A PROJECT ON DISTRIBUTIVE LATTICES AND CONGRUENCES IN LATTICES

BAYE, WORKU
http://hdl.handle.net/123456789/11183
Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY COLLEGE OF SCIENCE DEPARTMENT OF MATHEMATICS

A PROJECT
ON
DISTRIBUTIVE LATTICES AND CONGRUENCES IN LATTICES
BY
BAYE WORKU

August, 2020
Bahir Dar, Ethiopia

BAHIR DAR UNIVERSITY COLLEGE OF SCIENCE DEPARTMENT OF MATHEMATICS

DISTRIBUTIVE LATTICES AND CONGRUENCES IN LATTICES

A Project Submitted to the Department of Mathematics for the Partial Fulfillment of MSc. Degree in Mathematics

By: Baye Worku Abera

Advisor: Mihert Alamneh (PhD)

August, 2020
Bahir Dar, Ethiopia

BAHIR DAR UNIVERSITY
 COLLEGE OF SCIENCE

MATHEMATICS DEPARTMENT

Abstract

Approval of the project for defense I hereby certify that I have supervised, read and evaluate this project entitled "Distributive Lattices and Congruences in Lattices" by Baye worku prepared under my guidance. I recommend that the project is submitted for oral defense.

Advisors name: \qquad Sign. \qquad Date \qquad

BAHIR DAR UNIVERSITY
 COLLEGE OF SCIENCE
 MATHEMATICS DEPARTMENT

Approval of the project for defense result
We hereby certify that we have examined this project entitled "Distributive lattices and Congruences in lattices" by Baye Worku. We recommend that Mr. Baye Worku is approved for the degree of "Master of science in Mathematics".

Board of Examiners

Advisor name:

Sign \qquad Date \qquad
Internal examiner name: \qquad Sign

Date \qquad
External examiner name: \qquad Sign \qquad Date \qquad

ACKNOWLEDGEMNETS

First of all, I would like to thank and honor the almighty God for all. Next, I would like to express my heartiest gratitude to my advisor, Dr. Mihret Alamneh for his help and guidance throughout the course of my study. I am very grateful to have him as an advisor.

I am grateful to M. S. Taqseer Khan who prepared his work on distributive lattices and congruences in lattices.

I also want to thank my fellow friends for making my stay in Bahir Dar University enjoyable. I have many fond memories from our years in 2018, 2019 and 2020.

Finally, thanks to my family for their love and support, especially my beloved mother, Wro. Workalem Semigne and my Wife Wro Belaynesh Mengsity, their prayers are always upon me.

Abstract

This project aims to develop a better understanding of Distributive Lattices and congruence in Lattices. We present the definition of Distributive Lattice and Congruences in Lattice,

Finaly state and proof important properties that will be used in developing further theory.
Contentspage
ACKNOWLEDGEMNETS iv
ABSTRACT v
SYMBOLS vii
Chapter One 1
1 Introduction and Preliminaries 1
1.1 Introduction 1
1.2 Preliminary 2
Chapter Two 7
2 Distributive Lattice 7
2.1 Definitions, Theorems and Examples of Distributive Lattice 7
2.2 Characterization Theorems of Distributive Lattice 10
2.3 Infinitely Distributive and Completely Distributive Lattices 17
Chapter Three 20
3 Congruences in Lattices 20
3.1 Congruence 20
3.2 Congruence Relation in Lattice 21
3.3 Characterization of Congruence Lattice 25
Conclusion 27
References 28

SYMBOLS

1. \in Element
2. = Is equal to
3. $\leq \quad$ Less than or equal to
4. $\subseteq \quad$ Subset
5. \rightarrow Mapping
6. | Divides
7. \vee, \wedge Join and Meet respectively
8. \Rightarrow Imply
9. \Leftrightarrow If and only if
10. \uparrow, \downarrow Up-set and Down-set respectively
11. U, \cap Union and Intersection respectively
12. $\varphi \quad$ Phi
13. $\leftrightarrow \quad$ Corresponding
14. $\equiv \quad$ Congruence
15. $\triangleleft \quad$ Normal subgroup
16. ~ Equivalence relation

Chapter One

1 Introduction and Preliminaries

1.1 Introduction

The origin of the lattice concept dates back to the nineteenth-century attempts to formalise logic [3]. In the first half of the nineteenth-century, George Boole discovered Boolean Algebras. While investigating the axiomatics of Boolean algebras, Charles S.pierce and Ernst Schroder introduce the concept of lattice in the late the nineteenth-century. Lattices especially distributive lattices and Boolean algebras arise naturally in logic, and thus some of the elementary theory of lattice had been worked out earlier by Ernst Schroder in his book Die Algebra de logik. Richard Dedekind also independently discovered Lattices. In the early 1890 's, Richard Dedekind was working on a revised and enlarged edition of Dirichlet's Vorlesungen iiber zahlentheorie, and asked himself the following question: Given three subgroups A, B, C of an abelian group G, how many different subgroups can you get by taking intersections and sums, e.g., $A+B,(A+B) \cap C$, etc. the answer is 28. In looking at this and related questions, Dedekind was led to develop the basic theory of lattices, which he called dualgruppen. The publication of two fundamental papers iiber zerlegungen von zahlen durch ihre grobten gemeinsamen Teiler (1897) and iiber die von drei moduln erzeuget Dualgruppe (1900) on the subject of Richard Dedekind brought the theory to life well over one hundred years ago. These two papers are classical and have inspired many later mathematicians

Richard Dedekind defined modular lattices which are weakened form of distributive lattices [11]. He recognized the connection between modern algebra and lattice theory which provided the impetus for the development of lattice theory as a subject. Later Jonsson, Kurosh, Maclev, Ore, von Neumann, Tarski, and Garrett Birkhoff contributed prominently to the development of lattice theory.it was Garrett Birkhoff's work in the mid-thirties that started the general development of the subject [1]. In a series of papers he demonstrated the importance of a lattice theory and showed that it provides a unifying framework for unrelated development of in many mathematical disciplines. After that Valere Glivenko, Karl Menger, John Von Neumann, Oystein Ore and others developed this field. In the development of lattice theory, distributive lattices have played a vital role. These lattices have provided the motivation for many results in general lattice theory. Many conditions on lattices are weakened form of distributivity. In many applications the condition of distributivity is imposed on lattices arising in various areas of mathematics, especially algebras.

The important current research on lattice theory has been initiated by G.Birkhoff, R.P. Dilworth and G.Gratzer. They are primarily concerned with the systematic development of results which lie at the heart of the subject.

In this project, we discussed the notion of distributive lattices and congruence in lattice. We will study some properties of distributive lattice and congruence in lattice and we will see some definitions, theorems, lemmas about distributive lattice and congruence in a lattice. We discuss a set of equivalent class of distributive lattices which leads to the characterization of distributive lattice. We will also discuss a set of equivalent conditions for every equivalence relation to become congruence relation, which leads to a characterization of congruence in lattice.

In part 1.2, we discuss some preliminary results of distributive lattices and congruence in lattice. We give the definition of distributive lattices in section 2.1. In section 2.2, set of equivalent conditions will be established to characterize distributive lattices. In section3.1 we give the definition of congruence. In section 3.2 definition of congruence relation in lattice. In section3.3 will be established to characterize congruence in lattice. Finally, we give the conclusion.

1.2 Preliminary

Definition 1.2.1:-[8] For any two sets X and Y, a subset R of $X \times Y$ is called a relation on X to Y (or, a relation "between" X and Y). If $(x, y) \in R$ and we usually write as $x R y$ and read: " x stands in the relation R to y^{\prime} '.

Example1.2.2 If $X=\{1,3,5\}$ and $Y=\{0,2,4\}$,then the set $R=\{(1,2),(1,4),(3,4)\}$ consists of all pairs (x , y) with $x \leq y, x \in X$ and $y \in Y$,so is the relation ' \leq '' between X and Y.

Example 1.2.3 Set inclusion $\mathrm{S} \subseteq \mathrm{T}$ is a binary relation on a power set $P(U)$, for any set U.
Definition 1.2.4:-[8] Binary operation $*$ on a set X is a function mapping $X \times X \rightarrow X$, for each $(a, b) \in X \times X$, we will denote the element $*((\mathrm{a}, \mathrm{b}))$ of X by $a * b$.

Definition 1.2.5:-[3] A binary relation ϑ defined on a non-empty set P is called an ordering relation or partial ordering relation on a set P if, for all $a, b, c \in P$, it satisfies the following axioms:

$$
\begin{array}{rll}
\text { I. } & (a, a) \in \vartheta & \text { (reflexivity) } \\
\text { II. } & (a, b) \in \vartheta \text { and }(b, a) \in \vartheta \text { imply } a=b & \text { (anti-symmetry) } \\
\text { III. } & (a, b) \in \vartheta \text { and }(b, c) \in \vartheta \text { imply }(a, c) \in \vartheta & \text { (transitivity) }
\end{array}
$$

$>$ A non-empty set P equipped with an ordering relation is called partial order set or simply poset in short. We write $(P ; \vartheta)$ when we want to specify the poset.
$>$ If ϑ is an ordering relation, it will usually denoted by \leq and we write $a \leq b$ or $b \leq a$ instead of $(a, b) \in \leq$ or $(b, a) \in \leq$. Also $a \geq b$ will mean $b \leq a$.
$>$ If P is a poset and if for every $a, b \in P$ either $a \leq b$ or $b \leq a$, then ($P ; \leq$) is called totally ordered set or a chain.

