
DSpace Institution

DSpace Repository http://dspace.org

Software Engineering thesis

2020-02

Improving Software Reliability Growth

Models Based on Neuro-Genetic Approach

Chalachew, Abraham

http://hdl.handle.net/123456789/10869

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BAHIR DAR UNIVERSITY

BAHIR DAR INSTITUTE OF TECHNOLOGY

SCHOOL OF RESEARCH AND POSTGRADUATE STUDIES

FACULTY OF COMPUTING

Improving Software Reliability Growth Models Based on Neuro-Genetic

Approach

MSc. Final Thesis

 By

Abraham Chalachew

Program: Software Engineering

Supervisor: Dr. Mekuanint Agegnehu

February 2020

Bahir Dar, Ethiopia

i

 Improving Software Reliability Growth Models Based on Neuro-Genetic

Approach

 Abraham Chalachew

Improving Software Reliability Growth Models Based on Neuro-Genetic Approach submitted to

the school of Research and Graduate Studies of Bahir Dar Institute of Technology, BDU in partial

fulfillment of the requirements for the degree of MSC in Software Engineering in Faculty of

Computing.

Advisor Name: Dr. Mekuanint Agegnehu

 Bahir Dar, Ethiopia

 February 26, 2020

ii

iii

© 2020

Abraham Chalachew (as it appears on the title page)

ALL RIGHTS RESERVED

iv

v

 To my father and mother

vi

Acknowledgement

First and for most I would like to thanks GOD he has helped me in every aspect of my life. Next to that I

would like to express my sincere gratitude to my Advisor Dr. Mekuanint Agegnehu for his Advice and

comment in all of my paper. I appreciate and value his esteemed direction and support from the beginning

of our work to the end of our works. I would also like to express my thanks to all who extended unlimited

help to me during my work.

vii

Abstract

Software engineering is incomplete without Software reliability prediction. For characterizing any

software product quality quantitatively during phase of testing, the most important factor is

software reliability assessment. Many software reliability growth models (SRGM) which is used

for predicting in software reliability, however, no single model can give accurate prediction. For

this the Artificial Neural Network (ANN) based software reliability model is introduced. In this

thesis ANN based software reliability models for better reliability prediction in a real case is

described and the growth of software reliability using ANN based model is presented. We

proposed a neuro-genetic approach for the ANN based software reliability model by optimize the

weights of the network by using proposed genetic algorithm (GA). Training the ANN using Back-

propagation algorithm (BPA) to predict the software reliability is the first action. Than train our

model global optimize the weight of the networks by using the proposed GA. Using two datasets

contain cumulative executive time and cumulative no of software failures are applied to the

proposed models. These datasets are obtained from software projects. Then it is observed that the

results obtained indicate a significant improvement in performance by using genetic algorithm in

ANN based software reliability models over the normal algorithm of ANN based software

reliability models. Numerical and graphical explanations show that proposed model for software

reliability prediction since its fitting and prediction error is much less relative to the normal

algorithm of ANN based software reliability model.

viii

Table of Contents

DECLARATION .. Error! Bookmark not defined.

Acknowledgement ... vi

Abstract ... vii

CHAPTER ONE ... 1

Introduction ... 1

1.1 Background ... 3

1.2 Statements of the problem... 4

1.3 Objectives ... 5

1.3.1 General objective ... 5

1.3.2 Specific Objective .. 5

1.4 Scope of the study ... 5

1.5 Methods... 6

1.5.1 Problem identification and motivation ... 6

1.5.2 Objectives for a solution .. 6

1.5.3 Design and development .. 6

1.5.4 Demonstration .. 7

1.5.5 Evaluation .. 7

1.5.6 Communication .. 7

1.6 Significance of the study ... 7

CHAPTER TWO .. 9

Literature Review .. 9

2.1 Software Reliability Growth Model (SRGM) ... 9

2.2 Overview of The Artificial Neural Networks ... 10

2.2.1 Artificial neural networks (ANNs)... 10

2.3 Genetic Algorithm .. 13

2.4 Literature Review .. 15

CHAPTER THREE .. 18

Methodology ... 18

3. Introduction ... 18

ix

3.1 Software failure data sets .. 20

3.2 Normalized of software failure data sets ... 20

3.3 Model Architecture ... 21

3.4 The neural networks combination model. ... 22

3.5 ANN Approaches for Software Reliability Modeling .. 23

3.5.1 The selection of the base models ... 23

3.6 Training neural network: Back propagation vs. Genetic Algorithms ... 25

CHAPTER FOUR ... 28

Result and Discussion ... 28

4.1 Implementation of the Proposed ANN based SRGM to predict Software reliability 28

4.2 GA implementation for training of ANN based model for software reliability prediction. 28

4.3 Different Performance Measures .. 29

CHAPTER FIVE .. 42

Conclusions and Recommendations ... 42

5.1 Conclusions ... 42

5.2 Recommendations ... 43

Reference .. 44

Appendix A ... 46

Datasets ... 46

x

List of Tables

Table 2. 1 SRGMs with mean value function ... 9

Table 3. 1 The mean value function of the selected models is the following. 24

Table 4. 1 Results for Backpropagation Algorithm ... 36

Table 4. 2 Results for Genetic Algorithm ... 36

Table 4. 3 comparasion of Backpropagation Algorithm and Genetic algorithm in DS1 36

Table 4. 4 comparasion of Backpropagation Algorithm and Genetic algorithm in DS2 36

 List of Figures

Figure 2. 1 Neuron .. 11

Figure 2. 2 A multi-layer feedforward ANN .. 12

Figure 3. 1 Flowchart of the proposed model ... 19

Figure 3. 2 Architecture of the proposed model ... 21

Figure 3. 3 Neural network optimization by the genetic algorithm .. 26

Figure 4. 1 The snapshot of the performance measure values using MSE for Dataset1 30

Figure 4. 2 The snapshot of the performance measure values using RMSE for Dataset1 31

Figure 4. 3 The snapshot of the performance measure values using RMSE for Dataset2 32

Figure 4. 4 The snapshot of the performance measure values using MSE for Dataset2 33

Figure 4. 5 Comparison between Actual data and predicted data in DS1 34

Figure 4. 6 Comparison between Actual data and predicted data in DS2 35

Figure 4. 7 Results that shows the BPA in both datasets ... 38

Figure 4. 8 Results that shows GA in both datasets .. 39

Figure 4. 9 Comparison of backpropagation algorithm and genetic algorithm in DS1 40

Figure 4. 10 Comparison of backpropagation algorithm and genetic algorithm in DS2 41

xi

Acronym

SRGM Software Reliability Growth Model

NHPP Non-Homogenous Poison Process

LSE Least Square Estimation

MLE Maximum Likelihood Estimation

ANSI American National Standards Institution

ANN Artificial Neural network

GA Genetic Algorithm

BPA Back propagation Algorithm

SRP Software Reliability Prediction

1

 CHAPTER ONE

Introduction

As (Mallikharjuna & Kodali, 2015) introduced modern society is highly engaged with the role of

software. Software engineers and software development organizations seeks great responsibility

on maintaining quality, reliability and customer satisfaction with the software product.

(Andersson, 2007) introduced software development testing is generally considered as one of the

major quality control techniques. In order to calculate and predict the product quality software

reliability is found as a significant attribute (Mir, 2011). As (Ramasamy & Lakshmanan, 2016)

introduced American National Standards Institution (ANSI) defines the software reliability as the

probability of failure-free operation of a software system for a specified period of time in a

specified environment. As (Ong, Isa, Jawawi, & HALIM, 2017) introduced the growth of software

reliability increases through the removal of the faults during software failures in the test phase.

