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ABSTRACT 

The study focuses on the impact of climate change on the hydrology of Mojo River 

Catchment. The Soil and Water Assessment tool was used for modeling. As the model 

reveals that NSE =0.74; R2=0.73; PBIAS=1.6 during calibration and NSE=0.65; R2=0.61; 

PBIAS=1.6 during validation. Here the coordinated regional climate downscaling 

experiment (CORDEX)-Africa data outputs of GCM models (MPI-M-MPI-ESM-LR, 

MIROC-MIROC5, CCCma-canEM2, and IPSL-IPSL-CM5A-MR) under RCP4.5 and 

RCP8.5 scenarios with the Regional Model RCA4 was used. Based on their performance 

two models were highlighted (MPI-M-MPI-ESM-LR and MIROC-MIROC5) after 

simulated historical data without bias correction and considering the least PBIAS shows 

good underlying atmospheric dynamic. For bias correction Quantile mapping was used 

with Gamma and Normal distribution for precipitation and temperature respectively. 

Then PBIAS become improved from 43.3% to 5.1% under MPI-M-MPI-ESM-LR and 

65.7% to 9.6% under MIROC-MIROC5. Future scenarios climate change was analyzed 

in three-time periods:2006–2031 near period, 2031–2055 mid-period and 2056-2080 far 

period. The result MIROC-MIROC5 Model the precipitation increases from +24 to 49% 

under RCP 4.5 and decreases from 47 to 25 % under 8.5. Similarly, maximum 

temperature increase from 1.19 to 3.570C under RCP 8.5 and increases from 1 to 1.99 0C 

under RCP 4.5 this leads to decrease of streamflow from 6.32 m3/s to 5.08 m3/s under 

near and mid-period in RCP 4.5 but under RCP 8.5 the streamflow become decrease from 

6.68,2.64, and 6.31m3/s for the period of near, mid and far future period respectively. For 

MPI-M-MPI-ESM-LR precipitation increase from 31.9 to 34.8% under RCP 8.5 and 

decreases from 33.8 to 33.1% under RCP 4.5 but the maximum temperature become 

increase in both scenarios form 0.45 to 1.8750C under RCP 4.5 and 0.47 to 1.970C under 

8.5 and the streamflow become increase from 4.62,4.30 and 7.79 m3/s under RCP 4.5 and 

6.68, 2.64 and 6.31m3/s under RCP 8.5 for Near, Mid and Far future Periods respectively. 

The result of this study indicates that climate will affect the hydrology of the catchment. 

Due to change streamflow different operations over the catchment should be incorporated 

with climate change scenarios.  

Keywords: GCM, Mojo catchment, RCP 8.5 and RCP 4.5, SWAT  
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1. INTRODUCTION 

1.1. Background 

Water is a mobile resource it falls from the clouds, seeps into the soil, flows through 

aquifers, runs along with stream courses, and eventually returns to the clouds. This 

natural cycle is the basis of all life forms and of the economy of nature (Rahmato, 1999). 

Water may be "managed" in different ways: it may be harvested, extracted from the 

ground, diverted, transported, and stored. This makes it different from all other natural 

resources (Rahmato, 1999). However, each form of management that interferes with the 

natural cycle exacts a price, not just in economic terms but in terms of environmental 

damage and greater health hazards. Moreover, water does not occur alone, it is rather part 

of a complex ecosystem consisting of the land, plants, aquatic and other life forms 

(Pirozynski and Malloch, 1975). At the global scale, projections suggest wetter regions 

will become wetter and drier regions will get drier according to  Loucks and Van Beek, 

(2017). Since water resource issues are transboundary due to that we face different 

challenges, some of the issues could be based on human activity, deforestation or 

greenhouse effects, that leads to climate change Impacts and that changes also lead to the 

failer of water structure not only that the movement of the water, sediment but also 

sudden high floods which is the main cause due to climate change. 

Climate change impact studies associated with global warming as a result of an increase 

in greenhouse gases (GHG) has been given ample attention worldwide in recent decades 

(Dodman, 2009) and (Papadimitriou, 2004). Climate Change on future projections, 

precipitation and temperature will increase over eastern Africa in the coming century 

(Jaramillo et al., 2011) and also in sub-Saharan Africa, there are many vulnerable river 

basins. These basins are vulnerable both in terms of the climate system that is highly 

variable and the potential future changes in climate, but also in terms of management as 

weak governance and high levels of poverty in the population restrict actions to adapt to 

climate change (Cooper et al., 2008). The advancements in climate models have 

increased confidence in the outputs required as inputs for hydrological applications 

(Wood et al., 2004). However, hydrological impact studies ought to receive more 

attention as there are still grey areas (area of activity not readily conforming to climate 
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change) related to the interfacing of climate and hydrological models. Vulnerable 

hydrological resources are too important to defer climate change investigations (Taye et 

al., 2011). 

Africa's river systems have been the target of development planners since the 1960s, and 

many of the major rivers of the continent have been dammed for irrigation, for power 

generation and flood control (Richter et al., 2010). Indeed, river basin development 

planning has been widely adopted in Africa, and often enough water resource 

development has come to be synonymous with river basin development (Rahmato, 1999). 

Water has always played a central role in Ethiopian society it is an input, to a greater or 

lesser extent, to almost all production (Haile and Kasa, 2015) and it is also a force for 

destruction.  

In Ethiopia, as in all societies, there has always been a struggle to reduce the destructive 

impacts of water and increase its productive impacts (Grey and Sadoff, 2007). Res and 

Hailemariam, (1999) develop a better understanding of the impact of climate change on 

the water resources of the Awash River Basin in Ethiopia, a temperature increases of 2.4 

and 3.0°C, respectively, is projected by models for a doubling of CO2. Therefore, the 

Awash River Basin would be significantly affected by the changing climate since then; 

for instance, Taye, (2018) and Daba, (2015) indicate that the projections for the future 

period show an increase in water deficiency in all seasons and for parts of the basin, due 

to a projected increase in temperature and decrease in precipitation. This decrease in 

water availability will increase water stress in the basin. In Ethiopia, most studies on the 

impact of climate change on water resources focus on catchment s of the Nile basin, for 

instance (Conway, (1997): Alemseged and Tom, (2015): Worku et al., (2018)) Since the 

vulnerability climate change on the study area in the Mojo catchment was analyzed as 

subbasin of Awash basin. 
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1.2. Statement of the problem 

There is strong scientific evidence that indicates the average temperature of the Earth’s 

surface is increasing due to greenhouse gas emissions. The IPCC (Intergovernmental 

Panel on Climate Change) scenarios project temperature rises of 1.40C -5.8ºC, and sea 

level rises of 9-99 cm by 2100 (IPCC, 2014). 

Most research on climate impacts discusses one of the most important consequences of 

climate change will be alterations in major climate variables, such as temperature, 

precipitation, and evapotranspiration. This, in turn, will lead to changes in the 

hydrological cycle, influencing the components of the water balance of drainage basins in 

several ways such as the availability and distribution of water resources in space and 

time, streamflow, frequency of extreme events, etc. (Wale and Texas, 2015). 

One of the most important potential concerns of climate change is hydrological 

components alteration and subsequent changes in river Hydrology (Girma, 2013). The 

water balance components, water yield (flow) from un-gauged and gauged catchment s, 

precipitation and temperature pattern variability change and their impact over Mojo 

Catchment are not yet researched. Most of the researches over the Mojo catchment focus 

on the sediment accumulation for instance (Gonfa and Kumar, (2016): Gonfa et al., 

(2015)) and also Mojo catchment contribute water for irrigation for the society nearby the 

river and Rapid growth of agriculture, industries, and urbanization within catchment of 

Mojo become increase recently so analyzing of the impact of climate change is more 

important task. Therefore, this study examines the pattern of hydrological change and 

determines the pattern of climate change with its impact on the Mojo catchment. 

1.3. Research Questions  

In particular, I shall address the following questions: 

➢ What are the better-performed GCM models for Mojo catchment? 

➢ What will be the expected outputs of Streamflow based on different climate 

scenarios?  

➢ What will be the response of Mojo catchment on future precipitation and 

temperature?  
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1.4. General Objective 

The aim of this study was to investigate the possible impact of climate change on the 

hydrology of the Mojo River catchment using SWAT and GCMs Models. 

Specific Objectives: 

➢ To establish hydrologic modeling using the Soil and Water Assessment Tool 

(SWAT) over the Mojo Catchment. 

➢ To select and evaluate the performance of CORDEX-Africa GCMs models over the 

Mojo catchment.  

➢ To quantify the possible impact of climate change on the streamflow with different 

periods using GCMs CORDEX-Africa Models with RCP 4.5 and 8.5 scenarios. 

1.5. Scope of the study  

There are several methods of analysis of climate impact in this study the climate change 

is analyzed using CORDEX-Africa output data by different GCMs models with two 

representative scenarios (4.5 and 8.5) and using one Regional model RCA4. The analysis 

of CORDEX data was done with one ensemble value (r1i1p1). Selecting of GCMs model 

based on their performance after calibration and validation of observed data form (1981-

2005) analysis with the GCMs historical data (1981-2005) using the SWAT (Soil and 

Water Assessment Tool) software and calibration and validation by SWAT CUP (SUFI-2 

algorithm) software was analyzed. With the better perform GCM models correction of 

the bias appropriate after that for future climate change scenario the GCMs data are 

classified into three base period Near (2006-2030), (2031-2055) and (2056-2080). Then 

with two better-performed GCM models, the seasonal variation over temperature and 

precipitation change with respect to base period data were analyzed. And finally, the 

streamflow change at the future period under two scenarios as well as three periods with 

the seasonal variation and effect of climate change Temperature and precipitation on the 

streamflow was analyzed over the Mojo catchment.  
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1.6. Significance of the study 

According to the IPCC, (2014), report continued emission of greenhouse gases will cause 

further warming and long-lasting changes in all components of the climate system, 

increasing the likelihood of severe, pervasive and irreversible impacts for people and 

ecosystems. Limiting climate change would require substantial and sustained reductions 

in greenhouse gas emissions which, together with adaptation, can limit climate change 

risks (Woodward and Scheraga, 2014). 

Application of hydrological model in the catchment at spatial scale would be essential to 

know water hydrology and to study the impact of climate change on the catchment which 

helps to set different management scenarios that will lead to sound environmental 

sustainability. Therefore, it is necessary to study the hydrologic responses to climate 

change at this catchment level in order to take the effect into account by the policy and 

decision-makers when planning water resources management. The contribution of this 

study is that it can be a tool for the local and regional community/policymakers and 

concerned bodies what types of problems are happening and will happen due to climate 

impact. It can also inform stakeholders of the extent of the impacts that affect the 

hydrology of Mojo catchment. 

In order to design efficient conservation strategies for sustainable development, it is 

essential to know the patterns of climate change of the area over time and space and to 

quantify the extent to which these changes influence the hydrological processes of the 

catchment. In the past, the lack of decision support tools and limitations of data were the 

main factors that significantly hindered research and development in the study area. 

Recently desertification has started at lower Awash River Basin identifying the impact 

over the catchment is more advantageous. In the high land part deforestation and 

sedimentation have increased in the past three decades Socolofsky et al., (2001) so 

analyzing the variation of climate impact for future gives as additional input how much or 

might change the climate and mitigate over the catchment. Considering the hydrological 

behavior of the catchment and applicability of the existing models for the solutions of the 

aforementioned problems, this study was undertaken using the Soil Water Assessment 

Tool (SWAT) model. 
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1.7. Thesis Organization   

The research report has been formulated in five chapters, with a brief layout of each of 

them. Chapter one: in this chapter represents the introduction, statement of the problem, 

general objective, research questions and significance of the study are briefly discussed. 

Chapter two: In this chapter, the historical background of Awash basin with related to 

Mojo catchment is discussed and the climate change starts from global to local which is 

Ethiopian climate condition and different methods to downscaled the climate data with 

their brief description of the history of emission scenarios and use of the hydrological 

models to assess climate changes on stream flows is discussed and finally previous 

studies which are focused on the climate change as well as the hydrological models in 

Awash basin and Mojo catchment. Chapter three: presents the study of the area, materials 

used for analysis, bias correction methods and methods in order to build and simulate 

models for climate change scenarios discussed. Chapter four: In this chapter result and 

discussion of the selected model, bias-corrected scenario data, model sensitivity, 

calibration, and validation of the model are discussed. Chapter five: In this chapter 

discuss the conclusion and recommendation of the thesis. 
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2. LITERATURE REVIEW 

2.1.  History of Mojo Catchment over the Awash Basin  

The Awash River Basin is the most important river basin in Ethiopia, and covers a total 

land area of 110,000 km2 and serves as home to 10.5 million inhabitants (Sonder, 2015). 

The river rises on the High plateau near Ginchi town west of Addis Ababa in Ethiopia 

and flows along the rift valley into the Afar triangle, and terminates in salty Lake Abbe 

on the border with Djibouti, being an endorheic basin (Sonder, 2015). 

The Awash and Mojo, the major rivers of the northern, show a distinctive pattern as well 

on entering the Rift, the Awash runs approximately southward (Abebe et al., 2005). At 

Ombole it turns sharply eastward and maintains this direction as far as Koka reservoir. 

Before the dam construction, the Awash river flowed to the north-east following the 

Wonji Fault Belt (Sagri et al., 2008). Beyond the Koka dam, the Awash cuts across the 

Wonji Fault Belt and proceeds to the east, toward the Afar depression. This latter river 

reach is characterized by alternating deep gorges and swampy areas associated with fairly 

active horst and graben structures (Abebe et al., 2005). The Mojo river system follows 

the southward-trending regional slope developing a trellis, sub-parallel pattern, under the 

influence of volcanic and tectonic structures (Abbate and Sagri, 1980) and then turns east 

at right angle near Koka reservoir, which masks the former confluence with the Awash. 

Moreover, the upper reaches of the Mojo were captured by the Kesem river, which flows 

to the Afar depression suggesting the past catchment  of the Mojo was larger than the 

modern one (Abebe et al., 2005). 

Awash Basin is divided into Upland (all lands above 1500m), Upper Valley, Middle (area 

between 1500m and 1000m), Lower Valley (area between 1000m and 500m ) and 

Eastern Catchment  (closed sub-basin are between 2500m and 1000m ), and the Upper, 

Middle, and Lower Valley are part of the Great Rift Valleys systems (Sonder, 2015). The 

Lower Awash Valley comprises the deltaic alluvial plains in the Tendaho, Assaita, Dit 

Behri area, and the terminal lakes area. The 1.2 km long Awash River rises at an altitude 

of approximately 2.500 m in the high plateau some 150 km of Ethiopia’s capital and 

major urban center Addis Ababa (Wehner, 2001).  
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2.2. Climate Change 

Climate change is the average deviation climate variable weather over a long period of 

time. According to Solomon et al., (2007) defines climate change as “a change in the 

state of the climate that can be identified by changes in the average and/or the variability 

of its properties, and persist for an extended period of time, normally a decade or longer”. 

2.3. Global climate change 

Human activities such as the usage of fossil fuels, changes in land use (e.g. 

deforestation), agriculture and industrial activities contribute to the emissions of 

greenhouse gasses thereby increasing the concentration of greenhouse gases in the 

atmosphere. There is evidence that most of the warming observed over the last 50 years is 

attributable to human activities (IPCC III, 2001). 

The largest known contribution comes from the burning of fossil fuels, which releases 

carbon dioxide gas into the atmosphere (Solomon, 2007). In the same report it is also 

indicated that the global mean surface temperature has increased by about 0.74°C 

(0.56°C to 0.92°C) over the past hundred years (between 1906 and 2005) and without 

further action to reduce greenhouse gas emission the global average surface temperature 

is projected to be likely increased further by 1.8- 4.0°C this century (Bernstein et al., 

2008). 

2.4. Climate change in Ethiopia 

According to Gissila et al., (2004) based on the 42 meteorological stations, the country 

has experienced both dry and wet years over the last 50 years. Trend analysis of the 

annual rainfall showed there was a declining trend in the northern half of the country and 

southern Ethiopia while there is an increasing trend in the central part of the country 

(Cheung et al., 2008). Associated with rainfall and temperature change and variability, 

there were recurrent drought and flood events in the country. There was also an 

observation of water level rise and dry up of lakes in some parts of the region depending 

on the general trend of the temperature and rainfall pattern of the regions (Abraham et 

al.,2007). However, the general trend showed there was an increase in temperature over 

the last 50 years. The average annual minimum temperature over the country has been 

increasing by about 0.25 0C every ten years while the average annual maximum 
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temperature has been increasing by about 0.1 0c. The study also noted that the minimum 

temperature is increasing at a higher rate than the maximum temperature. 

