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Abstract 

Software engineering is incomplete without Software reliability prediction. For characterizing any 

software product quality quantitatively during phase of testing, the most important factor is 

software reliability assessment. Many software reliability growth models (SRGM) which is used 

for predicting in software reliability, however, no single model can give accurate prediction. For 

this the Artificial Neural Network (ANN) based software reliability model is introduced. In this 

thesis ANN based software reliability models for better reliability prediction in a real case is 

described and the growth of software reliability using ANN based model is presented. We 

proposed a neuro-genetic approach for the ANN based software reliability model by optimize the 

weights of the network by using proposed genetic algorithm (GA). Training the ANN using Back-

propagation algorithm (BPA) to predict the software reliability is the first action. Than train our 

model global optimize the weight of the networks by using the proposed GA. Using two datasets 

contain cumulative executive time and cumulative no of software failures are applied to the 

proposed models. These datasets are obtained from software projects. Then it is observed that the 

results obtained indicate a significant improvement in performance by using genetic algorithm in 

ANN based software reliability models over the normal algorithm of ANN based software 

reliability models. Numerical and graphical explanations show that proposed model for software 

reliability prediction since its fitting and prediction error is much less relative to the normal 

algorithm of ANN based software reliability model. 
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                                                 CHAPTER ONE  

Introduction 

As (Mallikharjuna & Kodali, 2015) introduced modern society is highly engaged with the role of 

software. Software engineers and software development organizations seeks great responsibility 

on maintaining quality, reliability and customer satisfaction with the software product. 

(Andersson, 2007) introduced software development testing is generally considered as one of the 

major quality control techniques. In order to calculate and predict the product quality software 

reliability is found as a significant attribute (Mir, 2011). As (Ramasamy & Lakshmanan, 2016) 

introduced American National Standards Institution (ANSI) defines the software reliability as the 

probability of failure-free operation of a software system for a specified period of time in a 

specified environment.  As (Ong, Isa, Jawawi, & HALIM, 2017) introduced the growth of software 

reliability increases through the removal of the faults during software failures in the test phase. 

Software reliability is one part of software quality, it is the highest concern by developers and 

project managers with the considerations with business profitability, user safety and preservation 

of the environment. Software reliability is an important for software development because 

unreliable software have some error or bugs that may causes software failures to occur if thus 

problem is not handled early. Examples of system failure has unfavorable impact on the 

environment, caused economic loss, even harmful to human lives (Ong et al., 2017). Thus software 

reliability prediction(SRP) has become crucial activity in software development process in order 

to produce reliable and good quality software. (Anjum, Haque, & Ahmad, 2013) presented among 

the prediction model, Software reliability growth model (SRGM) has been widely used in many 

software domains, such as telecommunication, embedded systems, military, banking and industrial 

control system. SRGM estimate the present reliability by estimating the model parameters and 

predict the future reliability of a system using practical failure data.  

SRGM are generally classified into two categories: Parametric and Non-parametric models.  

Parametric models estimate the model parameters based on the assumptions of underlying 

distributions. As (Su & Huang, 2007) introduced thus model depends on some assumption, it is 

believed that no single model can provide accurate estimation in all situations. As (Lakshmanan 

& Ramasamy, 2015) introduced one of the difficult tasks in parameter estimation of traditional 

SRGMs is estimating ranges and start values for each parameter to be estimated. 
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Thus models have certain assumptions regarding numerous factors such as software development 

process, software development organization, software use characteristics, nature of software faults 

and software complexity to predict software reliability. Some assumptions are not valid in real 

cases in software industry. Non-parametric models are used to overcome this problem. They do 

not consider any assumption about software development process and software development 

organization. They only used failure history of software to predict its reliability. The non-

parametric models use artificial neural network (ANN), support vector machine (SVM), fuzzy 

logic (FL) and genetics algorithm (GA) to predict software reliability. Among several non-

parametric models, ANNs are normally used to predict software reliability. The failure behavior 

of software failure data follows non-linear pattern between input and output. As (Lakshmanan & 

Ramasamy, 2015) introduced all soft computing techniques such as Artificial Neural Network, 

Fuzzy systems, Genetic algorithms are the non-parametric models . 

The problems with parametric SRGM is solved by soft computing techniques. So there is no 

specify the range of values in advance for each parameter which is a complex task (Mallikharjuna 

Rao & Anuradha, 2016). However, traditional SRGM does not have determined parameter. 

Optimization of these parameter is necessary task; these parameters are determined by least square 

error(LSE). Such a software failure data may not satisfy such a distribution.  

In this paper, we use GA to train our proposed model using failure data sets of the software by 

using global optimize the weight and parameter of the ANNs. It is a non-linear continuous 

function, ANNs are widely used in various fields of software engineering such as cumulative 

failure prediction, time between failure prediction, classification of software modules, software 

development effort prediction and software fault localization.  

Most of the ANN based models available in literature are trained using back propagation 

algorithm. It is a gradient based algorithm which suffers from local optimum problem. Genetic 

algorithm technique is widely used to solve the local optimum problem, in this work, there are 

three novel aspects. First, a new ANN architecture is proposed to predict software reliability taking 

testing time as input of the model. The purpose is used to distribute the inputs of ANN in a specified 

range for better training of ANN. Second, the proposed ANN model is trained using Genetic 

algorithm to predict cumulative number of failures in software. Third, the proposed model is 

validating by using two data sets available in literature. 
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1.1 Background 

Software Reliability 

The probability that a software will perform a required function under stated conditions for a 

specified period of time is known as software reliability’s. It is a very important factor to 

determine the qualities of software products during testing phase. The major benefits of software 

reliability measurement are planning and controlling the resources during software development 

process for developing high quality software. It gives confidence about software correctness. 

And additional cost is minimizing during testing and reliability should be improved. As (Bhuyan, 

Mohapatra, & Sethi, 2016) introduced at the time of development of any product or system like 

commercial, military or any other applications, we need to ensure its reliability and consistency 

in its performance, because a systems reliability has a major impacts of maintenance, repair 

costs, continuity of services and customer satisfaction. At the end, the project manager needs to 

ensure that the software is reliable enough to be released into the market.  

(Lyu, 1996) described  As per ANSI definition, software reliability is defined as the probability of 

failure-free software operation for a specified period of time in a specified environment. As 

(Lakshmanan & Ramasamy, 2015) introduced Software reliability models facilitate estimation of 

the present or future reliability of a system by estimating the parameters used in the models using 

software failure data at a given time. Parametric models estimate the model parameters based on 

the assumptions of underlying distributions. As (Lakshmanan & Ramasamy, 2015) introduced 

Parametric models can be further divided into three types: Non-Homogeneous Poisson Process 

(NHPP), Markovian models and Bayesian models .  
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Software Reliability Measurements 

 Failure Rate: It is the rate of occurrence of failures. It also represents 

number of failures in specified period of time. 