Software reliability is one part of software quality, it is the highest concern by developers and

project managers with the considerations with business profitability, user safety and preservation

of the environment. Software reliability is an important for software development because

unreliable software have some error or bugs that may causes software failures to occur if thus

problem is not handled early. Examples of system failure has unfavorable impact on the

environment, caused economic loss, even harmful to human lives (Ong et al., 2017). Thus software

reliability prediction(SRP) has become crucial activity in software development process in order

to produce reliable and good quality software. (Anjum, Haque, & Ahmad, 2013) presented among

the prediction model, Software reliability growth model (SRGM) has been widely used in many

software domains, such as telecommunication, embedded systems, military, banking and industrial

control system. SRGM estimate the present reliability by estimating the model parameters and

predict the future reliability of a system using practical failure data.

SRGM are generally classified into two categories: Parametric and Non-parametric models.

Parametric models estimate the model parameters based on the assumptions of underlying

distributions. As (Su & Huang, 2007) introduced thus model depends on some assumption, it is

believed that no single model can provide accurate estimation in all situations. As (Lakshmanan

& Ramasamy, 2015) introduced one of the difficult tasks in parameter estimation of traditional

SRGMs is estimating ranges and start values for each parameter to be estimated.

2

Thus models have certain assumptions regarding numerous factors such as software development

process, software development organization, software use characteristics, nature of software faults

and software complexity to predict software reliability. Some assumptions are not valid in real

cases in software industry. Non-parametric models are used to overcome this problem. They do

not consider any assumption about software development process and software development

organization. They only used failure history of software to predict its reliability. The non-

parametric models use artificial neural network (ANN), support vector machine (SVM), fuzzy

logic (FL) and genetics algorithm (GA) to predict software reliability. Among several non-

parametric models, ANNs are normally used to predict software reliability. The failure behavior

of software failure data follows non-linear pattern between input and output. As (Lakshmanan &

Ramasamy, 2015) introduced all soft computing techniques such as Artificial Neural Network,

Fuzzy systems, Genetic algorithms are the non-parametric models .

The problems with parametric SRGM is solved by soft computing techniques. So there is no

specify the range of values in advance for each parameter which is a complex task (Mallikharjuna

Rao & Anuradha, 2016). However, traditional SRGM does not have determined parameter.

Optimization of these parameter is necessary task; these parameters are determined by least square

error(LSE). Such a software failure data may not satisfy such a distribution.

In this paper, we use GA to train our proposed model using failure data sets of the software by

using global optimize the weight and parameter of the ANNs. It is a non-linear continuous

function, ANNs are widely used in various fields of software engineering such as cumulative

failure prediction, time between failure prediction, classification of software modules, software

development effort prediction and software fault localization.

Most of the ANN based models available in literature are trained using back propagation

algorithm. It is a gradient based algorithm which suffers from local optimum problem. Genetic

algorithm technique is widely used to solve the local optimum problem, in this work, there are

three novel aspects. First, a new ANN architecture is proposed to predict software reliability taking

testing time as input of the model. The purpose is used to distribute the inputs of ANN in a specified

range for better training of ANN. Second, the proposed ANN model is trained using Genetic

algorithm to predict cumulative number of failures in software. Third, the proposed model is

validating by using two data sets available in literature.

3

1.1 Background

Software Reliability

The probability that a software will perform a required function under stated conditions for a

specified period of time is known as software reliability’s. It is a very important factor to

determine the qualities of software products during testing phase. The major benefits of software

reliability measurement are planning and controlling the resources during software development

process for developing high quality software. It gives confidence about software correctness.

And additional cost is minimizing during testing and reliability should be improved. As (Bhuyan,

Mohapatra, & Sethi, 2016) introduced at the time of development of any product or system like

commercial, military or any other applications, we need to ensure its reliability and consistency

in its performance, because a systems reliability has a major impacts of maintenance, repair

costs, continuity of services and customer satisfaction. At the end, the project manager needs to

ensure that the software is reliable enough to be released into the market.

(Lyu, 1996) described As per ANSI definition, software reliability is defined as the probability of

failure-free software operation for a specified period of time in a specified environment. As

(Lakshmanan & Ramasamy, 2015) introduced Software reliability models facilitate estimation of

the present or future reliability of a system by estimating the parameters used in the models using

software failure data at a given time. Parametric models estimate the model parameters based on

the assumptions of underlying distributions. As (Lakshmanan & Ramasamy, 2015) introduced

Parametric models can be further divided into three types: Non-Homogeneous Poisson Process

(NHPP), Markovian models and Bayesian models .

4

Software Reliability Measurements

 Failure Rate: It is the rate of occurrence of failures. It also represents

number of failures in specified period of time.

 Mean Times Between Failures (MTBF): It is the mean value of time and failures.

 Availability: The probability that an item is in operable state at any time is called

availability. It accounts for repairs and down time.

Software Reliability Growth Models

It includes two types of models

 Parametric models

 Nonparametric models

Parametric models are based on non-homogeneous Poisson process (NHPP). ANN based

software reliability model is non parametric model and based on statistical failure data. Non

parametric models are more flexible.

1.2 Statements of the problem

In the modern age, it is a big challenge for software developers to quickly design, implement, test

and maintain complex software systems. (Bhuyan, Mohapatra, & Sethi, 2014) introduced also it is

difficult task for software companies to deliver good quality software in appropriate time . Over

the year many number of software reliability models have introduced. Thus models showing future

success approaches to software reliability prediction by controlling, planning the resources during

software development process for developing high quality software. It gives confidence about

software correctness. Also it minimizes the additional cost of testing and improves software

reliability.

(Mallikharjuna Rao & Anuradha, 2016) introduced Identifying and removal of the residual faults

are one of the key features in software reliability indexes. (Mallikharjuna Rao & Anuradha, 2016)

introduced SRGM is very helpful for software developers and has been widely accepted and

applied However, each SRGM contains some undetermined parameters. Which means no single

models can get accurate prediction for all cases. So optimization of these parameters is a necessary

task. With this motivation, we investigated the improvement and application of ANN with

optimization algorithm, namely Genetic algorithm, to optimize these parameters of SRGM. The

5

performance of our proposed model with optimize parameters compare with the existing models

ANN.

The following research questions will be expected answer at the end of this study.

1. How we optimize the parameter of SRGM?

2. How we improve the SRGM using neuro-genetic approach?

3. How our model better predicts the reliability of software than the other SRGM?

 1.3 Objectives

The following are the general and specific objective.

1.3.1 General objective

The main objective of this research is improving SRGM by enhancing the parameter of software

reliability growth model using Neuro-Genetic based approach.

1.3.2 Specific Objective

To achieve the general objective, the following activity will be performed

 To study the existing SRGM

 To identify and define a number of criteria with important level of selection of SRGM.

 To develop a proposed SRGM using neuro-genetic algorithm.

 To evaluate the performance of our proposed model using software failure datasets.

 To compare and contrast the proposed model with the existing SRGM.

 1.4 Scope of the study

The aim of this study is to enhancing the parameters of SRGM using neuro-genetic approach to

improve the reliability prediction so as to optimize the parameter of SRGM the cause of

undetermined parametric problems. In this study an attempt is made to design optimize parameter

to find a suitable SRGM with the failure rate. The efficiency of the model concerning decreased

failure rate and optimizing the fitness are the major consideration for selecting the appropriate

model for reliability growth in propose method

6

Software reliability is a vast research area then this study is delimited in SRGM that are only

focused on certain NHPP SRGM and to evaluate the prediction quality of SRGM are selected from

existing literature. Algorithms used in this study is develop using MATLAB.

 1.5 Methods

In this thesis work, we follow design science research methodology. Following is the description

of each phase:

1.5.1 Problem identification and motivation

In this phase, our research problem is defined and the value of a solution is justified. Various

literatures are reviewed to acquire knowledge about the state of the problem and the importance

of the solution. Research works that have been done to predict software reliability by using some

data sets that will be analyzed and evaluated to get an understanding of the various methods to

increase the performance of our model. The gaps in related research works are analyzed and how

we fill in the gaps are presented.