Different studies using many GCMs in the Nile Basin and northwest of the Upper Awash 

River Basin indicated that the streamflow in the basin will be potentially reduced in the 

upcoming years due to the changing climate (Getahun 2018). On the other hand, there 

have been studies that indicated the increase in streamflow for the coming decades, for 

instance, Abraham et al., (2007) study on Ziway Catchment, which is are Awash River 

Basin indicates that the increasing trend of both climatic variables, such as the increase in 

precipitation seems to be suppressed by increases in temperature that results in 

insufficient streamflow in the future. 

2.5. Climate change scenarios and Global Circulation Models (GCMs) 

Climate scenario refers to a possible future climate that has been constructed for explicit 

use in investigating the potential consequence of anthropogenic climate change (Kattsov 

et al., 2013). A scenario is not a forecast; rather, each scenario is one alternative image of 

how the future can unfold. The range of possible scenarios is determined by assumptions 

in the future’s energy demand, emission of greenhouse gases, and land-use change and 

climate behavior in long time periods (Riahi et al., 2011). Impact assessment studies can 

be done using various types of climate scenarios. The most common method is to use 

scenarios that are based on different climate model outputs (Riahi et al., 2011). 

2.5.1. Emissions Scenarios  

Climate models are used for a variety of purposes from the study of dynamics of the 

weather and climate system to projections of future climate (Feser et al., 2011). 

According to Ming et al., (2005) over NOAA's Geophysical Fluid Dynamics Laboratory 

has created several ocean-atmosphere coupled models to predict how greenhouse gas 

emissions following different population, economic, and energy-use projections may 

affect the planet. 

"Representative Concentration Pathways (RCPs) are not new, fully integrated scenarios 

(i.e., they are not a complete package of socioeconomic, emissions and climate 

projections) (Van Vuuren et al., 2011). They are consistent sets of projections of only the 
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components of radiative forcing that are meant to serve as input for climate modeling, 

pattern scaling, and atmospheric chemistry modeling. 

2.5.2. Development of Emission Scenarios  

According to Wayne, (2013), there are many climate modeling teams around the world. If 

they all used different metrics, made different assumptions about baselines and starting 

points, then it would be very difficult to compare one study to another. In the same way, 

models could not be validated against other different, independent models, and 

communication between climate modelling groups would be made more complex and 

time-consuming (Knutti, 2008). Another problem is the cost of running models (Knutti, 

2008). The powerful computers required are in short supply and great demand. 

Simulation programming that had to start from scratch for each experiment would be 

wholly impractical. Scenarios provide a framework by which the process of experiments 

can be streamlined (Van Vuuren et al., 2014). In order to address these issues, in 1992 the 

Intergovernmental Panel on Climate Change (IPCC) published the first set of climate 

change scenarios, called IS92 (Leggett et al., 1992). In the year 2000, the IPCC released a 

second generation of projections, collectively referred to as the Special Report on 

Emissions Scenarios (SRES) (CHANGE–IPCC, 2000). These were used in two 

subsequent reports; the Third Assessment Report (TAR) and Assessment Report Four 

(AR4) and have provided common reference points for a great deal of climate science 

research in the last decade. In 2007, the IPCC responded to calls for improvements to 

SRES by catalyzing the process that produced the Representative Concentration 

Pathways (RCPs). The RCPs are the latest iteration of the scenario process, and are used 

in the next IPCC report - Assessment Report Five (AR5) in preference to SRES.  

According to Pachauri et al., (2014) over the Intergovernmental Panel on Climate Change 

(IPCC), Fifth Assessment Report (AR5) is due for publication in 2013-14. Its findings 

were based on a new set of scenarios that replace the Special Report on Emissions 

Scenarios (SRES) standards employed in two previous reports. The new scenarios are 

called Representative Concentration Pathways (RCPs). There are four pathways: RCP8.5, 

RCP6, RCP4.5, and RCP2.6 - the last is also referred to as RCP3-PD. (The numbers refer 

to forcing for each RCP; PD stands for Peak and Decline) (Wayne, 2013).One high 

pathway for which radiative forcing reaches > 8.5 W/m2 by 2100 and continues to rise for 
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some amount of time; two intermediate “stabilization pathways” in which radiative 

forcing is stabilized at approximately 6 W/m2 and 4.5 W/m2  after 2100; and one pathway 

where radiative forcing peaks at approximately 3 W/m2 before 2100 and then declines. 

These scenarios include time paths for emissions and concentrations of the full suite of 

GHGs and aerosols and chemically active gases, as well as land use/land cover (Wayne, 

2013). 

 

Figure 2.1 IPPC AR5 Greenhouse Gas Concentration Pathways (source: 

http://en.m.wikipedia.org/wiki/Represlenatative_Concentration_Pathway) 

2.5.3. General Circulation Models 

According to IPCC, (2014) (www.ipccdata.org/guidelines/pages/gcm_guide.html) 

General Circulation Models or GCMs, representing physical processes in the atmosphere, 

ocean, cryosphere and land surface. And also the most advanced tools currently available 

for simulating the response of the global climate system to increasing greenhouse gas 

concentrations (Rahman, 2019). While simpler models have also been used to provide 

globally- or regionally-averaged estimates of the climate response, only GCMs, possibly 

in conjunction with nested regional models, have the potential to provide geographically 

http://www.ipccdata.org/guidelines/pages/gcm_guide.html
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and physically consistent estimates of regional climate change which are required in 

impact analysis. 

2.6. Climate downscaling Approach’s  

General Circulation Models (GCMs) are used to study the change of climate due to 

increases in greenhouse gases in the atmosphere. As GCMs operate on large spatial 

scales, and, furthermore, as the GCM-simulated temporal resolution corresponds to 

monthly averages at best, the usefulness of GCM data in impact studies and other 

applications is limited (Rummukainen, 1997). The present-day free troposphere is 

modeled relatively well by the course GCMs, whereas local or even regional 

characteristics in surface or near-surface climate variables, their variability and the 

likelihood of extreme events cannot be obtained directly from GCMs. The same is likely 

true in the case of climate change experiments with GCMs. The results from GCMs can 

be superimposed on climatological local scale time series or interpreted in some other 

way in order to address the needs of impact studies. This is known as "downscaling" of 

GCM simulations (Rummukainen, 1997). 

GCMs used for climate studies and climate projections are typically run at spatial 

resolutions of the order of 150 to 200 km and are limited in their ability to resolve 

important sub-grid scale features such as convection clouds and topography (Flato et al., 

2014). As a result, GCM based projections may not be robust for local impact studies.  

To overcome this problem, downscaling methods are developed to obtain local scale 

weather and climate scale, particularly at the surface level, from regional-scale 

atmospheric variables that are provided by GCMs.  

Principally any data can be refined by downscaling techniques (Christensen et al., 2010). 

Coarse GCM output might be satisfactory, for example when the variation within a single 

grid cell is low or in case of a global assessment. The main advantage of information 

directly obtained from GCM is the certainty that physical consistency remains unattached 

(Mearns et al., 2003). GCMs are valuable predictive tools, but they cannot account for 

fine-scale heterogeneity and reflect on features like mountains, water bodies, 

infrastructure, land-cover characteristics, convective clouds, and coastal breezes. 

Bridging this gap between the resolution of climate models and regional and local scale 

processes represents a considerable challenge. Moreover, the uncertainties that 
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characterize the GCMs/RCMs are generally aggravated when these models are 

downscaled, which is the crucial step for identifying the city-specific impacts and, 

consequently, to identify vulnerabilities. Hence, the climate community put significant 

emphasis on the development of techniques for downscaling (Fowler et al., 2007). 

There are many approaches to the downscaling technique some of them conventional 

downscaling methods, Stochastic method, composite method, dynamical method and 

statistical methods (Rummukainen, 1997). But two of them are recently used technique. 

One form is dynamical downscaling, where the output from the GCM is used to drive a 

regional, numerical model in higher spatial resolution, which therefore is able to simulate 

local conditions in greater detail (Wilby et al., 2004). The other form is statistical 

downscaling, where a statistical relationship is established from observations between 

large scale variables, like atmospheric surface pressure, and a local variable, like the wind 

speed at a particular site (Wilby et al., 2004). The relationship is then subsequently used 

on the GCM data to obtain the local variables from the GCM output.  

2.6.1. Coordinated Regional Climate Downscaling Experiment (CORDEX) 

An important aspect of regional modeling is that it lends itself easily to fragmentation, as 

different groups or individuals are often interested in different problems or regional 

settings. However, the use of common modeling protocols offers invaluable opportunities 

to better understand models, processes, and uncertainties (e.g., the Climate Model 

Intercomparison Project Klimont et al., (2013) for GCM research). Within the RCM 

community, a number of regional Intercomparison projects have occurred some of them 

are for instance (Mearns et al., (2013): Curry and Lynch, (2002): Fu et al., (2005):(Paeth 

et al., (2011)) which have led to considerable improvements in the understanding of 

RCMs. However, differences in model setups and simulation protocols have made it 

difficult to transfer knowledge from one regional program to another. It has been 

recognized that global coordination of such efforts can further advance RCM 

development, analysis, and application (Takle et al., 2007) but it was not until the 

inception of CORDEX that a truly globally coordinated downscaling framework was 

established. CORDEX represents a major evolution in downscaling research and has now 

become the main international reference framework for downscaling activities. 
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CORDEX represents the first attempt at full worldwide coordination of regional 

downscaling work using a common experimental framework. The CORDEX vision is to 

advance and coordinate the science and application of regional climate downscaling 

through global partnerships. Its main goals (Giorgi et al., (2009): Jones et al., (2011)) are 

as follows: To improve understanding of relevant regional/local climate phenomena, their 

variability, and changes, through downscaling, To evaluate and improve regional climate 

downscaling models and techniques (including both dynamical and statistical 

downscaling), To produce coordinated sets of downscaled climate projections for regions 

worldwide and To foster communication and knowledge exchange with the users of 

regional climate information. 

 

Figure 2.2. An over view of General Circulation Model (source: 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/general-circulation-

model) 
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2.7. Uncertainties in Regional Climate Projections 

The process of producing downscaled climate change projections for assessments is 

affected by different sources of uncertainty (Giorgi, 2005). The first step in a regional 

projection consists of running GCMs for a historical period (say 1850–2014) using 

observed or reconstructed natural and anthropogenic forcing (GHG concentration, solar 

activity, volcanic eruptions). This is followed by a transient future climate simulation for 

the twenty-first century (2015–2100) using scenarios of time-evolving GHG 

concentrations. A range of time-dependent twenty-first century GHG concentration 

scenarios have been proposed (called the representative concentration pathways (RCPs)), 

going from the low-end RCP 2.6 and RCP 4.5 to the high-end RCP 8.5 (Moss et al., 

2010). 

Another uncertainty source is associated with the GCM response to a given GHG 

scenario forcing, often referred to as the GCM structural uncertainty. This is because 

GCMs have different representations of dynamical and physical processes and thus 

respond differently to the same GHG forcing. The structural uncertainty provides a 

substantial contribution to the full uncertainty range both in near-term and late twenty-

first century projections (Hawkins and Sutton, 2009) and (Hawkins and Sutton, 2011). In 

fact, different RCMs can produce substantially different projections even when driven by 

the same GCM, especially for variables related to convection and for tropical domains 

(Paeth et al., 2011). Finally, in the assessment of a projection, it is important to evaluate 

to what extent systematic model errors (by both GCMs and RCMs) affect the projection 

itself, which we can call systematic error uncertainty. A full characterization of these 

uncertainty sources is critical for the provision of climate information for work and, in 

principle, would require the completion of a multidimensional matrix of simulations 

sampling the different dimensions of the uncertainty space, i.e., ensembles of multiple 

scenarios, multiple GCMs, multiple realizations for each GCM, multiple RCMs, and 

multiple downscaling techniques (Giorgi et al., 2008). Given that the size of this matrix 

can rapidly lead to extremely large ensembles, it is important to design optimal GCM-

RCM experiment matrices to best explore the uncertainty space while limiting the 

ensemble size, and the selection of this optimal matrix is still an active area of research 

(McSweeney et al., 2015). Statistical principles of experiment design should govern the 
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development of appropriate matrices, which can allow the extraction of different sources 

of uncertainty (Mearns et al., 2013). 

2.8. Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT) model has proven to be an effective tool 

for assessing water resource and non-point source pollution problems for a wide range of 

scale and environmental conditions across the globe (Arnold and Fohrer, 2005). The 

development of SWAT is a continuation of the United States Department of Agriculture 

(USDA) Agricultural Research Service (ARS) modeling experience that spans a period of 

roughly 30 years (Arnold et al., 2012). Early Origins of SWAT can be traced to 

previously developed USDA ARS models including Chemicals, Runoff, and Erosion 

from Agricultural Management Systems (CREAMS) model Agricultural Management 

Systems (GLEAMS) model (Leonard and Knisel, 1995) and The current SWAT model is 

a direct descendant of the Simulator for Water Resources in Rural Basins (SWRRB) 

model Gassman et al., (2013), which was designed to simulate management impacts on 

water and sediment movement for ungaged rural basins across the U.S.SWRRB begin to 

develop 1980s additional modification of the daily rainfall, expansion of surface runoff 

and other computation for up to ten subbasin. Then 1995 Arnold developed the routing 

output to outlet (ROTO) to support the assessment of downstream impact of water 

management and ROTO merge into single SWAT in this case the model retained all the 

feature that made SWRRB such valuable simulation model allowing simulation of very 

extensive areas (Gassman et al,. 2007). Finally, SWAT created with an enhancement of 

different versions of model (SWAT 94.2, 96.2, 98.1, 99.2 and 2000). 

Soil and Water Assessment Tool is also a non-point source pollution model with the 

capability of simulating hydrology, missing weather elements, sediment and pollutant 

transport (Borah and Bera, 2003). It is capable to simulate long-term processes based on 

daily time steps. SCS curve numbers can also be varied throughout the year to take into 

account variations in the management conditions. SWAT divides the catchment into 

Hydrologic Response Units (HRU) that has uniform properties (Winchell et al., 2010). 

Edge-of filter strips may be defined in an HRU(Kalin and Hantush, 2003). The filter strip 

trapping efficiency for sediment is calculated empirically as a function of the width of the 
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filter strip. When calculating sediment movement through a water body, SWAT assumes 

the system is completely mixed. Settling occurs only when the sediment concentration in 

the water body exceeds the equilibrium sediment concentration specified by the user 

(Kalin and Hantush, 2003). The sediment concentration at the end of a day is determined 

based on an exponential decay function(Kalin and Hantush, 2003). SWAT also simulates 

the buildup and wash off mechanisms similar to the SWMM model. SWAT has its own 

GIS interface and currently integrated into USEPA’s BASINs and USDA’s AGWA 

modeling systems (Gupta, 2009). SWAT is also linked to the water quality model 

QUAL2E (Kalin and Hantush, 2003). 

2.9. Previous studies on climate change and SWAT application  

2.9.1. Studies on Climate change over the awash basin  

Previous studies which examine the climate change in the Awash basin, as well as Mojo 

catchment, includes Jilo et al., (2019) focus investigate the impacts of climate change on 

sediment yield from the Logiya catchment in the lower Awash Basin, Ethiopia using 

CORDEX-Africa using Hadley Global Environment Model 2-Earth System (HadGEM2-

ES) under representative concentration pathway (RCP) scenarios (RCP4.5and RCP8.5) 

and finally conclude that climate variable increments were expected to result in 

intensifications in the mean annual sediment yield of 4.42% and 8.08% for RCP4.5 and 

7.19% and 10.79% for RCP8.5 by the 2030s and the 2060s, respectively. 

Another study Getahun, (2018) which is based on the comparison of old SRES and new 

RCP scenarios, GCMs that include CMIP3 and CMIP5 in correspondence with SRES A2, 

RCP4.5, and RCP8.5 scenarios using HVB hydrological model and finally conclude that 

The projected streamflow increase using RCP was 12% for intermediate and 29% for far 

future, whereas using SRES it was a decrease in 2% for intermediate and an increase in 

4% for far future. Also Taye, (2018) also by quantifying the potential impact of climate 

change on water availability of the Awash basin in different seasons used three climate 

models from Coupled Models Inter-comparison Project phase 5 (CMIP5) and for three 

future periods (2006–2030, 2031–2055, and 2056–2080) and The projections for the 

future three periods show an increase in water deficiency in all seasons and for parts of 

the basin, due to a projected increase in temperature and decrease in precipitation. Res 

and Hailemariam, (1999) in the other hand, the impact of climate change on the water 
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resource of Awash river basin with an attempt is made to investigate the sensitivity of 

water resources to climate change in the Awash River Basin in Ethiopia by dividing the 

basin into 3 sub-catchments for better resolution in calibration and simulation station 

based meteorological data were processed to obtain areal averages necessary for the 

simulation. Different sets of temperature and rainfall scenarios were developed using 

GCM (both transient and CO2 doubling) and incremental scenarios. Integrated water 

balance model (WatBal) was used to estimate runoff under a changing climate and finally 

conclude that the impact assessment over the basin showed a projected decrease in a 

runoff, which ranged from –10 to –34%, with doubling of CO2 and transient scenarios of 

CO2 increase (GFD3, CCCM, GF01). Sensitivity analysis based on incremental scenarios 

showed that a drier and warmer climate change scenario results in a reduced runoff, 

respectively. 