 Mean Times Between Failures (MTBF): It is the mean value of time and failures. 

 Availability: The probability that an item is in operable state at any time is called 

availability. It accounts for repairs and down time. 

Software Reliability Growth Models 

It includes two types of models 

 Parametric models 

  Nonparametric models 

Parametric models are based on non-homogeneous Poisson process (NHPP). ANN based 

software reliability model is non parametric model and based on statistical failure data. Non 

parametric models are more flexible. 

1.2 Statements of the problem 

In the modern age, it is a big challenge for software developers to quickly design, implement, test 

and maintain complex software systems. (Bhuyan, Mohapatra, & Sethi, 2014) introduced also it is 

difficult task for software companies to deliver good quality software in appropriate time . Over 

the year many number of software reliability models have introduced. Thus models showing future 

success approaches to software reliability prediction by controlling, planning the resources during 

software development process for developing high quality software. It gives confidence about 

software correctness. Also it minimizes the additional cost of testing and improves software 

reliability.  

(Mallikharjuna Rao & Anuradha, 2016) introduced Identifying and removal of the residual faults 

are one of the key features in software reliability indexes. (Mallikharjuna Rao & Anuradha, 2016) 

introduced SRGM is very helpful for software developers and has been widely accepted and 

applied However, each SRGM contains some undetermined parameters. Which means no single 

models can get accurate prediction for all cases. So optimization of these parameters is a necessary 

task. With this motivation, we investigated the improvement and application of ANN with 

optimization algorithm, namely Genetic algorithm, to optimize these parameters of SRGM. The 
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performance of our proposed model with optimize parameters compare with the existing models 

ANN. 

The following research questions will be expected answer at the end of this study. 

1. How we optimize the parameter of SRGM? 

2. How we improve the SRGM using neuro-genetic approach? 

3. How our model better predicts the reliability of software than the other SRGM? 

 1.3 Objectives  

The following are the general and specific objective. 

1.3.1 General objective 

The main objective of this research is improving SRGM by enhancing the parameter of software 

reliability growth model using Neuro-Genetic based approach. 

1.3.2 Specific Objective 

To achieve the general objective, the following activity will be performed 

 To study the existing SRGM  

 To identify and define a number of criteria with important level of selection of SRGM.  

 To develop a proposed SRGM using neuro-genetic algorithm. 

 To evaluate the performance of our proposed model using software failure datasets. 

 To compare and contrast the proposed model with the existing SRGM. 

 1.4 Scope of the study 

The aim of this study is to enhancing the parameters of SRGM using neuro-genetic approach to 

improve the reliability prediction so as to optimize the parameter of SRGM the cause of 

undetermined parametric problems. In this study an attempt is made to design optimize parameter 

to find a suitable SRGM with the failure rate. The efficiency of the model concerning decreased 

failure rate and optimizing the fitness are the major consideration for selecting the appropriate 

model for reliability growth in propose method 



6 
 

Software reliability is a vast research area then this study is delimited in SRGM that are only 

focused on certain NHPP SRGM and to evaluate the prediction quality of SRGM are selected from 

existing literature. Algorithms used in this study is develop using MATLAB.  

  1.5 Methods 

In this thesis work, we follow design science research methodology. Following is the description 

of each phase: 

1.5.1 Problem identification and motivation 

In this phase, our research problem is defined and the value of a solution is justified. Various 

literatures are reviewed to acquire knowledge about the state of the problem and the importance 

of the solution. Research works that have been done to predict software reliability by using some 

data sets that will be analyzed and evaluated to get an understanding of the various methods to 

increase the performance of our model. The gaps in related research works are analyzed and how 

we fill in the gaps are presented. 

1.5.2 Objectives for a solution 

The objectives of a solution are inferred from the problem definition or specification. The 

objectives of our study that are inferred from the problem specification are explained. Various 

resources have been reviewed to know the state of the problem, the state of current solutions and 

their efficacy. 

1.5.3 Design and development 

In this section, the artifact solution is created. This activity is focused on the functionality and 

design of our models.  Feed forward neural network is used for designing the ANN based SRGM. 

Matlab is used for writing the required source codes.  
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We collected software failures datasets we are applied for the proposed models. These datasets are 

found from software projects. This dataset is divided into two parts: training dataset used to train 

the model and to increase the performance of the system through different parameters; testing 

dataset to evaluate the system. Two data sets was collected. It will be divided in 70/30 format for 

training and testing respectively.  

Our system consists of four main components: Collection of data sets, Normalization of the data 

sets, optimization of ANN based SRGM and training parameters using GA. prediction, in turn, 

encompasses three main phases to predict software reliability. These are: 

1.5.4 Demonstration 

The developed system is demonstrated by simulating how the developed system to estimate and 

predict software reliability. The model was implemented with MATLAB package 

1.5.5 Evaluation 

The developed system is evaluated to measure how well it supports a solution to the problem. To 

evaluate the system in a rational method, testing datasets were fed into the developed model. 

Subsequently, the model was evaluated by comparing its output against the observed data using 

Root Mean Square Error(RMSE). 

1.5.6 Communication 

In this section, the problems, the artifacts of the designed solution, the effectiveness and other 

related information are communicated to relevant audiences when appropriate 

 1.6 Significance of the study 

Software reliability is a significant part of software industry; it gives measure to the customer as 

well as the developer about the faults in the software. The prediction of the reliability of any 

software is really essential in software industry. SRGM give an estimation to the number of faults 

that may occur in near future after the delivery of the product and thus the models also provide an 

induction of when to release the software, it uses the past data gathering in the testing process 

The significance of this paper will be the following 

 Used to develop a reliable software under a given time and cost constraint 
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 The software manager also determines the release time of the software with the help of the 

model. 

 Used to measure the quality of the software. 

 Used to estimate the duration of the testing time effectively. 

 Used to support the project manager to monitor testing 

 Helping the researchers to evaluate the reliability of the model 
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                                                 CHAPTER TWO  

                                                  Literature Review 

 2.1 Software Reliability Growth Model (SRGM) 

As (Inoue & Yamada, 2009) introduced a software reliability growth model ( abbreviated as 

SRGM) is fundamental technologies for quantitative software reliability assessment, and playing 

an important role in software project management for producing a highly-reliable software system. 