Example 1.2.6:-Let \mathbb{R} be the set of real numbers, and let $x \leq y$ have its usual meaning for real numbers, then $(\mathbb{R} ; \leq)$ is a poset.

Example 1.2.7:-Let \mathbb{N} be the set of natural numbers, and let $x \mid y$ mean that x divides y, then $(\mathbb{N} ; \mid)$ is a poset.

Example 1.2.8:-The set $P(X)$ of all subset of a non-empty set X with relation \subseteq of set inclusion $(P(X) ; \subseteq)$ is a poset.

Definition 1.2.9:-[11] If $(P ; \leq)$ is a poset, Then \geq can also be regarded as a binary relation on P defined by $a \geq b$ iff $b \leq a$ and satisfies axioms (1)-(3). Then ($P ; \geq$) is also a poset and is called the dual of a poset $(P ; \leq)$. More precisely if ϑ is a statement about a posets and if in ϑ we replace all occurrences of \leq by \geq, we get the dual of ϑ.

Definition 1.2.10: [1] A partial order set P is complete if for every subset H of P both sup H and inf H exist (in P).

Definition 1.2.11:-An algebra $(L ; \vee, \wedge)$ of type (2,2) is called a lattice if, for any $a, b, c \in L$, it satisfies the following lattice axioms [9].

1) $a \wedge b=b \wedge a \quad$ (commutative law of " \wedge ")
2) $a \vee b=b \vee a$
3) $(a \wedge b) \wedge c=a \wedge(b \wedge c)$
4) $(a \vee b) \vee c=a \vee(b \vee c)$
5) $a \wedge(a \vee b)=a$
6) $a \vee(a \wedge b)=a$ (commutative law of "V") (associative law of " \wedge ") (associative law of " V ") (absorption law of " \wedge ")
(absorption law of "V")
Definition 1.2.12:-[11] The dual of any statement in a lattice $(L ; \wedge, \vee)$ is defined to be the statement that is obtained by interchanging \wedge and \vee.

For example; the dual of $a \wedge(b \vee a)=a \vee a$ is given by $a \vee(b \wedge a)=a \wedge a$.
Theorem 1.2.13:-[6] Idempotent law, Let $(L ; \vee, \wedge)$ be any lattice. Then for every $a \in L$, the following properties hold:

1) $a \wedge a=a$
2) $a \vee a=a$

Example 1.2.14:- Let L be a collection of sets closed under intersection and union. Then ($L ; \mathrm{U}, \cap$) form a lattice.

Definition 1.2.15:-We define a partial order \leq on a lattice L by $a \leq b$ if $a \vee b=b$. Analogously we can define $a \leq b$ if $a \wedge b=a$.

An alternative way to define a lattice as a poset is in the following way:

Definition 1.2.16:- [3] A lattice L is a poset $(L ; \leq)$ where any two of whose elements are greatest lower bound (glb) and least upper bound (lub) exist in L. We shall use the notations;

$$
\begin{aligned}
& a \wedge b=\inf (a, b) \\
& a \vee b=\sup (a, b)
\end{aligned}
$$

and call \wedge the meet and \vee the join. In lattices, they are both binary operations, which means that they can be applied to a pair of elements a, b of L to yield again an element of L.Thus Λ is a map of $L \times L$ into L and so is V .

Note:

- For example, any totally ordered set $(C ; \leq)$ is a lattice. Since $\inf (a, b)=\min \{a, b\}$ and $\sup (a, b)=\max \{a, b\}$ for any $a, b \in C$.
- To show that a partial order set is not a lattice, it suffices to find a pair that doesn't have a glb or lub.

Definition 1.2.17:- [11] Let $(L ; \mathrm{V}, \wedge)$ be a lattice and has an element 0 and 1 such that for any $x \in L$ it satisfies the inequality $0 \leq x$ and $x \leq 1$. Then 0 and 1 are the least and greatest element of a lattice respectively, and are called bounded element. Such types of lattices are called bounded lattices, denoted by ($L ; \vee, \wedge, 0,1$).

Example 1.2.18:-Let $L=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ be a finite lattice. Then $a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}$ and $a_{1} \vee$ $a_{2} \vee \ldots \vee a_{n}$ are the least and greatest elements of L, respectively. Hence L is a bounded lattice.

Definition 1.2.19:-[11] A lattice L is said to be complete if $\wedge H$ and $\vee H$ exist for any subset H of L.

Definition 1.2.20:-[11] Let $(L ; \mathrm{V}, \wedge)$ be a lattice. Then we define the following:

1) A non-empty subset H of L is said to be sub-lattice of L if for any $a, b \in H, a \wedge b$ and $a \vee b$ exist in H.
2) A non-empty subset I of L is called an ideal of L if it satisfies
i) $\quad a, b \in I \Rightarrow a \vee b \in I$.
ii) For any $x \in L$ and $a \in I, a \wedge x \in I$.

Note: - Let I be an ideal of a lattice L. Then $x \in L, a \in I$ and $x \leq a \Rightarrow x \in I$.
Example 1.2.21:- The power set on some set ordered by set inclusion is an ideal.
Proposition 1.2.22:- Every ideal I of a lattice L is sub-lattice of L.
Notation1.2.23:-The set of all ideals I of a lattice L is denoted by $I(L)$.

Definition 1.2.24:- [1] Let I be an ideal of a lattice L. Then we can define the following:
i) $\quad I$ is said to be principal ideal if for any a in $L, I=\{x \in L: x \leq a\}=$ (a]. In this case a is called a principal element of an ideal I. It is the smallest ideal that contains the element a.
ii) $\quad I$ is called prime ideal if it is proper and $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

Definition 1.2.25:-[11] Let $\left(L_{1} ; \mathrm{V}, \wedge\right)$ and $\left(L_{2} ; \mathrm{V}, \wedge\right)$ be two lattices. A single-valued mapping φ of L_{1} into (especially onto) L_{2} is a homomorphism (homomorphic mapping) if, for every $a, b \in L_{1}$, then the following condition holds:

1) $\varphi(a \wedge b)=\varphi(a) \wedge \varphi(b)$
2) $\varphi(a \vee b)=\varphi(a) \vee \varphi(b)$

A homomorphism, which is both one-to-one and onto is called an isomorphism.
Definition 1.2.26:-[3] Let L_{1} and L_{2} be two lattices and let $\boldsymbol{\varphi}: L_{1} \rightarrow L_{2}$ be a homomorphism. If L_{2} has a least element 0_{2}, then the set of the elements $x \in L_{1}$ satisfying the equation $\varphi(x)=0_{2}$ is called the kernel of the homomorphism φ, denoted by $\operatorname{Ker} \varphi$. That is $\operatorname{Ker} \varphi=\left\{x \in L_{1}: \varphi(x)=0_{2}\right\}$.

Theorem 1.2.27:- [3] Let L_{1} and L_{2} be two lattices and let $\boldsymbol{\varphi}: L_{1} \rightarrow L_{2}$ be a homomorphism. Then the $\operatorname{Ker} \varphi$ is an ideal.

Definition 1.2.28:-[11] Let $(L ; \mathrm{V}, \wedge, 0,1)$ be a bounded lattice. A complement of an element a is an element x such that $a \wedge x=0$ and $a \vee x=1$. A bounded lattice L in which every element has at least one complement is called a complemented lattice, and is denoted by $\left(L ; \mathrm{V}, \wedge,{ }^{\prime}, 0,1\right)$.

Definition 1.2.29:-[10] An element a of a lattice L is said to be join- irreducible iff a is not a zero element and whenever $a=b \vee c$, then either $a=b$ or $a=c$. Dually an element a in a lattice L is said to be meet-irreducible iff a is not a unit element and whenever $a=b \wedge c$, then either $a=b$ or $a=c$. If a is both join and meet-irreducible, then a is said to be irreducible

Example 1.2.30:-In the lattice diagram below

Fig 1.1
a is meet-irreducible but not join-irreducible, d is join-irreducible but not meet-irreducible,

While b, c are irreducible.
Definition 1.2.31:-[10] By a ring we mean a non-empty set R with two binary operations + and \cdot, called addition and multiplication(also called product),respectively, such that,
i) $(R ;+)$ is an additive abelian group.
ii) $\quad(R ; \cdot)$ is a multiplicative semi group.
iii) Multiplication is distributive(on both sides) over addition; that is, for all $a, b, c \in R$

$$
\begin{aligned}
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& (a+b) \cdot c=a \cdot c+b \cdot c
\end{aligned}
$$

(The two distributive laws are respectively called the left distributive law and the right distributive law.)

Note:-We usually write $a b$ instead of $a \cdot b$
The identity of the additive abelian group is called a zero element of the ring and is unique.
We denote the zero element of a ring R by 0 .

Example 1.2.32

\mathbb{Z} : The ring of all integers,
\mathbb{Q} : The ring of all rational numbers,
$C[0,1]$: The ring of all continuous functions from the interval $[0,1]$ to \mathbb{R},
Definition 1.2.33:-[3] A binary relation β on the nonempty set A satisfying the following properties: for all $a, b, c \in A$

- $(a, a) \in \beta$
- $(a, b) \in \beta$ Implies that $(b, a) \in \beta$
- $(a, b),(b, c) \in \beta$ Implies that $(a, c) \in \beta$

Reflexivity

symmetry
transitivity
is called an equivalence relation. If β is an equivalence relation, the relation $(a, b) \in \beta$ is often denoted by $\boldsymbol{a} \equiv \boldsymbol{b}(\boldsymbol{\operatorname { m o d }} \boldsymbol{\beta})$.