2.9.2. Studies using SWAT analysis over the Mojo Catchment   

SWAT has been widely used for the determination of the performance of catchment s for 

land-use/landcover changes and climate variability. This is done in the form of sensitivity 

analysis where baseline conditions of climate and streamflow are established and then 

used to compare the effect on streamflow due to changes in precipitation, temperature 

and other climate variables. These analyses provide information on the direction and 

change of magnitude of streamflow and insight into which variables are most significant 

in predicting these changes. This would be very important for decision-makers who 

require such information to evaluate management alternatives or the effects of different 

climate scenarios, as well as to support policies about water allocations between various 

sectors such as agriculture, hydropower generation, ecosystems, domestic and industry. 

According to that Gonfa and Kumar, (2016) and Gonfa et al., (2015) which is focused on 

sediment and runoff estimation by SWAT model classifying the soil erosion hazard area 

namely none to slightly, moderate and highly-serve and very-serve then finally suggested 

that Areas with higher runoff condition and higher erodibility characteristics due to poor 

soil physical properties contributed for a higher sediment yield than others, and also in 

2015 in order to  generate basic technical information on optimal land use planning for 

stakeholders and decision maker a multi-objective linear programme optimization model 

was developed for Mojo catchment  on solving the problem using a Goal computer 
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program net income from the catchment is increased by 29.91 % and soil erosion 

decreased by 16.14 % with the reduction of dry land farming by 18.45 % and increasing 

the current rangeland 946.36 ha to 15419.74 ha and 45.96 ha under irrigated agriculture 

to 25526.69 ha. 
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3. MATERIALS AND METHODS 

3.1. Description of the study area  

Mojo (also transliterated as Modjo) is a town in central Ethiopia, named after the nearby 

Modjo River. It is located in the Eastern Shewa Zone of the Oromia region, 

geographically lies between 38054′22′′ to 39017′18′′E and 08024′15′′ to 09007′49′′N with an 

elevation between 1607 and 3091 meters above sea level Modjo River, the present study 

area is a perennial river that flows through Modjo, a town located some 43 km southeast 

of Addis Ababa. It is a tributary of Awash River receiving effluents. In addition, 

extensive agricultural practices and human settlements have been altering the catchment 

and riparian zone of the Modjo River. The catchment covers a surface area of 

1601.84km2 (Figure 3.1).  

 

Figure 3.1 Location map of Mojo Catchment  
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3.1.1. Soil Type 

According to the Ministry of Water and Energy's dominant soil types identified in the 

Mojo, the catchment includes Eutric Vertisoils, Vertic cambisols, Haplic Luvisols, Luvic 

Phaeozems, and Lithic Leptosols covers, Chromic lavisols Mollic Andosols Figure (3.2) 

and Table (3.1) shows soil types and the area coverage of Mojo Catchment respectively 

which is extracted from awash basin soil map. 

Table 3.1 Area coverage of soil type of Mojo catchment (source: Ministry of Water and 

Energy office) 

Object id Soil Type Shape Area (Km) Area (%) 

1 Chromic lavisols 19.87 0.12 

2 Eutric Vertisols 7150.92 44.64 

3 Haplic Luvisols 867.52 5.42 

4 Lithic Leptosols 157.67 0.98 

5 Ludovic Phaeozems 696.62 4.35 

6 Mollic Andosols 0.76 0.05 

7 Vertic cambisols 7125.03 44.48 

 

 

Figure 3.2 Soil map of Mojo Catchment 
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3.1.2. Land use 

The dominant land use type in Mojo catchment is rainfed agricultural land. According to 

the Oromiya water and design office Land cover classification, the major land use found 

in the catchment areas are Agriculture, settlement, waterbody, sugarcane plantation, and 

others are available in the catchment (Figure 3.3). 

 

Figure 3.3 Landuse map of Mojo Catchment 

3.1.3. Climate  

The study area was reported to exhibit most rainfall occurs between June and October 

thirty years from(1980-2010) rainfall records for 4 stations within and adjacent to the 

study area show an average annual rainfall between 980.8 mm/day and 913 mm/day with 

a mean annual value of 947.3 mm air temperature that averaged 20.40 ˚C varying between 

a minimum of 11.6 ˚C in August and a maximum of 29.20 ˚C in May, with average 

annual temperature decreasing with an increase in altitude. 
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The climate data for 4 stations found within and nearby the Mojo River from 1980 to 

2010 is collected from the Ethiopian National Meteorological Service Agency. However, 

there are missing for both precipitation and temperature. The three steps namely visual 

inspection, comparison to the nearest station with in the same zone, and regression 

relations between neighboring stations were taken to detect outliers and fill in the missing 

gaps in the data series. 

 

Figure 3.4 Mean monthly rainfall of Mojo catchment (1980 – 2005) 

 

Figure 3.5 Mean monthly temperature maximum and minimum of Mojo catchment (1980 

– 2005) 
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3.1.4. Hydrology 

The Mojo catchment and its tributaries are a perennial source of water in the study area. 

The total annual mean flow of catchment 214.55 m3/s. Mojo river, which joins lake Koka 

from the north, the storage is mainly fed during the wet season from June to September. 

After being released through the dam the Awash descends into the Rift Valley northwest 

towards Awash Station from where the river follows the valley northwards into 

Gedebassa Swamp near Hertale. However, this river is highly polluted due to the 

discharge of chemicals from the various industrial plants located along the catchment  

(Gudeta, 2010). The Mojo River drains the area flowing southward and finally entering 

into the Koka reservoir. Other major surface water in the catchment includes Koka 

reservoir, Bishoftu, Hora, Kuriftu lakes. The catchment drains to Mojo river and to Koka 

hydroelectric power dam and finally into Awash River. The majority of the catchment 

particularly the central and lower part of the catchment has a monomodal rainfall pattern 

whereas the upper part of the catchment characterized as bimodal (Gonfa and Kumar, 

2016).  

Figure 3.6 Mean Monthly streamflow of Mojo catchment (1981-2005) 
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Figure 3.7 Annual mean streamflow of Mojo catchment (1981-2005) 

3.2.  Descriptions of the Materials  

3.2.1. Data Availability 

The Federal Ministry of Water Resources of Ethiopia (FMWRE) and the National 

Metrology Service Agency (NMSA) are the major sources of data required for this 

research. 

3.2.2. Streamflow/River Discharge Data 

Mojo River Basin has streamflow gauging stations found in the outlet Mojo River. The 

data which is from 1980-2010 is collected from the Ethiopian Ministry of Water, 

Irrigation, and Electricity and the outlet point is collected primarily using field Surveys. 

3.2.3. Spatial data 

Digital elevation model (DEM), 30*30 resolution is downloaded from 

(https://urs.earthdata.nasa.gov) and describes the elevation of any point in a given area at 

a specific spatial resolution as a digital file. DEM of the essential inputs required by 

SWAT: (1) to delineate the catchment into a number of sub-catchments or sub-basins and 

(2) to analyze the drainage pattern of the catchment, slope, stream length, a width of a 

channel within the catchment.  
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3.2.4. Climate Scenario Data 

Climate change scenarios data from the newly available in the website (https://esgf-

node.llnl.gov/projects/esgf-llnl/) CMIP5 RCM ensemble output of CORDEX-Africa for 

African domain projections under Representative Concentration Pathways (RCP4.5 and 

RCP8.5) is used as input to the hydrological model. RCP scenarios have a better 

resolution that helps in performing regional and local comparative studies compared to 

previous climate scenarios, and RCP scenarios also represent an attractive potential 

approach for further research and assessment, including emissions mitigation and impact 

analysis. RCP4.5 mid-range and RCP8.5 high-level climate scenarios with assumed 

stabilization of radiative forcing to 4.5 and 8.5 W/m2 by 2100 respectively were expected 

to capture a reasonable range in climatic and hydrological projections for Mojo 

catchment. Precipitation and temperature data from these scenarios are available from an 

ensemble of CORDEX-Africa regional climate model for the domain of Ethiopia at 0.44° 

resolution from 1951 to 2005 for historical to calibrate and validate with observed data 

and 2006 to 2100 for future periods. The values of relative humidity, solar radiation, and 

wind speed in the historical period were used in a future scenario period without making 

any change, as the change in these values may not have a significant impact when 

modeling climate change scenarios. Some of the regional as well as global models which 

are available based on the domain AFR-44 in Appendix 12. 

3.2.5. Soil and Land Use Data 

Soil and land use/land cover data are used as input into the SWAT hydrological model to 

delineate sub-catchment s further into hydrologic response units (HRUs). The soil data 

used includes the information to describe the physical and chemical properties of the soil 

like soil texture, hydraulic conductivity, bulk density, water content, organic carbon 

content, and percentage of sand, silt, and clay content for each soil horizon. Land 

use/land cover influences the hydrological properties of the catchment and used as an 

input for the SWAT model. Mojo catchment land use/land cover changes in time to time 

due to several factors mainly changing agricultural practice, urbanization, new 

hydropower, and irrigation development. Soil 90*90 and land use/land cover 2010 data of 

Mojo catchment is obtained from the Ethiopian Ministry of Water, Irrigation, and Energy 

as a shapefile format. 

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/
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3.2.6. Summary of Materials and Data used   

Table 3.2 Data’s and their source used for this study 

Id Data  Source of Data  Description   

1 SRTM DEM 30*30 https://urs.earthdata.nasa.gov Slope map, use for modeling 

2 Soil 90*90 

Ministry of water and energy 

office  

For HRU analysis in SWAT 

modeling  

3 LULC 2010 Oromiya water and design office 

For HRU analysis in SWAT 

modeling  

4 Streamflow  

Ministry of water and energy 

office  

For performance checking  

with simulated data 

5 Weather data 

Eastern and middle Oromiya 

Metrological Agency  For WGEN preparation  

6 

Cordex-Africa RCP 

4.5 and 8.5  

https://esgfnode.llnl.gov/projects/e

sgf-llnl/  

For analysis of future climate 

scenario 

 

Table 3.3 Material and their purpose used in this study  

Id Name of software’s  Purpose  

1 Arc GIS 10.1 
Uses for map preparation and uses SWAT models 

extension 

2 Arc SWAT 2012 Act as a GIS interface for SWAT modeling 

3 WGEN (Weather Generator) For the preparation of weather data for the SWAT model 

4 SWAT-Cup SWAT calibration, validation, and sensitivity analysis 

5 Xlstat For data Quality analysis  

 

 

 

 

 

 

https://esgfnode.llnl.gov/projects/esgf-llnl/
https://esgfnode.llnl.gov/projects/esgf-llnl/
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3.2.7. Conceptual Framework of Overall Methodology 

 

 

 

 

 

 

 

  

 

 

 

  

  

 

   

 

  

   

 

 

 

 

 

 

 

 

                      Figure 3.8 conceptual framework of the climate and SWAT model 
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3.3. Method of Data Quality Analysis 

3.3.1. Metrological Data Analysis 

Metrological data is the main input for hydrological modeling the station which is 

representing the catchment is selected based on the data availability including the 

existence of enough length of record and distance from the area of interest and also the 

location of the station available in the catchment area. Accordingly, four-station is 

available in the study area Table 3.4 and Figure 3.9 

Table 3.4 List of meteorological stations used in the study 

ID Name Latitude Longitude Elevation 

1 Debrezeyit 8.73 38.95 1900 

2 Modjo 8.61 39.11 1763 

3 Chefedonsa 8.97 39.12 2392 

4 Ejere 8.77 39.26 2254 

 

 

Figure 3.9 Metrological stations of Mojo catchment 
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3.3.2. Filling of missing data 

In the modeling of climate, the complete record of hydrological data is very important in 

the case this climate data like temperature, rainfall, humidity, solar radiation and wind 

speed of four stations should be filled. Data for the period of those missing data could be 

filled using different estimation techniques (Ismail et al,. 2017). The arithmetic mean 

Normal ratio, Regression, and distance power method are the most commonly used 

methods for estimation of missing climate data sets. Estimation of missing data using 

Normal Ratio used if any the neighboring station has a normal annual and streamflow 

data which exceeds more than 10% (De Silva  et al,.  2007). In this case, the Normal ratio 

method was used to fill the climate data because of the missing data which is greater than 

ten percent and also regression also used for streamflow data because far most 

hydrological data regression analysis gives us better approximation for missing data. 

       𝑃𝑥 =
1

𝑁
∗ (

𝑁𝑥

𝑁𝐴
𝑃𝐴 +

𝑁𝑋

𝑁𝐵
𝑃𝐵+. . . +

𝑁𝑋

𝑁𝑁
𝑃𝑁                                 (3.1) 

Where Px is the precipitation for a station with missing records PA, PB…PN is the 

corresponding precipitation at the index station and NA, NB…., NN and the long term 

mean monthly precipitation at the index and the station x under consideration 

respectively.  

3.3.3. Data Quality Assessment 
In engineering, water resource development and management studies hydrological as 

well as metrological data are more dependent so assessing the quality of those data 

should be properly managed. According to this thesis, the quality of the data passed 

through four methods. 

I. Homogeneity test 

Homogeneity is an important issue to detect the variability of the data. In general, when 

the data is homogeneous, it means that all collection of data belongs to the same statical 

population having the time-invariant mean, therefore test of homogeneity of data series 

are based on evaluating the significance of change of mean value, However, it is a hard 

task when dealing with rainfall data because it is always caused by changes in 

measurement techniques and observational procedures, environment characteristics and 
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structures, and location of stations. There are a lot of methods used for analyzing the 

homogeneity for instance,, Haktanir and Citakoglu, (2014) and Yozgatligil and Yazici, 

(2016). In this study, the homogeneity analysis was used by the Pettitt test using 

XLSTAT software and calculated as: 

               𝑍𝑘 = 2 ∑ 𝑅𝑖 −𝑘
𝑖=1 𝑘(𝑛 + 1),     𝑘 = 1, … , 𝑛                        (3.2) 

If a break occurs in year K, then the statistic is maximal or minimal near the year k = K. 

So, if the break occurs, then ZK = max Zk. The figure (3.10) below and Appendix (1) 

shows that the homogeneity of rainfall and in all four metrological stations the data is 

homogeneous.  

Chefedonsa (1980-2010) 

 

Debrezeyit (1980-2010) 

 

Ejere (1980-2010) 

 

Mojo (1980-2010) 

 

Figure 3.10 Homogeneity test of four rainfall station (1980-2010) 
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II. Consistency test  

A consistency record is the one where the characteristics of the record have not to change 

with time. Inconsistency of rainfall data happens in different ways some of them caused 

by due to replacement of old instruments by a new one or shifting of the rain gauge 

station some of them by a change of ecosystem or observational error. Therefore, 

adjustment of the inconsistency of rainfall data used by the double mass curve method 

which is a widely used method. Analysis of inconsistency of hydrological data done by a 

different methods (Renard et al., 2008) but The double mass curve is a graphical method 

for identifying and adjusting inconsistency more preferable in a station record by 

comparing its time trend with those of adjacent stations. 

       𝑃𝑚 = 𝑃𝑥
𝑀𝐶

𝑀𝑎
                                                            (3.3) 

Where 𝑃𝑚is the corrected precipitation of any time period t1 at station x, Px is the original 

precipitation of time period t1 at station x Mc corrected slope of a double mass curve and 

Ma original slope of the mass curve. The graphical sketch below shows there is no slope 

variation between the time series data of all rainfall stations and all the selected stations 

are consistent. 

 

Figure 3.11. Consistency tests of rainfall data 
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III. Test of outlier  

An outlier in maximum daily rainfall can play a considerable role in the unreal analysis 

leading to false prediction therefore accurate statical determination of data to find the 

outlier is very important. The different methods of a testing outlier Garcia, (2012) 

conclude that The Grubbs and Beck method of a testing outlier is a more easy and better 

method. Outlier causes may be due to errors in data collection, or recording, or due to 

natural causes. In the present work data related to maximum daily rainfall obtained from 

the four stations and streamflow at Mojo station using Grubbs and Beck, (1972) test (G-

B) used to detect outliers.  