In order to selecting the best SRGM that is compatible with the ANN we should know their 

predictive power and their mean value function of each model.  As (Aggarwal & Gupta, 2014) 

introduced there are many software reliability growth models but the commonly used model of 

software reliability models are JM, GO model, MO model, Sch model, S-Shape model. 

Table 2. 1 SRGMs with mean value function 

SRGM                                                                                                        Mean value function 

                        

Goel–Okumoto model (GO)                                                                           a(1 - e-bt) 

 

Yamada delayed s-shaped model (Y)                                                           a(1 - (1 + bt)e-bt) 

 

Inflection s-shaped model (I)                                                                          a(1-e-bt ) / 1+ˇe-bt 

 

 

Logistic growth curve model (L)                                                                    a/1+be-ct 

 

As (Saleem, 2013) proposed typically two broad categories of software reliability growth models 

(SRGMs) include parametric models and nonparametric models. (Singh & Kumar, 2010) 

introduced most of the parametric models are based on nonhomogeneous Poisson process (NHPP) 

that has been widely used successfully in practical software reliability engineering. Artificial 
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Neural Network (ANN) based non-parametric software reliability models estimates the model 

parameter without any distributions and assumptions. 

2.2 Overview of The Artificial Neural Networks 

2.2.1 Artificial neural networks (ANNs) 

An artificial neural network, or simply neural network, is a type of artificial intelligence (computer 

system) used to stores information. It generally used to capture the non-linear data of software 

failure process. ANN based software reliability models for predicting cumulative software number 

of failures used cumulative software testing time as input and cumulative software number of 

failures as output. 

Feed forward ANN are commonly used architectures in literature which has an input layer, 

one/more hidden layer and an output layer. In this work, a new ANN architecture is proposed to 

predict cumulative number of failures in software. The proposed ANN architecture is trained using 

GA method. Generally, ANNs have the following components. 

Neuron: Neuron is the information-processing unit. It is weighted sum of the input signals xj at 

the presence of thresholds, passes the sum through the activation function or transfer function of 

the ANN to process the input signals and generates an output of the neuron of the network. As 

we see in the figure the neuron is connected layer by layer and connected to each other directly 

through communication links associated with some weights.  

As(Agatonovic-Kustrin & Beresford, 2000) mentioned the artificial neuron is the building 

component of the ANN designed to simulate the function of the biological neuron. (Tawfiq & 

Salih, 2014) described the arriving signals, called inputs, multiplied by the connection weights 

(adjusted) are first summed (combined) and then passed through a transfer function to produce the 

output for that neuron. 
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             Figure 2. 1 Model of an artificial neuron (Agatonovic-Kustrin & Beresford, 2000)  

 

where neti is the input signals and wji is the weight of the connection link between the input xj and 

neuron of the network. 

Network architecture: It determines the network topology applied. The most common ANN 

topology is forward-feeding connections.  

Learning algorithm: ANN learns from training examples by adjust the weight of the network. 

BPA is a class of supervised learning algorithm which is commonly used. It is a learning 

techniques are used to update the weights of the network for training the feed forward back 

propagation network. Recently, GAs have been applied as the learning algorithm for optimization 

of network weights to reduce errors.  

For the general model of artificial neural network, the net input can be calculated as follows  

yin=x1.w1+x2.w2+x3.w3…xm. wm 

                                                    Net input yin=∑mixi. wiyin=∑i
mxi. wi 

The output of the network calculated by using the activation function over the net of the input. 

                        Y=F(yin)Y=F(yin) 

                      Outputs = functions of net input  
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                                  Figure 2. 2 A multi-layer feedforward ANN (Nielsen, 2015) 

As we have seen in the above figure the left side the layer in this network is the input layer, and 

the neurons of the layer are input neurons. The right side or output layer contains the output 

neurons. The middle layer is a hidden layer. ANN is feedforward if there exists a method which 

numbers all the nodes in the network such that there is no connection from a node with a large 

number to a node with a smaller number. Feedforward neural network have only one diction of 

the network. 

ANN is used to an artificial intelligence that is used to processes and stores information. It works 

by creating connections between mathematical processing elements called neurons, knowledge is 

encoded into the network through the strength of the connection between different neurons called 

weight. ANN based models for predicting the reliability of software’s. Feed forwarded ANN are 

commonly used architecture in literature which has input layer, hidden layer and an output layer.  
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2.3 Genetic Algorithm 

As (Rahman & Setu, 2015) introduced Genetic algorithm is robust evolutionary optimization 

search techniques which follows natural genetics to find global optimal solution. It is a global 

search method it uses selection, crossover and mutation. It is used for optimization procedures, 

which is better to find values close to global optimization. Most of the ANN based software 

reliability models available in literature are trained using back propagation algorithm. It is a 

gradient based algorithm which suffers from local optimum problem GA technique is widely used 

to solve the local optimum problem. Genetic algorithms used for optimizing and learn features of 

biological evolution. An algorithm requires a few base components (Montana & Davis, 1989) The 

characteristics of Genetic Algorithm are as follows: 

o Genetic algorithm operates on parameters of the code. 

o The genetic algorithm starts with many points; thus it prevents the search process from 

converging to local optimal solution effectively. 

o It calculates the fitness value by objective function without additional information and 

relies little on the problem. 

o The optimization rules of genetic algorithm are determined by probability, but not 

deterministic. 

o Genetic algorithm operates an efficient heuristic search in the solution space rather than 

an exhaustive or complete random search. 

o There’s no limit on genetic algorithm for the function to be optimized. It does not require 

to be continuous or micro.  

o It can both be an explicit function of mathematical expressions and Implicit function like 

the neural network or mapping matrix.  

o The genetic algorithm has the characteristics of parallel operation; thus it can improve the 

calculation speed through the large scale parallel operation. 

o The genetic algorithm has the characteristics of simply compute and strong function and 

is more suitable for optimization of large scale complex problems. 
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A. Evaluation 

As (Rahman & Setu, 2015) introduced Each member of the population is then evaluated; calculate 

a ‘fitness’ for that individual and its value is calculated by how well it fits with the desired 

requirements. 

B. Selection 

Selection helps by removing the bad designs and having the best individuals in the population 

crossover by combing the selected individual create new offspring’s. As (Rahman & Setu, 2015) 

introduced there are a few different selection methods but the basic idea is the same, make it 

more likely that fitter individuals will be selected for the next generation. 

C. Crossover 

By combing the selected individual create new offspring’s. As (Rahman & Setu, 2015) introduced 

The hope is that by combining certain traits from two or more individuals, an even ‘fitter’ offspring 

will be created which will inherit the best traits from each.  

