I is a semi-prime ideal and K is a filter of X such that I∩K = /0.

Therefore by Rav’s Separation Theorem for semi-prime ideals in Lattice, there exists a

semi-prime filter F such that K ⊆ F and I∩F = /0. Then, note that the L-fuzzy subset σF

of X defined by:

(σF)(x) =


1 i f x ∈ F

α i f x /∈ F

for all x ∈ X is an l-fuzzy semi-prime filter. Now we claim that σ ⊆ σF and µ ∩σF ⊆ α .

Let x ∈ X . Now if x ∈ F , then σ(x) ≤ 1 = σF(x) and, if x /∈ F , then x /∈ K, so that

σ(x)≤ α = αF(x). Hence σ ⊆ αF . Again if x ∈ F , then x /∈ I, so that µ(x)≤ α . Thus

(µ ∩σF)(x) = µ(x)∧σF(x) = µ(x)∧1 = µ(x)≤ α = α(x)

and if x /∈ F , then

(µ ∩σF)(x)≤ µ(x)∧α ≤ α = α(x).

Hence µ ∩σF ⊆ α . Therefore the claim is true.
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Now we extend an analogue of Stone’s Theorem for finite posets which has been

studied by V. S. Kharat and K. A. Mokbel[35] using L-fuzzy semi-prime ideals as given

in Theorem 5.4.6 below.

Theorem 5.4.6. Let Q be a finite poset and α be a prime element in L. Let µ be an L-fuzzy

semi-prime ideal and σ be an l-L-fuzzy filter of Q for which µ ∩σ ⊆ α . Then there exists

an L-fuzzy semi-prime filter σF of Q such that σ ⊆ σF and µ ∩σF ⊆ α .

Proof. Suppose that µ is an L-fuzzy semi-prime ideal and σ is an l-L-fuzzy filter of a

finite poset Q such that µ ∩σ ⊆ α , where α is a prime element in L. By Theorem 5.3.6,

µe is an L-fuzzy semi-prime ideal of I (Q). Since σ is an l-L-fuzzy filter, the L-fuzzy

subset Ω of I (Q) given in Definition 5.4.2 is an L-fuzzy filter of I (Q). (See Lemma

5.4.4. Now we claim that µe ∩Ω ⊆ α . Suppose not. Then there exists I ∈ I (Q) such

that µe(I)� α and Ω(I)� α . This implies that

µ(x)� α for all x ∈ I and σ(x)� α for some x ∈ I.

This contradicts the hypothesis µ ∩σ ⊆ α . Hence the claim holds.

Now, since I (Q) is a lattice, by Lemma 5.4.5, there exists an L-fuzzy semi-prime filter,

say ΦF of I (Q) such that Ω⊆ΦF and µe∩ΦF ⊆ α . Consider the L-fuzzy subset µF of

Q given in definition 5.4.1 which is an L-fuzzy semi-filter of Q. (See Lemma 5.4.1). Put

σF = µF and observe that σ ⊆ σF ; for, if x ∈ Q, then

σ(x)≤ sup{σ(y) : y ∈ (x]}= Ω((x])≤ΦF((x]) = µF(x) = σF(x).

Further, we must have µ ∩σF ⊆ α . Otherwise if µ ∩σF * α , there exists x ∈ Q such

that µ(x)� α and σF(x) = µF(x)� α . This implies that µe((x])� α and ΦF((x])� α ,

which is a contradiction to the fact that µe∩ΦF ⊆ α . This proves the theorem.

Remark 5.4.2. The statement of Theorem 5.4.6 is not necessarily true if we remove the

finiteness conditions or if σ is not an an l-L-fuzzy filter. .
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1. Consider the poset Qd that is dual of the infinite poset Q depicted in Fig. 5.3. Define

an L fuzzy subset µ : Qd −→ [0,1] by:

µ(x) =


0 i f x = yi f or i = 1,2,3, · · ·

1 i f otherwise

for all x ∈ Qd . Let σ be an L-fuzzy subset of Qd given by:

σ(x) =


1 i f x = y1

1− i
1+2i

i f x = yi f or i = 2,3, · · ·

0 i f otherwise

for all x ∈ Q.

Observe that 0 is a prime element in L = [0,1], µ is an L-fuzzy semi-prime ideal

and σ is an l-L-fuzzy filter of Qd for which µ ∩σ ⊆ 0. But there does not exist an

L-fuzzy semi-prime filter σF for which σ ⊆ σF and µ ∩σF ⊆ 0.

2. Consider the finite poset depicted in Fig. 5.5 below. Define L fuzzy subsets µ :

Q−→ [0,1] by:

µ(0) = 1, µ(a) = 0.8, µ(b) = µ(c) = µ(d) = 0.5

µ(a′) = µ(b′) = µ(c′) = µ(d′) = µ(1) = 0.

and σ : Q−→ [0,1] by:

σ(1) = 1, σ(a′) = σ(b′) = σ(c′) = σ(d′) = 0.8,

σ(a) = σ(b) = σ(c) = σ(d) = σ(0) = 0

Then µ is an L-fuzzy semi-prime ideal and σ is an L-fuzzy filter, which is not an

l-L-fuzzy filter of Q. Observe that 0 is a prime element in L = [0,1] such t µ∩σ = 0
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but there does not exist an L-fuzzy semi-prime filter σF for which σ ⊆ σF and µ ∩

σF = 0.

Figure 5.5

However, in the case of join semi-lattices we have

Theorem 5.4.7. Let Q be a join semi-lattice and α ∈ L be a prime element. Let µ be an

L-fuzzy semi-prime ideal and σ be an l-L-fuzzy filter of Q for which µ ∩σ ⊆ α . Then

there exists an L-fuzzy semi-prime filter σF of Q such that σ ⊆ σF and µ ∩σF ≤ α .