- For an equivalence relation β on the nonempty set A and for an $a \in A$, we define the
block of β containing a (often called, the equivalence class of β containing a) as follow:

$$
a / \beta=\{b \in A \mid(a, b) \in \beta\}
$$

Note: - If $b \in A / \beta$, then $a / \beta=b / \beta$.

Chapter Two

2 Distributive Lattice

2.1 Definitions, Theorems and Examples of Distributive Lattice

Definition 2.1.1:- [10] A distributive lattice L is a lattice, which satisfies all the lattice axioms $\left(L_{1}-L_{6}\right)$ as we have seen (def. 1.2.11), and either of the following distributive laws: for all $a, b, c \in L$
$\mathrm{D}_{1}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
$\mathrm{D}_{2}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.
Theorem 2.1.2:-[10] A lattice L satisfies D_{1} if and only if it satisfies D_{2}.
Proof: Suppose D_{1} holds. Then

$$
\begin{aligned}
a \vee(b \wedge c) & =(a \vee(a \wedge c)) \vee(b \wedge c) & & \text { by absorption law } \\
& =a \vee((a \wedge c) \vee(b \wedge c)) & & \text { by associativity of " } \vee " \\
& =a \vee((c \wedge a) \vee(c \wedge b)) & & \text { by commutativity of " } \wedge " \\
& =a \vee(c \wedge(a \vee b)) & & \text { by } D_{1} \\
& =a \vee((a \vee b) \wedge c) & & \text { by commutativity of " } \wedge " \\
& =(a \wedge(a \vee b)) \vee((a \vee b) \wedge c) & & \text { by absorption law } \\
& =((a \vee b) \wedge a) \vee((a \vee b) \wedge c) & & \text { by commutativity of " } \wedge " \\
& =(a \vee b) \wedge(a \vee c) & & \text { by } D_{1}
\end{aligned}
$$

Thus D_{2} also holds.
Conversely, Suppose D_{2} holds. Then

$$
\begin{aligned}
a \wedge(b \vee c) & =(a \wedge(a \vee c) \wedge(b \vee c) & & \text { by absorption law } \\
& =a \wedge((a \vee c) \wedge(b \vee c)) & & \text { by associativity of " } \wedge "
\end{aligned}
$$

$$
\begin{array}{ll}
=a \wedge((c \vee a) \wedge(c \vee b)) & \\
=a \wedge(c \vee(a \wedge b)) & \text { by commutativity of " } \vee \text { " } \\
=a \wedge((a \wedge b) \vee c) & \\
=(a \vee(a \wedge b)) \wedge((a \wedge b) \vee c) & \\
=\text { by commutativity of " } \vee \text { " } \\
=((a \wedge b) \vee a) \wedge((a \wedge b) \vee c) & \\
=(a \wedge b) \vee(a \wedge c) & \text { by commutativity of " } \vee " \\
=\frac{\text { by } D_{2}}{}
\end{array}
$$

Therefore D_{1} holds.
Note:-1, A distributive lattice of fundamental importance is a two - element chain ($2 ; \vee, \wedge$). It is the only two-element lattice.

Note:-2, For any lattice $(L ; \vee, \wedge), a \leq b$ iff $a \wedge b=a \Leftrightarrow a \vee b=b$.
Results: [11] For any triplets a, b, c of lattice L the following inequality holds.

$$
\begin{aligned}
& \text { (1) } a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c) \\
& \text { (2) } a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Similar to the distributive identities, (1) and (2) are called distributive inequalities.
Proof 1: Since $a \geq a \wedge b$ and $a \geq a \wedge c$
$\Rightarrow a=a \vee a \geq(a \wedge b) \vee(a \wedge c)$
Again, we have
$b \geq a \wedge b$ and $c \geq a \wedge c$
$\Rightarrow b \vee c \geq(a \wedge b) \vee(a \wedge c)$
From $(*)$ and $(* *)$, we get $a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$
Proof 2:Since $a \leq a \vee b$ and $a \leq a \vee c$
$\Rightarrow a=a \wedge a \leq(a \vee b) \wedge(a \vee c)$ \qquad (***)

Again, we have
$b \leq a \vee b$ and $c \leq a \vee c$
$\Rightarrow b \wedge c \leq(a \vee b) \wedge(a \vee c)$ \qquad
From $(* * *)$ and $(* * * *)$, we get $a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)$

Conclusion, thus to prove that a lattice $(L ; \vee, \wedge)$ is a distributive lattice it is sufficient to prove that
$\left(1^{*}\right) a \wedge(b \vee c) \leq(a \wedge b) \vee(a \wedge c)$
$\left(2^{*}\right) a \vee(b \wedge c) \geq(a \vee b) \wedge(a \vee C)$
Definition 2.1.3:- A lattice L is called n-distributive if in L the following identity holds:

$$
x \wedge\left(\bigvee_{i=1}^{n} y_{i}\right)=\bigvee_{i=1}^{n}\left(x \wedge\left(\bigvee_{(j \neq i)=1}^{n} y_{j}\right)\right)
$$

Corollary 2.1.4:[6] Let L be a distributive lattice such that $a, b \in L$ and $a \neq b$. Then there is a prime ideal containing exactly one of a and b.

Proof:- Suppose $a \not \leq b$. Let $D=\uparrow a$ be dual ideal of L with $a \in D$ and therefore, $b \notin D$. Let $I=\downarrow b$ be an ideal of L, and note $a \notin I$ and $b \in I$. Then, $I \cap D=\varnothing$ and there exist prime ideal P of L such that $P \supseteq I$ and $P \cap D=\emptyset$. Since $P \supseteq I$ and $b \in I$ we have $\mathrm{b} \in P$. Thus, since $a \in D$ and $P \cap D=\emptyset, a \notin P$. A similar argument holds if $b \nsubseteq a$. Therefore there exists prime ideal of L containing exactly one of a and b.

Theorem 2.1.5:- [3] (G. Birkhoff and M. H. Stone) A lattice L is a distributive iff it is isomorphic to a ring of sets.

Proof: - Let $I_{p}(L)$ denote the set of prime ideals of L.
(\Rightarrow) Let L be a lattice and let $\varphi: L \rightarrow P\left(I_{p}(L)\right), a \mapsto\left\{p \mid a \notin p, p \in I_{p}(L)\right\}$
We need to show that φ is one-to-one and preserves meet and join. If $a \neq b$ in L, by corollary 2.1.4 there exists $Q \in I_{p}(L)$ for which we may assume $a \in Q$ and $b \notin Q$. Therefore, $Q \in \varphi(b)$ but $Q \notin \varphi(a)$, which implies $\varphi(a) \neq \varphi(b)$. Therefore φ is one-to-one function.

Let $a, b \in L$. To show that φ preserves join we need to show that $\varphi(a \vee b)=\varphi(a) \vee \varphi(b)$. Let $P \in I_{p}(L)$. We first need to show that $a \vee b \notin P \leftrightarrow a \notin P$ or $b \notin P$. The contrapositive of this is $a \vee b \in P \leftrightarrow a \in P$ and $b \in P$. Now if $a \vee b \in P$ and $a \leq a \vee b$ and $b \leq a \vee b$, since p is an ideal and is closed going down, $a \in p$ and $b \in p$. Now assume that $a, b \in p$. Then, since p is closed under join $a \vee b \in P$. Therefore $a \vee b \notin P$ if and only if $a \notin P$ or $b \notin P$. Now: $\varphi(a \vee b)=$ $\left\{\mathrm{p} \mid(a \vee b) \notin P, P \in I_{p}(L)\right\}$

$$
\begin{aligned}
& =\left\{Q \mid a \notin Q, Q \in I_{p}(L)\right\} \cap\left\{R \mid b \notin R, R \in I_{p}(L)\right\} \\
& =\varphi(a) \vee \varphi(b)
\end{aligned}
$$

To show that φ preserves meet we need to show that $\varphi(a \wedge b)=\varphi(a) \wedge \varphi(b)$. We first need to show that $a \wedge b \notin p \leftrightarrow a \notin P$ and $b \notin P$. The contrapositive of this is: $a \wedge b \in P \leftrightarrow a \in P$ or $b \in$ P. Now if $a \wedge b \in P$, since P is a prime ideal, $a \in P$ or $b \in P$. Now assume that a or b is in P. Then, since P is closed going down $a \wedge b \in P$. Therefore $a \wedge b \notin P$ if and only if $a \notin P$ and $b \notin P$.

Now: $\varphi(a \wedge b)=\left\{p \mid(a \wedge b) \notin P, P \in I_{p}(L)\right\}$

$$
\begin{aligned}
& =\left\{Q \mid a \notin Q, Q \in I_{p}(L)\right\} \cap\left\{R \mid b \notin R, R \in I_{p}(L)\right\} \\
& =\varphi(a) \wedge \varphi(b)
\end{aligned}
$$

Since φ is an injective homomorphism, whose image is a sublattice of $P\left(I_{p}(L)\right), L$ is isomorphic to a ring of sets.
(\Leftarrow) Any ring of sets is distributive and therefore, any lattice isomorphic to a ring of sets is itself distributive.