          𝑋𝐻 = exp (�̅� + 𝐾𝑁𝑆)                                                                                   (3.4) 

          𝑋𝐿 = exp (�̅� − 𝐾𝑁𝑆)                                                                                   (3.5) 

where �̅� and s is the mean and standard deviation of the natural logarithms of the sample, 

respectively, and 𝑘𝑁is the G-B statistic tabulated for various sample sizes and 

significance levels by Grubbs and Beck (1972) At the 10% significance level, where N is 

the sample size. 

         𝑘𝑁 = – 3.62201 +  6. 28446𝑁
1

4– 2.49835𝑁
1

2  +  0.491436𝑁
3

4 –  0.037911𝑁       

 (3.6) 

Sample values greater than 𝑋𝐻 are considered to be high outliers, while those less than 𝑋𝐿 

are considered to be low outliers. Analysis of the outlier in Appendix (2 and 3) shows 

that the rainfall from (1980-2010), as well as the stream flow from (1980-2010), shows 

that there is no outlier detected.  

 

IV. Trend test Analysis 

Information about the trend is important to highlight the spatial and temporal change of 

hydroclimatic variables and to gain knowledge of the status of development and 

suitability management of water resources in the future as well as to plan for the stability 

of the environmental condition. Trend analyses of precipitation and discharge are 

essential to study the impacts of climate change. There are different methods of detecting 

the trend mostly method which mostly familiar with is Mann-Kendall and Innovative 

Trend Analysis Method (ITAM). 

According to Gedefaw et al., (2018) trend analysis using the Mann-Kendall method is 
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better and easily detect than ITAM also due to analysis of Long-term trends in the 

observed data Mann-Kendall method gives a better result over the Awash basin. In this 

study, streamflow and the rainfall data of four stations are analyzed using the Mann-

Kendall test using XLSTAT software and calculated as: 

    𝑆 = ∑ ∑ 𝑠𝑔𝑛 (𝑋𝑘 − 𝑋𝑖)𝑛
𝑘=𝑖+1

𝑛−1
𝑖=1                                                            (3.7)   

In this calculation, the time series xi is from i = 1, 2, …, n -1, and 𝑋𝑘  from k =i + 1, …, n. 

 

    𝑠𝑔𝑛 (𝑋𝑘 − 𝑋𝑖) = {

−1,      𝑖𝑓(𝑋𝑘 − 𝑋𝑖) > 0

   0,        𝑖𝑓(𝑋𝑘 − 𝑋𝑖) = 0

−1        𝑖𝑓(𝑋𝑘 − 𝑋𝑖) < 0

}                                               (3.8) 

The normalized test statistic is calculated by the equation given below: 

     𝑍𝑐 = {

𝑠−1

√𝑉𝑎𝑟(𝑠)

𝑠+1

√𝑉𝑎𝑟(𝑠)

,        
𝑆>0
𝑆=0
𝑆<0

                                                                     (3.9)            

The test statistic is 𝑍𝑐 and when |𝑍𝑐| > 𝑍1−𝛂/𝟐, in which 𝑍1−𝜶/𝟐 are the standard normal 

variables and α is the significance level for the test, H0 will be rejected. The extent of the 

trend is given as follow:                                             

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 
𝑋𝑖 − 𝑋𝑗

𝑖 = 𝑗
, ∀𝑗  < 𝑖, 𝑤ℎ𝑒𝑟𝑒  1 < 𝑗 < 𝑖 < 𝑛 

A positive value of β displays an increasing trend, while a negative value of β displays a 

decreasing trend. The result of change point analysis indicated that the change point for 

mean annual streamflow and annual maximum rainfall was 1981-2005 and 1980-2010 

respectively. As a result of trend analysis, a decreasing trend was found for mean annual 

flow (1997-2011) figure (3.12) and Appendix 4 and trend for rainfall show that form four 

metrological stations Debrezeyit and Mojo stations show that a decreasing trend figure 

(3.13) and Appendix 5. 
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Figure 3.12 Annual Mean streamflow trend analyses 1981-2005 

Chefedonsa (1980-2010) 

 

Ejere (1980-2010) 

 

Debrezeyit (1980-2010)

 

Mojo (1980-2010) 

 

Figure 3.13 Annual maximum rainfall trend analysis of four stations (1980-2010) 
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3.4. Methodology 

3.4.1. Data availability and collection of precipitation and temperature 

scenarios data  

The data which needed for climate change analysis available on the website of  

(https://esgf-node.llnl.gov/projects/esgf-llnl/) portal those data are based on the project 

CORDEX-Africa (AFR-44) as experimental data which is historical, RCP 4.5 and RCP 

8.5 of daily data scenarios, the time-frequency is daily data, Regional Climate Model 

(RCM) is RCA4, four different GCMs and The institute which is data available is SMHI. 

The table shows the candidate models download in order to analyze the impact of climate 

change.  

Table 3.5 Candidate GCM Models  

Global Climate Models (GCM) 
 

Regional Climate Models 

CCCma-CanESM2 
  

RCA4 
  

IPSL-IPSL-CM5A-MR 
  

RCA4 
  

MIROC-MIROC5 
  

RCA4 
  

MPI-M-MPI-ESM-LR 
  

RCA4 
  

 

The data which is downloaded from with the format of NetCDF and should be extracted 

using different extracting mechanisms of programming languages those are different 

programming language like R programming (https: agrimetsoft.com/netcdf-extractor), 

MatLab, and Netcdf extractor, etc. in this case, MatLab is used in order to extract the 

data.  

The daily precipitation, temperature maximum and minimum from 1980 to 2100 was 

extracted from grid cells covering Mojo catchment. the period from 1980 to 2005 

defended as the historical period, based on good quality of observational climatic data 

and hydrological data was used for model calibration and validation. In this study, the 

period 1981–2005 is used as the historical reference period and three-time slices are used 

for the future: Near future (2006–2030), mid future (2031–2055) and far future (2056–

2080). 

https://esgf-node.llnl.gov/projects/esgf-llnl/
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Figure 3.14 CORDEX-Africa 0.440 (50_50 km) grid data coordinates  

3.4.1.1. Selection criteria for RCP and GCMs models  

According to IPCC, (2014) report, four Emission scenarios available from those emission 

scenarios RCP 4.5 and RCP 8.5 are used. The emission scenarios RCP4.5 mid-range and 

RCP 8.5 high-level climate scenarios with assumed stabilization of radiative forcing to 

4.5 and 8.5 W/m2 by 2100 respectively were expected to capture a reasonable range in 

climatic, hydrological projections and The two Representative Concentration Pathways 

(RCPs), high concentrations scenario (RCP8.5: Moss et al., (2010)) and moderate 

concentrations scenario (RCP4.5: Thomson et al., (2011)) were chosen for this study 

because they are the most widely simulated global emission scenarios in all models. For 

Mojo catchment from these scenarios, precipitation and temperature are available in the 

Cordex-Africa regional climate model for the domain of 0.440 (AFR-44) as historical 

scenarios and for calibration and validation of future data which is climate change 

scenario data. 
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Selection of GCMs models depends based on different criteria’s some of them on the 

availability of data, according to (https://esgf-node.llnl.gov/projects/esgf-llnl/) portal 

CORDEX data for AFR-440 with CMIP5 (fifth Coupled Model Intercomparison Project), 

based on experimental family historical and RCP, time-frequency and data provider 

institutes the availability of GCM model limited for those institutes which provide 

CORDEX-Africa data (CLMcom, DMI, GERICS, ICTP, KNMI, MPI-CSC, SMHI, 

UQAM) model description is discussed in (Appendix 6) and in recent year the mostly 

widely used institute is SMHI for instance (Pasten-Zapata et al., (2019): Chokkavarapu 

and Mandla, (2019): Larsson, (2019)) because of the availability of more options over the 

requirement. In the other criteria, the GCM model also had a big factor in the selection of 

the models. The criteria for selecting the GCM models for analysis indicated in the Table 

(3.6). 

Table 3.6 GCM Model selection criteria and their variables  

Model selection criteria                        Variables    

Project       CORDEX   

Institute       SMHI   

Experiment       Historical, RCP 4.5, and 8.5   

Ensemble       r1i1p1   

Variable       pr, tmax, tmin   

Time-frequency       Daily   

Regional climate model (RCM)       RCA4   

Domain       AFR-44   

Where r1i1p1, which represents realization #1, initialization I #1, and physics p #1; 

SMHI: Swedish Meteorological and Hydrological Institute; RCA4: Rossby Centre; pr: 

precipitation; tmax: maximum temperature; tmin: minimum temperature.   

3.4.1.2. Uncertainty in climate model selection 

The selection of climate model was an order of magnitude more influential on uncertainty 

in the Streamflow, direct runoff, and evapotranspiration projections than that of 

parameter selection, but it was not always the case for groundwater and potential 

evapotranspiration (Her et al., 2019).  

https://esgf-node.llnl.gov/projects/esgf-llnl/
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The Intergovernmental Panel on Climate Change IPCC, (2014), launched the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) in the fifth Assessment Report (AR5), 

whereby a multi-GCM ensemble analysis was facilitated through the provision of climate 

model outputs that comply with community standards. Multi-GCM ensembles have 

served as a framework for accommodating probabilistic approaches in interpreting 

climate predictions and developing climate adaptation plans, and many studies have 

attempted to quantify uncertainty with the information of ensemble spread and to identify 

its sources (Her et al., 2016). Ensemble averaging can improve the accuracy of a climate 

projection by allowing GCM errors to cancel each other out and GCMs that poorly 

performed to be down-weighted. However, the approach often does not employ all 

models available and thus may underestimate uncertainty and/or produce a bias in an 

ensemble prediction. According to Her et al., (2019) selection of GCMs can be guided by 

various information including the amount of uncertainty in projections, the accuracy of 

reproducing historical data (or observations), perceived accuracy of climate models 

(based on an understanding of the simulation mechanisms), and the overall performance 

of the model. 

3.4.2. Evaluation of the GCMs Models 

Evaluating the GCM models is important in order to choose which model more 

appropriate to the area based on evaluation of observed data with each GCMs model after 

passing through sensitive parameters. Evaluation of the model includes trend Analysis 

and choosing a better perform model without bias correction of the GCMs Models and 

make bias correction and also indicating the density function of historical, observed and 

corrected results. After selecting the model mostly Hydrological models used to assess 

climate change in this case the SWAT model is used in order to analyze the climate 

change scenarios which is temperature and precipitation of different GCMs after bias 

correction on the Hydrology of Mojo catchment by the year 2080. For this purpose, 

average monthly changes in precipitation and temperature predicted by different GCMs 

have been taken and these estimates were used to adjust the daily time series of 

precipitation and temperature. 
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3.4.3. Bias Correction Method 

Precipitation and temperature are anticipated as direct during RCM (Regional Climate 

Models) are providing a new opportunity for climate change since they are highly spatial 

resolution than Global climate models. Numerous studies for instance (Cannon et al., 

(2015): Luo et al., (2018): Haerter et al., (2010)) have shown that RCM output improves 

the representation of climate change information at the mesoscale by providing spatially 

and physical coherent output with observation. However original RCM has an error that 

is inherited from the forcing of GCMs or produced by systematic error. 

Many bias correction methods, ranging from simple scaling techniques to the rather more 

sophisticated distribution mapping techniques, have been developed to correct biased 

RCM outputs (Luo et al., 2018). The scaling approach mainly includes linear or nonlinear 

approaches that adjust the climatic factors based on the differences between observed and 

RCM means in a linear or nonlinear formula, such as the linear scaling method (LS) and 

the power transpiration method (PT) (Luo et al., 2018). Distribution mapping, involving 

distribution-based and distribution-free quantile mapping methods, matches the statistical 

distribution of RCM-simulated climatic factors to the distribution of observations. 

Distribution-based quantile mapping is based on the assumption that climatic factors 

obey a certain distribution, such as Gamma and Gaussian distributions, while the 

distribution-free quantile mapping technique employs the empirical distribution (Luo et 

al., 2018). Selecting a suitable bias correction method is important for providing reliable 

inputs for impact analysis of a region. 

Bias correction methods that have the ability to better transfer the observed precipitation 

and temperature statistics to the raw ensemble GCM/RCM CORDEX-Africa RCP 4.5 

and RCP 8.5 climate scenarios were used. Precipitation is more difficult to correct its bias 

due to its physical characteristics but it has more significant influence than the 

temperature on streamflow simulation of Mojo catchment. Therefore, in this research, the 

precipitation and the temperature bias are corrected by Quantile mapping method. 

Because of the different characteristics of meteorological variables, bias correction 

methods provide different performances depending upon the variables of interest (Heo et 

al., 2019). In a bias correction of precipitation data, the quantile mapping (QM), the 

detrended quantile mapping (DQM), and the quantile delta mapping (QDM) methods 
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have been widely employed because they can correct biases considering high order 

moment (Seo and Kim, 2018). Additionally, these methods were designed to preserve 

long-term changes in quantiles projected by climate models (Seo and Kim, 2018). Thus, 

the QM-based bias correction method is employed for precipitation correction in this 

study.  

                    𝑄𝑚(𝑡) = {
𝐹𝑜

−1[𝐹𝑠[𝑄𝑠(𝑡)]],                  𝑄𝑠 ≥  𝑄𝑡ℎ

0,                                            𝑄𝑠 ≤  𝑄𝑡ℎ

                                         (3.6) 

Where 𝑄𝑚(𝑡) and 𝑄𝑠(𝑡) are tth bias-corrected data and simulated data from the RCM 

during the reference period (also known as the historical period), Fs and 𝐹𝑜
−1 are the 

cumulative distribution function (CDF) of the raw data from the RCM and the inverse 

CDF of the observed data, respectively. To categories between the wet and the dry day 

threshold value  𝑄(observed) is used (day with precipitation greater than 1 mm is 

assumed to be a wet day). 

In QM, the probability distribution of the observed data for a future period is assumed to 

be the same. Because of the assumption of the same distribution of the observed data for 

the present and future periods, the long-term trend simulated by a climate model can be 

biased in QM. According to Seo and Kim, (2018) proposed the QM method is designed 

to correct the bias in climate projections, and the ability to correct seasonally. The 

temperature is corrected using Normal Distribution Quantile mapping.                                                                                      

                        𝑄𝑚(𝑡) = 𝑄𝑆𝐹𝑜
−1[𝐹𝑠[𝑄𝑠(𝑡)]] − 𝐹𝑚ℎ

−1(𝐹𝑠(𝑄𝑆(𝑡))                            (3.8) 

Where (O=observed, h=historical, and S=simulated).𝐹𝑠 And 𝐹𝑜
−1 are a CDF of the 

simulation data during a predefined future period and an inverse CDF of the simulated 

data during the reference period, respectively. 

According to Heo et al., (2019)  discuss using eight probability distribution models are 

tested for the candidate distributions  and form those candidates Gamma method is more 

corrected to the observed data and Gamma method is most common method in order to 

correct the bias so in this case, the gamma distribution method used for precipitation 

correction the equation as follows: 

                              𝐹(𝑥, 𝛼, 𝛽) =
𝛶(𝑘,

𝑥

𝛼
)

𝛤(𝛽)
                                                              (3.9) 
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Where 𝛤 and 𝛶 are a gamma function and a lower incomplete gamma function, 

respectively. 

3.4.4. Hydrological Modeling Using SWAT 

3.4.4.1. SWAT Modelling  

SWAT is widely used to simulate hydrological processes under the scenario of changes 

in land use, land management, as well as climate change. The SWAT model is a 

physically-based, continuous-time catchment model that simulates hydrological processes 

in the catchment. This model is coupled with ArcSWAT in ArcGIS Geographical 

Information System interface to process the datasets and construct the required input for 

the initial modeling setup.  

In SWAT, catchments are divided into sub-catchments, which are further delineated into 

hydrological response units (HRUs) that consist of homogeneous soil, land use, and 

climate. HRUs are defined separately for each sub-catchment, based on land cover, soil, 

and slope in a specific sub-catchment. Thresholds for HRU definition are sequentially 

applied to land covers, soils in each land cover, and slopes in a combination of land cover 

and slope. According to Winchell et al., (2010) if a land cover percentage in the sub-

catchment is below the land cover threshold, no HRU for that specific land cover will be 

defined, regardless of the distribution of soils, and the land cover areas will be 

reapportioned into the other qualified land covers mean that the threshold value which 

added in the HRU definition will depend on the value of land use, soil and slope of the 

each subbasin catchment if the value percent of land use is smaller than the threshold 

value of land cover no HRU is created in the subbasin and addition of land use and soil is 

smaller than the threshold still no HRU is created for a particular subbasin and also for 

slope, In this case, the threshold value which is given in the modelling Mojo catchment is 

5% for land use and soil and 6% for slope. The model predicts the hydrology ultimately 

stream low at each HRU using a water balance equation, contains precipitation, surface 

runoff, evapotranspiration, infiltration, and subsurface inflow. The water balance 

equation of the hydrologic cycle is: 

          𝑆𝑊𝑡 = 𝑆𝑊𝑂 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑆𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1                       (3.10)  
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In which 𝑆𝑊𝑡 is the final soil water content (mm), 𝑆𝑊𝑜 is the initial soil water content on 

a day i (mm), t is the time in days, 𝑅𝑑𝑎𝑦 is the amount of precipitation on a day i (mm), 

𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff on a day i (mm), Ea is the amount of 

evapotranspiration on a day i (mm), 𝑊𝑠𝑒𝑒𝑝 is the amount of water entering to vadose zone 

from the soil profile on a day I (mm), and 𝑄𝑔𝑤is the amount of return flow on a day I 

(mm). 