1.5.2 Objectives for a solution

The objectives of a solution are inferred from the problem definition or specification. The

objectives of our study that are inferred from the problem specification are explained. Various

resources have been reviewed to know the state of the problem, the state of current solutions and

their efficacy.

1.5.3 Design and development

In this section, the artifact solution is created. This activity is focused on the functionality and

design of our models. Feed forward neural network is used for designing the ANN based SRGM.

Matlab is used for writing the required source codes.

7

We collected software failures datasets we are applied for the proposed models. These datasets are

found from software projects. This dataset is divided into two parts: training dataset used to train

the model and to increase the performance of the system through different parameters; testing

dataset to evaluate the system. Two data sets was collected. It will be divided in 70/30 format for

training and testing respectively.

Our system consists of four main components: Collection of data sets, Normalization of the data

sets, optimization of ANN based SRGM and training parameters using GA. prediction, in turn,

encompasses three main phases to predict software reliability. These are:

1.5.4 Demonstration

The developed system is demonstrated by simulating how the developed system to estimate and

predict software reliability. The model was implemented with MATLAB package

1.5.5 Evaluation

The developed system is evaluated to measure how well it supports a solution to the problem. To

evaluate the system in a rational method, testing datasets were fed into the developed model.

Subsequently, the model was evaluated by comparing its output against the observed data using

Root Mean Square Error(RMSE).

1.5.6 Communication

In this section, the problems, the artifacts of the designed solution, the effectiveness and other

related information are communicated to relevant audiences when appropriate

 1.6 Significance of the study

Software reliability is a significant part of software industry; it gives measure to the customer as

well as the developer about the faults in the software. The prediction of the reliability of any

software is really essential in software industry. SRGM give an estimation to the number of faults

that may occur in near future after the delivery of the product and thus the models also provide an

induction of when to release the software, it uses the past data gathering in the testing process

The significance of this paper will be the following

 Used to develop a reliable software under a given time and cost constraint

8

 The software manager also determines the release time of the software with the help of the

model.

 Used to measure the quality of the software.

 Used to estimate the duration of the testing time effectively.

 Used to support the project manager to monitor testing

 Helping the researchers to evaluate the reliability of the model

9

 CHAPTER TWO

 Literature Review

 2.1 Software Reliability Growth Model (SRGM)

As (Inoue & Yamada, 2009) introduced a software reliability growth model (abbreviated as

SRGM) is fundamental technologies for quantitative software reliability assessment, and playing

an important role in software project management for producing a highly-reliable software system.

In order to selecting the best SRGM that is compatible with the ANN we should know their

predictive power and their mean value function of each model. As (Aggarwal & Gupta, 2014)

introduced there are many software reliability growth models but the commonly used model of

software reliability models are JM, GO model, MO model, Sch model, S-Shape model.

Table 2. 1 SRGMs with mean value function

SRGM Mean value function

Goel–Okumoto model (GO) a(1 - e-bt)

Yamada delayed s-shaped model (Y) a(1 - (1 + bt)e-bt)

Inflection s-shaped model (I) a(1-e-bt) / 1+ˇe-bt

Logistic growth curve model (L) a/1+be-ct

As (Saleem, 2013) proposed typically two broad categories of software reliability growth models

(SRGMs) include parametric models and nonparametric models. (Singh & Kumar, 2010)

introduced most of the parametric models are based on nonhomogeneous Poisson process (NHPP)

that has been widely used successfully in practical software reliability engineering. Artificial

10

Neural Network (ANN) based non-parametric software reliability models estimates the model

parameter without any distributions and assumptions.

2.2 Overview of The Artificial Neural Networks

2.2.1 Artificial neural networks (ANNs)

An artificial neural network, or simply neural network, is a type of artificial intelligence (computer

system) used to stores information. It generally used to capture the non-linear data of software

failure process. ANN based software reliability models for predicting cumulative software number

of failures used cumulative software testing time as input and cumulative software number of

failures as output.

Feed forward ANN are commonly used architectures in literature which has an input layer,

one/more hidden layer and an output layer. In this work, a new ANN architecture is proposed to

predict cumulative number of failures in software. The proposed ANN architecture is trained using

GA method. Generally, ANNs have the following components.

Neuron: Neuron is the information-processing unit. It is weighted sum of the input signals xj at

the presence of thresholds, passes the sum through the activation function or transfer function of

the ANN to process the input signals and generates an output of the neuron of the network. As

we see in the figure the neuron is connected layer by layer and connected to each other directly

through communication links associated with some weights.

As(Agatonovic-Kustrin & Beresford, 2000) mentioned the artificial neuron is the building

component of the ANN designed to simulate the function of the biological neuron. (Tawfiq &

Salih, 2014) described the arriving signals, called inputs, multiplied by the connection weights

(adjusted) are first summed (combined) and then passed through a transfer function to produce the

output for that neuron.

11

 Figure 2. 1 Model of an artificial neuron (Agatonovic-Kustrin & Beresford, 2000)

where neti is the input signals and wji is the weight of the connection link between the input xj and

neuron of the network.

Network architecture: It determines the network topology applied. The most common ANN

topology is forward-feeding connections.

Learning algorithm: ANN learns from training examples by adjust the weight of the network.

BPA is a class of supervised learning algorithm which is commonly used. It is a learning

techniques are used to update the weights of the network for training the feed forward back

propagation network. Recently, GAs have been applied as the learning algorithm for optimization

of network weights to reduce errors.

For the general model of artificial neural network, the net input can be calculated as follows

yin=x1.w1+x2.w2+x3.w3…xm. wm

 Net input yin=∑mixi. wiyin=∑i
mxi. wi

The output of the network calculated by using the activation function over the net of the input.

 Y=F(yin)Y=F(yin)

 Outputs = functions of net input

12

 Figure 2. 2 A multi-layer feedforward ANN (Nielsen, 2015)

As we have seen in the above figure the left side the layer in this network is the input layer, and

the neurons of the layer are input neurons. The right side or output layer contains the output

neurons. The middle layer is a hidden layer. ANN is feedforward if there exists a method which

numbers all the nodes in the network such that there is no connection from a node with a large

number to a node with a smaller number. Feedforward neural network have only one diction of

the network.

ANN is used to an artificial intelligence that is used to processes and stores information. It works

by creating connections between mathematical processing elements called neurons, knowledge is

encoded into the network through the strength of the connection between different neurons called

weight. ANN based models for predicting the reliability of software’s. Feed forwarded ANN are

commonly used architecture in literature which has input layer, hidden layer and an output layer.

13

2.3 Genetic Algorithm

As (Rahman & Setu, 2015) introduced Genetic algorithm is robust evolutionary optimization

search techniques which follows natural genetics to find global optimal solution. It is a global

search method it uses selection, crossover and mutation. It is used for optimization procedures,

which is better to find values close to global optimization. Most of the ANN based software

reliability models available in literature are trained using back propagation algorithm. It is a

gradient based algorithm which suffers from local optimum problem GA technique is widely used

to solve the local optimum problem. Genetic algorithms used for optimizing and learn features of

biological evolution. An algorithm requires a few base components (Montana & Davis, 1989) The

characteristics of Genetic Algorithm are as follows:

o Genetic algorithm operates on parameters of the code.

o The genetic algorithm starts with many points; thus it prevents the search process from

converging to local optimal solution effectively.

o It calculates the fitness value by objective function without additional information and

relies little on the problem.

o The optimization rules of genetic algorithm are determined by probability, but not

deterministic.

o Genetic algorithm operates an efficient heuristic search in the solution space rather than

an exhaustive or complete random search.

o There’s no limit on genetic algorithm for the function to be optimized. It does not require

to be continuous or micro.

o It can both be an explicit function of mathematical expressions and Implicit function like

the neural network or mapping matrix.

o The genetic algorithm has the characteristics of parallel operation; thus it can improve the

calculation speed through the large scale parallel operation.

o The genetic algorithm has the characteristics of simply compute and strong function and

is more suitable for optimization of large scale complex problems.