Example 2.1.6:-The chain \mathbb{Z} is distributive lattice. Since every chain is a lattice and also every chain is distributive, Since \mathbb{Z} is a chain, it follows that \mathbb{Z} is a distributive lattice.

Example 2.1.7:-The following figure is distributive lattice

$$
0_{0}^{0}
$$

Figure 2.1 distributive lattice

2.2 Characterization Theorems of Distributive Lattice

The two typical examples of non-distributive lattices are $\boldsymbol{N}_{\mathbf{5}}$ and $\boldsymbol{M}_{\mathbf{3}}$. Whose diagrams are given in fig 2.2

Figure 2.2 the lattices N_{5} and M_{3}
Our next results characterizes the distributivity by absence of these lattice as a sub-lattices.

Definition 2.2.1:- [10] A sub-lattice L^{\prime} of a lattice L is called a pentagon, respectively, diamond, if L^{\prime} is isomorphic to \boldsymbol{N}_{5}, respectively, \boldsymbol{M}_{3}.

Note: - If we say that $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}$ is a pentagon (respectively, a diamond), we also assume that $e_{0} \mapsto 0, e_{1} \mapsto a, e_{2} \mapsto b, e_{3} \mapsto c, e_{4} \mapsto 1$ is an isomorphism of L^{\prime} with N_{5} (respectively, with M_{3}).

The characterization theorem will be stated in two forms. Theorem 2.2.2 is a striking and useful characterization of distributive lattice; theorem 2.2.3 is a more detailed version of theorem 2.2.2 with some additional information.

Theorem 2.2.2:-[10] A lattice L is distributive iff L does not contain a pentagon or a diamond Proof:-Suppose L is distributive lattice, then for $a, b, c \in L$, which is prove by Theorem 2.1.2.

Conversely:- Suppose either a pentagon or a diamond embedded into L, then L cannot distributive lattice, since the distributive laws do not holds in L, there must be elements a, b, c from L such that $a \wedge(b \vee c)<(a \wedge b) \vee(a \wedge c)$. Let us define

$$
\begin{aligned}
& d=(a \wedge b) \vee(a \wedge c) \vee(b \wedge c) \\
& e=(a \vee b) \wedge(a \vee c) \wedge(b \vee c) \\
& a_{1}=(a \wedge e) \vee d \\
& b_{1}=(b \wedge e) \vee d \\
& c_{1}=(c \wedge e) \vee d
\end{aligned}
$$

Then it is easily seen that $d \leq a_{1}, b_{1}, c_{1} \leq e$. Now from
$a \wedge e=a \wedge(b \vee c)$ (by absorption of " \wedge ") and (applying the modular law to switch the underlined terms)

$$
\begin{aligned}
a \wedge d & =\underline{a} \wedge((\underline{a \wedge b) \vee(a \wedge c)} \vee(b \wedge c)) \\
& =((a \wedge b) \vee(a \wedge c) \vee(a \wedge(b \wedge c)) \quad(\text { by modular } \mathrm{M}) \\
& =(a \wedge b) \vee(a \wedge c)
\end{aligned}
$$

It follows that $d<e$. Therefor if L does contains a pentagon or a diamond it is not distributive lattice.

Definition 2.2.3:-[11] Let $(\mathrm{L} ; \mathrm{V}, \wedge)$ be a lattice and Let $a, b, c \in L$, then for $a \leq c$ the following identity satisfying the modular identity is called modular lattice
$\mathrm{a} \vee(b \wedge c)=(a \vee b) \wedge c$.
Theorem 2.2.4:-[11] (i) A lattice L is modular iff it does not contain a pentagon.
(ii) A modular lattice L is distributive iff it does not contain a diamond.

Proof: (i) If L is modular, then every sub-lattice of L is also modular; \boldsymbol{N}_{5} is not modular, thus it cannot be isomorphic to a sub-lattice of L.

Conversely:Let L be non-modular, let $a, b, c \in L$ with $a \geq b$ and let $(a \wedge c) \vee b \neq a \wedge(c \vee b)$ the free lattice generated by a, b, c with $a \geq b$ is shown in fig 2.3 . Therefore, the sub-lattice of L generated by a, b, c must be homomorphic image of the lattice of fig 2.3 . Observe that if two of the five elements

$$
a \wedge c,(a \wedge c) \vee b, a \wedge(b \vee c), b \vee c, c
$$

are identified under a homomorphism, then so are $(a \wedge c) \vee b$ and $a \wedge(b \vee c)$. Consequently, these five elements are distinct in L, and they form a pentagon.

Figure 2.3 the most general lattice generated by $b \leq a$ and c
(ii) Let L be modular, but non-distributive, and choose $x, y, z \in L$ such that

$$
x \wedge(y \vee z) \neq(x \wedge y) \vee(x \wedge z)
$$

the free modular lattice generated by x, y, z. Thus in any modular lattice, they form a sublattice isomorphic to the quotient lattice of M_{3}. But M_{3} has only two quotient lattice, M_{3} and the oneelement lattice. In the former case, we have finished the proof. In the later case, note that if u and v collapse, then so do $x \wedge(y \vee z)$ and $(x \wedge y) \vee(x \wedge z)$, contrary to our assumption

Lemma 2.2.5:-[3] A lattice L is distributive iff for any two ideals I, J of L :

$$
I \vee J=\{i \vee j: i \in I, j \in J\}
$$

Proof: Suppose L is distributive and let us take $t \in I \vee J$, then $t=i \vee j$. Then by distributivity, $t=$ $t \wedge(i \vee j)=(t \wedge i) \vee(t \wedge j)=i_{1} \vee j_{1}$ where $i_{1}=t \wedge i \in I, j_{1}=t \wedge j \in J$, since I, J are ideals of L. Thus, $t=i_{1} \vee j_{1}$ for $i_{1} \in I, j_{1} \in J$. This implies that $I \vee J=\{i \vee j: i \in I, j \in J\}$.

Conversely: Suppose that $I \vee J=\{i \vee j: i \in I, j \in J\}$ and suppose, if possible, L is non-distributive. Then there exist three elements a, b, c (as in the lattice M_{3}). Now let us consider the principal ideals $I=(b], J=(c]$. (Keeping in mind the figure M_{3}), $a \leq b \vee c$ and so $a \in I \vee J$. We claim that a cannot be written as $a=i \vee j$ because if it so then $i \leq a, j \leq a$. Then as $j \in J=(c], j \leq c$. Now combing $j \leq a, j \leq c$ gives us $j \leq a \wedge c=0<b \in(b]=I$. Thus $j \leq a=i \vee j \in I=(b]=\{0, b\}$, a contradiction. Hence L is distributive.

Lemma2.2.6:-[11] In a bounded distributive lattice an element can have only one complement.
Proof: let L be a distributive lattice and suppose, if possible, an element $x \in L$ has two complements y_{1} and y_{2}. Then using distributivity,

$$
\begin{aligned}
y_{1} & =1 \wedge y_{1} \\
& =\left(x \vee y_{2}\right) \wedge y_{1} \\
& =\left(x \wedge y_{1}\right) \vee\left(y_{2} \wedge y_{1}\right) \\
& =0 \vee\left(y_{2} \wedge y_{1}\right) \\
& =y_{2} \wedge y_{1} \\
& =y_{1} \wedge y_{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
y_{2} & =1 \wedge y_{2} \\
& =\left(x \vee y_{1}\right) \wedge y_{2} \\
& =\left(x \wedge y_{2}\right) \vee\left(y_{1} \wedge y_{2}\right) \\
& =0 \vee\left(y_{1} \wedge y_{2}\right) \\
& =y_{1} \wedge y_{2} .
\end{aligned}
$$

These two give us $y_{1}=y_{2}$. Hence the complement is unique.

Here we mention a nice characterization of distributive lattice due to Oystein Ore (1938). Consider the lattice of all subgroup of a group G. Oystein Ore prove that the group G is locally cyclic iff the lattice of subgroups of G is distributive.

Definition 2.2.7:-[5] Let D be a distributive lattice and $J(D)$ denote the collection of all nonzero join-irreducible elements of D. Then $J(D)$ is a poset under the partial ordering inherited from D. For $a \in D$, let us define $r(a)=\{x \mid x \leq a, x \in J(D)\}=(a] \wedge J(D)$
i.e. $r(a)$ is a set of join-irreducible elements below a

Definition 2.2.8:-Let P be a poset and $A \subseteq P$. We call A hereditary iff $x \in A$ and $y \leq x$ imply that $\mathrm{y} \in A$. Let $H(P)$ be denote the set of all hereditary subsets of P partially ordered by set inclusion. The $H(P)$ is a lattice in which meet and join are intersection and union, respectively and hence $H(P)$ is a distributive lattice.