D. Mutation 

As (Rahman & Setu, 2015) introduced Add a little bit randomness into the populations’ genetics 

otherwise every combination of solutions that can create would be in the initial population.  

Most of the ANN based models available in literature are trained using back propagation 

algorithm. It is a gradient based algorithm which suffers from local optimum problem GA 

technique is widely used to solve the local optimum problem. Steps that are used to train ANN 

with GA Set weights of the network, Define the network and Use GA as the member of the 

population finally Train the weight until obtain the target output. 
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2.4 Literature Review 

Models that describe the failure phenomenon and consequent enhancement in reliability due to 

fault removal are termed as SRGM. Many papers are published addressing the problems with the 

parameter estimation of traditional SRGM is overcome by soft computing techniques such as 

Artificial Neural Network, Fuzzy systems, Genetic algorithms.  

(Karunanithi, Whitley, & Malaiya, 1992a) first presented neural network based software reliability 

model to predict cumulative number of failures. They apply cumulative execution time of the 

software as the input of the network. They consider two different training sets like Prediction and 

Generalization in their own study. They compared their results with some previous models and get 

better prediction than those models. 

(Bisi & Goyal, 2012) Proposed SRP using Neural Network with Encoded Input they presented that 

the performance of a neural network system can be significantly improved by combining a 

network. However, only one data set is used as case study to validate and evaluate the reliability 

prediction 

(Lakshmanan & Ramasamy, 2015) proposed the neural network-based combination model with 

single input neuron in the input layer, single output neuron in the output layer and two neurons in 

the hidden layer have been done. The result of their proposed model estimation is better than 

traditional SRGMs in terms of accuracy. However, the model cannot manage well with major 

changes that are not reflected in training phase.   

An ANN based model which used ensembles was presented in (Kapur, YADAVALLI, KHATRI, 

& BASIRZADEH, 2011) for SRP. The approach was applied on the two software data sets and 

experimental results showed that ANN ensembles had better predictive capability than single ANN 

model and some statistical models.  

(Ong et al., 2017) proposed a method to invisage the reliability, ranking and selection of SRGM 

using particle swarm optimization (PSO). The result had shown that PSO for optimizing SRGM 

parameter has provided more accurate reliability prediction, but there are no standard approaches 

to select optimal SRGM. Selection of SRGM requires efficient estimation of reliability parameters 

which helps in determining the quality 
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In this Section, some related works using ANN for software reliability modeling and prediction 

are briefly introduced. Artificial neural network based software reliability model was first 

presented in (Karunanithi, Whitley, & Malaiya, 1992b) to predict cumulative number of failures.  

Those authors use Jordan neural network and Elman neural network were used to predict 

cumulative number of failures in software taking testing time as input of the models. The results 

obtained by the models had better prediction capability than some statistical software reliability 

models. 

 An ANN based model to predict next-failure time was presented in (Cai, Cai, Wang, Yu, & Zhang, 

2001) Recent 50 failure times were used as input of the model to predict the next-failure time as 

output. Number of input nodes and hidden nodes were varied to evaluate the prediction accuracy 

of the model. The result was found that prediction capability of a model depends on the nature of 

data sets.  

A dynamic weighted combinational model (DWCM) based ANN model was presented in (Su & 

Huang, 2007) predict the reliability of the software. They use activation functions in the hidden 

layer were used depending upon the software reliability growth models (SRGM). The model had 

been applied on two data sets and it was found that results were better than some statistical models. 

An ANN based model which used ensembles was presented in (Zheng, 2009) for software 

reliability prediction. The approach was applied on two software data sets and experimental results 

showed that ANN ensembles had better predictive capability than single ANN model and some 

statistical models.  

(Lo, 2009) developed software reliability prediction model using artificial neural network. They 

examine several models without assuming some unrealistic things. Bayesian regularization is 

applied to train the network, they commented that their approach produced less average relative 

prediction error than the other prediction techniques. 

Software reliability growth models (SRGM) based on non-homogeneous poison processes (NHPP) 

using a unified theory  (Saleem, 2013) was presented in which incorporates the concept of multiple 

change-points. The model was applied on three software failure data sets and found better 

prediction result than some existing SRGM. 
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(Bhuyan et al., 2016) presented an approach for predicting software reliability. These approach 

focuses on two types of experimentation; a) next-step prediction or short-term prediction of the 

reliability and b) the end-point prediction is performed at the end of a future testing and debugging 

session. The short term predictions result shows better accuracy than end-point predictions for both 

the data sets. 

In literature, a number of software reliability models exist which are used to predict cumulative 

number of failures in software. All the ANN -based models use back propagation algorithm to 

train the network. Back propagation is a gradient based technique which suffers from local optima 

problem. In this paper, Genetic algorithm method is used to train the network which is a gradient 

based global optimization 
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CHAPTER THREE 

                                                Methodology  

3. Introduction 

This paper addresses the ANN based software reliability model problems that occurred when using 

a cumbersome trial-and-error procedure by adopting a methodology based on GA method. Which 

is used to optimizing the ANN parameters includes, activation function, training algorithm, 

learning rate, momentum rate and number of epoch as depicted in Figure 3.1. 

Each data sets consists of three parts training, test and prediction samples. As (Arifovic & Gencay, 

2001) introduced the training sample is utilized during the local minimization stage, while the test 

sample is used to evaluate a fitness value of a given network. Finally, the prediction sample of a 

dataset is used only for evaluating network predictive power.  

The ANN parameters used the success of the training phase. Back propagation training is a gradient 

descent algorithm. It tries to improve the performance of neural network by reducing its error along 

its gradient, but it takes more time to reach the neighborhood of an optimal solution. On the other 

hand, genetic algorithm used for global search methods. It investigates the entire search space. 

Hence, they reach faster the region of optimal solution.   
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                                  Figure 3. 1 Flowchart of the proposed model 
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3.1 Software failure data sets 

The datasets we will obtained from Handbook of Software Reliability Engineering. The data 

source obtained from http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html 

Two data sets DS1 and DS2 are used to check the performance of our proposed model based the 

proposed GA. DS1 was collected from a real-time command and control application and DS2 was 

collected from Brazilian Electronic Switching System of Assembly Language [Kano93b, Mart91, 

Lapr91]. Each data point within a set consists two parts. One is the cumulative execution time and 

the other is the corresponding cumulative number of failures. Most of the literature is used this 

data sets. 