14

A. Evaluation

As (Rahman & Setu, 2015) introduced Each member of the population is then evaluated; calculate

a ‘fitness’ for that individual and its value is calculated by how well it fits with the desired

requirements.

B. Selection

Selection helps by removing the bad designs and having the best individuals in the population

crossover by combing the selected individual create new offspring’s. As (Rahman & Setu, 2015)

introduced there are a few different selection methods but the basic idea is the same, make it

more likely that fitter individuals will be selected for the next generation.

C. Crossover

By combing the selected individual create new offspring’s. As (Rahman & Setu, 2015) introduced

The hope is that by combining certain traits from two or more individuals, an even ‘fitter’ offspring

will be created which will inherit the best traits from each.

D. Mutation

As (Rahman & Setu, 2015) introduced Add a little bit randomness into the populations’ genetics

otherwise every combination of solutions that can create would be in the initial population.

Most of the ANN based models available in literature are trained using back propagation

algorithm. It is a gradient based algorithm which suffers from local optimum problem GA

technique is widely used to solve the local optimum problem. Steps that are used to train ANN

with GA Set weights of the network, Define the network and Use GA as the member of the

population finally Train the weight until obtain the target output.

15

2.4 Literature Review

Models that describe the failure phenomenon and consequent enhancement in reliability due to

fault removal are termed as SRGM. Many papers are published addressing the problems with the

parameter estimation of traditional SRGM is overcome by soft computing techniques such as

Artificial Neural Network, Fuzzy systems, Genetic algorithms.

(Karunanithi, Whitley, & Malaiya, 1992a) first presented neural network based software reliability

model to predict cumulative number of failures. They apply cumulative execution time of the

software as the input of the network. They consider two different training sets like Prediction and

Generalization in their own study. They compared their results with some previous models and get

better prediction than those models.

(Bisi & Goyal, 2012) Proposed SRP using Neural Network with Encoded Input they presented that

the performance of a neural network system can be significantly improved by combining a

network. However, only one data set is used as case study to validate and evaluate the reliability

prediction

(Lakshmanan & Ramasamy, 2015) proposed the neural network-based combination model with

single input neuron in the input layer, single output neuron in the output layer and two neurons in

the hidden layer have been done. The result of their proposed model estimation is better than

traditional SRGMs in terms of accuracy. However, the model cannot manage well with major

changes that are not reflected in training phase.

An ANN based model which used ensembles was presented in (Kapur, YADAVALLI, KHATRI,

& BASIRZADEH, 2011) for SRP. The approach was applied on the two software data sets and

experimental results showed that ANN ensembles had better predictive capability than single ANN

model and some statistical models.

(Ong et al., 2017) proposed a method to invisage the reliability, ranking and selection of SRGM

using particle swarm optimization (PSO). The result had shown that PSO for optimizing SRGM

parameter has provided more accurate reliability prediction, but there are no standard approaches

to select optimal SRGM. Selection of SRGM requires efficient estimation of reliability parameters

which helps in determining the quality

16

In this Section, some related works using ANN for software reliability modeling and prediction

are briefly introduced. Artificial neural network based software reliability model was first

presented in (Karunanithi, Whitley, & Malaiya, 1992b) to predict cumulative number of failures.

Those authors use Jordan neural network and Elman neural network were used to predict

cumulative number of failures in software taking testing time as input of the models. The results

obtained by the models had better prediction capability than some statistical software reliability

models.

 An ANN based model to predict next-failure time was presented in (Cai, Cai, Wang, Yu, & Zhang,

2001) Recent 50 failure times were used as input of the model to predict the next-failure time as

output. Number of input nodes and hidden nodes were varied to evaluate the prediction accuracy

of the model. The result was found that prediction capability of a model depends on the nature of

data sets.

A dynamic weighted combinational model (DWCM) based ANN model was presented in (Su &

Huang, 2007) predict the reliability of the software. They use activation functions in the hidden

layer were used depending upon the software reliability growth models (SRGM). The model had

been applied on two data sets and it was found that results were better than some statistical models.

An ANN based model which used ensembles was presented in (Zheng, 2009) for software

reliability prediction. The approach was applied on two software data sets and experimental results

showed that ANN ensembles had better predictive capability than single ANN model and some

statistical models.

(Lo, 2009) developed software reliability prediction model using artificial neural network. They

examine several models without assuming some unrealistic things. Bayesian regularization is

applied to train the network, they commented that their approach produced less average relative

prediction error than the other prediction techniques.

Software reliability growth models (SRGM) based on non-homogeneous poison processes (NHPP)

using a unified theory (Saleem, 2013) was presented in which incorporates the concept of multiple

change-points. The model was applied on three software failure data sets and found better

prediction result than some existing SRGM.

17

(Bhuyan et al., 2016) presented an approach for predicting software reliability. These approach

focuses on two types of experimentation; a) next-step prediction or short-term prediction of the

reliability and b) the end-point prediction is performed at the end of a future testing and debugging

session. The short term predictions result shows better accuracy than end-point predictions for both

the data sets.

In literature, a number of software reliability models exist which are used to predict cumulative

number of failures in software. All the ANN -based models use back propagation algorithm to

train the network. Back propagation is a gradient based technique which suffers from local optima

problem. In this paper, Genetic algorithm method is used to train the network which is a gradient

based global optimization

18

CHAPTER THREE

 Methodology

3. Introduction

This paper addresses the ANN based software reliability model problems that occurred when using

a cumbersome trial-and-error procedure by adopting a methodology based on GA method. Which

is used to optimizing the ANN parameters includes, activation function, training algorithm,

learning rate, momentum rate and number of epoch as depicted in Figure 3.1.

Each data sets consists of three parts training, test and prediction samples. As (Arifovic & Gencay,

2001) introduced the training sample is utilized during the local minimization stage, while the test

sample is used to evaluate a fitness value of a given network. Finally, the prediction sample of a

dataset is used only for evaluating network predictive power.

The ANN parameters used the success of the training phase. Back propagation training is a gradient

descent algorithm. It tries to improve the performance of neural network by reducing its error along

its gradient, but it takes more time to reach the neighborhood of an optimal solution. On the other

hand, genetic algorithm used for global search methods. It investigates the entire search space.

Hence, they reach faster the region of optimal solution.

19

 Figure 3. 1 Flowchart of the proposed model

20

3.1 Software failure data sets

The datasets we will obtained from Handbook of Software Reliability Engineering. The data

source obtained from http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html

Two data sets DS1 and DS2 are used to check the performance of our proposed model based the

proposed GA. DS1 was collected from a real-time command and control application and DS2 was

collected from Brazilian Electronic Switching System of Assembly Language [Kano93b, Mart91,

Lapr91]. Each data point within a set consists two parts. One is the cumulative execution time and

the other is the corresponding cumulative number of failures. Most of the literature is used this

data sets.

3.2 Normalized of software failure data sets

The datasets of software failure cannot be supplied to the ANN and we must have normalized

these datasets. So we need to normalized data with respect to their maximum values. As

(Abdalla, Elfaki, & AlMurtadha, 2014) introduced the training, validation and testing dataset

were scaled to the range of (0–1) using the modified MATLAB functions ‘premnmx’ and

‘tramnmx’. The following equation was used for the purpose:

 xni =
xi−xmin

xmax−xmin
 (1)

Where xi is the real-world input value, xni is the scaled input value of the real-world input value xi

and xmin and xmax are the corresponding minimum and maximum values of the unscaled dataset.