Theorem 2.2.9:-[5] Let D be finite distributive lattice. Then D is isomorphic to $H(J(D))$.
Proof: let us define the map $\Phi: D \rightarrow H(J(D))$ by $a \Phi=r(a)$. Then we prove that
Φ is an isomorphism.
One-to-one: Take $a, b \in D$ such that $a \Phi=b \Phi$. Then we have $r(a)=r(b)$. This means the two sets

$$
r(a)=\{x \mid x \leq a, x \in J(D)\}
$$

And

$$
r(b)=\{y \mid y \leq b, y \in J(D)\}
$$

are equal. This is possible only when $a=b$. This prove that $\boldsymbol{\Phi}$ is one-to-one
Onto: We have to show that for every $A \in H(J(D))$,there exists a $\in D$ such that $a \Phi=\mathrm{A}$. Let us set $a=\mathrm{V} A$ (which exists because A is finite). Then as $A^{\prime} s$ elements are join-irreducible and $a \leq a$, for every $a \in A$, we get by definition $r(a) \supseteq A$. For reverse inclusion, we take any $x \in r(a)$. Then by definition $x \leq a$. Then we can write $x=x \wedge a=x \wedge \bigvee A=\bigvee\{x \wedge y \mid y \in A\}$. Now since x is join -irreducible so we will have $x=x \wedge y$, for some $y \in A$. This means $x \leq y$. But since A is hereditary, so it is follow that $x \in A$.Therefore $r(a) \subseteq A$. The two containments together give us $r(a)=A$. Thus the pre-image of $A \in H(J(D))$ is the join of A. Hence $\boldsymbol{\Phi}$ is onto.
$\boldsymbol{\Phi}$ is a homomorphism: By definition $(a \wedge b) \Phi=r(a \wedge b)$.
Now we show that, $r(a \wedge b)=r(a) \cap(b)$.
We note that $x \in r(a \wedge b) \Leftrightarrow x \in a \wedge b$

$$
\Leftrightarrow x \leq a \text { and } x \leq b
$$

$$
\begin{aligned}
& \Leftrightarrow x \in r(a) \text { and } x \in r(b) \\
& \Leftrightarrow x \in r(a) \cap r(b)
\end{aligned}
$$

Hence we get $r(a \wedge b)=r(a) \cap r(b)$.
Therefore $(a \wedge b) \Phi=r(a \wedge b)=r(a) \cap r(b)=a \Phi \wedge b \Phi$.
Next, by definition $(a \vee b) \Phi=r(a \vee b)$.
We prove that $r(a \vee b)=r(a) \cup r(b)$.
It is trivial that $r(a) \cup r(b) \subseteq r(a \vee b)$.
For reverse containment, let us take any $x \in r(a \vee b)$.
Then by definition, $x \leq a \vee b$.From this we can write $x=x \wedge(a \vee b)$. Applying distributivity, this can be written as $x=(x \wedge a) \vee(x \wedge b)$. Now since x is join- irreducible, we shall get $x=x \wedge a$ or $x=x \wedge b$ and this implies that $x \leq a$ or $x \leq b$. Then $x \in r(a)$ or $x \in r(b)$ which means $x \in$ $r(a) \cup r(b)$, proving that $r(a \vee b) \subseteq r(a) \cup r(b)$. Thus the two containments together imply that $r(a \vee b)=r(a) \cup r(b)$.

So we have $(a \vee b) \Phi=r(a \vee b)=r(a) \cup r(b)=a \Phi \vee b \Phi$.
Therefore, Φ is a homomorphism.
Hence Φ is an isomorphism.
These prove the theorem.
Definition 2.2.10:-[6] A modular lattices ($L ; \mathrm{V}, \wedge$) are lattices that satisfy the following identity (called the modular identity), described by Dedekind: if $a \leq c, b \in L$,

$$
a \vee(b \wedge c)=(a \vee b) \wedge c
$$

Remark: In the equality (*) , it is trivial that,

$$
a \vee(b \wedge c) \leq(a \vee b) \wedge c
$$

So to prove that a lattice to be modular, it is sufficient to show that

$$
a \vee(b \wedge c) \geq(a \vee b) \wedge c
$$

Theorem 2.2.11:-[6] A lattice L is modular, if and only if, every triplet a, b, c of L satisfies the equation
$a \vee(b \wedge(a \vee c))=(a \vee b) \wedge(a \vee c)(\operatorname{Jordan}[105])$.

Proof: if L is modular, then by $(* \cdot)$ and because $a \leq a \vee c$, the above equality holds. Conversely if the above equality is true for any triplet a, b, c of L, then, in particular, ($* \cdot$) is true as will, since $a \leq c$ implies $a \vee c=c$

Example 2.2.12:- By taking $a \leq c$ in the distributive identity, we get a modular identity. Thus it implies that every distributive lattice is modular.

Example 2.2.13:-The lattice of all ideals of a ring is a modular lattice but not distributive, in general.

Example 2.2.14:-The lattice of all subgroup of a group is not modular, in general.
Theorem 2.2.15:-[6] The lattice of normal subgroups $\mathcal{N}-\operatorname{sub}(G)$ of a group G is modular.
Proof: It is trivial to show that $\mathcal{N}-\operatorname{sub}(G)$ is a poset under set containment. Now for subgroups G_{1}, G_{2} in $\mathcal{N}-\operatorname{sub}(G)$, let us define $G_{1} \wedge G_{2}=G_{1} \cap G_{2}$ and $G_{1} \vee G_{2}=\left\{g_{1} g_{2} \mid g_{1} \in\right.$ $\left.G_{1}, g_{2} \in G_{2}\right\}$, subgroup generated by G_{1}, G_{2} which we shall denote by $G_{1} G_{2}$. Then it is easy to check that $G_{1} \cap G_{2}$ and $G_{1} G_{2}$ are members of $\mathcal{N}-\operatorname{sub}(G)$.To prove $\mathcal{N}-\operatorname{sub}(G)$ to be a modular lattice, we shall show that for G_{1}, G_{2} in $\mathcal{N}-\operatorname{sub}(G)$ such that $G_{2} \subseteq G_{1}, G_{1} \cap\left(G_{2} G_{3}\right)=G_{2}\left(G_{1} \cap G_{3}\right)$. For this we take $x \in G_{1} \cap\left(G_{2} G_{3}\right)$. Then $x \in G_{1}$ and $x \in\left(G_{2} G_{3}\right)$. Thus $x=g_{1}$ and $x=g_{2} g_{3}$.

For some $g_{1} \in G_{1}, g_{2} \in G_{2}, g_{3} \in G_{3}$. From these we can write $g_{3}=g_{2}^{-1} g_{1} \in G_{1}$. Thus $g_{3} \in G_{1} \cap$ G_{2} and then $g_{2} g_{3} \in G_{2}\left(G_{1} \cap G_{3}\right)$ which implies that $x \in G_{2}\left(G_{1} \cap G_{3}\right)$.

Therefore we get
$G_{1} \cap\left(G_{2} G_{3}\right) \subseteq G_{2}\left(G_{1} \cap G_{3}\right)$. Now as the reverse containment holds. These together yield the modular identity.

This prove that $\mathcal{N}-\operatorname{sub}(G)$ is indeed a modular lattice.
Theorem 2.2.16:-[3] The dual, every sub-lattice and every homomorphic image of a distributive lattice is likewise a distributive lattice.

Proof: (i) Let $(\boldsymbol{L} ; \vee, \wedge)$ be a distributive lattice and \boldsymbol{H} be a sub-lattice of \boldsymbol{L}.
Now, let $a, b, c \in \boldsymbol{H}$. Then $a, b, c \in \boldsymbol{L}$.
Therefore $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \ldots \ldots \ldots$. in L
Then, it holds also for \boldsymbol{H}. Hence \boldsymbol{H} is a distributive lattice
(ii) Let $\varphi: \mathrm{L} \longrightarrow L^{\prime}$ be a homomorphism and L be a distributive lattices, where L^{\prime} is a homomorphic image of L.

Suppose $\varphi(L)=L^{*} \subseteq L^{\prime}$.Now, let $a^{*}, b^{*}, c^{*} \in L^{*}=\varphi(L)$

This implies that, there exist $a, b, c \in L$ such that $\varphi(a)=a^{*}, \varphi(b)=b^{*}, \varphi(c)=c^{*}$.
Now, $a^{*} \wedge\left(b^{*} \vee c^{*}\right)=\varphi(a) \wedge(\varphi(b) \vee \varphi(c))$
$=\varphi(a) \wedge[\varphi(b \vee c)] \ldots \ldots \ldots \varphi$ is a homomorphism
$=\varphi([a \wedge(b \vee c)]) \ldots \ldots \ldots \ldots . \varphi$ is a homomorphism
$=\varphi[(a \wedge b) \vee(a \wedge c)] \ldots \ldots \ldots . . \mathrm{L}$ is a distributive lattice
$=\varphi[(a \wedge b)] \vee \varphi[(a \wedge c)] \ldots \varphi$ is a homomorphism
$=[\varphi(a) \wedge \varphi(b)] \vee[\varphi(a) \wedge \varphi(c)] \ldots \ldots \varphi$ is a homomorphism
$=\left(a^{*} \wedge b^{*}\right) \vee\left(a^{*} \wedge c^{*}\right)$
Therefore $L^{*}=\varphi(L)$ is a distributive lattice.
Example 2.2.17:-Every chain is a distributive lattice.
Example 2.2.18:-A group G is called a generalized cyclic group if every finite subset of G generates a cyclic subgroup. The subgroup lattice of every group of this type is distributive (Ore [152]).