The following Lemma is from [35], which is immediately follows from the definition

of distributive poset.

Lemma 5.4.8. Let Q be a finite poset such that I (Q) is a distributive lattice, then Q is

distributive.

Remark 5.4.3. The converse of Lemma 5.4.8 is not true in general. The poset Q depicted

in Fig 5.5 is distributive but I (Q) is not so. For, let I = (d′], J = {0,a,b,c} and K = (c′]

and observe that I∩ (J∨K) = I∩Q = I 6= J = J∨{0,a,b}= (I∩ J)∨ (I∩K).

The following theorem is the extension of the celebrated theorem of M. H. Stone [45]

on prime ideals of distributive lattices to L-fuzzy prime ideals.

Theorem 5.4.9 ([46]). Let X be a distributive lattice and α be a prime element of L. If µ

be an L-fuzzy ideal and σ be an L-fuzzy filter of X such that µ ∩σ ⊆ α , then there exists

a L-fuzzy prime ideal of µP such that µ ⊆ µP and µP∩σ ⊆ α .
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Now, we extend Theorem 5.4.9 for a finite poset whose ideal lattice is distributive.

Theorem 5.4.10. Let Q be a finite poset such that I (Q) is a distributive lattice and

α ∈ L be a prime element. Let µ be an L-fuzzy ideal and σ be an l-L-fuzzy filter of Q for

which µ ∩σ ⊆ α . Then there exists an L-fuzzy prime ideal µI of Q such that µ ⊆ µI and

µI ∩σ ⊆ α .

Proof. Suppose that µ is an L-fuzzy ideal, σ is an l-L-fuzzy filter of a finite poset Q of

which I (Q) is distributive such that µ∩σ ⊆α , where α is a prime element in L. Observe

that µe is an L-fuzzy ideal of I (Q) and also the L-fuzzy subset of I (Q) defined by:

Ω(I) = sup{σ(x) : x ∈ I} for all‘I ∈I (Q)

is an L-fuzzy filter of I (Q) by Lemma 5.4.4. Note that µe ∩Ω ⊆ α as in the proof of

Theorem 5.4.6. Since I (Q) is a distributive lattice, by Theorem 5.4.9, there exists an L-

fuzzy prime ideal ΦP of I (Q) such that µe ⊆ΦP and ΦP∩Ω⊆ α . By Theorem 5.3.12,

(ΦP)
c is an L-fuzzy prime ideal of Q, where (ΦP)

c(x) = sup{ΦP(I) : x ∈ I} for all x ∈Q.

Further µ ⊆ (ΦP)
c as for any x ∈ Q

(ΦP)
c(x) = sup{ΦP(I) : x ∈ I}

≥ ΦP((x]) · · · as x ∈ (x]

= inf{µ(y) : y ∈ (x]}= µ(x).

Also, we must have (ΦP)
c∩σ ⊆ α . Otherwise, if (ΦP)

c∩σ * α , then there exists x ∈ Q

such that (ΦP)
c(x) � α and σ(x) � α . This implies that µe((x]) � α and ΦP((x]) � α ,

which is a contradiction to the fact that µe∩ΦP ⊆ α .

——————————————————————-
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Chapter 6

Conclusion and suggestions for further

research work

6.1 Conclusion

In this study, we have introduced several generalizations of L-fuzzy ideals and filters of

a lattice to an arbitrary poset whose truth values are in a complete lattice satisfying the

infinite meet distributive law and we have given several characterizations of them.

Next we have studied the notions of L-fuzzy prime ideals, prime L-fuzzy ideals, max-

imal L-fuzzy ideals, L-fuzzy maximal ideals by choosing the L-fuzzy ideal and filter of a

poset in the sense of Halaš as an L-fuzzy ideal and filter of a poset. We have also studied

and have given sufficient conditions for the existence of L-fuzzy prime ideals and prime

L-fuzzy ideals in the lattice of all L-fuzzy ideals of a poset.

Lastly, we have introduced and characterized the concept of an L-fuzzy semi-prime

ideal and filter in a general poset. We have also obtained characterizations of an L-fuzzy

semi-prime ideal to be L-fuzzy prime ideal. We have also established the relations be-

tween the L-fuzzy semi-prime (respectively, L-fuzzy prime) ideals of a poset and the L-

fuzzy semi-prime ideal (respectively, L-fuzzy prime) of the lattice of all ideals of a poset.

Moreover we have extended and proved an analogue of Stone’s Theorem for finite posets

which has been studied by V. S. Kharat and K. A. Mokbel[35], using L-fuzzy semi-prime
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ideals of a poset. Further,the fuzzy version of a generalization of Stone’s Separation The-

orem for posets has obtained in respect of prime L-fuzzy ideals of a poset.

6.2 Suggestions for further research work

We ought to mention here our further direction of research as follows.

• The space of prime L-fuzzy ideal and maximal L-fuzzy ideals of a poset and their topo-

logical properties like compactness, connectedness and separation axioms.

• L-fuzzy Baer ideal for posets and its characterization.

• The concept of a radical and primary L-fuzzy ideal of a poset as a generalization of

prime L-fuzzy ideals of a poset.

• L-fuzzy congruences of a poset and its characterization in terms of L-fuzzy ideals of

a poset and their correspondence between the lattice of L-fuzzy ideals into the lattice of

L-fuzzy congruences of a boolean poset.

• L-fuzzy annihilator ideal of a poset.
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