Surface runoff was estimated using the Soil Conservation Service Curve Number (SCS-

Curve number) method 

               𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦−𝐼𝑎)2

(𝑃𝑑𝑎𝑦−𝐼𝑎−𝑆)
                                                           (3.11) 

 

Where Ia is the initial abstraction which includes surface storage, interception, and 

infiltration prior to runoff and S is the retention parameter (mm). 

Retention parameter defined by: 

                𝑠 = 25.4 (
1000

𝐶𝑁
) − 10                                                          (3.12) 

CN is the curve number for the day which varies from 0 to 100 depending on soil 

permeability, land use, and the antecedent soil water condition. Initial parameter 

approximated as 0.2 S; the equation becomes: - 

            𝑅𝑠𝑢𝑟 =
(𝑃𝑑𝑎𝑦−0.25)2

(𝑃𝑑𝑎𝑦+0.85)
                                                                 (3.13) 

3.4.4.2.  Model Simulation  

Before proceeding to the model calibration and validation of the model keeping in view 

the available period of observation flow series at the gauging station is important, in 

order to run the simulation, the data is classified into 80% for calibration and 20% for 

validation, following period were selected as warm-up, calibration, and validation  

Warm-up period for Calibration 1980-1981, Warm-up period for Validation 1999-2000 

Calibration 1981-2000 and Validation 2001-2005 

The model simulation is performed for the period of 25 years from January first, 1980 up 

to December last 2005 finally after adjusting the warm-up, calibration and validation the 

next step become simulation of the model. 
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3.4.4.3. Sensitivity Analysis  

Sensitivity analysis is the process of identifying the model parameters that exert the 

highest influence on model calibration or on model predictions. Even though 25 

parameters were used for the sensitivity analysis, all of them have a meaningful effect on 

the daily flow of the Mojo catchment. seventeen hydrological model parameters of the 

SWAT model underwent sensitivity and uncertainty analyses using the Global sensitivity 

analysis method in SWAT-CUP SUFI2 (Molla and Abdisa, 2018). The parameter 

sensitivity compares based on the t-stat of a parameter with the values in the Student's t-

distribution table to determine the p-value, which is the number that you really need to be 

looking at. The Student's t-distribution describes how the mean of a sample with a certain 

number of observations is expected to behave. The p-value for each term tests the null 

hypothesis that the coefficient is equal to zero (no effect). A low p-value (< 0.05) 

indicates that you can reject the null hypothesis. In other words, a predictor that has a low 

p-value is likely to be a meaningful addition to your model because changes in the 

predictor's value are related to changes in the response variable. Conversely, a larger p-

value suggests that changes in the predictor are not associated with changes in the 

response. So that parameter is not very sensitive. A p-value of < 0.05 is the generally 

accepted point at which to reject the null hypothesis (i.e., the coefficient of that parameter 

is different from 0). With a p-value of 0.05, there is only a 5% chance that results you are 

seeing would have come up in a random distribution, so you can say with a 95% 

probability of being correct that the variable is having some effect (Abbaspour, 2007). 

3.4.4.4. Model Calibration  

Model calibration is the process that comes after the sensitive parameters identified. This 

involved optimizing the values of the important parameters in the input files (e.g. *.hru files, *.gw 

files, *.sol files, etc.) and evaluating the model quality. However, when the number of 

parameters used in the manual calibration is large, especially for complex hydrologic 

models, manual calibration can become labor-intensive and automated calibration 

methods are preferred. Both manual algorithms and automated methods have been 

developed for calibration of SWAT simulations due to that in this case automated as well 

as manual method was used. 
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3.4.4.5. Performance Evaluation 

The following statistical performance indices i.e. Nash and Sutcliffe efficiency (NSE) the 

coefficient of determination (R2) and percent of bias (PBIAS) was used to assessing the 

closeness of simulated results with corresponding observations for instance (Setegn et al., 

2011), (Jilo et al., 2019) and (Choi et al., 2008). 

The most widely used statistics reported for calibration and validation are R2, NSE, and 

PBIAS. The R2 statistic can range from 0 to 1, where 0 indicates no correlation and 1 

represents perfect correlation, and it provides an estimate of how well the variance of 

observed values are replicated by the model predictions Arnold et al., (2012) and the 

statics calculated as:                                                       

                                 𝑅2 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

(𝑛−1)𝑠𝑥𝑠𝑦
                                          (3.14) 

NSE values can range between -∞ to 1 and a perfect fit between the simulated and 

observed flow is indicated by an NSE value of 1. NSE values ≤0 indicate that the 

observed data mean is a more accurate predictor than the simulated output. Both NSE and 

R2
 are biased toward high flows. The sum is taken over the whole period of the data used 

for calibration. A value closer to unity means the model explains the variance better. A 

negative modeling efficiency means that the model prediction is worse than simply using 

the mean of the observed flows (Nash and Sutcliffe, 1970). 

                         NSE = 1 − {
∑ (ZObs−Zsimu)2n

i=1

∑ (ZObs−Zmean)2n
i=1

}                        (3.15) 

Percent bias measures the average tendency of the simulated data to be larger or smaller 

than the observations. The optimum value is zero, where low magnitude values indicate 

better simulations. Positive values indicate model underestimation and negative values 

indicate model overestimation (Gupta et al., 1999). 

                             𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑸𝒎−𝑸𝑺)𝒊

𝒏
𝒊=𝟏

∑ 𝑸𝒎,𝒊
𝒏
𝒊=𝟏

                                (3.16) 
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Table 3.7 Performance evaluation criteria (PEC), Statistical threshold value and 

corresponding assigned weight (Moriasi et al., 2015) 

PEC NSE R2 PBIAS 

Very good 1 ≥ NSE ≥ 0.75 0.75 ≤ R2 ≤ 0.85 PBIAS <10 

Good  0.75 ≥ NSE ≥ 0.65 0.60 ≤ R2 ≤ 0.75 15 >PBIAS>10 

Satisfactory 0.65 ≥NSE ≥ 0.5 R2 ≤ 0.60 25 >PBIAS>15 

Unsatisfactory NSE ≤ 0.5 0 ≤ R2≤ 0.5 25 >PBIAS 

 

3.4.4.6. Model validation  

The calibrated model needs to be validated prior to its application for climate change 

scenarios. The model, calibrated in the previous step, was simulated for an independent 

period of 2001-2005 and evaluated using annual water yield, graphical comparison, and 

goodness of fit statistics.  
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3.4.4.7. The conceptual framework of the SWAT model and Cordex data 

 

 

Figure 3.15 conceptual frameworks of the SWAT model and Cordex data 
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4. RESULT AND DISCUSSION  

4.1. Hydrological Model Evaluation  

4.1.1. Catchment Delineation  

Catchment delineation based on the digital elevation model (DEM) is the 

prerequisite to set up the SWAT model. After delineation of Mojo catchment 

topographic report statics show that the elevation minimum, maximum and mean 

of the catchment is 1765, 3060 and 2160 respectively and also 25 sub-basins are 

formed and the land use, soil and slope distribution of the catchment are shown in 

the (table 4.1). 

Table 4.1 Detailed Landuse/Soil/Slope distribution SWAT model class 

   Area [ha] Area[acres] %Wat.Area 

Landuse: 
     

Bare Land --> BARR 
 

27.56 68.11 0.02 

Agricultural Land --> AGRL 
 

150712.58 372418.32 94.09 

Dispersed Acacia --> BSVG 
 

90.16 222.80 0.06 

Sugarcane Plantation --> SUGC 
 

141.87 350.56 0.09 

Acacia --> FOEN 
 

1308.86 3234.25 0.82 

Shrub Land --> RNGB 
 

91.15 225.25 0.06 

Grass Land --> RNGE 
 

22.70 56.09 0.01 

Forest --> FRST 
 

78.00 192.75 0.05 

Eucalyptus --> EUCA 
 

237.97 588.05 0.15 

Settlement --> URBN 
 

5842.25 14436.50 3.65 

Water Body --> WATR 
 

1631.05 4030.41 1.02 

Soil: 
     

Mollic Andosols -->ANm 
 

7.57 18.70 0.00 

Vertic Cambisoils -->CMv 
 

71250.43 176063.37 44.48 

Lithic Leptosols -->LPq 
 

1576.74 3896.19 0.98 

Chromic Luvisols -->LVh 
 

198.70 491.00 0.12 

Haplic Luvisols -->LVx 
 

8675.24 21436.96 5.42 

Luvic Phaeozems -->PHl 
 

6966.19 17213.80 4.35 
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Eutric Vertisoils -->VRe 
 

71509.30 176703.05 44.64 

Slope: 
     

 
0-10 

 
126202.43 311852.51 78.79 

 
10-20 

 
23174.99 57266.57 14.47 

 
20-30 

 
5655.71 13975.54 3.53 

 
30-40 

 
2369.38 5854.86 1.48 

 
40 

 
2781.65 6873.59 1.74 

4.1.2. SWAT model HRU Analysis  

The result of HRU threshold analysis is classified based on the Landuse, Soil and slope of 

the Mojo catchment result which based on Winchell et al., (2010) classification over the 

analysis of SWAT. In the study area, 25 subbasin created and the HRU threshold is for 

Landuse 5 %, for soil 6%, and for slope 5% and finally,129 HRU was created.   

 

Figure 4.1 HRU Analysis Report of swat model 
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4.1.3. Sensitivity, Calibration, and Validation of the SWAT model 

The SWAT model is a unique function of soil, land use, and topography parameters at 

HRU level and initial estimates of parameter values from the soil, land use, surface and 

subsurface process parameters were adjusted during calibration based on the 

recommended upper and lower boundary numbers. Parameter sensitivity and ranking in 

SWAT CUP was measured using the t-stat and p-values. Where t-stat is the coefficient of 

a parameter divided by its standard error. The p-value is used to determine the 

significance of the sensitivity. Parameters are significant for a larger absolute t-stat and 

lower p-values (Abbaspour et al., 2007). Appendix (7) shows 23 influential parameters 

were selected for calibration which is the partially same as (Gonfa and Kumar, 2016). 

These parameters are related to surface runoff (SURLAG, and CH_K2), 

evapotranspiration (ESCO), soil water (SOL_AWC and SOL_K, USLE_K), groundwater 

(GW_DELAY, GWQMN, ALPHA_BF, GWHT, and GW_REVAP), management (CN2 

and USLE_P) form those 17 of them shows reasonable influence on the catchment Table 

(4.2). 

Table 4.2 List of top 17 sensitive parameters at Mojo catchment at the locations of Awash 

basin  

Parameter Name t-Stat P-Value Rank Min value Max value 

R__SOL_AWC(..).sol -8.69 0.00 1 0.2 0.4 

R__CH_N2.rte -2.72 0.03 2 0.4 0.9 

V__GW_DELAY.gw 2.47 0.04 3 0.3 0.7 

R__SOL_K(..).sol -1.90 0.10 4 54.4 101.0 

R__CANMX.hru 1.70 0.13 5 0.1 0.4 

R__ESCO.hru -1.66 0.14 6 38.8 71.6 

V__ALPHA_BF.gw -1.38 0.21 7 0.4 0.7 

R__CH_K2.rte -1.29 0.24 8 221.4 395.3 

R__SLSUBBSN.hru 1.18 0.28 9 -0.1 0.1 

R__EPCO.hru 1.12 0.30 10 -99.6 242.8 

R__CN2.mgt 1.09 0.31 11 0.0 0.1 

R__SOL_ALB(..).sol 1.08 0.32 12 206.3 1091.8 

R__SURLAG.bsn -1.03 0.34 13 5.6 14.9 



51 
 

R__SLSOIL.hru 1.02 0.34 14 1.0 1.5 

R__USLE_K(..).sol 0.95 0.37 15 -24.7 116.4 

V__GWQMN.gw 0.88 0.41 16 -0.2 0.2 

R__USLE_P.mgt -0.16 0.88 17 80.0 98.0 

Where: CN2: Initial SCS runoff curve number; ESCO: Soil evaporation compensation factor; 

SOL_AWC: Available water capacity of soil layer (mm H2O); ALPHA_BF: Baseflow alpha-

factor (days); CH_K2: Effective hydraulic conductivity in main channel alluvium 

(mm/hr);canmx: Maximum canopy storage (mm H2O); SURLAG: Surface runoff lag coefficient; 

SOL_K: Saturated hydraulic conductivity of soil (mm/hr); SOL_ALB: Moist soil albedo; 

GWQMN: Threshold depth of water in the shallow aquifer for return flow to occur (mm H2O); 

GW_REVAP: Groundwater revap coefficient; EPCO: Plant uptake compensation factor; 

GW_DELAY: Groundwater delay time (delays); SLSOIL: Slope length for lateral subsurface 

flow; CANMX: Maximum canopy storage; SLSUBBSN: Average slope length; USLE_P: USLE 

equation support; USLE_K: USLE equation soil erodibility (k) factor; CH_N2: Manning's "n" 

value for the main channel. V_means the existing parameter value is to be replaced by the given 

value and R_means the existing parameter value is multiplied by (1+a given value).  

Global sensitive parameters in Appendix (9) and Table (4.5) indicates that (SOL_AWC, 

CH_N2, and GW_DELAY) those sensitive parameters are more influential over the Mojo 

catchment as well as Awash basin because an increasing of SOL_AWC causes a 

decreasing of water yield (Adeba et al., 2015). On the other hand, the response of the 

model towards parameter over the management (USLE_P), soil water (SOL_ALB and 

USLE_K), groundwater (GWQMN) which is line with (Gonfa and Kumar, 2016), surface 

runoff (SURLAG and SLSOIL) and soil water (SOL_K) are very low influential. 

parameters involving surface runoff (CN2), evaporation (EPCO and ESCO), surface 

runoff (CANMX and SLSUBBSN), groundwater (ALPHA_BF) and groundwater process 

(CH_K2) found moderately sensitive parameter in flow simulation.  

4.1.4. Analysis of observed climate data and streamflow  

Calibration of models at a catchment scale is a challenging task because of the possible 

uncertainties that may exist in the form of process simplification, processes not accounted 

for by the model, and processes in the catchment that are unknown to the modeler. 

Because of its simplicity SWAT CUP (SUFI-2 algorithm) was used for calibration, 

validation and uncertainty analysis of the SWAT model in Mojo catchment.  

The SWAT simulation period was divided into two (calibration and validation). the 

monthly flow data is available from 1980-2010. After a five-year warm-up period from 
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(1985-2001) used for calibration and from (2001-2010) with the same warm-up (1995-

2000) period used for the validation period.  

calibration and validation results showed that the SWAT model was able to simulate the 

monthly streamflow well with a coefficient of determination (R2) and Nash-Sutcliffe 

efficiency (NES) greater than 0.70. Also, percent bias (PBIAS) is positive with 

reasonable underestimates which is less than 10% (Table 3.7).  

Table 4.3. SWAT hydrological model performance under validation and calibration 

periods of observed streamflow in Mojo catchment  

Parameter Calibration Validation 

Nash-Sutcliffe efficiency (ENS) 0.73 0.61 

Coefficient of determination (R2) 0.74 0.65 

Percent bias (PBIAS) 1.6 0.7 

 
Figure 4.2 Calibration, validation and uncertainty analysis of flow data 

Setegn et al., (2011), Santhi et al., (2001), Moriasi et al., (2007), and Benaman et al., 

(2005) suggested that the prediction efficiency of the calibrated model can be a good 

agreement if R2 and NES values are greater than 0.6 and when the value of PBIAS is 

between ±15 ≤ and ≤ ±30. since in the present study, the values of R2 and NSE were 0.74 
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and 0.65, respectively which shows good relation with (Abbaspour et al., 2007), and the 

PBIAS which is 1.65 and 0.7 for calibration and validation then the result is which is 

more perform according to Gupta et al,.(1999) of the observed and the simulated 

streamflow of the Mojo catchment showed good relations with reasonable performance 

(Gonfa and Kumar, 2016). 