3.2 Normalized of software failure data sets 

The datasets of software failure cannot be supplied to the ANN and we must have normalized 

these datasets. So we need to normalized data with respect to their maximum values. As 

(Abdalla, Elfaki, & AlMurtadha, 2014) introduced the training, validation and testing dataset 

were scaled to the range of (0–1) using the modified MATLAB functions ‘premnmx’ and 

‘tramnmx’. The following equation was used for the purpose:      

                               xni =
xi−xmin

xmax−xmin
                                                                     (1) 

Where xi is the real-world input value, xni is the scaled input value of the real-world input value xi 

and xmin and xmax are the corresponding minimum and maximum values of the unscaled dataset. 

As (Abdalla et al., 2014) introduced The network predicted values, which were in the range of 

(0– 1), were transformed to real-world values using the modified MATLAB function 

‘postmnmx’. The equation below was used for the purpose: 

                          xi= xni (xmax-xmin) +xmin                                                     (2) 
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3.3 Model Architecture  

 

 

                               Figure 3. 2 Architecture of the proposed model 

 

Where, w11, w12, w13, w21, w22 and w23 (>0) are the weights of the proposed ANN-based software 

reliability model and the weight values are found by genetic training algorithm 

Artificial neural networks are generally used to capture the non-linear behavior of software failure 

process. ANN based models for predicting cumulative number of failures in software used testing 

time (In proper units) as input and cumulative number of failures as output. As (Bisi & Goyal, 

2015) introduced Feed forward ANN are commonly used architectures in literature which has an 

input layer, one/more hidden layer and an output layer.  In this work, a new ANN architecture is 

proposed to predict cumulative number of failures in software. The proposed ANN architecture is 

trained using GA method. The structure of feed forward network has neurons arranged in layers 

and each layer have connections (weights) from the neurons at its previous layer. Fundamentally, 
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an FNN optimization/learning/training is met by finding of an appropriate network layers (a 

function) and the weights (the layer of the function). 

ANN architecture of consists determination of a number of optimal neurons in hidden layers 

creating a challenging puzzle that makes us use the trial and error method. (MirRokni, 2017) 

introduced ANN training is an optimization process to determine the optimal values of weights 

and biases. Applying Genetic Algorithm gives a better solution for these problems. GA is 

optimized through random search technique. It reduces chance of convergence to a local optimum.  

A simple multi-layer Feed-Forward Neural Network is used to design our proposed model. We 

use the data goes in a forward direction, starting from the input layer for accepting the input 

elements to the output layer to produce the output through hidden layer to map the input and output 

elements. The proposed ANN-based software reliability models with activation function is 

constructed with single input and output layer each has single neuron and three hidden layers each 

has single hidden neuron. The structure of the adopted neural network is shown in the above figure  

 3.4 The neural networks combination model. 

(Wang & Li, 2010) proposed the prediction quality of different software reliability models on 

different failure data sets is not the same, that is to say, there is no an optimal model that can be 

applicable to all the software failure data sets. From some literatures, we know that a linear 

combination model has a better software reliability prediction results than those single models, but 

the weights of the base models in the combination models cannot be optimized automatically. In 

order to address this problem, we propose to combine the base models with neural networks, since 

neural networks have powerful fitting ability and generalization. 

 As (Wang & Li, 2010) introduced the software reliability models with good prediction results in 

engineering practice will be chosen as the base models in the neural networks, and appropriate 

activation functions will be selected for each base model. Genetic algorithm in neural networks 

can be used to optimize the weights of the base models to improve the software reliability 

prediction. ANN can learn from training example by using weights. The weights of our model are 

adjusted by using the proposed GA based on training data in order to minimize the errors of the 

actual output as compared to the predicted outputs. Most of the ANN based models available in 

literature are trained using back propagation algorithm. It is a gradient based algorithm which 
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suffers from local optimum problem. Genetic Algorithm technique is widely used to solve the local 

optimum problem, in this work, there are three novel aspects. First, a new ANN based software 

reliability architecture is proposed to predict cumulative number of failures in software taking 

testing time as input of the model. The purpose is to evenly distribute the inputs of ANN in a 

specified range for better training of ANN. Second, the proposed ANN based model is trained 

using Genetic algorithm to predict cumulative number of failures in software. Third, the proposed 

model is validated using two data sets available in literature. Results of the proposed model are 

compared with the existing ANN based models available in literature. 

3.5 ANN Approaches for Software Reliability Modeling 

3.5.1 The selection of the base models 

As we mentioned in chapter 2 there are many software reliability models, among the many 

software reliability models, we choose GO model, logistic curve model, S-Shape model because 

their performance in software reliability evaluation. The mean value function of These three 

model are as Eq. (1), (2), and (3). 

We develop ANN-based software reliability model with one input neuron in the input layers, one 

output neuron in the output layers and three neurons in the hidden layers. As (Lakshmanan & 

Ramasamy, 2015) proposed the number of neurons in the hidden layer is determined by the 

number of base models selected to construct the neural network combination model. 

As (Wu, Han, He, & Wu, 2012) proposed several approaches have been developed to combine 

various existing software reliability models to produce a dynamic weighted combination model 

whose prediction accuracy is much better than the component models. We develop the proposed 

model by using activation function for hidden layer neurons of our model. We use software 

Cumulative execution time as the input and predicted cumulative failures number of software as 

the output of our model. We propose GA based to train our model based software reliability model 

using failure data sets of the software by global optimize the weights and parameters of the ANNs. 
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Table 3. 1 The mean values of function of the selected models is the following. 

m(t)= a (1-e-bt)                                    GO model ……………… …….  (1) 

m(t) = a / 1+ke-bt                                logistic curve model ……………. (2) 

m(t)= a(1-(1+bt)e-bt                             S-Shape model ………………… .(3) 

 

According to the need for the activation functions in our model, the activation functions are 

designed as simple, continuous, easily differentiable and the function of the output can be mapped 

approximately as a compound form g(f(x)). The output of our model is based SRGM can be 

derived from its mean value function as a compound form as the following: Equation, which is the 

mean value function of the proposed model. 

The cumulative execution time (x) is the input of the proposed model and output for our model is 

the predicted cumulative failure number of the software (y). We use 1 - e-x, 1 - (1 + x) e-x and 

1/ (1 + b1e
-x) as the activation functions for the Three hidden layer neurons of the proposed 

model. The mean value function of the selected SRGMs is used for developed the activation 

function in the hidden layer of the neurons. 

 Linear activation function g(x) = x is used in the output layer neuron of the ANN. Hence, the 

output of the proposed model can be evaluated as follows. 