2.3 Infinitely Distributive and Completely Distributive Lattices

From the distributive identities D_{1}, D_{2} follow at once by complete induction on n the identity

$$
\begin{equation*}
a \wedge \bigvee_{k=1}^{n} b_{k}=\bigvee_{k=1}^{n}\left(a \wedge b_{k}\right) \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
a \vee \bigwedge_{k=1}^{n} b_{k}=\bigwedge_{k=1}^{n}\left(a \vee b_{k}\right) . . \tag{2}
\end{equation*}
$$

Quite naturally the question arises whether the equations

$$
\begin{equation*}
a \wedge \bigvee_{\beta \in \mathrm{B}} b_{\beta}=\bigvee_{\beta \in \mathrm{B}}\left(a \wedge b_{\beta}\right) \tag{3}
\end{equation*}
$$

And

$$
\begin{equation*}
a \vee \bigwedge_{\beta \in \mathrm{B}} b_{\beta}=\bigwedge_{\beta \in \mathrm{B}}\left(a \vee b_{\beta}\right) \tag{4}
\end{equation*}
$$

Which can be considered as generalization of (1) and (2), respectively, are valid for any subset $\mathrm{R}=\left\{b_{\beta}\right\} \beta \in \mathrm{B}$ of a distributive complete lattice.
$>$ It can be shown by a simple counter example that the answer to the question is negative, in the general case.

Consider for instance the set N_{0} of all non-negative integers. N_{0} ordered by divisibility, form a complete lattice the least element of which is 1 , the greatest 0 , and in which the meet of two elements is their greatest common divisor, the join of two elements their least common multiple. By the identities concerning the least common multiple and the greatest common divisor, as affirmed by the number theory, the lattice N_{0} is distributive lattice as well.

Therefore N_{0} is a distributive complete lattice; nevertheless, (3) fails to hold in it. Consider, for example, the set $\left\{a_{1}, a_{3}, \ldots\right\},\left(a_{k}=2 \mathrm{k}-1\right)$ of all odd positive integers; then

$$
2 \wedge \bigvee_{k=1}^{\infty} a_{k}=2 \wedge 0=2
$$

But

$$
\bigvee_{k=1}^{\infty}\left(2 \wedge a_{k}\right)=\bigvee_{k=1}^{\infty} 1=1
$$

but, by making use of representation of the greatest common divisor and the least common multiple by their prime factors, it is easy to see that (4) holds in N_{0}.

Of course, in the dual of lattice N_{0}, (3) is satisfied and (4) is not.
From the above, the first conclusion to be drawn is that (3) and (4) do not hold in any distributive complete lattice.

Definition 2.3.1:-[4] A lattice L is said to be infinitely meet-distributive if it is join-complete and (3) holds foe every subset $\mathrm{R}=\left\{b_{\beta}\right\} \beta \in \mathrm{B}$ of the lattice.

Definition 2.3.2:-[11] A lattice L is said to be infinitely join-distributive if it is meet-complete and (4) holds for every subset $\mathrm{R}=\left\{b_{\beta}\right\} \beta \in \mathrm{B}$ of the lattice.

Definition 2.3.3:-[11] A lattice L is said to be infinitely distributive if it is both infinitely meetdistributive and join-distributive.

Note:-by applying (1) twice we have for any finite number of elements of a distributive lattice
$\bigvee_{j=1}^{m} a_{1 j} \wedge \bigvee_{k=1}^{n} a_{2 k}=\bigvee_{j=1}^{m}\left(a_{1 j} \wedge \bigvee_{k=1}^{n} a_{2 k}\right)=\bigvee_{j=1}^{m} \bigvee_{k=1}^{n}\left(a_{1 j} \wedge a_{2 k}\right)$
and hence, by induction on r ,

$$
\begin{equation*}
\bigwedge_{j=1}^{r} \bigvee_{k=1}^{n_{j}} a_{j k}=\bigvee_{j_{1}=1}^{n_{1}} \ldots \bigvee_{j_{r}=1}^{n_{r}}\left(a_{j_{1}} \wedge \ldots \wedge a_{r j_{r}}\right) . \tag{5}
\end{equation*}
$$

The identity (5) can be stated in a form that is more concise, and better suited to generalization. Let us introduce the notation $A=\{1,2, \ldots, r\}, B_{1}=\left\{1, \ldots, n_{1}\right\}, \ldots, B_{r}=\left\{1, \ldots, n_{r}\right\}$. Furthermore, let γ be some choice function defined on the sets $B_{1} \ldots, B_{r}$ (that is, le $\mathrm{t} \gamma$ be a function which assigns to each of the sets $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{r}}$ one, and only one, of their respective elements). Let $\gamma(a)$ denote the element selected from $B(a=1, \ldots, r)$. Then

$$
\begin{equation*}
a_{1 \gamma(1)} \wedge \ldots \wedge a_{r \gamma(r)} \tag{6}
\end{equation*}
$$

is one of the terms of the right side of (5) and if γ runs through the set Γ of all choice functions definable on the sets $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{r}}$, expressions of the form (6) give the meet expressions figuring on the right side of (5). Hence (5) can be rewritten as follows:

$$
\begin{equation*}
\bigwedge_{a \in A} \bigvee_{\beta \in B} a_{\alpha \beta}=\bigvee_{\gamma \in \Gamma} \bigwedge_{\alpha \in A} a_{\alpha \gamma(\alpha)} . \tag{7}
\end{equation*}
$$

Hence, formula (7) and its dual formula

$$
\begin{equation*}
\bigvee_{\alpha \in A} \bigwedge_{\beta \in B} a_{\alpha \beta}=\bigwedge_{\gamma \in \Gamma} \bigvee_{\beta \in B} a_{\alpha \gamma(\alpha)} . \tag{8}
\end{equation*}
$$

Hold for any finite system of elements of a distributive lattice; whereas, for all infinite A or B_{α}, these formula are not generally true.

Definition 2.3.4:-[4] A lattice L is said to be completely meet-distributive if it is complete and satisfies (7) without restriction.

Definition 2.3.5:-[11] A lattice L is said to be completely join-distributive if it is complete and satisfies (8) without restriction.

Definition 2.3.6:-[11] A lattice L is said to be completely- distributive if it is both completely meet- and join-distributive.

Chapter Three

3 Congruences in Lattices

Congruence relations play a central role in lattice theory. In this section we introduce the congruence relations on groups. Then we will see the concept of congruence relation in lattices. Some examples and properties are given to illustrate these concepts.

3.1 Congruence

We know that, If A is an algebraic structure, the equivalence relation \equiv is a binary relation that is at the same time reflexive, symmetric and transitive relation. We write $a \equiv b$ or $a \beta b$ to indicated that a and b are related under the relation β. The relation "is equal to" on the set of real numbers is a prime example of an equivalence relation. For example, $\frac{2}{3}$ is equal to $\frac{4}{6}$.

Definition 3.1.1:-[5] If A is an algebraic structure, then an equivalence relation on A that also preserves the algebraic operations of A is called a congruence relation on A . For example if G is a group with operation $*$, a congruence relation on G is an equivalence relation \equiv on the element of G satisfying

$$
g_{1} \equiv g_{2} \text { and } h_{1} \equiv h_{2} \Rightarrow g_{1} * h_{1} \equiv g_{2} * h_{2}, \text { for all } g_{1}, g_{2}, h_{1}, h_{2} \in G
$$

Example 3.1.2:-The prototypical example of a congruence relation is congruence modulo n on the set of integers. For a given positive integer n, two integers a and b are called congruent modulo n, written $a \equiv b(\bmod n)$ if $a-b$ divisible by n (or equivalently if a and b have the same remainder when divided by n).

Theorem 3.1.3:-[12] Every normal subgroup has corresponding congruence relation and vice versa.
Proof:- (\Rightarrow) Let G be a group where $H \triangleleft G$ is a normal subgroup in G, define relation a relation $\rho \subseteq \mathrm{G} \times \mathrm{G}$ as follows:
$g_{1} \sim g_{2}$ Under ρ if and only if $g_{1} g_{2}^{-1} \in H$.

1. \sim is an equivalence relation

- Reflexivity: It is easy to see that $g \sim g$ since $g g^{-1}=e \in H$.
- Symmetry: Suppose $g_{1} \sim g_{2}$, so by definition we have $g_{1} g_{2}{ }^{-1} \in H$, so $g_{1} g_{2}^{-1}=\mathrm{h}$ for some $\mathrm{h} \in H$, and then $g_{1} g_{2}^{-1}=\mathrm{h} \Rightarrow g_{2} g_{1}^{-1}=h^{-1} \in H \Rightarrow g_{2} \sim g_{1}$.
- Transitivity: Suppose $g_{1} \sim g_{2}$ and $g_{2} \sim g_{3}$, then: $g_{1} g_{2}^{-1}=h$ and $g_{2} g_{3}^{-1}=k$, where h, $\mathrm{k} \in \mathrm{H}$, now from the last identity we have $g_{2}^{-1}=g_{3}^{-1} k^{-1}$, and then $g_{1} g_{3}^{-1} k^{-1}=$ $h \Rightarrow g_{1} g_{3}^{-1}=h k \Rightarrow g_{1} \sim g_{3}$.