As (Abdalla et al., 2014) introduced The network predicted values, which were in the range of

(0– 1), were transformed to real-world values using the modified MATLAB function

‘postmnmx’. The equation below was used for the purpose:

 xi= xni (xmax-xmin) +xmin (2)

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html

21

3.3 Model Architecture

 Figure 3. 2 Architecture of the proposed model

Where, w11, w12, w13, w21, w22 and w23 (>0) are the weights of the proposed ANN-based software

reliability model and the weight values are found by genetic training algorithm

Artificial neural networks are generally used to capture the non-linear behavior of software failure

process. ANN based models for predicting cumulative number of failures in software used testing

time (In proper units) as input and cumulative number of failures as output. As (Bisi & Goyal,

2015) introduced Feed forward ANN are commonly used architectures in literature which has an

input layer, one/more hidden layer and an output layer. In this work, a new ANN architecture is

proposed to predict cumulative number of failures in software. The proposed ANN architecture is

trained using GA method. The structure of feed forward network has neurons arranged in layers

and each layer have connections (weights) from the neurons at its previous layer. Fundamentally,

22

an FNN optimization/learning/training is met by finding of an appropriate network layers (a

function) and the weights (the layer of the function).

ANN architecture of consists determination of a number of optimal neurons in hidden layers

creating a challenging puzzle that makes us use the trial and error method. (MirRokni, 2017)

introduced ANN training is an optimization process to determine the optimal values of weights

and biases. Applying Genetic Algorithm gives a better solution for these problems. GA is

optimized through random search technique. It reduces chance of convergence to a local optimum.

A simple multi-layer Feed-Forward Neural Network is used to design our proposed model. We

use the data goes in a forward direction, starting from the input layer for accepting the input

elements to the output layer to produce the output through hidden layer to map the input and output

elements. The proposed ANN-based software reliability models with activation function is

constructed with single input and output layer each has single neuron and three hidden layers each

has single hidden neuron. The structure of the adopted neural network is shown in the above figure

 3.4 The neural networks combination model.

(Wang & Li, 2010) proposed the prediction quality of different software reliability models on

different failure data sets is not the same, that is to say, there is no an optimal model that can be

applicable to all the software failure data sets. From some literatures, we know that a linear

combination model has a better software reliability prediction results than those single models, but

the weights of the base models in the combination models cannot be optimized automatically. In

order to address this problem, we propose to combine the base models with neural networks, since

neural networks have powerful fitting ability and generalization.

 As (Wang & Li, 2010) introduced the software reliability models with good prediction results in

engineering practice will be chosen as the base models in the neural networks, and appropriate

activation functions will be selected for each base model. Genetic algorithm in neural networks

can be used to optimize the weights of the base models to improve the software reliability

prediction. ANN can learn from training example by using weights. The weights of our model are

adjusted by using the proposed GA based on training data in order to minimize the errors of the

actual output as compared to the predicted outputs. Most of the ANN based models available in

literature are trained using back propagation algorithm. It is a gradient based algorithm which

23

suffers from local optimum problem. Genetic Algorithm technique is widely used to solve the local

optimum problem, in this work, there are three novel aspects. First, a new ANN based software

reliability architecture is proposed to predict cumulative number of failures in software taking

testing time as input of the model. The purpose is to evenly distribute the inputs of ANN in a

specified range for better training of ANN. Second, the proposed ANN based model is trained

using Genetic algorithm to predict cumulative number of failures in software. Third, the proposed

model is validated using two data sets available in literature. Results of the proposed model are

compared with the existing ANN based models available in literature.

3.5 ANN Approaches for Software Reliability Modeling

3.5.1 The selection of the base models

As we mentioned in chapter 2 there are many software reliability models, among the many

software reliability models, we choose GO model, logistic curve model, S-Shape model because

their performance in software reliability evaluation. The mean value function of These three

model are as Eq. (1), (2), and (3).

We develop ANN-based software reliability model with one input neuron in the input layers, one

output neuron in the output layers and three neurons in the hidden layers. As (Lakshmanan &

Ramasamy, 2015) proposed the number of neurons in the hidden layer is determined by the

number of base models selected to construct the neural network combination model.

As (Wu, Han, He, & Wu, 2012) proposed several approaches have been developed to combine

various existing software reliability models to produce a dynamic weighted combination model

whose prediction accuracy is much better than the component models. We develop the proposed

model by using activation function for hidden layer neurons of our model. We use software

Cumulative execution time as the input and predicted cumulative failures number of software as

the output of our model. We propose GA based to train our model based software reliability model

using failure data sets of the software by global optimize the weights and parameters of the ANNs.

24

Table 3. 1 The mean values of function of the selected models is the following.

m(t)= a (1-e-bt) GO model ……………… ……. (1)

m(t) = a / 1+ke-bt logistic curve model ……………. (2)

m(t)= a(1-(1+bt)e-bt S-Shape model ………………… .(3)

According to the need for the activation functions in our model, the activation functions are

designed as simple, continuous, easily differentiable and the function of the output can be mapped

approximately as a compound form g(f(x)). The output of our model is based SRGM can be

derived from its mean value function as a compound form as the following: Equation, which is the

mean value function of the proposed model.

The cumulative execution time (x) is the input of the proposed model and output for our model is

the predicted cumulative failure number of the software (y). We use 1 - e-x, 1 - (1 + x) e-x and

1/ (1 + b1e
-x) as the activation functions for the Three hidden layer neurons of the proposed

model. The mean value function of the selected SRGMs is used for developed the activation

function in the hidden layer of the neurons.

 Linear activation function g(x) = x is used in the output layer neuron of the ANN. Hence, the

output of the proposed model can be evaluated as follows.

Design the activation function for each base model. The derivation of the neural network into the

software reliability modeling has the following

if we use f(x)= 1 - e-x as the activation function of in the hidden layer and linear activation function

g(x)=x in the output layer then we can get the mean value function of G-O model. Y(t)=W21(1- e-

W11t).

Again, if we use f(x)= 1/ (1 + b1e
-x) as the activation function of in the hidden layer and linear

activation function g(x)=x in the output layer then we can get the mean value function of Logistic

curve model. Y(t)= W22 / (1 + b1e
-W12t).

25

Finally, if we use f(x)= 1 - (1 + x) e-x as the activation function of in the hidden layer and linear

activation function g(x)=x in the output layer then we can get the mean value function of S-shaped

model. Y(t)=W23(1-(1+W13t) e
-W13t)).

Linear activation function g(x) = x is used in the output layer neuron of the ANN based model.

Hence, the output of the proposed model can be evaluated as follows.

Y’(t)= W21(1- e-W11t) + W22/ (1 + b1e
-W12t) + W23(1-(1+W13t) e

-W13t)). (4)

where Wj (> 0) are weights of the proposed model and their values are determined by the GA.

Here, b1 (b1 > 0) are activation function parameters whose values are also evaluated through the

learning of the proposed model.

The values of all the weights and parameter of the feed-forward neural network are determined

by the GA and the three SRGMs are combined based on these dynamically evaluated weights in

accordance with the failure data used to train the feed-forward neural network.

3.6 Training neural network: Back propagation vs. Genetic Algorithms

Training of the networks means finding the optimum or best values of weights and biases of the

network. The back-propagation neural network is a supervised learning method that uses a gradient

descent method to minimize the error between the predicted output and the target output.