4.2. Analysis of the Performance climate GCM models 

4.2.1. Selection of GCM Model 

Analyzing the performances of GCM models with the SWAT model shows a good 

agreement in Ethiopia basins for instance (Jilo et al., (2019): Dile et al,. (2013): Setegn et 

al., (2011)). The performance checking of PBIAS, R2, and NES were used to select the 

model performance. The SWAT Analysis and calibration of the observed data are 

evaluated in Section 4.2.1 up to 4.2.4. The monthly mean maximum and minimum 

temperature and precipitation pattern compared to the observation are given in Figure 

(4.3 (A) and (B)). 
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B)

 
Figure 4.3 Comparison of observed and historical GCMs Models (variability among the four 

GCMs) time series of 1981-2005 for Temperature max, min and rainfall before bias 

correction figure (A) and figure (B) respectively. 

4.2.2. Validation of GCMs Models 

Validation was done based on a 5-year simulation from 2001-2005. Here also four GCM 

models used to select for the comparison of a better-fitted Model. Applying SWAT 

model has been frequently used to investigate climate change impacts on agro-

hydrological systems (System and Dam, 2018) and simulated result shows that good 

performance with climate models relation Jilo et al., (2019) so to analysis the 

performance of the candidate models in the catchment historical data was used for 

validation. The figure shows that the mean monthly of simulate and observed streamflow 

and the validation statistics for all the four models are shown in the figure (4.4) and table 

(4.4). 
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Figure 4.4 Validation of candidate GCM models simulation output and validated 

streamflow data of Mojo catchment form 2001-2005  

Table 4.4. SWAT hydrological model performance under validation and calibration 

periods of GCM models and observed data.  

Parameter Calibration    Validation     
    

  
 

 
Observed MIROC-MIROC5 IPSL-IPSL-CM5A-MR MPI-M-MPI-ESM-LR CCma-CanESM2 

(NES) 0.73 0.13 0.02 0.16 0.16 

(R2) 0.74 0.17 0.01 0.21 0.29 

(PBIAS) 1.6 65.7 70.8 42.3 93.5 

 

Figure 4.4 and Table 4.4 shows that the atmosphere-only validation was done to evaluate 

how models perform with observed and climate models based on their performance 

without bias correction, the daily streamflow, and distribution value of the model. Percent 

bias measures the average tendency of the simulated data to be larger or smaller than the 

observations (Gupta et al., 1999). Models that performed with the least Percent of Bias 

indicated good underlying atmospheric dynamics (Teutschbein and Seibert, 2012). From 

the validation, two models were highlighted for bias correction as having reasonable skill 

in the region, Max Planck Institute for Meteorology Earth System Model (MPI-M-MPI-

ESM-LR), and Model for Interdisciplinary Research on Climate (MIROC-MIROC5) 

(Table 4.5).  
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Table 4.5 Selected GCM Models used for analysis  

Id No 
 

Model 

1 
 

MIROC-MIROC5 

2 
 

MPI-M-MPI-ESM-LR 

4.2.3. Analysis of Bias corrected climate data and observed data 

Analysis of the bias correction is more important before proceed to the next level. Models 

were examined based on a historical period (1981–2005), observed data (1981-2005) and 

future scenario data (4.5 and 8.5) form 2006-2080 were corrected. The bias correction 

method used for daily precipitation, temperature maximum and minimum and performs 

good relations with the observed precipitation and temperature data. Figure 4.5 and 

Appendix (10 and 11) show that the historical bias correction with respect to observed 

data of the two GCMs models. 

We use these same models to estimate the change in temperature and precipitation. 

Models which is indicated in (Table 4.5) and shows that the models performed well in the 

given metrics. For the future climate data, from the Intergovernmental Panel on Climate 

Change (IPCC, 2014) defined Representative Concentration Pathways (RCPs) we have 

used RCP 8.5 and RCP 4.5 scenario, which represents the highest greenhouse emission 

level with rising radiative forcing pathways.  

A) MPI-M-MPI-ESM-LR  

 

B) MIROC-MIROC5 
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E) MPI-M-MPI-ESM-LR 

 

F) MIROC-MIROC5 

 

Figure 4.5 shows Cumulative Distribution Function before and after bias correction with 

respect to observed data and Historical data from (1981-2005), fig (A) and (B) Gamma 

distribution for precipitation of GCMs model MPI-M-MPI-ESM-LR and MIROC-

MIROC5 respectively, normal distribution C, D, for temperature min, E and F for 

temperature max.    
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D) MIROC-MIROC5 
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SWAT well simulates the hydrology of Mojo catchment and forced to generate historical 

streamflow under both bias-corrected historical precipitation and temperature climate 

data’s in order to analyze the performance. Table (4.6) and figure (4.6) show that the 

relationship with bias-corrected streamflow output and observed streamflow for the 

selected GCMs models and, the performance of PBIAS was increased for both models. 

 
 

Figure 4.6 Validation output Annual mean streamflow of MIROC-MIROC5 and MPI-M-

MPI-ESM-LR from (2002-2005) 

Table 4.6. Performance evaluation streamflow validation output of model MIROC-

MIROC5 and MPI-M-MPI-ESM-LR 

Parameter Calibration  Validation    

 
Observed MIROC-MIROC5 MPI-M-MPI-ESM-LR 

(NES) 0.73 0.43 0.53 

(R2) 0.74 0.47 0.54 

(PBIAS) 1.6 9.6 5.1 
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4.3. Analysis of climate change Future scenarios  

Analysis of the future scenario was done for two selected GCMs models. The analysis 

classified into three categories from 2006-2030 Near future, from 2031-2055 Mid future 

and for 2056-2080 Far future. Calibration and validation were done in section 4.2 after 

fitted the sensitive parameters. 

4.3.1. Change in projected precipitation GCMs scenarios   

The result of the study after bias corrections of raw precipitation shows that the mean 

annual precipitation in the future selected models generally shows fluctuation over Mojo 

catchment seems the change become occur in Awash basin also Taye, (2018) and 

Hailemariam, (1999) using old SERES. The change in precipitation for both model 

scenarios shows slightly different behavior on the model scenarios and periods. The 

figure (4.7) shows that change in mean annual precipitations varies over MIROC-MIROC5 

model scenarios which are increasing from + 24 to + 49% for the entire period RCP4.5 and 

decreasing in RCP8.5 climate scenarios over all future time periods from 47 to 25%. 

Also, model MPI-M-MPI-ESM-LR shows a slight decrease in RCP 4.5 ranges from 33.8 

to 33.1% and an increase in RCP 8.5 varies from 31.9 to 34.8% for all scenarios. 

Supporting the present study’s findings, Intergovernmental Panel on Climate Change 

IPCC, (2014) reported an increase of precipitation with heavy precipitation events over 

the world. 

MIROC-MIROC5 
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MPI-M-MPI-ESM-LR 

 
Figure 4.7 Annual precipitation (1981-2080) at Mojo catchment for model MIROC-

MIROC5 and MPI-M-MPI-ESM-LR under RCP 4.5 and RCP 8.5 climate scenario 

 

In all future time periods, Model MPI-M-MPI-ESM-LR shows that Kiremt (wet) season 

(June–September) precipitation change shows a cumulative increasing change over both 

scenarios but September under RCP 4.5 at Near period (2030), and July RCP 8.5 at MID 

periods shows a decreasing change. Belg (short rainy) season (February–May) 

precipitation amount decreased for all periods but for the month of April at Near period 

under RCP 4.5 shows some increase change in precipitation. The Bega (dry) season 

(October–January) showed an increase for all RCP 4.5 scenario and mixed trend where 

precipitation decreased for the Far future (2080) period under RCP 8.5 climate scenarios 

the study figure (4.8) 
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MPI-M-MPI-ESM-LR 

A) RCP 4.5 

 

B) RCP 8.5 

 

Figure 4.8 Annual Monthly mean of Precipitation (2006-2080) for the Model MPI-M 

MPI-ESM-LR under RCP 4.5 and 8.5 

 

Change in precipitation over the model MIROC-MIROC5 shows that the rainy season 

Kiremt (wet) season (June–September) become decrease but in the FAR period July 

under RCP 4.5 and Near period under RCP 8.5 shows the high increasing change occurs 

in both scenarios. To the reverse Belg (short rainy) season (February–May) becoming 

increasing in a change in both scenarios. The Bega (dry) season (October–January) shows 

that mixed change for both scenarios, In RCP 8.5 scenario except October and November 

for Far future (2080) and Mid future (2055) respectively shows increase change the rest 

becoming decrease such, results of increase precipitation were related to other findings 

reported over the Awash basin (Taye, 2018)  and figure( 4.9). 
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MIROC-MIROC5 

A) RCP 4.5  

 

B) RCP 8.5  

 

Figure 4.9 Annual Monthly mean of Precipitation (2006-2080) for the Model MIROC-

MIROC5 under RCP 4.5 and 8.5 

 

Table 4.7 Annual Monthly mean variation of Precipitation change (2006-2080) for the 

Model MPI-M-MPI-ESM-LR under RCP 4.5 and 8.5 

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

Mean Monthly precipitation change (%) RCP 4.5   
       

2030 1.37 -0.78 -4.24 0.25 -0.21 2.21 1.36 0.55 -1.09 0.32 -0.05 0.31 

2055 0.37 -1.63 -3.20 -1.18 -1.18 1.80 1.94 1.46 0.69 0.69 -0.08 0.31 

2080 0.64 -1.89 -3.93 -1.67 -2.28 0.39 -0.02 3.49 2.70 1.40 0.73 0.44 

Mean Monthly precipitation Change (%) RCP 8.5   
       

2030 0.10 -2.35 -3.69 -2.62 -0.66 3.07 1.11 3.48 0.74 0.32 0.56 -0.09 

2055 2.45 -2.19 -3.18 -1.17 -1.68 2.42 -0.53 1.93 0.40 0.99 0.37 0.19 

2080 -0.89 -1.90 -4.00 -4.57 -3.20 -0.14 5.56 8.41 1.31 0.14 -0.08 -0.63 
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Table 4.8 Annual Monthly mean variation of Precipitation change (2006-2080) for the 

Model MIROC-MIROC5 under RCP 4.5 and 8.5 

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

Mean Monthly precipitation change (%) RCP 4.5   
      

2030 -0.57 -0.74 2.15 6.83 3.22 -5.54 -3.03 -5.94 -0.34 0.87 2.05 1.03 

2055 -0.14 -0.49 5.23 6.38 2.15 -6.38 -5.12 -3.64 -0.48 0.71 1.59 0.18 

2080 -0.69 -1.64 -1.45 -0.88 0.30 -3.70 6.71 2.09 1.26 -0.83 -0.41 -0.76 

Mean Monthly precipitation Change (%) RCP 8.5   
      

2030 1.93 1.30 -0.92 3.19 0.55 3.82 1.78 -4.72 -6.90 -0.12 0.06 0.02 

2055 2.90 0.10 -0.73 0.77 -1.44 3.86 -1.14 -1.74 -3.36 0.57 0.23 -0.03 

2080 -0.45 -0.32 -0.73 -1.85 -1.61 3.32 4.01 -1.05 -2.51 0.98 0.29 -0.06 

 

4.3.2. Change in projected Temperature GCMs scenarios   

After bias correction, Mojo catchment exhibits an increase in projected minimum and 

maximum temperature under both GCM models and RCP climate scenarios (Figure 

4.10). The model MIROC-MIROC5 mean annual minimum temperature varies from + 

1.19 to + 3.57 °C under RCP 8.5 and from + 1 to + 1.99 °C under RCP 4.5 climate 

scenarios for the three-time periods such analysis is related with the result (Fox et al., 

2018). Similarly, the mean annual maximum temperature showed an increasing trend and 

varies from + 1 to + 1.74 °C under RCP8.5 and from + 0.99 to + 1.74 °C under RCP4.5 

over the two scenarios at future time periods. It also shows that the model under MPI-M-

MPI-ESM-LR the temperature maximum in both scenarios becoming increase varies 

from + 0.45 to 1.875 0C under RCP 4.5 and +0.47 to 1.97 0C under RCP 8.5, and Also to 

the revers the temperature minimum shows an a decreasing variation from -1.81 to -0.30 

0C under RCP 4.5 for all periods and from -1.55 to -0.83 0C for RCP 8.5 till Mid period 

but in the Far future period the RCP 8.5 becoming increase by 1.210C. 
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A) MPI-M-MPI-ESM-LR 

 

B) MIROC-MIROC5 

 

Figure 4.10 Annual monthly mean of temperature maximum and minimum (1981-2080) 

at Mojo catchment for model MPI-M-MPI-ESM-LR (A) and MIROC-MIROC5 (B) 

under RCP4.5 and RCP8.5 climate scenario 
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The seasonal variation of change in temperature over Mojo catchment shows that 

reasonable change in both GCM models. Model MIROC-MIROC5 shows that the 

minimum temperature on the Kiremt season (June–September) decrease in all periods but 

the maximum temperature except June at Mid and Far period under RCP 4.5 and RCP 8.5 

at Far period and September at Near period under RCP 8.5 shows increase in change the 

rest shows decreasing under both scenarios. On the other hand, Belg season (February–

May) shows an increasing temperature maximum change in both RCP scenarios except 

March at Mid and Far future under the RCP 4.5 and May at Near and April at Far future 

period of RCP 8.5 scenarios become decrease. Similarly, the temperature minimum under 

Belg season shows an increasing change in both scenarios without including April at the 

Mid and Far future period under RCP 4.5 and April and May at Far and Near period 

respectively under the RCP 8.5 scenario. The Bega (dry) season (October–January) 

shows that mixed change in temperature maximum and minimum under both scenarios. 

In this season the minimum temperature shows increasing change except December at all 

periods under both scenarios but in the maximum temperature shows mixed 

characteristics under three periods in the October under RCP 4.5 at Mid and Far period, 

December for both scenarios show a decreasing change in temperature the rest of period 

shows an increasing temperature change in both scenarios figure (4.11).  
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Tmin 8.5 

 

Tmax 8.5 

 

Figure 4.11 Annual Monthly mean of temperature maximum and minimum (2006-2080) 

for the Model MIROC-MIROC5 under RCP 4.5 and 8.5 

Under the model MPI-M-MPI-ESM-LR, the seasonal variation of change shows not that 

much fluctuation in both scenarios. The temperature variation over Kiremt season over 

the minimum and maximum temperature shows a decrease in change in both  RCP 4.5 

and RCP 8.5 respectively scenarios, to the reverse under Belg season, shows an 

increasing maximum and minimum temperature change in both RCP 8.5 and 4.5 

respectively and in Bega season except October and November shows an decreasing in 

change under both maximum and minimum temperature of RCP 8.5 and 4.5 respectively 

over entire period. The variation of maximum temperature for Kiremt season under the 

RCP 4.5 scenario shows that increasing change except for June and September which 

shows decreasing change for all periods. And also, for RCP 8.5 minimum temperature at 

month July and august it shows increasing change except for August at the Far future 

period and the rest months become decreasing in change. At Belg season the maximum 

and minimum temperature in both RCP 4.5 and RCP 8.5 scenarios respectively the month 

February and April shows increase in change. Also, for the month May a minimum and 

maximum temperature become increase under RCP 8.5 and RCP 4.5 for entire period but 

for RCP 4.5 the maximum temperature at Mid period shows decreasing in change.  In the 

dry season of Bega, the decreasing change occur at October, November under maximum 
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4.5 scenario for all period and December under minimum temperature RCP 8.5 in Mid 

period the rest months shows an increasing change. (Taye, 2018) also shows the seasonal 

variation of the average temperature change factors for the entire Awash basin for both 

maximum and minimum temperature near-term to the end of the century the increase in 

temperature becomes high for both maximum and minimum temperature Figure (4.12).   