2. The relation preserves the group structure, since if $g_{1} \sim g_{2}$ and $g_{3} \sim g_{4}$, then

$$
\begin{gathered}
g_{1} \sim g_{2} \Rightarrow g_{1} g_{2}^{-1}=h_{1} \in H \\
g_{3} \sim g_{4} \Rightarrow g_{3} g_{4}^{-1}=h_{2} \in H \\
\Rightarrow g_{1} g_{3}\left(g_{2} g_{4}\right)^{-1}=g_{1} g_{3} g_{4}^{-1} g_{2}^{-1}=g_{1} h_{2} g_{2}^{-1}=g_{1} g_{2}^{-1} h^{\prime}=h_{1} h^{\prime} \in H
\end{gathered}
$$

Because normality implies that for all $x \in G$, and all $\mathrm{h} \in H$ there exist $h^{\prime} \in H$,

With $x h=x h^{\prime}$.
(\Leftarrow) Now let \sim be a congruence relation on a group G. Define the set $\mathrm{H}=\{g \in G: g \sim e\}$. Firstly, we prove H is a subgroup.
(i) Of course, $e \sim e$, thus $e \in H$
(ii) Suppose $h_{1}, h_{2} \in H$, then $h_{1} \sim e$ and $h_{2} \sim e$. Since \sim is a congruence relation, we have $h_{1} h_{2} \sim e e \Rightarrow h_{1} h_{2} \sim e \Rightarrow h_{1} h_{2} \in H$
(iii) Suppose $h \in \mathrm{H}$, then $h \sim e$ since \sim is an equivalence, we have $h^{-1} \sim h^{-1}$ and since it's also a congruence relation, we get $h h^{-1} \sim e h^{-1} \Rightarrow e \sim h^{-1} \Rightarrow h^{-1} \in H$ we want to show that H is normal, that is, $\forall g \in \mathrm{G}$ and $\forall h \in H$, we have $g h g^{-1} \in H$
Since \sim is an equivalence relation, we have $g \sim g$ and $g^{-1} \sim g^{-1}$. Furthermore, as \sim is congruence, and $h \in H \Rightarrow h \sim e$ and so $g h g^{-1} \sim g e g^{-1}=e$, for any $g \in G$ and $h \in H$.

3.2 Congruence Relation in Lattice

We begin with definition of a congruence relation in a lattice.
Definition 3.2.1:-[7] An equivalence relation θ (that is, reflexive, symmetry and transitive binary relation) on a lattice L is called congruence relation iff $a \equiv b(\theta)$ and $c \equiv d(\theta)$ for some $a, b, c, d \in \mathrm{~L}$ imply that;
(i) $a \wedge c \equiv b \wedge d(\theta)$
(ii) $\quad a \vee c \equiv b \vee d(\theta)$

Note:

- The equivalence classes under a congruence relation θ are called congruence classes or blocks.
- The congruence class containing $a \in \boldsymbol{L}$ is denoted by $[a]$ that is, $[a]=\{x: x \theta a\}$.
- The set of all congruence relations on \boldsymbol{L} is denoted by $\operatorname{Con}(\boldsymbol{L})$.
- Congruence relations on an arbitrary lattice have an interesting connection with the distributive lattices.

Example 3.2.2:-In any lattice there are always two trivial congruence relations, the congruence relation θ_{1} where each element is it's own equivalence class (block), this is called the smallest congruence relation, and the congruence relation θ_{2} with a single block.

$$
\begin{aligned}
& \text { i.e. } a \equiv b\left(\theta_{1}\right) \text { if and only if } a=b \\
& \qquad a \equiv b\left(\theta_{2}\right) \text { for all } a, b \in L
\end{aligned}
$$

Example 3.2.3:- Let L be a lattice with the Hasse diagram in figure 3.1

Figure 3.1
The following are all congruence of a lattice L :

$$
\begin{aligned}
\theta_{1} & =\{\{a\},\{b\},\{c\},\{d\}\} \\
\theta_{2} & =\{a, b, c, d\},\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\},\{\{a\},\{c\},\{b, d\}\},\{\{a\},\{b\},\{c, d\}\}
\end{aligned}
$$

Example 3.2.4:- In a finite chain C, a congruence relation is any decomposition of C into disjoint closed interval as shown in the figure 3.2

Figure 3.2 A congruence of a finite chain C

Example 3.2.5:-A congruence relation of a lattice is shown in figure 3.3

Figure 3.3 Congruence of lattice
Examples 3.2.6 ;(i) In the integer \mathbb{Z}, a congruence relation is the same as congruence $\bmod n$, for some n. The case $n=0$ gives the equality relation.
(ii) In a group G, a congruence relation is the same thing as the coset

Decomposition for some normal subgroup and in a commutative ring it is the some thing as the coset decomposition for an ideal.

Theorem 3.2.7:-[4] An equivalence relation \equiv on a lattice \boldsymbol{L} is a congruence relation if and only if for all $a, b, x \in \boldsymbol{L}$,
$a \equiv b \Rightarrow a \wedge x \equiv b \wedge x$ and $a \vee x \equiv b \vee x$.
Proof :- (\Rightarrow) Assume that \equiv is congruence on a lattice L . If $a \equiv b(\theta)$ then since $x \equiv x(\theta)$, we have $a \vee x \equiv b \vee x$ and $a \wedge x \equiv b \wedge x$
(\Longleftarrow) If the stated property holds, then $a \equiv b, x \equiv y \Rightarrow a \wedge x \equiv b \wedge x, b \wedge x \equiv b \wedge y$

$$
\Rightarrow a \wedge x \equiv b \wedge y
$$

And similarly $a \equiv b, x \equiv y \Rightarrow a \vee x \equiv b \vee x, b \vee x \equiv b \vee y$

$$
\Rightarrow a \vee x \equiv b \vee y
$$

Lemma 3.2.8:-[4] Let β be a congruence relation of a lattice L. Then, for any pair a, b of elements of a lattice L, the following conditions (i)-(iii) are equivalent:
(i) $a \equiv b(\beta)$
(ii) $a \wedge b \equiv a \vee b(\beta)$
(iii) $x, y \in[a \wedge b, a \vee b] \Rightarrow x \equiv y(\beta)$

Proof: - (i) \Rightarrow (ii), since, if $a \equiv \mathrm{~b}(\beta)$, then by the substitution property
$a \wedge b \equiv a \wedge a=a=a \vee a \equiv a \vee b(\beta)$
(ii) \Longrightarrow (iii), since if $x, y \in[a \wedge b, a \vee b]$, then $x=x \vee(a \wedge b) \equiv x \vee(a \vee b)=a \vee b(\beta)$ and similarly, $y \equiv a \vee b(\beta)$; but then, $x \equiv y(\beta)$. Finally, (iii) \Rightarrow (i) under the substitution $x=a, y=b$

Definition 3.2.9:-Let L be an arbitrary lattice. Then the collection Con (L) of all congruence relations of L form a lattice [6] with the meet and join defined as:

For $\beta_{1}, \beta_{2} \in L, \beta_{1} \wedge \beta_{2}=\beta_{1} \cap \beta_{2}$, that is
$a \equiv b\left(\beta_{1} \wedge \beta_{2}\right)$, iff $a \equiv b\left(\beta_{1}\right)$, and $a \equiv b\left(\beta_{2}\right)$.
The join $\beta_{1} \vee \beta_{2}$ is defined as $a \equiv b\left(\beta_{1} \vee \beta_{2}\right)$ iff there is a sequence $c_{0}=a \wedge b, c_{1}, \ldots, c_{n-1}=a \vee$ b of elements of L such that $c_{0} \leq c_{1} \leq, \ldots, \leq c_{n-1}$ and for each $\mathrm{i}, 0 \leq i \leq n-1, \mathrm{C}_{\mathrm{i}} \equiv c_{i+1}\left(\beta_{1}\right)$ or $c_{i} \equiv c_{i+1}\left(\beta_{2}\right)$.

Theorem 3.2.10 (N.Funayama and T.Nakayama) Con (L) is distributive lattice [2].
Proof: Let us take three congruences $\theta, \phi, \psi \in \operatorname{con}(L)$. By distributive inequality of chapter two, we have

$$
\theta \wedge(\phi \vee \psi) \geq(\theta \wedge \phi) \vee(\theta \wedge \psi) \text { So we show reverse inequality. }
$$

i.e. $\quad(\theta \wedge \phi) \vee(\theta \wedge \psi) \geq \theta \wedge(\phi \vee \psi)$.Taking $a \equiv b(\theta \wedge(\phi \vee \psi))$, we have $a \equiv b(\theta)$ and $a \equiv b(\phi \vee \psi)$. Then by the above lemma 3.2.8 $a \equiv b(\theta)$ implies that $a \wedge b \equiv a \vee b(\theta)$. Now consider $a \equiv b(\phi \vee \psi)$.By the definition of join of congruences, $a \equiv b(\phi \vee \psi)$ implies that there exist $z_{0}, z_{1}, \ldots, z_{n-1}$ such that
$a \wedge b=z_{0}, z_{1}, \ldots, z_{n-1}=a \vee b$ Such that for all $0 \leq i \leq n-2, z_{i} \equiv z_{i+1}(\phi)$ or $z_{i} \equiv z_{i+1}(\psi)$ and so $z_{i} \equiv z_{i+1}(\theta)$ for each $0 \leq i \leq n-2$, therefore we have

$$
\begin{aligned}
& \left(z_{i} \equiv z_{i+1}(\theta)\right) \text { and }\left(z_{i} \equiv z_{i+1}(\phi) \text { or } z_{i} \equiv z_{i+1}(\psi)\right) \\
& \quad\left(z_{i} \equiv z_{i+1}(\theta)\right) \text { and }\left(z_{i} \equiv z_{i+1}(\phi) \text { or } z_{i} \equiv z_{i+1}(\theta)\right) \text { and } z_{i} \equiv z_{i+1}(\psi) \\
& \quad\left(z_{i} \equiv z_{i+1}(\theta \wedge \phi)\right) \text { or }\left(z_{i} \equiv z_{i+1}(\theta \wedge \psi)\right) \text { for all } 0 \leq i \leq n-2 .
\end{aligned}
$$

So by the definition of the join $a \equiv b(\theta \wedge \phi) \vee(\theta \wedge \psi)$ and therefore

$$
(\theta \wedge \phi) \vee(\theta \wedge \psi) \geq \theta \wedge(\phi \vee \psi)
$$

Hence the two inequalities together yields
$(\theta \wedge \phi) \vee(\theta \wedge \psi)=\theta \wedge(\phi \vee \psi$
This proves that $\mathbf{c o n}(\boldsymbol{L})$ is distributive lattice.
Definition 3.2.11:- [6] Let L be a lattice and θ be congruence on L. Let L / θ denote the collection of all congruence class induced by the congruence, that is $L / \theta=\{[a] \theta: a \in L\}$ then it form a lattice under
$[a] \theta \wedge[b] \theta=[a \wedge b] \theta$ and $[a] \theta \vee[b] \theta=[a \vee b] \theta$ this lattice is called the factor lattice of modulo $\boldsymbol{\theta}$.