Design the activation function for each base model. The derivation of the neural network into the 

software reliability modeling has the following 

if we use f(x)= 1 - e-x as the activation function of in the hidden layer and linear activation function 

g(x)=x in the output layer then we can get the mean value function of G-O model. Y(t)=W21(1- e-

W11t). 

Again, if we use f(x)= 1/ (1 + b1e
-x) as the activation function of in the hidden layer and linear 

activation function g(x)=x in the output layer then we can get the mean value function of Logistic 

curve model. Y(t)= W22 / (1 + b1e
-W12t). 
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Finally, if we use f(x)= 1 - (1 + x) e-x as the activation function of in the hidden layer and linear 

activation function g(x)=x in the output layer then we can get the mean value function of S-shaped 

model. Y(t)=W23(1-(1+W13t) e
-W13t)). 

Linear activation function g(x) = x is used in the output layer neuron of the ANN based model. 

Hence, the output of the proposed model can be evaluated as follows. 

Y’(t)= W21(1- e-W11t) + W22/ (1 + b1e
-W12t) + W23(1-(1+W13t) e

-W13t)).          (4) 

where Wj (> 0) are weights of the proposed model and their values are determined by the GA. 

Here, b1 (b1 > 0) are activation function parameters whose values are also evaluated through the 

learning of the proposed model. 

The values of all the weights and parameter of the feed-forward neural network are determined 

by the GA and the three SRGMs are combined based on these dynamically evaluated weights in 

accordance with the failure data used to train the feed-forward neural network. 

3.6 Training neural network: Back propagation vs. Genetic Algorithms 

Training of the networks means finding the optimum or best values of weights and biases of the 

network. The back-propagation neural network is a supervised learning method that uses a gradient 

descent method to minimize the error between the predicted output and the target output.  

Back propagation is only a local optimum algorithm. Neural network based software reliability 

growth model on back-propagation (BP) algorithm is a widely used prediction model. In this paper, 

to improve the prediction accuracy, we optimize the neural network from two aspects. Firstly, 

according to the mean square error of each iteration of network training, the nodes number of the 

hidden layer is selected adaptively, which can minimize the mean square error. Secondly, using 

mean square error function to define the fitness function, improved genetic algorithm (GA) is 

proposed to train the learning rate and momentum factor dynamically, which includes multi-point 

crossover and single point mutation. GA instead of backpropagation to find the network weights 

for a fixed set of connections. Genetic algorithm ensures the best weights to be used to train the 

network and make them converge faster and reduce the error between desired output and the actual 

output and hence increases the efficiency of the network. 
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The overall optimization process of ANN model with GA is shown in figure 

                        

                                              

                                                 Figure 3. 3 Neural network optimization by the genetic algorithm 
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As we see in the above figure the first step is determining the type and structure of the network 

after determining the network the next step is randomize weights of the ANN, from here initialize 

the population and calculate individual fitness values using fitness function after that we are going 

to select based on the fitness value which has the highest value, then based on the selection apply 

crossover and mutation then evaluate the fitness value of each new individual after calculating the 

fitness value there are two options, if the termination criteria is not satisfied back to the crossover 

operator,  Otherwise the termination criteria is satisfied if it is go to select the optimal weights as 

the initial weights of ANN then based on the optimal weights train our model finally we can get 

the optimal solution. it was designed and implemented with MATLAB package.  
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CHAPTER FOUR 

Result and Discussion 

 4.1 Implementation of the Proposed ANN based SRGM to predict Software 

reliability 

The steps for implementation of the experiment that are needed to design for our models are as 

follows. 

 Select simple software reliability growth model that support models to design the neural 

network architecture with suitable activation functions for the hidden and output layer 

neurons. 

 Train the network architecture by giving the normalized practical failure data set to the 

neural network based model using genetic algorithm training algorithm. 

 Using the trained neural network, estimate the respective weights of neurons and measure 

the performance analysis of the proposed ANN-based SRGM. 

4.2 GA implementation for training of ANN based model for software reliability 

prediction. 

Step 1: Initialize the parameters of the GA : 

Step 2: Set gn = 1, where gn denotes the current generation number. 

Step 3: Encoding the weight and parameter of the ANN into chromosomes. 

Step 4: Generate the initial population by initializing the chromosomes for the population. 

Step 5: Evaluate the fitness value of each chromosome in the population by considering the 

fitness function. 

Step 6: Selecting the parents from the population by tournament selection process. 

Step 7: On the selected parents apply crossover and mutation operations in order to produce 

offspring’s with higher fitness value.  

Step 8: If the termination criteria is satisfied, go to step 11. i.e. if gn = max_gen. 

Step 9: Increasing gn by unity. 

Step 10: Go to step 5. 

Step 11: Evaluating the fitness value for each of offspring from the population. 
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Step 12: Return the chromosome with best fitness value and calculate the error of GA optimized 

NN (which is the optimal setting of the weights and parameters for the ANN). 

Step 13: Stop. 

We applied the above implementation for a single input with 3 hidden neurons and a single 

output in matlab. 

4.3 Different Performance Measures 

The fitting performance of a software reliability model demonstrates how much fit the model to 

the software failure data. The performance measure of our model using training of parameters of 

the SRGM are estimated using a part of the (training of our data) is the first action. Than train our 

model global optimize the weight of the network using proposed GA. The estimated cumulative 

failures yi at the execution time ti is compared with the actual value of cumulative failures yi from 

the dataset. The results of our proposed model has indicated that the new methodology can 

optimize and training parameters precisely, and resulting in ANN based software reliability model 

where satisfactory performance in Genetic Algorithm. The fitting performance of our model is 

measured in terms of Mean Squared Error(MSE) and Root Mean Squared Error (RMSE) as follows 
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      Figure 4. 1 The snapshot of the performance measure values using MSE for Dataset1 
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         Figure 4. 2 The snapshot of the performance measure values using RMSE for Dataset1 

As we see in the above figure the neural network based model performs better in terms of less 

error in prediction as compared to the normal algorithm and hence it is a better alternative to do 

software reliability test using genetic algorithm. It can be seen from the figures that the NN method 

proposed in this paper using genetic algorithm provides a good fit than the normal algorithm. 
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             Figure 4. 3  The snapshot of the performance measure values using RMSE for Dataset2  
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               Figure 4. 4 The snapshot of the performance measure values using MSE for Dataset2  

As we see in the above figure the neural network based model performs better in terms of less 

error in prediction as compared to the normal algorithm and hence it is a better alternative to do 

software reliability test using genetic algorithm. It can be seen from the figures that the NN method 

proposed in this paper using genetic algorithm provides a good fit than the normal algorithm. 
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                      Figure 4. 5  Comparison between Actual  data and predicted data in DS1 

The graph plots between cumulative execution time and number of cumulative failure.  The red 

color represents actual data; mineral red color represents the initial predicted and green color 

represents optimal predicted for our proposed model.          
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                  Figure 4. 6 Comparison between Actual  data and predicted data in DS2 

In the above figures the graphs are the plot between cumulative execution time and number of 

cumulative failure for both datasets. The red color represents actual data; mineral red color 

represents the initial predicted and green color represents optimal predicted for our proposed 

model. As we see in the diagram the predicted accuracy is increased in optimal solutions which 

means predicted accuracy is increased by using optimization algorithm. 