A) MPI-M-MPI-ESM-LR 
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Figure 4.12 Annual Monthly mean of Temperature maximum and minimum change 

(2006-2080) for the Model MPI-M-MPI-ESM-LR under RCP 4.5 and 8.5 
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Table 4.9 Mean Monthly variation of temperature maximum and minimum change 

(2006-2080) for the Model MIROC-MIROC5 (A) and MPI-M-MPI-ESM-LR under RCP 

4.5 and 8.5 

A) 

Period  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

Mean Month Tmax (0C) RCP 4.5  

        

2030 0.08 0.11 0.13 0.14 -0.19 -0.05 -0.10 -0.04 0.00 0.04 0.13 -0.26 

2055 0.10 0.07 -0.02 0.08 -0.03 0.03 -0.01 -0.16 -0.09 -0.01 0.18 -0.14 

2080 0.11 0.08 -0.02 0.07 -0.02 0.03 -0.02 -0.16 -0.09 -0.01 0.17 -0.15 

Mean Month Tmin (0C) RCP 8.5  
        

2030 0.62 0.36 0.08 0.25 -0.01 0.00 -0.26 -0.20 -0.02 0.50 0.41 -1.73 

2055 0.82 0.87 0.26 -0.09 0.23 -0.27 -0.41 -0.51 -0.42 0.80 0.46 -1.73 

2080 0.82 0.87 0.27 -0.10 0.26 -0.27 -0.42 -0.52 -0.43 0.78 0.44 -1.71 

Mean Month Tmax (0C) RCP 4.5  
        

2030 0.19 0.15 0.09 0.03 -0.23 -0.01 -0.18 -0.01 0.02 0.09 0.09 -0.22 

2055 0.21 0.04 0.07 0.15 -0.01 -0.02 -0.21 -0.19 -0.08 0.08 0.13 -0.17 

2080 0.14 0.12 0.04 -0.04 0.04 0.11 -0.02 -0.22 -0.12 -0.10 0.14 -0.08 

Mean Month Tmin (0C) RCP 8.5  
        

2030 0.57 0.74 0.45 0.21 -0.24 -0.22 -0.35 -0.32 -0.40 0.68 0.62 -1.74 

2055 0.67 0.77 0.45 0.15 0.23 -0.49 -0.52 -0.47 -0.28 0.85 0.61 -1.95 

2080 0.82 0.54 0.26 -0.02 0.23 -0.41 -0.59 -0.72 -0.13 1.37 0.64 -1.98 

 

B) 

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

Mean Month Tmax (0C) RCP 4.5  

       

2030 0.38 0.20 0.54 0.55 0.22 -0.21 -0.80 -0.37 -0.37 -0.20 -0.08 0.15 

2055 0.35 0.25 0.43 0.55 0.28 -0.19 -0.58 -0.38 -0.50 -0.37 -0.04 0.19 

2080 0.33 0.11 0.39 0.65 0.35 0.00 -0.36 -0.42 -0.54 -0.45 -0.25 0.19 

Mean Month Tmin (0C) RCP 4.5  
       

2030 0.95 0.70 -1.2 0.47 0.07 -0.49 1.20 0.60 -1.8 -1.58 -1.03 2.14 

2055 1.09 0.95 -0.6 0.29 -0.18 -0.55 0.63 0.28 -1.64 -1.48 -0.79 1.96 

2080 1.37 0.35 -1.1 0.06 0.12 -0.36 0.60 0.18 -1.31 -0.86 -0.72 1.6 

Mean Month Tmax (0C) RCP 8.5  
       

2030 0.73 0.44 0.72 1.05 0.22 -0.46 -1.13 -0.43 -0.47 -0.66 -0.15 0.13 

2055 0.24 0.18 0.47 0.59 0.40 -0.08 -0.59 -0.37 -0.47 -0.38 -0.16 0.18 

2080 0.30 0.23 0.40 0.73 0.30 -0.10 -0.56 -0.41 -0.52 -0.39 -0.14 0.16 

Mean Month Tmax (0C) RCP 4.5  
       

2030 0.99 0.46 -1.07 0.13 0.31 -0.21 1.12 0.61 -1.74 -1.66 -1.02 2.08 

2055 1.12 0.78 -0.59 0.44 0.70 0.01 1.10 0.61 -1.23 -0.81 -0.63 -1.50 

2080 1.24 1.19 -0.87 0.03 0.40 -0.89 0.16 -0.28 -1.57 -0.51 0.02 1.08 
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4.4. Hydrological Change of Projected Precipitation and Temperature on 

Streamflow  

4.4.1. Change in Projected streamflow  

SWAT hydrological model calibrated and validated the streamflow of Mojo catchment at 

Mojo gauged station and model results of streamflow was considered for comparative 

analysis for a baseline period of 1981–2005 and projection periods 2030 (2005–2030), 

2055s (2031–2055), and 2080s (2056–2080) under both GCMs models and climate 

scenarios. The figure showed that the annual mean of two models with reference to the 

baseline (observed).  The model MPI-M-MPI-ESM-LR shows that with reference to the 

baseline the streamflow for both scenarios become increases. Under RCP 4.5 the stream 

increases by 4.62 m3/s, 4.30 m3/s, and 7.79 m3/s by the year Near (2030), Mid (2055) and 

Far (2080) respectively. For scenario 8.5 the increase becomes 6.68 m3/s,2.64 m3/s, 6.31 

m3/s by the year Near, Far and Future periods respectively. According to Gizaw et al., 

(2017) also the streamflow becomes shows an increase in the projected annual 

streamflow in the Awash basin by the 2050s and 2080s. Change in model MIROC-

MIROC5 shows a decreasing stream flow change at Near and Mid period of RCP 4.5 

scenario by -6.32 m3/s and -5.08 m3/s respectively some of the results Daba, (2015) and 

Taye, (2018) which is related with decreasing streamflow happened in 2050 and 2080 

over the Awash basin but in Mojo catchment the decreasing happens starting from Near 

and Mid periods and under RCP 4.5 but at Far future period the streamflow shows 

increases change by 19 m3/s. Similarly, for the RCP 8.5 Near period increase by 18.33 

m3/s and for Mid, Far future period decreases by 4.27 m3/s and 5.76 m3/s respectively 

which is the same as (Taye, 2018) and (Daba, 2015) Figure (4.13).  
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A) MPI-M-MPI-ESM-LR 

 
B) MIROC-MIROC5 

 
Figure 4.13 The annual mean of simulated streamflow (1981-2080) at Mojo catchment 

for model MPI-M-MPI-ESM-LR (A) and MIROC-MIROC5 (B) under RCP4.5 and 

RCP8.5 climate scenarios  

 

Seasonal projection streamflow showed a mixed increasing and decreasing trend in both 

Models (Figure 4.14) and (Table 4.10). The seasonal variation of Streamflow under the 

model MPI-M-MPI-ESM-LR show that in Kiremt (main rainy) season (June–September) 

the streamflow becoming decrease in July at far and Mid period under RCP 4.5 and 8.5 

scenarios respectively, and August September at entire period under both RCPs become 

decrease and Also, Bega (dry) season (October–January), streamflow shows increase 

0

10

20

30

40

50

60

70

80

1
9
8

1

1
9
8

4

1
9
8

7

1
9
9

0

1
9
9

3

1
9
9

6

1
9
9

9

2
0
0

2

2
0
0

5

2
0
0

8

2
0
1

1

2
0
1

4

2
0
1

7

2
0
2

0

2
0
2

3

2
0
2

6

2
0
2

9

2
0
3

2

2
0
3

5

2
0
3

8

2
0
4

1

2
0
4

4

2
0
4

7

2
0
5

0

2
0
5

3

2
0
5

6

2
0
5

9

2
0
6

2

2
0
6

5

2
0
6

8

2
0
7

1

2
0
7

4

2
0
7

7A
n

n
u

a
l 

m
ea

n
 s

tr
ea

m
 f

lo
w

 (
m

3
/s

)

Year

Observed RCP 4.5 RCP 8.5

0

10

20

30

40

50

60

70

80

1
9
8

1

1
9
8

4

1
9
8

7

1
9
9

0

1
9
9

3

1
9
9

6

1
9
9

9

2
0
0

2

2
0
0

5

2
0
0

8

2
0
1

1

2
0
1

4

2
0
1

7

2
0
2

0

2
0
2

3

2
0
2

6

2
0
2

9

2
0
3

2

2
0
3

5

2
0
3

8

2
0
4

1

2
0
4

4

2
0
4

7

2
0
5

0

2
0
5

3

2
0
5

6

2
0
5

9

2
0
6

2

2
0
6

5

2
0
6

8

2
0
7

1

2
0
7

4

2
0
7

7A
n

n
u

a
l 

m
ea

n
 s

tr
e
a

m
 f

lo
w

 (
m

3
/s

)

Year
RCP 8.5 Observed RCP 4.5



71 
 

under both RCP climate scenarios for the all periods except October Near period at both 

RCPs, December at Mid period under RCP 4.5 and RCP 8.5 at all period and January at 

far period become decrease. Similarly, In the Belg season (February–May), streamflow 

shows increased change in all periods February and April under 4.5 scenario, February 

and April at Near period under RCP 8.5 and May at Near period under both scenarios the 

rest become shows a decreasing change. 

The seasonal variation continues under the model MIROC-MIROC5 shows that at   

Kiremt season become decreases in both scenarios except July at a far period under 4.5 

and Near pod under 8.5 scenarios. For short rainy season, Belg in periods and RCPs 

shows an increasing change and also for Bega season shows slightly increase at 

November in all periods under both scenarios, at December in all period under RCP 8.5, 

October at mid-period in all RCPs and October at Near and far period under RCP 4.5 and 

8.5 respectively. The rest shows a decreasing change. 
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MIROC-MIROC5 

RCP 8.5 

 

RCP 4.5 

 
Figure 4.14 The annual mean of simulated streamflow change (%) (1981-2080) at Mojo 

catchment for model MPI-M-MPI-ESM-LR and MIROC-MIROC5 under RCP4.5 and 

RCP8.5 climate scenarios  

Table 4.10 Mean Monthly variation of Streamflow change (%) (2006-2080) for the 

Model MIROC-MIROC5 and MPI-M-MPI-ESM-LR under RCP 4.5 and 8.5 

MPI-M-MPI-ESM-LR 

Period Jan  Feb   Mar   Apr May  Jun  Jul    Aug Sep Oct   Nov  Dec 

 

Mean Monthly streamflow change (%) RCP 4.5 

       

2030 1.93 1.30 -0.92 3.19 0.55 3.82 1.78 -4.72 -6.90 -0.12 0.06 0.02 

2055 0.45 0.95 -0.17 0.49 -0.80 3.71 2.82 -3.84 -3.88 0.32 0.05 -0.10 

2080 0.43 0.67 -1.29 0.66 -1.90 2.66 -0.77 -0.78 -1.65 1.08 0.75 0.16 

Mean Monthly streamflow change (%) RCP 8.5 
       

2030 1.93 1.30 -0.92 3.19 0.55 3.82 1.78 -4.72 -6.90 -0.12 0.06 0.02 

2055 2.90 0.10 -0.73 0.77 -1.44 3.86 -1.14 -1.74 -3.36 0.57 0.23 -0.03 

2080 -0.45 -0.32 -0.73 -1.85 -1.61 3.32 4.01 -1.05 -2.51 0.98 0.29 -0.06 
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MIROC-MIROC5 

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

                

Mean Monthly streamflow change (%) RCP 4.5 

2030 -0.70 1.01 5.79 11.18 6.99 -3.53 -5.28 -15.29 -5.43 1.07 2.68 1.51 

2055 -0.29 1.16 8.62 10.63 6.13 -5.50 -8.38 -11.43 -4.80 0.82 2.01 1.03 

2080 -0.70 0.02 0.99 0.74 1.21 -3.11 7.02 -2.87 -1.68 -1.22 -0.15 -0.25 

Mean Monthly Streamflow change (%) RCP 8.5 

       

2030 -0.74 0.38 3.20 0.31 1.54 -2.80 9.72 -3.54 -6.57 -1.38 0.05 -0.18 

2055 -0.27 0.29 9.03 10.33 2.73 -3.23 -5.07 -14.83 -3.01 0.75 2.93 0.35 

2080 -0.78 0.09 7.76 13.68 2.25 -3.69 -7.70 -12.32 -2.59 2.99 0.28 0.02 

  

4.4.2. Impact of Future Precipitation and Temperature Change on the 

streamflow  

What we have seen from the above analysis is that there is a variation of increasing 

decreasing of precipitation as well as temperature projection that leads to fluctuation over 

the streamflow of  Ethiopia basins Mengistu and Sorteberg, (2012), Gizaw et al., (2017) 

and Chaemiso et al,. (2016) this fluctuation also shows on the Mojo catchment. The two 

models used in the analysis show that the variation of streamflow occurs with the 

different occurrence of temperature and precipitation results. In the model MPI-M-MPI-

ESM-LR shows that the annual mean of stream flow under RCP 8.5 indicates that 

decreasing from 29.7 m3/s to 25.0 m3/s under Near (2006-2030) and Mid (2031-2055) 

periods respectively and under Far period become increase by 28.7 m3/s and also the 

precipitation increase by 2.35 mm/day, 2.45 mm/day and 2.57 mm/day under Near, Mid 

and Far period respectively, So this variation has relation with stream flow of Mojo 

catchment with an increase precipitation leads to increase streamflow which related with  

Jilo et al., (2019) over logiya catchment. But the maximum temperature increases from 

24.550C to 24.60 0C at Near, Mid periods respectively and 26.220C under the Far period 

and the minimum temperature also becomes increase from 9.17 0C, 9.90 0C and 11.950C 

under a period of Near, Mid and Far respectively. Similarly, under the RCP 4.5, the 

streamflow variation becomes decrease from 29.12 m3/s, to 27.06 m3/s under Near and 

Mid future periods and also stream flow becomes increase by 29.18 m3/s by the period of 
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Far future. from the hydrological perspective, and the maximum temperature becomes 

increase from 23.350C to 25.050C under the Near and Mid period and the decrease 

temperature occurred under the Far period by 24.770C leads to decreasing of streamflow 

in the Near and Mid period which related with (Dile et al., 2013). Also, the temperature 

minimum shows an increasing trend from 8.9230C to 100C under the Near and Mid 

period and 100C under the Far future period. 

The variation under the model MIROC-MIROC5 shows that the annual mean streamflow 

becomes decrease trend shows on the RCP 8.5 from 40.78 m3/s to 18.16 m3/s under Near 

and Mid period and 16.68 m3/s under Far future period. Increases streamflow under RCP 

4.5 from 16.12 m3/s to 17.55 m3/s in the period of Near and Mid Future and 41.74 m3/s in 

the period of the Far Future. The increase of maximum temperature from 23.90 0C to 

24.82 0C under the period of Near and Mid period and 26.18 0C in the period of Far 

future under RCP 8.5 and decrease of precipitation from 3.29 mm/day to 1.82 mm/day by 

the period of Near and Mid future and 1.77 mm/day under Far future period. The 

condition becomes more favorable to high evapotranspiration and causes decrease 

streamflow by the increase in maximum temperature in both periods of Near and Mid 

Future as well as Far future of RCP 8.5 which is a related result with Taye, (2018) at 

awash basin and Molla and Abdisa, (2018) at Baro Akobo basin. change in temperature 

on water availability was assessed based on climate change scenarios for the catchment 

(Chaemiso et al,. 2016). the minimum temperature in both scenarios shows that an 

increasing trend under RCP 8.5 from 11.930C to 12.910C under the Near and Mid period 

and also 14.70 0C under the far period. For the RCP 4.5, the minimum temperature shows 

that 11.14 0C,12.71 0C, and 12.70 0C under Near, Mid and far future period respectively. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusion 

Climate change effect is likely to be alterations in hydrologic cycles and changes in water 

availability. In this study, we investigated the impact of climate change on the 

hydrological response of Mojo catchment, was investigating. 

This research evaluated the impact of climate change on Mojo catchment hydrology 

resulting from CORDEX-Africa mid-rand and high-level RCP climate scenarios (RCP 

4.5 and RCP 8.5). Calibrated SWAT hydrological model was then used to select the 

appropriate GCM model and transform these future climate scenarios to projected 

streamflow used as an input for reservoirs planning and management. Projected 

precipitation and temperature from ensemble CORDEX-Africa RCP scenarios have 

systematic errors (bias) that may lead to biased simulated streamflow which is not 

corrected by calibration of the hydrological model. However, Quantile mapping with 

Gamma distribution for precipitation and Normal distribution method for temperature 

used to correct the biases and improves precipitation and streamflow simulations. 

Analyzing the SWAT model for performance assessment of climate GCMs models over 

the Mojo catchment shows a good relationship with the observed data so SWAT model is 

so much more suitable for the catchment of the study area. After selecting the performed 

GCM models two of them show good relation with the observed data which is MPI-M-

MPI-ESM-LR and MIROC-MIROC5 models over the Mojo catchment. For analysis of 

the future climate impact on the catchment scenarios classified into three periods Near 

future (2006-2030), Mid future (2031-2055) and Far future (2056-2080) periods.  Mid-

range RCP 4.5 and high-level RCP 8.5 climate scenarios showed that projected 

temperature consistently increases across the Mojo catchment and decrease precipitation 

projection annually under RCP 8.5 and increase under RCP 4.5 in the model of MIROC-

MIROC5. Under the model, MPI-M-MPI-ESM-LR shows a slight decrease in the RCP 

4.5 scenario and an increase in the RCP 8.5 scenario. The seasonal variation of Kiremt 

and Bega including Belg season which shows a mixed trend. Projected higher 

temperature and precipitation increase under RCP4.5 and RCP8.5 climate scenarios 

expected to decrease projected streamflow of Mojo catchment. This study result showed 
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that climate change will affect the planning and operational over the Mojo catchment. 