Back propagation is only a local optimum algorithm. Neural network based software reliability

growth model on back-propagation (BP) algorithm is a widely used prediction model. In this paper,

to improve the prediction accuracy, we optimize the neural network from two aspects. Firstly,

according to the mean square error of each iteration of network training, the nodes number of the

hidden layer is selected adaptively, which can minimize the mean square error. Secondly, using

mean square error function to define the fitness function, improved genetic algorithm (GA) is

proposed to train the learning rate and momentum factor dynamically, which includes multi-point

crossover and single point mutation. GA instead of backpropagation to find the network weights

for a fixed set of connections. Genetic algorithm ensures the best weights to be used to train the

network and make them converge faster and reduce the error between desired output and the actual

output and hence increases the efficiency of the network.

26

The overall optimization process of ANN model with GA is shown in figure

 Figure 3. 3 Neural network optimization by the genetic algorithm

27

As we see in the above figure the first step is determining the type and structure of the network

after determining the network the next step is randomize weights of the ANN, from here initialize

the population and calculate individual fitness values using fitness function after that we are going

to select based on the fitness value which has the highest value, then based on the selection apply

crossover and mutation then evaluate the fitness value of each new individual after calculating the

fitness value there are two options, if the termination criteria is not satisfied back to the crossover

operator, Otherwise the termination criteria is satisfied if it is go to select the optimal weights as

the initial weights of ANN then based on the optimal weights train our model finally we can get

the optimal solution. it was designed and implemented with MATLAB package.

28

CHAPTER FOUR

Result and Discussion

 4.1 Implementation of the Proposed ANN based SRGM to predict Software

reliability

The steps for implementation of the experiment that are needed to design for our models are as

follows.

 Select simple software reliability growth model that support models to design the neural

network architecture with suitable activation functions for the hidden and output layer

neurons.

 Train the network architecture by giving the normalized practical failure data set to the

neural network based model using genetic algorithm training algorithm.

 Using the trained neural network, estimate the respective weights of neurons and measure

the performance analysis of the proposed ANN-based SRGM.

4.2 GA implementation for training of ANN based model for software reliability

prediction.

Step 1: Initialize the parameters of the GA :

Step 2: Set gn = 1, where gn denotes the current generation number.

Step 3: Encoding the weight and parameter of the ANN into chromosomes.

Step 4: Generate the initial population by initializing the chromosomes for the population.

Step 5: Evaluate the fitness value of each chromosome in the population by considering the

fitness function.

Step 6: Selecting the parents from the population by tournament selection process.

Step 7: On the selected parents apply crossover and mutation operations in order to produce

offspring’s with higher fitness value.

Step 8: If the termination criteria is satisfied, go to step 11. i.e. if gn = max_gen.

Step 9: Increasing gn by unity.

Step 10: Go to step 5.

Step 11: Evaluating the fitness value for each of offspring from the population.

29

Step 12: Return the chromosome with best fitness value and calculate the error of GA optimized

NN (which is the optimal setting of the weights and parameters for the ANN).

Step 13: Stop.

We applied the above implementation for a single input with 3 hidden neurons and a single

output in matlab.

4.3 Different Performance Measures

The fitting performance of a software reliability model demonstrates how much fit the model to

the software failure data. The performance measure of our model using training of parameters of

the SRGM are estimated using a part of the (training of our data) is the first action. Than train our

model global optimize the weight of the network using proposed GA. The estimated cumulative

failures yi at the execution time ti is compared with the actual value of cumulative failures yi from

the dataset. The results of our proposed model has indicated that the new methodology can

optimize and training parameters precisely, and resulting in ANN based software reliability model

where satisfactory performance in Genetic Algorithm. The fitting performance of our model is

measured in terms of Mean Squared Error(MSE) and Root Mean Squared Error (RMSE) as follows

30

 Figure 4. 1 The snapshot of the performance measure values using MSE for Dataset1

31

 Figure 4. 2 The snapshot of the performance measure values using RMSE for Dataset1

As we see in the above figure the neural network based model performs better in terms of less

error in prediction as compared to the normal algorithm and hence it is a better alternative to do

software reliability test using genetic algorithm. It can be seen from the figures that the NN method

proposed in this paper using genetic algorithm provides a good fit than the normal algorithm.

32

 Figure 4. 3 The snapshot of the performance measure values using RMSE for Dataset2

33

 Figure 4. 4 The snapshot of the performance measure values using MSE for Dataset2

As we see in the above figure the neural network based model performs better in terms of less

error in prediction as compared to the normal algorithm and hence it is a better alternative to do

software reliability test using genetic algorithm. It can be seen from the figures that the NN method

proposed in this paper using genetic algorithm provides a good fit than the normal algorithm.

34

 Figure 4. 5 Comparison between Actual data and predicted data in DS1

The graph plots between cumulative execution time and number of cumulative failure. The red

color represents actual data; mineral red color represents the initial predicted and green color

represents optimal predicted for our proposed model.

35

 Figure 4. 6 Comparison between Actual data and predicted data in DS2

In the above figures the graphs are the plot between cumulative execution time and number of

cumulative failure for both datasets. The red color represents actual data; mineral red color

represents the initial predicted and green color represents optimal predicted for our proposed

model. As we see in the diagram the predicted accuracy is increased in optimal solutions which

means predicted accuracy is increased by using optimization algorithm.

In both data sets it can be seen from the figures that the proposed model using genetic algorithm

provides good fit than back propagation algorithm. results are shown in the following tables

36

Data sets Numbers of

input neuron

Numbers of

input neuron

Numbers of

hidden

neuron

MSE RMSE

DS1 1 1 3 4.5815 4.0430

DS2 1 1 3 8.2321 12.1701

 Table 4. 1 Results for Backpropagation Algorithm

Data sets Numbers of

input neuron

Numbers of

input neuron

Numbers of

hidden

neuron

MSE RMSE

DS1 1 1 3 1.3664 2.0335

DS2 1 1 3 2.0126 4.9159

 Table 4. 2 Results for Genetic Algorithm

The above tables show that the performance of our models under comparison in terms of MSE and

RMSE using DS1 and DS2. Table 1 shows the result of back propagation learning algorithm and

table 2 shows that the result of genetic algorithm. The smaller value of measure performance

indicated better accuracy. As we see in the above result the proposed model has smaller values

than the other approaches in both datasets. So better software reliability prediction can be achieved

if we train the proposed ANN based software reliability model using GA. Hence, from table 4.1

and table 4.2, shows that the proposed model in GA has better fitting and predictive accuracy than

the model in BPA.

 BPA GA

MSE 4.5815 1.3664

RMSE 4.0430 2.0335

 Table 4.3 comparison of Backpropagation algorithm and genetic algorithm in DS1

37

 BPA GA

MSE 8.2321 2.0126

RMSE 12.1701 4.9159

 Table 4.4 comparison of Backpropagation algorithm and genetic algorithm in DS2

The ability to set GA in the train function is not currently available in neural network toolbox. It

tolerance for minimum change in fitness function before terminating algorithm to 1e-8 and

displaying each iteration's results. And also it has its own function.

This function may return the mean squared error and root mean squared error on the outputs and

the targets as ga requires a function handle that only return a scalar value.

1. All of the weights are randomly changed

2. The resulting error is calculating

3. If the new error is not lower than the existing error, the new set of weights is discarded the

algorithm goes back to step1

4. If the new error is lower than the existing error, the new set of weights are accepted.

In the above tables and figures, our model is shown. the error rate is determining in terms of

MSE and RMSE during training. It shows how the error rate gradually decrease in genetic

algorithm as compared to backpropagation algorithm.

38

 Figure 4. 7 Results that shows the BPA in both datasets

39

 Figure 4. 8 Results that shows GA in both datasets

As we see from the above tables and figures, we find that the excellent prediction ability compared

to the observed values from the datasets. All MSE and RMSE values of DS1 are smallest among

the values of DS2. It has the best software reliability prediction ability because of its minimum

MSE and RMSE values as compared to the values of DS2. So the prediction power of the model

is increased wit increase the amount of datasets.