In both data sets it can be seen from the figures that the proposed model using genetic algorithm 

provides good fit than back propagation algorithm. results are shown in the following tables  
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Data sets Numbers of 

input neuron 

Numbers of 

input neuron 

Numbers of 

hidden 

neuron 

MSE RMSE 

DS1 1 1 3 4.5815 4.0430 

DS2 1 1 3 8.2321 12.1701 

 

                                  Table 4. 1  Results for Backpropagation Algorithm 

 

Data sets Numbers of 

input neuron 

Numbers of 

input neuron 

Numbers of 

hidden 

neuron 

MSE RMSE 

DS1 1 1 3 1.3664 2.0335 

DS2 1 1 3 2.0126 4.9159 

 

                                       Table 4. 2 Results for Genetic Algorithm 

The above tables show that the performance of our models under comparison in terms of MSE and 

RMSE using DS1 and DS2. Table 1 shows the result of back propagation learning algorithm and 

table 2 shows that the result of genetic algorithm. The smaller value of measure performance 

indicated better accuracy. As we see in the above result the proposed model has smaller values 

than the other approaches in both datasets. So better software reliability prediction can be achieved 

if we train the proposed ANN based software reliability model using GA. Hence, from table 4.1 

and table 4.2, shows that the proposed model in GA has better fitting and predictive accuracy than 

the model in BPA. 

 BPA GA 

MSE 4.5815 1.3664 

RMSE 4.0430 2.0335 

   Table 4.3 comparison of Backpropagation algorithm and genetic algorithm in DS1 
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 BPA GA 

MSE 8.2321 2.0126 

RMSE 12.1701 4.9159 

    Table 4.4 comparison of Backpropagation algorithm and genetic algorithm in DS2 

The ability to set GA in the train function is not currently available in neural network toolbox. It 

tolerance for minimum change in fitness function before terminating algorithm to 1e-8 and 

displaying each iteration's results. And also it has its own function. 

This function may return the mean squared error and root mean squared error on the outputs and 

the targets as ga requires a function handle that only return a scalar value. 

1. All of the weights are randomly changed  

2. The resulting error is calculating  

3. If the new error is not lower than the existing error, the new set of weights is discarded the 

algorithm goes back to step1 

4. If the new error is lower than the existing error, the new set of weights are accepted. 

In the above tables and figures, our model is shown. the error rate is determining in terms of 

MSE and RMSE during training. It shows how the error rate gradually decrease in genetic 

algorithm as compared to backpropagation algorithm.  
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                           Figure 4. 7  Results that shows the BPA in both datasets 
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                                      Figure 4. 8   Results that shows GA in both datasets 

 

As we see from the above tables and figures, we find that the excellent prediction ability compared 

to the observed values from the datasets. All MSE and RMSE values of DS1 are smallest among 

the values of DS2. It has the best software reliability prediction ability because of its minimum 

MSE and RMSE values as compared to the values of DS2. So the prediction power of the model 

is increased wit increase the amount of datasets. 
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              Figure 4. 9  Comparison of backpropagation algorithm and genetic algorithm in DS1 
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          Figure 4. 10  Comparison of backpropagation algorithm and genetic algorithm in DS2 

 

As we see in the figures, it has the best software reliability prediction ability because of its 

minimum MSE and RMSE value is compared to the other software reliability models. Hence, it is 

also proved for DS1 that the proposed model has the best software reliability prediction power 

than the other software reliability models. The predictive power of the model is increased with 

increase the amount of datasets.  
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CHAPTER FIVE 

Conclusions and Recommendations 

5.1 Conclusions 

In this paper, ANN based software reliability estimation and prediction is proposed. We used 

neuro-genetic approach for ANN based software reliability model global optimize the weight of 

network using proposed GA. We use our proposed GA optimized trained the model in order to 

predict the reliability of the software. first, we train our model using BPA and predict the software 

reliability. Then, we use the proposed GA to train our model global optimize the weight of the 

network. We present the comparison between the two learning algorithms when they are applied 

to train the proposed model.  

In this study we presented the result through two real software failure data sets. Experimental 

studies show that our proposed model gives better software reliability prediction than the other 

ANN based software reliability models. The observations conclude that our model performs better 

in terms of less error in prediction as compared to existing models and hence it is a better 

alternative to do software reliability test using neuro-genetic approaches. Moreover, the proposed 

model significantly gives better fitting and prediction accuracy if we use the proposed GA to train 

the ANN based software reliability prediction model, we get better software reliability predictions 

from the same ANN based software reliability model. ANN based software reliability model gives 

better result for larger datasets than smaller datasets.  

Our models are easily compatible with different smooth trend data set and projects. We have 

implemented the program in MATLAB. But the programs can be implemented in other languages 

such as Java, Python etc. 
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5.2 Recommendations 

Software reliability can be predicted using neuro-genetic system. In addition to neural network 

model advance machine learning techniques can be applied further. Further, research can be 

extended by developing model to predict software reliability by introducing advanced machine 

learning techniques applied to a large category of failure datasets of real life industrial projects. 