Therefore, the effect of projected precipitation and streamflow should be included in the 

feasibility assessment of Mojo catchment planning. Future research on impact 

assessments should focus on integrated approaches linking climate, hydrology, water 

resources, and ecosystem models to sustain and improve the development of the river and 

its basin in a changing environment. 
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5.2. Recommendation  

This study involved over four model’s analysis and two of them model outputs used were 

each possessed a certain level of uncertainty. Hence, the results of this study should be 

taken with care and be considered indicative of future flow.  

This study should be extended by considering combined changes in land use, soil and 

other climate variables in addition to the changes in climate (i.e. precipitation and 

temperature).  

The outcome of this study is based on two GCMs and two RCPs scenarios. However, it is 

often recommended to apply further analysis based on the output of different GCMs and 

RCP scenarios so as to make a comparison between different models as well as to 

explore a wide range of climate change scenarios that would result in different 

hydrological impacts. Hence this work should be extended in the future by including 

different GCMs and RCP scenarios. 

The GCMs were downscaled to catchment with 50 km *50 km Grid in the study uses one 

ensemble for the analysis, in fact, all downscaled data should also use as an additional 

ensemble value to taste how much the model uncertainty minimize.  

Water resources are highly linked with climate, so the prospect of global climate change 

has serious implications for water resources. As water resources stress become acute in 

the future as a result of a combination of climate impacts and escalating human demand, 

there will be intensifying conflicts between human and environmental demands on water 

resources. Therefore, there is a need to minimize the sensitivity to climate change. One 

way to minimize this risk is to make the economy more diversified, and agricultural 

technology should optimize water usage through efficient irrigation and crop 

development.  

Moreover, research activities should be intensified in this area in order to explore the 

impact of climate change on various sectors including integrated water resource uses. 

This will contribute partly to the long way towards sustainability if impacts of climate 

change are considered at all levels from planning to execution and management of water 

resource development projects.  
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The physically-based, spatially distributed, and public domain Soil and Water 

Assessment Tool (SWAT) is found to be a very appropriate tool to simulate both 

historical as well as impacted hydrological processes in the catchment. Therefore, SWAT 

can be utilized very well for hydrological simulations in Mojo catchment. Besides, the 

model should be further tested for its suitability in other catchments of Ethiopia.  

The output of any model depends on the quality of the input data. Lack of quality climate 

and hydrological data was one of the challenges in this study. Hence, responsible bodies 

should give due attention to the acquisition and recording of reliable data. 
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                                                 APPENDIX 

Appendix 1 Test of Homogeneity of rainfall 

Chefedonsa (1980-2010) 

K 91.000 

T 1991 

p-value (Two-tailed) 0.535 

Alpha 0.05 
 

Ejere (1980-2010) 

K 56.000 

T 1994 

p-value (Two-tailed) 0.806 

Alpha 0.05 
 

 

Debrezeyit (1980-2010) 

K 90.000 

T 1995 

p-value (Two-tailed) 0.280 

Alpha 0.05 
 

 

Mojo (1980-2010) 

K 122.000 

T 1991 

p-value (Two-tailed) 0.061 

Alpha 0.05 
 

 

Appendix 1 Test of outlier of rainfall of four stations 

Chefedonsa (1975-2010) 

year Annual Max year Annual Max 

1975 32 1993 40 

1976 32.1 1994 23.275 

1977 35.3 1995 27.651 

1978 42.15 1996 53.017 

1979 34 1997 31 

1980 37.4 1998 45.3 

1981 44.5 1999 43.6 

1982 45.6 2000 31.1 

1983 70 2001 26.7 

1984 50.9 2002 27.5 

1985 62.5 2003 55.6 

1986 56.2 2004 30.2 

1987 47.2 2005 68.8 

1988 38.9 2006 48.2 

1989 41.8 2007 57.3 

1990 56 2008 40.2 

1991 51 2009 36.5 

1992 35.5 2010 50.2 
 

 

Chefedonsa  
Number of data 36 

S   0.278 

KN  2.639 

kNs  0.733 

Var  0.08 

XL  19.9 

XH  86 

x-bar  3.72 

Max  70 

Min  23.275 
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Debrezeyit (1980-2010) 

year Annual Max year Annual Max 

1980 75 1996 62 

1981 38.4 1997 57 

1982 39.2 1998 70 

1983 46.4 1999 53.6 

1984 42.8 2000 47 

1985 54.9 2001 39.8 

1986 42.645 2002 44.7 

1987 45.8 2003 45.6 

1988 32.5 2004 46.2 

1989 37.8 2005 37 

1990 42.3 2006 74.4 

1991 44.98 2007 38.1 

1992 39.996 2008 45.9 

1993 29.662 2009 31.5 

1994 34.6 2010 44.6 

1995 32.4   
 

 
 

Debrezeyit  
Number of data 31 

S   0.24 

kN  2.58 

kNs  0.61 

Var  0.06 

X-bar  3.79 

XL  24.05 

XH  82.02 

Max  75 

Min  29.662 

 

Ejere (1980-2010) 

year Annual Max year Annual Max 

1980 33 1996 66 

1981 56 1997 34 

1982 46 1998 64 

1983 61 1999 65 

1984 48 2000 45 

1985 63 2001 39 

1986 43 2002 70 

1987 59 2003 57 

1988 28 2004 59 

1989 68 2005 56 

1990 52 2006 64 

1991 48 2007 48 

1992 31 2008 56 

1993 56 2009 52 

1994 41 2010 42 

1995 55   
 

 

Ejere   
Number of data 31 

S   0.24 

kN  2.6 

kNs  0.62 

XL  27.0 

XH  94 

X-bar  3.9 

Max  70 

Min  28 
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Mojo (1980-2010) 

year Annual max year Annual max 

1980 52 1996 45 

1981 50 1997 54 

1982 71 1998 79 

1983 57 1999 49 

1984 48 2000 45 

1985 65 2001 43 

1986 34 2002 47 

1987 48 2003 78 

1988 45 2004 47 

1989 61 2005 56 

1990 62 2006 35 

1991 69 2007 39 

1992 35 2008 78 

1993 48 2009 48 

1994 39 2010 56 

1995 36   

 
 

 

 

 

Mojo   
Number of data 31 

S  0.2 

kN  2.6 

kNs  0.6 

XL  27.3 

XH  94.4 

x-bar  3.9 

Max  79 

Min  34 

 

Appendix 2 Test of outlier of Streamflow at Mojo gauge stations (1980-2010) 

year Annual Max year Annual Max 

1980 186.01 1996 33.70 

1981 97.46 1997 14.08 

1982 32.93 1998 48.87 

1983 141.72 1999 26.70 

1984 87.25 2000 20.95 

1985 102.33 2001 20.08 

1986 146.05 2002 35.33 

1987 112.14 2003 43.29 

1988 130.32 2004 17.78 

1989 117.06 2005 15.00 

1990 132.44 2006 24.59 

1991 215.57 2007 26.66 

1992 107.94 2008 26.35 

1993 216.45 2009 30.36 

1994 172.71 2010 13.96 

1995 91.07 
  

 

Mojo gauge station   

Number of data 31 

S  0.906 

Kn  2.578 

kNs  2.335 

Var  0.82 

XL  5.4 

XH  578 

X-bar  3.72 
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Appendix 4 Table 4.2 trend analysis of streamflow (1981-2011) 

1981-1996 

Kendall's tau 0.2167 

S 26.0000 

Var(S) 0.0000 

p-value (Two-tailed) 0.2650 

alpha 0.05 
 

      1997-2011 

Kendall's tau -0.1619 

S -17.0000 

Var(S) 0.0000 

p-value (Two-tailed) 0.4351 

alpha 0.05 
 

 

Appendix 5 Trend analysis of rainfall of four stations 

Chefedonsa (1975-2010) 

Kendall's tau 0.035 

S 22.000 

Var(S) 0.000 

p-value (Two-tailed) 0.777 

Alpha 0.05 
 

Ejere (1980-2010) 
 

Kendall's tau 0.063 

S 29.000 

Var(S) 3446.333 

p-value (Two-tailed) 0.633 

Alpha 0.05 

Debrezeyit (1980-2010) 

Kendall's tau -0.006 

S -3.000 

Var(S) 0.000 

p-value (Two-tailed) 0.973 

Alpha 0.05 
 

Mojo (1980-2010) 

Kendall's tau -0.063 

S -29.000 

Var(S) 3444.333 

p-value (Two-tailed) 0.633 

Alpha 0.05 
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Appendix 6 GCM model and their institutions (source: https://is-enes 

data.github.io/CORDEX_RCMs_info.html) 

Model Name Institute Institution Name 

CLMcom-CCLM4-8-17 CLMcom Climate Limited-area Modelling Community (CLM-Community) 

CLMcom-CCLM4-8-17-

CLM3-5 CLMcom Climate Limited-area Modelling Community (CLM-Community) 

CLMcom-CCLM5-0-0 CLMcom Climate Limited-area Modelling Community (CLM-Community) 

CLMcom-CCLM5-0-2 CLMcom Climate Limited-area Modelling Community (CLM-Community) 

CLMcom-CCLM5-0-6 CLMcom Climate Limited-area Modelling Community (CLM-Community) 

DMI-HIRHAM5 DMI Danish Meteorological Institute 

GERICS-REMO2009 GERICS Helmholtz-Zentrum Geesthacht, Climate Service Center Germany 

GERICS-REMO2015 GERICS Climate Service Center Germany 

ICTP-RegCM4-3 ICTP Abdus Salam International Centre for Theoretical Physics 

ICTP-RegCM4-6 ICTP Abdus Salam International Centre for Theoretical Physics 

ICTP-RegCM4-7 ICTP Abdus Salam International Centre for Theoretical Physics 

MPI-CSC-REMO2009 MPI-CSC 

Helmholtz-Zentrum Geesthacht, Climate Service Center, Max Planck 

Institute for Meteorology 

SMHI-RCA4 SMHI Swedish Meteorological and Hydrological Institute, Rossby Centre 

SMHI-RCA4-SN SMHI Swedish Meteorological and Hydrological Institute, Rossby Centre 

SMHI-RCAO SMHI Swedish Meteorological and Hydrological Institute, Rossby Centre 

SMHI-RCAO-SN SMHI Swedish Meteorological and Hydrological Institute, Rossby Centre 

UQAM-CRCM5 UQAM Universite du Quebec a Montreal 

UQAM-CRCM5-SN UQAM Universite du Quebec a Montreal 
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Appendix 7 Selected sensitivity parameters and their ranges fitted maximum and 

minimum value 

Parameters  Parameter Descriptions  Max Value  Min Value  

r__CN2.mgt SCS runoff curve number  104.84 122.35 

v__ALPHA_BF.gw Baseflow alpha factor (days) -0.07 -0.07 

v__GW_DELAY.gw Groundwater delay (days) -24.37 -16.62 

v__GWQMN.gw 

Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 1.20 1.20 

r__SURLAG.bsn Surface runoff lag time 9.79 9.87 

r__SOL_K ().sol Saturated hydraulic conductivity 103.85 106.48 

r__SOL_ALB ().sol Moist soil albedo 0.07 0.08 

r__CH_K2.rte 

Effective hydraulic conductivity in main channel 

alluvium -148.33 -125.77 

r__CH_N2.rte Manning's "n" value for the main channel -0.10 -0.10 

r__SLSOIL.hru Slope length for lateral subsurface flow 322.31 324.54 

r__ESCO.hru Soil evaporation compensation factor 0.83 0.83 

r__CANMX.hru Maximum canopy storage 72.35 72.78 

r__EPCO.hru Plant uptake compensation factor 0.02 0.03 

r__SLSUBBSN.hru Average slope length 66.15 66.82 

r__SOL_AWC ().sol Available water capacity of the soil layer 0.36 0.37 

r__BIOMIX.mgt Biological mixing efficient 0.07 120.00 

r__CH_COV1.rte Channel erodibility factor 0.05 0.34 

r__GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.20 

r__SHALLST.gw 

Concentration of nitrate in groundwater 

contribution to streamflow from subbasin (mg N/l) 105.00 534.00 

r__RCHRG_DP.gw Deep aquifer percolation fraction 0.08 0.50 

r__SOL_Z ().sol Depth from soil surface to bottom of layer 167.00 805.00 

r__USLE_P.mgt USLE equation support pra 0.06 0.70 

r__REVAPMN.gw Groundwater "revap" coefficient 53.73 105.88 
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Appendix 8 Sensitive parameters fitted value descriptions  

Parameter Name Fitted Value 
R__CN2.mgt 80.36 

V__ALPHA_BF.gw 0.04 

V__GW_DELAY.gw 107.96 

V__GWQMN.gw 1.33 

R__SURLAG.bsn 10.97 

R__SOL_K(..).sol 224.04 

R__SOL_ALB(..).sol 0.01 

R__CH_K2.rte 98.98 

R__CH_N2.rte -0.05 

R__SLSOIL.hru 231.84 

R__ESCO.hru 0.66 

R__CANMX.hru 44.67 

R__EPCO.hru 0.11 

R__SLSUBBSN.hru 100.07 

R__SOL_AWC(..).sol 0.30 

R__USLE_P.mgt 0.81 

R__USLE_K(..).sol 0.36 

 

Appendix 9 Global sensitive parameters of SWAT-CUP 
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Appendix 10 The change of Bias correction of Historical data with respect to observed 

rainfall from (1981-2005) for the two GCM models  

 Observed Historical Corrected 

MIROC-MIROC5    

Mean   2.557 1.572 2.434 

Beta  2.614 2.349 2.614 

STDEV  6.299 3.693 6.362 

Alpha 1.038 0.669 0.931 

MPI-M-MPI-ESM-LR 
   

Mean 2.557 1.652 2.474 

Beta 2.535 2.401 2.535 

STDEV 6.299 3.966 6.271 

Alpha 1.038 0.688 0.976 

 

Appendix 11 The change of Bias correction of Historical data with respect to observed 

maximum and minimum temperature from (1981-2005) for the two GCM models 

 

Observed 

Tmin 

Observed 

Tmax 

Historical 

Tmin 

Historical 

Tmax 

Corrected 

Tmax 

Corrected 

Tmin 
MIROC-MIROC5 

       

Mean   7.78 24.00    10.74      22.90 24.10 8.25 
 

Beta  4.67 4.52 3.24 2.38 3.95 3.79 
 

STDEV  1.67 5.31 3.31 9.61 6.09 2.18 
 

Alpha 12.96 127.49 35.58 220.13 146.84 17.95 
 

MPI-M-MPI-ESM-LR 
       

Mean   7.78 24.00 9.93 22.61 24.00 7.78 
 

Beta  4.67 4.52 3.31 2.64 4.52 4.67 
 

STDEV  1.67 5.31 3.00 8.55 5.31 1.67 
 

Alpha 12.96 127.49 29.76 193.30 127.48 12.96 
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Appendix 12 CORDEX-Africa (AFR-44) regional and global circulation models (Source: 

http://is-enes-data.github.io/CORDEX_status.html)  

Domain  
 

Regional Model GCM Models 
 

AFR-44 
 

CCLMA-8-17 CNRM-CERFACS-CNRM-CM5 

AFR-44 
 

CCLMA-8-17 ECMWF-ERAINT 
 

AFR-44 
 

CCLMA-8-17 ICHEC-EC-EARTH 
 

AFR-44 
 

CCLMA-8-17 MOHC-HadGEM2-ES 
 

AFR-44 
 

HIRHAM5 
 

ECMWF-ERAINT 
 

AFR-44 
 

HIRHAM5 
 

ICHEC-EC-EARTH 
 

AFR-44 
 

HadRM3P 
 

ECMWF-ERAINT 
 

AFR-44 
 

RACMO22T ECMWF-ERAINT 
 

AFR-44 
 

RACMO22T ICHEC-EC-EARTH 
 

AFR-44 
 

RCA4 
 

Ccma-CanESM2 
 

AFR-44 
 

RCA4 
 

CNRM-CERFACS-CNRM-CM5 

AFR-44 
 

RCA4 
 

ECMWF-ERAINT 
 

AFR-44 
 

RCA4 
 

ICHEC-EC-EARTH 
 

AFR-44 
 

RCA4 
 

MIROC-MIROC5 
 

AFR-44 
 

RCA4 
 

MOHC-HadGEM2-ES 
 

AFR-44 
 

RCA4 
 

MPI-M-MPI-ESM-LR 
 

AFR-44 
 

RCA4 
 

NCC-NorESM1-M 
 

AFR-44 
 

RCA4 
 

NOAA-GFDL-GFDL-ESM2M 

 

http://is-enes-data.github.io/CORDEX_status.html