Lemma 3.2.12:-[6] For the congruence θ of a lattice L , the map $\boldsymbol{\varphi}: L \rightarrow L / \theta$ defined by $x \mapsto[x] \theta$ is a homomorphism of L onto L / θ.

Proof: It is clear that $\boldsymbol{\varphi}$ is surjective. Also

$$
\boldsymbol{\varphi}(a \wedge b)=[a \wedge b]=[a] \wedge[b]=[a] \theta \wedge[b] \theta
$$

And similarly for join. Hence $\boldsymbol{\varphi}$ is homomorphism.

3.3 Characterization of Congruence Lattice

Definition 3.3.1:-[3] Kernel of homomorphism, unlike the group theory or ring theory, there are three kernel concepts in lattice theory. They are defined as follow
(i) Let $\boldsymbol{\varphi}: L \rightarrow L_{1}$ be a homomorphism of L onto L_{1}. Define the congruence relation $\boldsymbol{\theta}$ as $x \equiv y(\boldsymbol{\theta})$ iff $x \boldsymbol{\varphi}=\boldsymbol{y} \boldsymbol{\varphi}$. Then this relation $\boldsymbol{\theta}$ is called the congruence kernel of the homomorphism φ.
(ii) If L_{1} has a zero, 0 , the set of preimages of 0 forms an ideal of L. This ideal is called ideal kernel of the homomorphism $\boldsymbol{\varphi}$.
(iii) If for a congruence $\boldsymbol{\theta}$ of $L, L / \theta$ has a zero, $[a] \boldsymbol{\theta}$, then $[a] \boldsymbol{\theta}$ is an ideal of L called the ideal kernel of the congruence relation $\boldsymbol{\theta}$.
Definition 3.3.2:-[6] Regular lattice, let L be a lattice. A congruence relation $\boldsymbol{\theta}$ of L is called a regular, if any congruence class of $\boldsymbol{\theta}$ determines the congruence. The lattice L is called regular if all congruences of L are regular.

Example 3.3.3

Figure 3.4: regular lattice $N_{6}=N(p, q)$

Remark: The lattice N_{6} has three congruence relations: The identity congruence relation ω, the universal congruence relation τ, and a non-trivial congruence relation ψ, with the congruence classes $\left\{0, q_{1}, q_{2}, q\right\}$ and $\left\{p_{1}, p(q)\right\}$.

Claim: Every non-trivial congruence relation of N_{6} coincides with the congruence relation ψ, with the above congruence classes.

Proof of the claim: For example, let us determine the congruence relation $\boldsymbol{\theta}=\mathbf{c o n}\left(q_{1}, q_{2}\right)$ generated by the pair $\left(q_{1}, q_{2}\right)$. Then by the definition the elements $\left(q_{1}, q_{2}\right),\left(q_{2}, q_{1}\right),\left(q_{1}, q_{1}\right),\left(q_{2}, q_{2}\right)$ belong to con $\left(q_{1}, q_{2}\right)$. Now as $\left(q_{1}, q_{2}\right)$ belong to $\boldsymbol{\theta}$ so $q_{1} \wedge q_{2}=q_{1} \vee q_{2} \boldsymbol{\theta}$, i. e ($0, q$) belong to $\boldsymbol{\theta}$. So the elements $(\mathrm{q}, 0),(0,0),(\mathrm{q}, \mathrm{q})$ should also be in $\boldsymbol{\theta}$. Next we note that q_{2} is such that $0 \leq q_{2} \leq q$ so we find that $\left(q_{2}, 0\right),\left(q_{2}, q\right),\left(q_{1}, 0\right),\left(q_{1}, q\right)$ are elements of $\boldsymbol{\theta}$. Then we should also have $\left(0, q_{2}\right),\left(q, q_{2}\right)$, $\left(0, q_{1}\right),\left(q, q_{1}\right)$ in $\boldsymbol{\theta}$. Next we note that $q_{1} \wedge p_{1}=0 \equiv q_{1}$ under $\boldsymbol{\theta}$ and $p(q)$ is the join of p_{1} and q_{1}, so we get $\mathrm{p}_{1} \equiv \mathrm{p}(\mathrm{q})(\boldsymbol{\theta})$. Then it follows that $\left(\mathrm{p}(\mathrm{q}), \mathrm{q}_{1}\right)$ also belong to $\boldsymbol{\theta}$, and $\left(\mathrm{p}_{1}, \mathrm{p}_{1}\right),\left(\mathrm{p}\left(\mathrm{q}_{1}\right), \mathrm{p}\left(\mathrm{q}_{1}\right)\right)$ should also belong to $\boldsymbol{\theta}$. Produces the pairs which have already been obtained. Thus we get $\boldsymbol{\operatorname { c o n }}\left(q_{1}, q_{2}\right)=$ $\left\{(0,0),\left(p_{1}, p_{1}\right),(p(q), p(q)),(q, q),\left(q_{2}, q_{2}\right)\right.$,
$\left(q_{1}, q_{1}\right),\left(q_{1}, q_{2}\right),\left(q_{2}, q_{1}\right),(0, q),(q, 0),\left(q, q_{1}\right),\left(q_{1}, q\right),\left(q, q_{2}\right),\left(q_{2}, q\right),\left(\mathrm{p}_{1}, \mathrm{p}(\mathrm{q})\right),\left(\mathrm{p}(\mathrm{q}), \mathrm{p}_{1}\right),\left(\mathrm{q}_{1}, 0\right),(0$, $\left.\left.q_{1}\right),\left(\mathrm{q}_{2}, 0\right),\left(0, \mathrm{q}_{2}\right)\right\}$,containing 20 elements and its congruence classes are $\left\{0, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}\right\}$ and $\left\{\mathrm{p}_{1}, \mathrm{p}(\mathrm{q})\right\}$

Similarly, if we consider any other non-trivial congruence relation of the lattice N_{6}, we shall get the same congruence classes. Thus the claim is proved. Hence con $\left(p_{1}, 0\right)=t$. In other words, $p_{1} \equiv 0$ implies that $q_{1} \equiv 0$, but $\mathrm{q}_{1} \equiv 0$ does not implies that $\mathrm{p}_{1} \equiv 0$

Definition 3.3.4:-[6] Uniform lattice: Let L be a lattice. A congruence relation $\boldsymbol{\theta}$ of L is called uniform, if any two congruence classes of $\boldsymbol{\theta}$ are of the same size (cardinality). The lattice L is called uniform if all congruences of L are uniform.

Conclusion

In this project we discuss the notion of distributive lattice and congruence in lattice. We define distributive lattice with binary operation on the given lattice. Distributive lattices have played a very important role in the development of lattice theory. Lattice theory started with distributive lattices. Many great results in general lattice theory are provided by the work on distributive lattices. Congruences in lattice has a central role in lattice theory. Finally I conclude that every lattice cannot a distributive lattice.

References

[1] B. Davey and Priestly, Introduction to Lattice and Order, New York. U.S.A. Australia.Madrid.Spain.South Africa, Printed In the united kingdom at the university press, Cambridge, 1990.
[2] E.T.schmidt Every Finite distributive lattice is the congruence lattice of some modular lattice, Algebra Universalis 4 (1974), 49-57.
[3] G. Birkhoff, lattice theory, Amer.Math.Soc, colloq.publications, U.S.A, 1967.
[4] G. Gratzer and H. Lakser Extension theorem on congruences lattice of Partial lattices. Notices Amer. Math. Soc. 15 (1968), 1122-2234.
[5] G. Gratzer and H. Lakser, homomorphisms of distributive lattices as restriction of congruences, Con. J. Math. 38(1986), 1122-1134.
[6] G. Gratzer, General lattice theory, Academic press, New York, Sanfrasisco, Birkhauser verlag.Boston, 1998.
[7] N. Funayama and T. Nakayama, on the congruence relations on lattices, Proc. Imp. Acad. Tokyo 18 (1942), 530-531.
[8] P.Erdos, A.Hajnal, A.Mate, R.Rado, Combinatorial set theory: Partion relation for cardinals, North- Holland, 1984, 282-285.
[9] SaundersMac Lane, G. Birkhoff, Algebra, AMS Chelsea, 1999.
[10] Stanley Burris and H.P. Sankappanavar, A course in universal algebra.
[11] Szasz, Introduction to lattice theory, Academic Press, New York and London, 1963.
[12] U. Swamy, C. Santhi and R. Chudamani, On Almost Boolean Algebras and Rings, P.V.P Siddhartha Institute of Technology, Vijayawada, Andhra Pradesh, India, 2016.