40

 Figure 4. 9 Comparison of backpropagation algorithm and genetic algorithm in DS1

41

 Figure 4. 10 Comparison of backpropagation algorithm and genetic algorithm in DS2

As we see in the figures, it has the best software reliability prediction ability because of its

minimum MSE and RMSE value is compared to the other software reliability models. Hence, it is

also proved for DS1 that the proposed model has the best software reliability prediction power

than the other software reliability models. The predictive power of the model is increased with

increase the amount of datasets.

42

CHAPTER FIVE

Conclusions and Recommendations

5.1 Conclusions

In this paper, ANN based software reliability estimation and prediction is proposed. We used

neuro-genetic approach for ANN based software reliability model global optimize the weight of

network using proposed GA. We use our proposed GA optimized trained the model in order to

predict the reliability of the software. first, we train our model using BPA and predict the software

reliability. Then, we use the proposed GA to train our model global optimize the weight of the

network. We present the comparison between the two learning algorithms when they are applied

to train the proposed model.

In this study we presented the result through two real software failure data sets. Experimental

studies show that our proposed model gives better software reliability prediction than the other

ANN based software reliability models. The observations conclude that our model performs better

in terms of less error in prediction as compared to existing models and hence it is a better

alternative to do software reliability test using neuro-genetic approaches. Moreover, the proposed

model significantly gives better fitting and prediction accuracy if we use the proposed GA to train

the ANN based software reliability prediction model, we get better software reliability predictions

from the same ANN based software reliability model. ANN based software reliability model gives

better result for larger datasets than smaller datasets.

Our models are easily compatible with different smooth trend data set and projects. We have

implemented the program in MATLAB. But the programs can be implemented in other languages

such as Java, Python etc.

43

5.2 Recommendations

Software reliability can be predicted using neuro-genetic system. In addition to neural network

model advance machine learning techniques can be applied further. Further, research can be

extended by developing model to predict software reliability by introducing advanced machine

learning techniques applied to a large category of failure datasets of real life industrial projects.

And also plan to focus on the cost benefit analysis of the model that will help to determine whether

a given software reliability prediction model would be economically viable in realistic

environment.

44

Reference
Abdalla, Osman Ahmed, Elfaki, Abdelrahman Osman, & AlMurtadha, Yahya Mohammed. (2014).

Optimizing the multilayer feed-forward artificial neural networks architecture and training
parameters using genetic algorithm. International Journal of Computer Applications, 96(10), 42-
48.

Agatonovic-Kustrin, S, & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling
and its application in pharmaceutical research. Journal of pharmaceutical and biomedical analysis,
22(5), 717-727.

Aggarwal, Gaurav, & Gupta, VK. (2014). Software reliability growth model. International Journal of
Advanced Research in Computer Science and Software Engineering, 4(1).

Andersson, Carina. (2007). A replicated empirical study of a selection method for software reliability
growth models. Empirical Software Engineering, 12(2), 161.

Anjum, Mohd, Haque, Md Asraful, & Ahmad, Nesar. (2013). Analysis and ranking of software reliability
models based on weighted criteria value. IJ Information Technology and Computer Science, 2, 1-
14.

Arifovic, Jasmina, & Gencay, Ramazan. (2001). Using genetic algorithms to select architecture of a
feedforward artificial neural network. Physica A: Statistical mechanics and its applications, 289(3-
4), 574-594.

Bhuyan, Manmath Kumar, Mohapatra, Durga Prasad, & Sethi, Srinivas. (2014). A survey of computational
intelligence approaches for software reliability prediction. ACM SIGSOFT Software Engineering
Notes, 39(2), 1-10.

Bhuyan, Manmath Kumar, Mohapatra, Durga Prasad, & Sethi, Srinivas. (2016). Software Reliability
Assessment using Neural Networks of Computational Intelligence Based on Software Failure Data.
Baltic Journal of Modern Computing, 4(4), 1016.

Bisi, Manjubala, & Goyal, Neeraj Kumar. (2012). Software reliability prediction using neural network with
encoded input. International Journal of Computer Applications, 47(22), 46-52.

Bisi, Manjubala, & Goyal, Neeraj Kumar. (2015). Predicting cumulative number of failures in software using
an ANN-PSO based approach. Paper presented at the 2015 International Conference on
Computational Intelligence and Networks.

Cai, Kai-Yuan, Cai, Lin, Wang, Wei-Dong, Yu, Zhou-Yi, & Zhang, David. (2001). On the neural network
approach in software reliability modeling. Journal of Systems and Software, 58(1), 47-62.

Inoue, Shinji, & Yamada, Shigeru. (2009). Two-dimensional software reliability measurement technologies.
Paper presented at the 2009 IEEE International Conference on Industrial Engineering and
Engineering Management.

Kapur, Parmod Kumar, YADAVALLI, VS SARMA, KHATRI, SUNIL KUMAR, & BASIRZADEH, MASHAALLAH.
(2011). Enhancing software reliability of a complex software system architecture using artificial
neural-networks ensemble. International Journal of Reliability, Quality and Safety Engineering,
18(03), 271-284.

Karunanithi, Nachimuthu, Whitley, Darrell, & Malaiya, Yashwant K. (1992a). Prediction of software
reliability using connectionist models. IEEE Transactions on Software Engineering, 18(7), 563-574.

Karunanithi, Nachimuthu, Whitley, Darrell, & Malaiya, Yashwant K. (1992b). Using neural networks in
reliability prediction. IEEE Software, 9(4), 53-59.

Lakshmanan, Indhurani, & Ramasamy, Subburaj. (2015). An artificial neural-network approach to software
reliability growth modeling. Procedia Computer Science, 57, 695-702.

Lo, Jung-Hua. (2009). The implementation of artificial neural networks applying to software reliability
modeling. Paper presented at the 2009 Chinese Control and Decision Conference.

45

Lyu, Michael R. (1996). Handbook of software reliability engineering (Vol. 222): IEEE computer society
press CA.

Mallikharjuna Rao, K, & Anuradha, K. (2016). A New Method to Optimize the Reliability of Software
Reliability Growth Models using Modified Genetic Swarm Optimization. International Journal of
Computer Applications, 145(5).

Mallikharjuna, Rao K., & Kodali, Anuradha. (2015). An Efficient Method for Parameter Estimation of
Software Reliability Growth Model Using Artificial Bee Colony Optimization, Cham.

Mir, Khurshid Ahmad. (2011). A software reliability growth model. Journal of Modern Mathematics and
Statistics, 5(1), 13-16.

MirRokni, Mahshid Kaviani1 Seyed Majid. (2017). Applying genetic algorithm in architecture and neural
network training. International Journal of Computer Science and Network Security IJCSN, 17(6),
118.

Montana, David J, & Davis, Lawrence. (1989). Training Feedforward Neural Networks Using Genetic
Algorithms. Paper presented at the IJCAI.

Nielsen, Michael A. (2015). Neural networks and deep learning (Vol. 25): Determination press San
Francisco, CA, USA:.

Ong, Liang Fuh, Isa, Mohd Adham, Jawawi, Dayang NA, & HALIM, HAHLIZA ABDUL. (2017). IMPROVING
SOFTWARE RELIABILITY GROWTH MODEL SELECTION RANKING USING PARTICLE SWARM
OPTIMIZATION. Journal of Theoretical & Applied Information Technology, 95(1).

Rahman, Md Mijanur, & Setu, Tania Akter. (2015). An implementation for combining neural networks and
genetic algorithms. Int. J. Comp. Sci. Technol, 6, 218-222.

Ramasamy, Subburaj, & Lakshmanan, Indhurani. (2016). Application of artificial neural network for
software reliability growth modeling with testing effort. Indian Journal of Science and Technology,
9(29).