And also plan to focus on the cost benefit analysis of the model that will help to determine whether 

a given software reliability prediction model would be economically viable in realistic 

environment. 
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Appendix A 

Datasets  

The data set comes from [Musa 79c] and Brazilian Electronic Switching System. Assembly 

Language [Kano93b, Mart91, Lapr91] and Real-Time Command & Control System from Software 

project failure datasets 

Dataset 2: 

Cumulative 

Execution 

Time 

Cumulative  

Failure Number 

 Cumulative 

Execution Time 

Cumulative  

Failure Number 

1 60  200 212 

2 30  201 4 

3 540  202 5 

4 67  203 106 

5 40  204 264 

6 23  205 269 

7 5  206 276 

8 53  207 1 

9 4  208 203 

10 16  209 117 

11 94  210 1 

12 15  211 45 

13 5  212 5 

14 90  213 110 

15 77  214 18 

16 68  215 10 

17 15  216 179 

18 137  217 66 

19 23  218 1 

20 1  219 106 

21 104  220 2 



47 
 

22 16  221 19 

23 9  222 117 

24 10  223 30 

25 12  224 130 

26 4  225 31 

27 10  226 28 

28 82  227 4 

29 6  228 302 

30 54  229 362 

31 25  230 5 

32 43  231 63 

33 12  232 42 

34 48  233 86 

35 23  234 258 

36 6  235 294 

37 10  236 256 

38 12  237 118 

39 14  238 13 

40 33  239 47 

41 9  240 92 

42 4  241 343 

43 66  242 128 

44 0.5  243 392 

45 18  244 90 

46 15  245 116 

47 75  246 35 

48 30  247 171 

49 116  248 139 

50 14  249 110 

51 15  250 98 

52 41  251 60 
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53 1  252 90 

54 99  253 82 

55 9  254 5 

56 45  255 30 

57 68  256 35 

58 36  257 231 

59 50  258 62 

60 81  259 158 

61 89  260 1622 

62 85  261 353 

63 54  262 33 

64 3  263 70 

65 15  264 35 

66 6  265 116 

67 8  266 809 

68 36  267 1710 

69 98  268 745 

70 32  269 350 

71 36  270 470 

72 5  271 122 

73 9  272 244 

74 60  273 2384 

75 34  274 249 

76 16  275 607 

77 164  276 83 

78 123  277 2 

79 19  278 26 

80 19  279 586 

81 126  280 352 

82 36  281 673 

83 54  282 330 



49 
 

84 15  283 649 

85 16  284 123 

86 154  285 1789 

87 84  286 1288 

88 92  287 111 

89 247  288 75 

90 244  289 74 

91 60  290 333 

92 5  291 287 

93 2  292 1 

94 5  293 881 

95 130  294 13 

96 0.5  295 1314 

97 233  296 472 

98 50  297 363 

99 54  298 6 

100 52  299 4 

101 57  300 55 

102 1  301 409 

103 2  302 36 

104 5  303 15 

105 1  304 1404 

106 17  305 17 

107 14  306 71 

108 2  307 34 

109 87  308 434 

110 19  309 60 

111 29  310 19 

112 0.5  311 20 

113 61  312 79 

114 118  313 24 
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115 20  314 540 

116 3  315 1040 

117 11  316 38 

118 87  317 78 

119 5  318 41 

120 249  319 1757 

121 28  320 205 

122 44  321 2095 

123 31  322 788 

124 3  323 1 

125 10  324 2668 

126 3  325 470 

127 8  326 10 

128 17  327 20 

129 3  328 338 

130 55  329 222 

131 7  330 28 

132 12  331 56 

133 6  332 561 

134 4  333 65 

135 169  334 100 

136 30  335 900 

137 4  336 212 

138 38  337 287 

139 7  338 53 

140 4  339 3 

141 4  340 4973 

142 13  341 197 

143 10  342 1174 

144 40  343 783 

145 57  344 1346 
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146 22  345 59 

147 37  346 98 

148 127  347 1594 

149 12  348 25 

150 8  349 98 

151 1  350 722 

152 21  351 228 

153 104  352 78 

154 8  353 33 

155 23  354 453 

156 1  355 1020 

157 6  356 4327 

158 141  357 925 

159 3  358 302 

160 21  359 649 

161 3  360 43 

162 18  361 185 

163 0.5  362 157 

164 75  363 30 

165 92  364 1771 

166 39  365 1088 

167 29  366 556 

168 3  367 55 

169 2  368 4892 

170 158  369 81 

171 30  370 61 

172 24  371 476 

173 5  372 63 

174 92  373 3 

175 7  374 3 

176 33  375 62 
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177 20  376 1 

178 16  377 44 

179 292  378 1236 

180 3  379 1406 

181 9  380 109 

182 12  381 1471 

183 18  382 1797 

184 9  383 1749 

185 75  384 2096 

186 15  385 76 

187 46  386 2167 

188 9  387 2059 

189 94  388 2177 

190 25  389 1893 

191 175  390 198 

192 5  391 3326 

193 12  392 3100 

194 18  393 586 

195 70  394 2686 

196 3  395 124 

197 10  396 229 

198 114  397 1008 

199 213    
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% INITIALIZE THE NEURAL NETWORK PROBLEM % 

  
% inputs for the neural net(AND gate example== 2 inputs && 4 samples) 
inputs = xlsread('inputs.xlsx')'; 

  
% targets for the neural net 
targets = xlsread('targets.xlsx')'; 

  
% number of neurons 
n = 3; 

  
% create a neural network 
net = feedforwardnet(n); 

  
% configure the neural network for this dataset 
net = configure(net, inputs, targets); 
% get the normal NN weights and bias 
getwb(net) 

  
% error MSE normal NN 
error = targets - net(inputs); 
RMSE = mean(error.^2)/mean(var(targets',1)) 
% create handle to the MSE_TEST function, that 
% calculates MSE 
h = @(x) NMSE(x, net, inputs, targets); 

  
% Setting the Genetic Algorithms tolerance for 
% minimum change in fitness function before 
% terminating algorithm to 1e-8 and displaying 
% each iteration's results. 

  
ga_opts = gaoptimset('PopInitRange', [0;1], 'TolFun', 1e-

10,'display','iter','PopulationSize',100,'FitnessScalingFcn',@fitscalingprop,

'SelectionFcn',@selectiontournament,'CrossoverFcn',@crossoverscattered,'Mutat

ionFcn',@mutationgaussian); 
ga_opts = gaoptimset(ga_opts, 'StallGenLimit', 100, 'FitnessLimit', 1e-5, 

'Generations', 100); 
% PLEASE NOTE: For a feed-forward network 
% with n hidden neurons, 3n+n+1 quantities are required 
% in the weights and biases column vector. 
% a. n for the input weights=(features*n)=3*n 
% b. n for the input biases=(n bias)=n 
% c. n for the output weights=(n weights)=n 
% d. 1 for the output bias=(1 bias)=1 
% running the genetic algorithm with desired options 
% Y’(t)= W21(1- e-W11t) + W22/ (1 + b1e-W12t) + W23(1-(1+W13t) e-W13t)). 
[x, err_ga] = ga(h, 3*n+n+n+1, ga_opts); 
net = setwb(net, x'); 
% get the GA optimized NN weights and bias 
getwb(net) 

  
% error MSE GA optimized NN 
error = targets - net(inputs); 
RMSE = mean(error.^2)/mean(var(targets',1))  