Saleem, Nada N. (2013). Software reliability prediction using artificial techniques. IJCSI, 10(4, No 2).
Singh, Yogesh, & Kumar, Pradeep. (2010). Prediction of software reliability using feed forward neural

networks. Paper presented at the 2010 International Conference on Computational Intelligence
and Software Engineering.

Su, Yu-Shen, & Huang, Chin-Yu. (2007). Neural-network-based approaches for software reliability
estimation using dynamic weighted combinational models. Journal of Systems and Software,
80(4), 606-615.

Tawfiq, Luma NM, & Salih, Othman M. (2014). Using Feed Forward Neural Network to Solve Eigenvalue
Problems. Paper presented at the Conference Papers in Science.

Wang, Gaozu, & Li, Weihuai. (2010). Research of software reliability combination model based on neural
net. Paper presented at the 2010 Second World Congress on Software Engineering.

Wu, Wei, Han, Kun, He, Chengming, & Wu, Shujian. (2012). A dynamically-weighted software reliability
combination model. Paper presented at the 2012 International Conference on Quality, Reliability,
Risk, Maintenance, and Safety Engineering.

Zheng, Jun. (2009). Predicting software reliability with neural network ensembles. Expert systems with
applications, 36(2), 2116-2122.

46

Appendix A

Datasets

The data set comes from [Musa 79c] and Brazilian Electronic Switching System. Assembly

Language [Kano93b, Mart91, Lapr91] and Real-Time Command & Control System from Software

project failure datasets

Dataset 2:

Cumulative

Execution

Time

Cumulative

Failure Number

 Cumulative

Execution Time

Cumulative

Failure Number

1 60 200 212

2 30 201 4

3 540 202 5

4 67 203 106

5 40 204 264

6 23 205 269

7 5 206 276

8 53 207 1

9 4 208 203

10 16 209 117

11 94 210 1

12 15 211 45

13 5 212 5

14 90 213 110

15 77 214 18

16 68 215 10

17 15 216 179

18 137 217 66

19 23 218 1

20 1 219 106

21 104 220 2

47

22 16 221 19

23 9 222 117

24 10 223 30

25 12 224 130

26 4 225 31

27 10 226 28

28 82 227 4

29 6 228 302

30 54 229 362

31 25 230 5

32 43 231 63

33 12 232 42

34 48 233 86

35 23 234 258

36 6 235 294

37 10 236 256

38 12 237 118

39 14 238 13

40 33 239 47

41 9 240 92

42 4 241 343

43 66 242 128

44 0.5 243 392

45 18 244 90

46 15 245 116

47 75 246 35

48 30 247 171

49 116 248 139

50 14 249 110

51 15 250 98

52 41 251 60

48

53 1 252 90

54 99 253 82

55 9 254 5

56 45 255 30

57 68 256 35

58 36 257 231

59 50 258 62

60 81 259 158

61 89 260 1622

62 85 261 353

63 54 262 33

64 3 263 70

65 15 264 35

66 6 265 116

67 8 266 809

68 36 267 1710

69 98 268 745

70 32 269 350

71 36 270 470

72 5 271 122

73 9 272 244

74 60 273 2384

75 34 274 249

76 16 275 607

77 164 276 83

78 123 277 2

79 19 278 26

80 19 279 586

81 126 280 352

82 36 281 673

83 54 282 330

49

84 15 283 649

85 16 284 123

86 154 285 1789

87 84 286 1288

88 92 287 111

89 247 288 75

90 244 289 74

91 60 290 333

92 5 291 287

93 2 292 1

94 5 293 881

95 130 294 13

96 0.5 295 1314

97 233 296 472

98 50 297 363

99 54 298 6

100 52 299 4

101 57 300 55

102 1 301 409

103 2 302 36

104 5 303 15

105 1 304 1404

106 17 305 17

107 14 306 71

108 2 307 34

109 87 308 434

110 19 309 60

111 29 310 19

112 0.5 311 20

113 61 312 79

114 118 313 24

50

115 20 314 540

116 3 315 1040

117 11 316 38

118 87 317 78

119 5 318 41

120 249 319 1757

121 28 320 205

122 44 321 2095

123 31 322 788

124 3 323 1

125 10 324 2668

126 3 325 470

127 8 326 10

128 17 327 20

129 3 328 338

130 55 329 222

131 7 330 28

132 12 331 56

133 6 332 561

134 4 333 65

135 169 334 100

136 30 335 900

137 4 336 212

138 38 337 287

139 7 338 53

140 4 339 3

141 4 340 4973

142 13 341 197

143 10 342 1174

144 40 343 783

145 57 344 1346

51

146 22 345 59

147 37 346 98

148 127 347 1594

149 12 348 25

150 8 349 98

151 1 350 722

152 21 351 228

153 104 352 78

154 8 353 33

155 23 354 453

156 1 355 1020

157 6 356 4327

158 141 357 925

159 3 358 302

160 21 359 649

161 3 360 43

162 18 361 185

163 0.5 362 157

164 75 363 30

165 92 364 1771

166 39 365 1088

167 29 366 556

168 3 367 55

169 2 368 4892

170 158 369 81

171 30 370 61

172 24 371 476

173 5 372 63

174 92 373 3

175 7 374 3

176 33 375 62

52

177 20 376 1

178 16 377 44

179 292 378 1236

180 3 379 1406

181 9 380 109

182 12 381 1471

183 18 382 1797

184 9 383 1749

185 75 384 2096

186 15 385 76

187 46 386 2167

188 9 387 2059

189 94 388 2177

190 25 389 1893

191 175 390 198

192 5 391 3326

193 12 392 3100

194 18 393 586

195 70 394 2686

196 3 395 124

197 10 396 229

198 114 397 1008

199 213

53

% INITIALIZE THE NEURAL NETWORK PROBLEM %

% inputs for the neural net(AND gate example== 2 inputs && 4 samples)
inputs = xlsread('inputs.xlsx')';

% targets for the neural net
targets = xlsread('targets.xlsx')';

% number of neurons
n = 3;

% create a neural network
net = feedforwardnet(n);

% configure the neural network for this dataset
net = configure(net, inputs, targets);
% get the normal NN weights and bias
getwb(net)

% error MSE normal NN
error = targets - net(inputs);
RMSE = mean(error.^2)/mean(var(targets',1))
% create handle to the MSE_TEST function, that
% calculates MSE
h = @(x) NMSE(x, net, inputs, targets);

% Setting the Genetic Algorithms tolerance for
% minimum change in fitness function before
% terminating algorithm to 1e-8 and displaying
% each iteration's results.

ga_opts = gaoptimset('PopInitRange', [0;1], 'TolFun', 1e-

10,'display','iter','PopulationSize',100,'FitnessScalingFcn',@fitscalingprop,

'SelectionFcn',@selectiontournament,'CrossoverFcn',@crossoverscattered,'Mutat

ionFcn',@mutationgaussian);
ga_opts = gaoptimset(ga_opts, 'StallGenLimit', 100, 'FitnessLimit', 1e-5,

'Generations', 100);
% PLEASE NOTE: For a feed-forward network
% with n hidden neurons, 3n+n+1 quantities are required
% in the weights and biases column vector.
% a. n for the input weights=(features*n)=3*n
% b. n for the input biases=(n bias)=n
% c. n for the output weights=(n weights)=n
% d. 1 for the output bias=(1 bias)=1
% running the genetic algorithm with desired options
% Y’(t)= W21(1- e-W11t) + W22/ (1 + b1e-W12t) + W23(1-(1+W13t) e-W13t)).
[x, err_ga] = ga(h, 3*n+n+n+1, ga_opts);
net = setwb(net, x');
% get the GA optimized NN weights and bias
getwb(net)

% error MSE GA optimized NN
error = targets - net(inputs);
RMSE = mean(error.^2)/mean(var(targets',1))

